51
|
Wu G, Yang G, Zhang R, Xu G, Zhang L, Wen W, Lu J, Liu J, Yu Y. Altered microRNA Expression Profiles of Extracellular Vesicles in Nasal Mucus From Patients With Allergic Rhinitis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2015; 7:449-57. [PMID: 26122505 PMCID: PMC4509657 DOI: 10.4168/aair.2015.7.5.449] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 12/19/2022]
Abstract
Purpose Allergic rhinitis (AR) is an inflammatory disorder of the upper airway. Exosomes or extracellular vesicles are nanosized vesicles of endosomal origin released from inflammatory and epithelial cells that have been implicated in allergic diseases. In this study, we characterized the microRNA (miRNA) content of exosomes in AR. Methods Extracellular vesicles were isolated from nasal mucus from healthy control subjects (n=10) and patients with severe AR (n=10). Vesicle RNA was analyzed by using a TaqMan microRNA assays Human Panel-Early Access kit (Applied Biosystems, Foster City, CA, USA) containing probes for 366 human miRNAs, and selected findings were validated with quantitative RT-PCR. Target prediction and pathway analysis for the differentially expressed miRNAs were performed using DIANA-mirPath. Results Twenty-one vesicle miRNAs were up-regulated and 14 miRNAs were under-regulated significantly (P<0.05) in nasal mucus from AR patients when compared to healthy controls. Bioinformatic analysis by DIANA-mirPath demonstrated that 32 KEGG biological processes were significantly enriched (P<0.05, FDR corrected) among differentially expressed vesicle miRNA signatures. Among them, the B-cell receptor signaling pathway (P=3.709E-09), the natural killer cell-mediated cytotoxicity (P=8.466E-05), the T-cell receptor signaling pathway (P=0.00075), the RIG-I-like receptor signaling pathway (P=0.00127), the Wnt signaling pathway (P=0.00130), endocytosis (P=0.00440), and salivary secretion (P=0.04660) were the most prominent pathways enriched in quantiles with differential vesicle miRNA patterns. Furthermore, miR-30-5p, miR-199b-3p, miR-874, miR-28-3p, miR-203, and miR-875-5p, involved in B-cell receptor and salivary secretion signaling pathways, were selected for validation using independent samples from 44 AR patients and 20 healthy controls. MiR-30-5p and miR-199b-3p were significantly increased in extracellular vesicles from nasal mucus when compared to healthy controls, while miR-874 and miR-28-3p were significantly down-regulated. In addition, miRNA-203 was significantly increased in AR patients, while miRNA-875-5p was found to be significantly decreased in AR patients. Conclusions This study demonstrated that vesicle miRNA may be a regulator for the development of AR.
Collapse
Affiliation(s)
- Geping Wu
- Department of Otolaryngology, First People Hospital of Zhangjiagang City, Suzhou, China.
| | - Guanghai Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruxin Zhang
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Guangyin Xu
- Institute of Neuroscience and Department of Neurobiology and Psychology, Key lab of Pain Research and Therapy, Soochow University, Suzhou, China
| | - Ling Zhang
- Department of Science and Education, First People Hospital of Zhangjiagang City, Suzhou, China
| | - Wu Wen
- Department of Otolaryngology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianbing Lu
- Department of Otolaryngology, First People Hospital of Zhangjiagang City, Suzhou, China
| | - Jianyong Liu
- Department of Otolaryngology, First People Hospital of Zhangjiagang City, Suzhou, China
| | - Yan Yu
- Department of Otolaryngology, First People Hospital of Zhangjiagang City, Suzhou, China
| |
Collapse
|
52
|
Xu JF, Yang GH, Pan XH, Zhang SJ, Zhao C, Qiu BS, Gu HF, Hong JF, Cao L, Chen Y, Xia B, Bi Q, Wang YP. Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. PLoS One 2014; 9:e114627. [PMID: 25503309 PMCID: PMC4263734 DOI: 10.1371/journal.pone.0114627] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/12/2014] [Indexed: 12/20/2022] Open
Abstract
The physiological role of microRNAs (miRNAs) in osteoblast differentiation remains elusive. Exosomal miRNAs isolated from human bone marrow-derived mesenchymal stem cells (BMSCs) culture were profiled using miRNA arrays containing probes for 894 human matured miRNAs. Seventy-nine miRNAs (∼8.84%) could be detected in exosomes isolated from BMSC culture supernatants when normalized to endogenous control genes RNU44. Among them, nine exosomal miRNAs were up regulated and 4 miRNAs were under regulated significantly (Relative fold>2, p<0.05) when compared with the values at 0 day with maximum changes at 1 to 7 days. Five miRNAs (miR-199b, miR-218, miR-148a, miR-135b, and miR-221) were further validated and differentially expressed in the individual exosomal samples from hBMSCs cultured at different time points. Bioinformatic analysis by DIANA-mirPath demonstrated that RNA degradation, mRNA surveillance pathway, Wnt signaling pathway, RNA transport were the most prominent pathways enriched in quantiles with differential exosomal miRNA patterns related to osteogenic differentiation. These data demonstrated exosomal miRNA is a regulator of osteoblast differentiation.
Collapse
Affiliation(s)
- Ji-Feng Xu
- Department of Orthopedics and Joint Surgery, Zhejiang Provincial People's Hospital, Hangzhou, 310014, PR China
- * E-mail: (JFX); (YPW)
| | - Guang-hai Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Xiao-Hong Pan
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Shui-Jun Zhang
- Department of Orthopedics and Joint Surgery, Zhejiang Provincial People's Hospital, Hangzhou, 310014, PR China
| | - Chen Zhao
- Department of Orthopedics and Joint Surgery, Zhejiang Provincial People's Hospital, Hangzhou, 310014, PR China
| | - Bin-Song Qiu
- Department of Orthopedics and Joint Surgery, Zhejiang Provincial People's Hospital, Hangzhou, 310014, PR China
| | - Hai-Feng Gu
- Department of Orthopedics and Joint Surgery, Zhejiang Provincial People's Hospital, Hangzhou, 310014, PR China
| | - Jian-Fei Hong
- Department of Orthopedics and Joint Surgery, Zhejiang Provincial People's Hospital, Hangzhou, 310014, PR China
| | - Li Cao
- Department of Orthopedics and Joint Surgery, Zhejiang Provincial People's Hospital, Hangzhou, 310014, PR China
| | - Yu Chen
- Department of Orthopedics and Joint Surgery, Zhejiang Provincial People's Hospital, Hangzhou, 310014, PR China
| | - Bing Xia
- Department of Orthopedics and Joint Surgery, Zhejiang Provincial People's Hospital, Hangzhou, 310014, PR China
| | - Qin Bi
- Department of Orthopedics and Joint Surgery, Zhejiang Provincial People's Hospital, Hangzhou, 310014, PR China
| | - Ya-Ping Wang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, PR China
- * E-mail: (JFX); (YPW)
| |
Collapse
|
53
|
Heinemann ML, Ilmer M, Silva LP, Hawke DH, Recio A, Vorontsova MA, Alt E, Vykoukal J. Benchtop isolation and characterization of functional exosomes by sequential filtration. J Chromatogr A 2014; 1371:125-35. [PMID: 25458527 DOI: 10.1016/j.chroma.2014.10.026] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/10/2014] [Accepted: 10/09/2014] [Indexed: 02/03/2023]
Abstract
Early and minimally invasive detection of malignant events or other pathologies is of utmost importance in the pursuit of improved patient care and outcomes. Recent evidence indicates that exosomes and extracellular vesicles in serum and body fluids can contain nucleic acid, protein, and other biomarkers. Accordingly, there is great interest in applying these clinically as prognostic, predictive, pharmacodynamic, and early detection indicators. Nevertheless, existing exosome isolation methods can be time-consuming, require specialized equipment, and/or present other inefficiencies regarding purity, reproducibility and assay cost. We have developed a straightforward, three-step protocol for exosome isolation of cell culture supernatants or large volumes of biofluid based on sequential steps of dead-end pre-filtration, tangential flow filtration (TFF), and low-pressure track-etched membrane filtration that we introduce here. Our approach yields exosome preparations of high purity and defined size distribution and facilitates depletion of free protein and other low-molecular-weight species, extracellular vesicles larger than 100nm, and cell debris. Samples of exosomes prepared using the approach were verified morphologically by nanoparticle tracking analysis and electron microscopy, and mass spectrometry analyses confirmed the presence of previously reported exosome-associated proteins. In addition to being easy-to-implement, sequential filtration yields exosomes of high purity and, importantly, functional integrity as a result of the relatively low-magnitude manipulation forces employed during isolation. This answers an unmet need for preparation of minimally manipulated exosomes for investigations into exosome function and basic biology. Further, the strategy is amenable to translation for clinical exosome isolations because of its speed, automatability, scalability, and specificity for isolating exosomes from complex biological samples.
Collapse
Affiliation(s)
- Mitja L Heinemann
- Department of Translational Molecular Pathology, Unit 2951, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard,Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Klein-Scory S, Tehrani MM, Eilert-Micus C, Adamczyk KA, Wojtalewicz N, Schnölzer M, Hahn SA, Schmiegel W, Schwarte-Waldhoff I. New insights in the composition of extracellular vesicles from pancreatic cancer cells: implications for biomarkers and functions. Proteome Sci 2014; 12:50. [PMID: 25469109 PMCID: PMC4251850 DOI: 10.1186/s12953-014-0050-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/16/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic cancer development is associated with characteristic alterations like desmoplastic reaction and immune escape which are mediated by the cell-cell communication mechanism and by the microenvironment of the cells. The whole of released components are important determinants in these processes. Especially the extracellular vesicles released by pancreatic cancer cells play a role in cell communication and modulate cell growth and immune responses. RESULTS Here, we present the proteomic description of affinity purified extracellular vesicles from pancreatic tumour cells, compared to the secretome, defined as the whole of the proteins released by pancreatic cancer cells. The proteomic data provide comprehensive catalogues of hundreds of proteins, and the comparison reveals a special proteomic composition of pancreatic cancer cell derived extracellular vesicles. The functional analysis of the protein composition displayed that membrane proteins, glycoproteins, small GTP binding proteins and a further, heterogeneous group of proteins are enriched in vesicles, whereas proteins derived from proteasomes and ribosomes, as well as metabolic enzymes, are not components of the vesicles. Furthermore proteins playing a role in carcinogenesis and modulators of the extracellular matrix (ECM) or cell-cell interactions are components of affinity purified extracellular vesicles. CONCLUSION The data deepen the knowledge of extracellular vesicle composition by hundreds of proteins that have not been previously described as vesicle components released by pancreatic cancer cells. Extracellular vesicles derived from pancreatic cancer cells show common proteins shared with other vesicles as well as cell type specific proteins indicating biomarker candidates and suggesting functional roles in cancer cell stroma interactions.
Collapse
Affiliation(s)
- Susanne Klein-Scory
- />IMBL, Medical Clinic Knappschaftskrankenhaus Bochum GmbH, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Mahnaz Moradian Tehrani
- />Functional Proteome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Christina Eilert-Micus
- />IMBL, Medical Clinic Knappschaftskrankenhaus Bochum GmbH, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Kamila A Adamczyk
- />IMBL, Medical Clinic Knappschaftskrankenhaus Bochum GmbH, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Nathalie Wojtalewicz
- />IMBL, Medical Clinic Knappschaftskrankenhaus Bochum GmbH, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Martina Schnölzer
- />Functional Proteome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Stephan A Hahn
- />Molecular Gastrointestinal Oncology MGO, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Wolff Schmiegel
- />IMBL, Medical Clinic Knappschaftskrankenhaus Bochum GmbH, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
- />Medical Department, Medical Clinic Knappschaftskrankenhaus Bochum GmbH, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Irmgard Schwarte-Waldhoff
- />IMBL, Medical Clinic Knappschaftskrankenhaus Bochum GmbH, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| |
Collapse
|
55
|
Nawaz M, Camussi G, Valadi H, Nazarenko I, Ekström K, Wang X, Principe S, Shah N, Ashraf NM, Fatima F, Neder L, Kislinger T. The emerging role of extracellular vesicles as biomarkers for urogenital cancers. Nat Rev Urol 2014; 11:688-701. [PMID: 25403245 DOI: 10.1038/nrurol.2014.301] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The knowledge gained from comprehensive profiling projects that aim to define the complex genomic alterations present within cancers will undoubtedly improve our ability to detect and treat those diseases, but the influence of these resources on our understanding of basic cancer biology is still to be demonstrated. Extracellular vesicles have gained considerable attention in past years, both as mediators of intercellular signalling and as potential sources for the discovery of novel cancer biomarkers. In general, research on extracellular vesicles investigates either the basic mechanism of vesicle formation and cargo incorporation, or the isolation of vesicles from available body fluids for biomarker discovery. A deeper understanding of the cargo molecules present in extracellular vesicles obtained from patients with urogenital cancers, through high-throughput proteomics or genomics approaches, will aid in the identification of novel diagnostic and prognostic biomarkers, and can potentially lead to the discovery of new therapeutic targets.
Collapse
Affiliation(s)
| | | | - Hadi Valadi
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Sweden
| | | | - Karin Ekström
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Sweden
| | - Xiaoqin Wang
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Sweden
| | - Simona Principe
- Princess Margaret Cancer Center, 101 College Street, TMDT 9-807, Toronto, ON M5G 1L7, Canada
| | | | | | | | | | - Thomas Kislinger
- Princess Margaret Cancer Center, 101 College Street, TMDT 9-807, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
56
|
Lázaro-Ibáñez E, Sanz-Garcia A, Visakorpi T, Escobedo-Lucea C, Siljander P, Ayuso-Sacido Á, Yliperttula M. Different gDNA content in the subpopulations of prostate cancer extracellular vesicles: apoptotic bodies, microvesicles, and exosomes. Prostate 2014; 74:1379-90. [PMID: 25111183 PMCID: PMC4312964 DOI: 10.1002/pros.22853] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/11/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Extracellular vesicles (EVs) are cell-derived membrane vesicles. EVs contain several RNAs such as mRNA, microRNAs, and ncRNAs, but less is known of their genomic DNA (gDNA) content. It is also unknown whether the DNA cargo is randomly sorted or if it is systematically packed into specific EV subpopulations. The aim of this study was to analyze whether different prostate cancer (PCa) cell-derived EV subpopulations (apoptotic bodies, microvesicles, and exosomes) carry different gDNA fragments. METHODS EV subpopulations were isolated from three PCa cell lines (LNCaP, PC-3, and RC92a/hTERT) and the plasma of PCa patients and healthy donors, and characterized by transmission electron microscopy, nanoparticle tracking analysis and total protein content. gDNA fragments of different genes were detected by real time quantitative PCR and confirmed by DNA sequencing. RESULTS We report that the concentration of EVs was higher in the cancer patients than in the healthy controls. EV subpopulations differed from each other in terms of total protein and DNA content. Analysis of gDNA fragments of MLH1, PTEN, and TP53 genes from the PCa cell-derived EV subpopulations showed that different EVs carried different gDNA content, which could even harbor specific mutations. Altogether, these results suggest that both nucleic acids and proteins are selectively and cell-dependently packed into the EV subtypes. CONCLUSIONS EVs derived from PCa cell lines and human plasma samples contain double-stranded gDNA fragments which could be used to detect specific mutations, making EVs potential biomarkers for cancer diagnostics and prognostics.
Collapse
Affiliation(s)
- Elisa Lázaro-Ibáñez
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of HelsinkiHelsinki, Finland
| | - Andres Sanz-Garcia
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of HelsinkiHelsinki, Finland
| | - Tapio Visakorpi
- Institute of Biomedical Technology and BioMediTech, University of Tampere and Tampere University HospitalTampere, Finland
| | - Carmen Escobedo-Lucea
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of HelsinkiHelsinki, Finland
| | - Pia Siljander
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of HelsinkiHelsinki, Finland
- Department of Biosciences, Division of Biochemistry and Biotechnology, University of HelsinkiHelsinki, Finland
| | - Ángel Ayuso-Sacido
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of HelsinkiHelsinki, Finland
- IMMA-CIOCC, Fundación Hospital de MadridMadrid, Spain
- *Correspondence to: Marjo Yliperttula, PhD and Ángel Ayuso-Sacido, PhD, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland. E-mail: (M.Y.); (A.A.S.)
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of HelsinkiHelsinki, Finland
- *Correspondence to: Marjo Yliperttula, PhD and Ángel Ayuso-Sacido, PhD, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland. E-mail: (M.Y.); (A.A.S.)
| |
Collapse
|
57
|
Noncoding RNAs as novel biomarkers in prostate cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:591703. [PMID: 25243154 PMCID: PMC4163346 DOI: 10.1155/2014/591703] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/04/2014] [Indexed: 01/29/2023]
Abstract
Prostate cancer (PCa) is the second most common diagnosed malignant disease in men worldwide. Although serum PSA test dramatically improved the early diagnosis of PCa, it also led to an overdiagnosis and as a consequence to an overtreatment of patients with an indolent disease. New biomarkers for diagnosis, prediction, and monitoring of the disease are needed. These biomarkers would enable the selection of patients with aggressive or progressive disease and, hence, would contribute to the implementation of individualized therapy of the cancer patient. Since the FDA approval of the long noncoding PCA3 RNA-based urine test for the diagnosis of PCa patients, many new noncoding RNAs (ncRNAs) associated with PCa have been discovered. According to their size and function, ncRNAs can be divided into small and long ncRNAs. NcRNAs are expressed in (tumor) tissue, but many are also found in circulating tumor cells and in all body fluids as protein-bound or incorporated in extracellular vesicles. In these protected forms they are stable and so they can be easily analyzed, even in archival specimens. In this review, the authors will focus on ncRNAs as novel biomarker candidates for PCa diagnosis, prediction, prognosis, and monitoring of therapeutic response and discuss their potential for an implementation into clinical practice.
Collapse
|
58
|
Expression of TGFβ-1 and EHD1 correlated with survival of non-small cell lung cancer. Tumour Biol 2014; 35:9371-80. [PMID: 24946721 DOI: 10.1007/s13277-014-2164-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022] Open
Abstract
Transforming growth factor-β1 (TGFβ-1) signaling is regulated by endocytotic pathway. To clarify the prognostic value of TGFβ-1 and to verify the involvement of endocytosis in drug resistance, we examined the expression of TGFβ-1 and Eps15 homology domain 1 (EHD1) in non-small cell lung cancer (NSCLC) and its association with tumor characteristics and survival of patients with NSCLC. Expression of TGFβ-1 and EHD1 was evaluated by immunohistochemistry in paraffin sections from 105 NSCLC patients. Overall survival (OS) was analyzed by Kaplan-Meier method, log-rank test, and multivariate Cox proportional hazard regression model. Positive immunostaining of TGFβ-1 and EHD1 was detected in 52.38 and 39.05 % of NSCLC samples, respectively. In non-adjuvant chemotherapy-treated group (P = 0.006) and epidermal growth factor receptor (EGFR) (+) group (P = 0.038), patients with TGFβ-1 expression had a longer OS. EHD1 negative expression predicted a longer OS (P = 0.003), especially in EGFR (+) (P = 0.006) and adjuvant chemotherapy-treated patients (P = 0.003). NSCLC patients with concurrent positive TGFβ-1 and negative EHD1 (combined markers) were significantly correlated with better OS (P = 0.001). American Joint Committee on Cancer (AJCC) status and combined markers were independent prognostic indicators for OS (HR (95 % CI) 1.576 (1.112-2.232), P = 0.011 and HR 0.349 (0.180-0.673), P = 0.002, respectively). We identified concordant TGFβ-1 positive and EHD1 negative as a strong favorable prognosis factor in NSCLC. Our results may help us to select and optimize strategies for individualized therapy.
Collapse
|
59
|
Webber J, Stone TC, Katilius E, Smith BC, Gordon B, Mason MD, Tabi Z, Brewis IA, Clayton A. Proteomics analysis of cancer exosomes using a novel modified aptamer-based array (SOMAscan™) platform. Mol Cell Proteomics 2014; 13:1050-64. [PMID: 24505114 PMCID: PMC3977183 DOI: 10.1074/mcp.m113.032136] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have used a novel affinity-based proteomics technology to examine the protein signature of small secreted extracellular vesicles called exosomes. The technology uses a new class of protein binding reagents called SOMAmers® (slow off-rate modified aptamers) and allows the simultaneous precise measurement of over 1000 proteins. Exosomes were highly purified from the Du145 prostate cancer cell line, by pooling selected fractions from a continuous sucrose gradient (within the density range of 1.1 to 1.2 g/ml), and examined under standard conditions or with additional detergent treatment by the SOMAscanTM array (version 3.0). Lysates of Du145 cells were also prepared, and the profiles were compared. Housekeeping proteins such as cyclophilin-A, LDH, and Hsp70 were present in exosomes, and we identified almost 100 proteins that were enriched in exosomes relative to cells. These included proteins of known association with cancer exosomes such as MFG-E8, integrins, and MET, and also those less widely reported as exosomally associated, such as ROR1 and ITIH4. Several proteins with no previously known exosomal association were confirmed as exosomally expressed in experiments using individual SOMAmer® reagents or antibodies in micro-plate assays. Western blotting confirmed the SOMAscanTM-identified enrichment of exosomal NOTCH-3, L1CAM, RAC1, and ADAM9. In conclusion, we describe here over 300 proteins of hitherto unknown association with prostate cancer exosomes and suggest that the SOMAmer®-based assay technology is an effective proteomics platform for exosome-associated biomarker discovery in diverse clinical settings.
Collapse
Affiliation(s)
- Jason Webber
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Velindre Cancer Centre, Whitchurch, Cardiff CF14 2TL, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Duijvesz D, Burnum-Johnson KE, Gritsenko MA, Hoogland AM, Vredenbregt-van den Berg MS, Willemsen R, Luider T, Paša-Tolić L, Jenster G. Proteomic profiling of exosomes leads to the identification of novel biomarkers for prostate cancer. PLoS One 2013; 8:e82589. [PMID: 24391718 PMCID: PMC3876995 DOI: 10.1371/journal.pone.0082589] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/25/2013] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Current markers for prostate cancer, such as PSA lack specificity. Therefore, novel biomarkers are needed. Unfortunately, the complexity of body fluids often hampers biomarker discovery. An attractive alternative approach is the isolation of small vesicles, i.e. exosomes, ∼100 nm, which contain proteins that are specific to the tissue from which they are derived and therefore can be considered as treasure chests for disease-specific biomarker discovery. MATERIALS AND METHODS Exosomes were isolated from 2 immortalized primary prostate epithelial cells (PNT2C2 and RWPE-1) and 2 PCa cell lines (PC346C and VCaP) by ultracentrifugation. After tryptic digestion, proteomic analyses utilized a nanoLC coupled with an LTQ-Orbitrap operated in tandem MS (MS/MS) mode. Accurate Mass and Time (AMT) tag approach was employed for peptide identification and quantitation. Candidate biomarkers were validated by Western blotting and Immunohistochemistry. RESULTS Proteomic characterization resulted in the identification of 248, 233, 169, and 216 proteins by at least 2 peptides in exosomes from PNT2C2, RWPE-1, PC346C, and VCaP, respectively. Statistical analyses revealed 52 proteins differently abundant between PCa and control cells, 9 of which were more abundant in PCa. Validation by Western blotting confirmed a higher abundance of FASN, XPO1 and PDCD6IP (ALIX) in PCa exosomes. CONCLUSIONS Identification of exosomal proteins using high performance LC-FTMS resulted in the discovery of PDCD6IP, FASN, XPO1 and ENO1 as new candidate biomarkers for prostate cancer.
Collapse
Affiliation(s)
| | - Kristin E. Burnum-Johnson
- Fundamental and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Marina A. Gritsenko
- Fundamental and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | | | | | - Rob Willemsen
- Department of Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Theo Luider
- Department of Neurology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Guido Jenster
- Department of Urology, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
61
|
Bijnsdorp IV, Geldof AA, Lavaei M, Piersma SR, van Moorselaar RJA, Jimenez CR. Exosomal ITGA3 interferes with non-cancerous prostate cell functions and is increased in urine exosomes of metastatic prostate cancer patients. J Extracell Vesicles 2013; 2:22097. [PMID: 24371517 PMCID: PMC3873120 DOI: 10.3402/jev.v2i0.22097] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 12/30/2022] Open
Abstract
Background Cancer cells are able to change the protein expression and behavior of non-cancerous surrounding cells. Exosomes, secreted by prostate cancer (PCa) cells, may have a functional role in cancer metastasis and present a promising source for protein biomarkers. The aim of the present study was to identify which proteins in exosomes can influence non-cancerous cells, and to determine whether we can use urine exosomal proteins to identify high-risk PCa patients. Method Exosomes were isolated by ultracentrifugation. Migration and invasion were studied by the transwell (invasion) assay. Proteomics was performed by LC-MS/MS and identified proteins were validated by Western blotting. Cellular uptake of fluorescent labeled PKH67-exosomes was measured by FACS. Results Based on comparative protein profiling by mass spectrometry-based proteomics of LNCaP- and PC3-exosomes, we selected ITGA3 and ITGB1, involved in migration/invasion, for further analyses. Inhibition of exosomal ITGA3 reduced the migration and invasion of non-cancerous prostate epithelial cells (prEC) almost completely. Cellular uptake of exosomes by prEC was higher with PC3-exosomes compared to LNCaP exosomes. Finally, ITGA3 and ITGB1 were more abundant in urine exosomes of metastatic patients (p<0.05), compared to benign prostate hyperplasia or PCa. Conclusion These data indicate exosomal ITGA3 and ITGB1 may play a role in manipulating non-cancerous surrounding cells and that measurement of ITGA3 and ITGB1 in urine exosomes has the potential to identify patients with metastatic PCa in a non-invasive manner.
Collapse
Affiliation(s)
- Irene V Bijnsdorp
- Department of Urology, VU University Medical Center, Amsterdam, The Netherlands
| | - Albert A Geldof
- Department of Urology, VU University Medical Center, Amsterdam, The Netherlands
| | - Mehrdad Lavaei
- OncoProteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Sander R Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Connie R Jimenez
- OncoProteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
62
|
Aalberts M, Stout TAE, Stoorvogel W. Prostasomes: extracellular vesicles from the prostate. Reproduction 2013; 147:R1-14. [PMID: 24149515 DOI: 10.1530/rep-13-0358] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The term 'prostasomes' is generally used to classify the extracellular vesicles (EVs) released into prostatic fluid by prostate epithelial cells. However, other epithelia within the male reproductive tract also release EVs that mix with 'true' prostasomes during semen emission or ejaculation. Prostasomes have been proposed to regulate the timing of sperm cell capacitation and induction of the acrosome reaction, as well as to stimulate sperm motility where all three are prerequisite processes for spermatozoa to attain fertilising capacity. Other proposed functions of prostasomes include interfering with the destruction of spermatozoa by immune cells within the female reproductive tract. On the other hand, it is unclear whether the distinct presumed functions are performed collectively by a single type of prostasome or by separate distinct sub-populations of EVs. Moreover, the exact molecular mechanisms through which prostasomes exert their functions have not been fully resolved. Besides their physiological functions, prostasomes produced by prostate tumour cells have been suggested to support prostate cancer spread development, and prostasomes in peripheral blood plasma may prove to be valuable biomarkers for prostate cancer.
Collapse
|
63
|
Soekmadji C, Russell PJ, Nelson CC. Exosomes in prostate cancer: putting together the pieces of a puzzle. Cancers (Basel) 2013; 5:1522-44. [PMID: 24351670 PMCID: PMC3875952 DOI: 10.3390/cancers5041522] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/21/2013] [Accepted: 11/01/2013] [Indexed: 01/08/2023] Open
Abstract
Exosomes have been shown to act as mediators for cell to cell communication and as a potential source of biomarkers for many diseases, including prostate cancer. Exosomes are nanosized vesicles secreted by cells and consist of proteins normally found in multivesicular bodies, RNA, DNA and lipids. As a potential source of biomarkers, exosomes have attracted considerable attention, as their protein content resembles that of their cells of origin, even though it is noted that the proteins, miRNAs and lipids found in the exosomes are not a reflective stoichiometric sampling of the contents from the parent cells. While the biogenesis of exosomes in dendritic cells and platelets has been extensively characterized, much less is known about the biogenesis of exosomes in cancer cells. An understanding of the processes involved in prostate cancer will help to further elucidate the role of exosomes and other extracellular vesicles in prostate cancer progression and metastasis. There are few methodologies available for general isolation of exosomes, however validation of those methodologies is necessary to study the role of exosomal-derived biomarkers in various diseases. In this review, we discuss “exosomes” as a member of the family of extracellular vesicles and their potential to provide candidate biomarkers for prostate cancer.
Collapse
Affiliation(s)
- Carolina Soekmadji
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Level 3 West, 37 Kent Street, Brisbane, Queensland 4102, Australia.
| | | | | |
Collapse
|
64
|
Dijkstra S, Birker IL, Smit FP, Leyten GHJM, de Reijke TM, van Oort IM, Mulders PFA, Jannink SA, Schalken JA. Prostate cancer biomarker profiles in urinary sediments and exosomes. J Urol 2013; 191:1132-8. [PMID: 24211598 DOI: 10.1016/j.juro.2013.11.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2013] [Indexed: 12/11/2022]
Abstract
PURPOSE Urinary biomarker tests for diagnosing prostate cancer have gained considerable interest. Urine is a complex mixture that can be subfractionated. We evaluated 2 urinary fractions that contain nucleic acids, ie cell pellets and exosomes. The influence of digital rectal examination before urine collection was also studied and the prostate cancer specific biomarkers PCA3 and TMPRSS2-ERG were assayed. MATERIALS AND METHODS Urine samples were prospectively obtained before and after digital rectal examination from 30 men scheduled for prostate biopsy. Cell pellet and exosomes were isolated and used for biomarker analysis. Analytical and diagnostic performance was tested using the Student t-test and ROC curves. RESULTS Unlike the exosome fraction, urinary sediment gene expression analysis was compromised by amorphous precipitation in 10% of all specimens. Digital rectal examination resulted in increased mRNA levels in each fraction. This was particularly relevant for the exosomal fraction since after digital rectal examination the number of samples decreased in which cancer specific markers were below the analytical detection limit. Biomarker diagnostic performance was comparable to that in large clinical studies. In exosomes the biomarkers had to be normalized for prostate specific antigen mRNA while cell pellet absolute PCA3 levels had diagnostic value. CONCLUSIONS Exosomes have characteristics that enable them to serve as a stable substrate for biomarker analysis. Thus, digital rectal examination enhances the analytical performance of biomarker analysis in exosomes and cell pellets. The diagnostic performance of biomarkers in exosomes differs from that of cell pellets. Clinical usefulness must be prospectively assessed in larger clinical cohorts.
Collapse
Affiliation(s)
- Siebren Dijkstra
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ingrid L Birker
- Department of Urology, Academic Medical Center University Hospital, Amsterdam, The Netherlands
| | - Frank P Smit
- Department of Research and Development, NovioGendix, Nijmegen, The Netherlands
| | - Gisele H J M Leyten
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Theo M de Reijke
- Department of Urology, Academic Medical Center University Hospital, Amsterdam, The Netherlands
| | - Inge M van Oort
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter F A Mulders
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sander A Jannink
- Department of Research and Development, NovioGendix, Nijmegen, The Netherlands
| | - Jack A Schalken
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Research and Development, NovioGendix, Nijmegen, The Netherlands.
| |
Collapse
|
65
|
Lu H, Meng Q, Wen Y, Hu J, Zhao Y, Cai L. Increased EHD1 in non-small cell lung cancer predicts poor survival. Thorac Cancer 2013; 4:422-432. [PMID: 28920217 DOI: 10.1111/1759-7714.12043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 03/24/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Hailing Lu
- The Forth Department of Medical Oncology; The Tumor Hospital of Harbin Medical University; Harbin China
| | - Qingwei Meng
- The Forth Department of Medical Oncology; The Tumor Hospital of Harbin Medical University; Harbin China
| | - Yuan Wen
- The Forth Department of Medical Oncology; The Tumor Hospital of Harbin Medical University; Harbin China
| | - Jing Hu
- The Forth Department of Medical Oncology; The Tumor Hospital of Harbin Medical University; Harbin China
| | - Yanbin Zhao
- The Forth Department of Medical Oncology; The Tumor Hospital of Harbin Medical University; Harbin China
| | - Li Cai
- The Forth Department of Medical Oncology; The Tumor Hospital of Harbin Medical University; Harbin China
| |
Collapse
|
66
|
Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells. Proc Natl Acad Sci U S A 2013; 110:13109-13. [PMID: 23878230 DOI: 10.1073/pnas.1221899110] [Citation(s) in RCA: 408] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent evidence indicates there is a role for small membrane vesicles, including exosomes, as vehicles for intercellular communication. Exosomes secreted by most cell types can mediate transfer of proteins, mRNAs, and microRNAs, but their role in the transmission of infectious agents is less established. Recent studies have shown that hepatocyte-derived exosomes containing hepatitis C virus (HCV) RNA can activate innate immune cells, but the role of exosomes in the transmission of HCV between hepatocytes remains unknown. In this study, we investigated whether exosomes transfer HCV in the presence of neutralizing antibodies. Purified exosomes isolated from HCV-infected human hepatoma Huh7.5.1 cells were shown to contain full-length viral RNA, viral protein, and particles, as determined by RT-PCR, mass spectrometry, and transmission electron microscopy. Exosomes from HCV-infected cells were capable of transmitting infection to naive human hepatoma Huh7.5.1 cells and establishing a productive infection. Even with subgenomic replicons, lacking structural viral proteins, exosome-mediated transmission of HCV RNA was observed. Treatment with patient-derived IgGs showed a variable degree of neutralization of exosome-mediated infection compared with free virus. In conclusion, this study showed that hepatic exosomes can transmit productive HCV infection in vitro and are partially resistant to antibody neutralization. This discovery sheds light on neutralizing antibodies resistant to HCV transmission by exosomes as a potential immune evasion mechanism.
Collapse
|
67
|
Secreted glyceraldehye-3-phosphate dehydrogenase is a multifunctional autocrine transferrin receptor for cellular iron acquisition. Biochim Biophys Acta Gen Subj 2013; 1830:3816-27. [DOI: 10.1016/j.bbagen.2013.03.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/13/2013] [Accepted: 03/18/2013] [Indexed: 11/19/2022]
|
68
|
Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol 2013; 113:1-11. [PMID: 23456661 DOI: 10.1007/s11060-013-1084-8] [Citation(s) in RCA: 1040] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 02/13/2013] [Indexed: 12/14/2022]
Abstract
Recent studies suggest both normal and cancerous cells secrete vesicles into the extracellular space. These extracellular vesicles (EVs) contain materials that mirror the genetic and proteomic content of the secreting cell. The identification of cancer-specific material in EVs isolated from the biofluids (e.g., serum, cerebrospinal fluid, urine) of cancer patients suggests EVs as an attractive platform for biomarker development. It is important to recognize that the EVs derived from clinical samples are likely highly heterogeneous in make-up and arose from diverse sets of biologic processes. This article aims to review the biologic processes that give rise to various types of EVs, including exosomes, microvesicles, retrovirus like particles, and apoptotic bodies. Clinical pertinence of these EVs to neuro-oncology will also be discussed.
Collapse
|
69
|
Liang B, Peng P, Chen S, Li L, Zhang M, Cao D, Yang J, Li H, Gui T, Li X, Shen K. Characterization and proteomic analysis of ovarian cancer-derived exosomes. J Proteomics 2013; 80:171-82. [PMID: 23333927 DOI: 10.1016/j.jprot.2012.12.029] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 12/04/2012] [Accepted: 12/26/2012] [Indexed: 12/21/2022]
Abstract
Ovarian cancer is the most lethal type of cancer among all frequent gynecologic malignancies, because most patients present with advanced disease at diagnosis. Exosomes are important intercellular communication vehicles, released by various cell types. Here we presented firstly the protein profile of highly purified exosomes derived from two ovarian cancer cell lines, OVCAR-3 and IGROV1. The exosomes derived from ovarian cancer cell lines were round and mostly 30-100 nm in diameter when viewed under an electron microscope. The exosomal marker proteins TSG101 and Alix were detected in exosome preparations. The range of density was between 1.09 g/ml and 1.15 g/ml. A total of 2230 proteins were identified from two ovarian cell-derived exosomes. Among them, 1017 proteins were identified in both exosomes including all of the major exosomal protein markers. There were 380 proteins that are not reported in the ExoCarta database. In addition to common proteins from exosomes of various origins, our results showed that ovarian cancer-derived exosomes also carried tissue specific proteins associated with tumorigenesis and metastasis, especially in ovarian carcinoma. Based on the known roles of exosomes in cellular communication, these data indicate that exosomes released by ovarian cancer cells may play important roles in ovarian cancer progression and provide a potential source of blood-based protein biomarkers.
Collapse
Affiliation(s)
- Bing Liang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Peng Peng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Meijun Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Dongyan Cao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jiaxin Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Haixia Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ting Gui
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xialu Li
- National Institute of Biological Sciences, Beijing 102206, China.
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
70
|
Henry L, Fabre C, Guiraud I, Bastide S, Fabbro-Peray P, Martinez J, Lavabre-Bertrand T, Meunier L, Stoebner PE. Clinical use of p-proteasome in discriminating metastatic melanoma patients: Comparative study with LDH, MIA and S100B protein. Int J Cancer 2013; 133:142-8. [DOI: 10.1002/ijc.27991] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 12/06/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Laurent Henry
- Institute of Biomolecules Max Mousseron (IBMM); University Montpellier I and II; UMR CNRS 5247, Montpellier Cedex 5; France
| | - Cécile Fabre
- Department of Dermatology; Carémeau University Hospital; Nîmes; France
| | - Isabelle Guiraud
- Institute of Biomolecules Max Mousseron (IBMM); University Montpellier I and II; UMR CNRS 5247, Montpellier Cedex 5; France
| | | | | | - Jean Martinez
- Institute of Biomolecules Max Mousseron (IBMM); University Montpellier I and II; UMR CNRS 5247, Montpellier Cedex 5; France
| | | | | | | |
Collapse
|
71
|
Xu J, Min W, Liu X, Xie C, Tang J, Yi T, Li Z, Zhao X. Identification of FRAS1 as a human endometrial carcinoma-derived protein in serum of xenograft model. Gynecol Oncol 2012; 127:406-11. [DOI: 10.1016/j.ygyno.2012.07.109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/19/2012] [Accepted: 07/19/2012] [Indexed: 10/28/2022]
|
72
|
Di Vizio D, Morello M, Dudley AC, Schow PW, Adam RM, Morley S, Mulholland D, Rotinen M, Hager MH, Insabato L, Moses MA, Demichelis F, Lisanti MP, Wu H, Klagsbrun M, Bhowmick NA, Rubin MA, D'Souza-Schorey C, Freeman MR. Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1573-84. [PMID: 23022210 DOI: 10.1016/j.ajpath.2012.07.030] [Citation(s) in RCA: 320] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/11/2012] [Accepted: 07/16/2012] [Indexed: 01/10/2023]
Abstract
Oncosomes are tumor-derived microvesicles that transmit signaling complexes between cell and tissue compartments. Herein, we show that amoeboid tumor cells export large (1- to 10-μm diameter) vesicles, derived from bulky cellular protrusions, that contain metalloproteinases, RNA, caveolin-1, and the GTPase ADP-ribosylation factor 6, and are biologically active toward tumor cells, endothelial cells, and fibroblasts. We describe methods by which large oncosomes can be selectively sorted by flow cytometry and analyzed independently of vesicles <1 μm. Structures resembling large oncosomes were identified in the circulation of different mouse models of prostate cancer, and their abundance correlated with tumor progression. Similar large vesicles were also identified in human tumor tissues, but they were not detected in the benign compartment. They were more abundant in metastases. Our results suggest that tumor microvesicles substantially larger than exosome-sized particles can be visualized and quantified in tissues and in the circulation, and isolated and characterized using clinically adaptable methods. These findings also suggest a mechanism by which migrating tumor cells condition the tumor microenvironment and distant sites, thereby potentiating advanced disease.
Collapse
Affiliation(s)
- Dolores Di Vizio
- Division of Cancer Biology and Therapeutics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Yu L, Shi J, Cheng S, Zhu Y, Zhao X, Yang K, Du X, Klocker H, Yang X, Zhang J. Estrogen promotes prostate cancer cell migration via paracrine release of ENO1 from stromal cells. Mol Endocrinol 2012; 26:1521-30. [PMID: 22734040 DOI: 10.1210/me.2012-1006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
As a key glycolytic enzyme, enolase 1 (ENO1) is critical for cellular energy metabolism. Recent studies have revealed its important role in growth and metastasis of lung, head and neck, and breast cancer. However, the regulatory mechanisms of ENO1 expression and secretion remain unclear. We observed that conditioned medium from estradiol-stimulated prostate stromal cells significantly promoted the migration of prostate cancer (PCa) cells. Two-dimensional protein electrophoresis, mass spectrometry, and immunodepletion assays identified one of the major active factors in the conditioned medium as α-type enolase (α-enolase, or ENO1). Moreover, in prostate stromal cells, estradiol not only enhanced the stability of ENO1 at the protein level in an estrogen receptor-α-dependent manner but also promoted its secretion to the extracellular matrix. Furthermore, recombinant ENO1 bound to the surface of PCa cells and promoted cell migration via their plasminogen receptor activity in a paracrine manner. Immunohistochemistry suggested that stromal ENO1 levels increased in PCa compared with those in normal tissue.
Collapse
Affiliation(s)
- Lin Yu
- Departments of Biochemistry, Basic Medical College, Tianjin Medical University, Tianjin 300070, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Hosseini-Beheshti E, Pham S, Adomat H, Li N, Tomlinson Guns ES. Exosomes as biomarker enriched microvesicles: characterization of exosomal proteins derived from a panel of prostate cell lines with distinct AR phenotypes. Mol Cell Proteomics 2012; 11:863-85. [PMID: 22723089 DOI: 10.1074/mcp.m111.014845] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer is the leading type of cancer diagnosed in men. In 2010, ~217,730 new cases of prostate cancer were reported in the United States. Prompt diagnosis of the disease can substantially improve its clinical outcome. Improving capability for early detection, as well as developing new therapeutic targets in advanced disease are research priorities that will ultimately lead to better patient survival. Eukaryotic cells secrete proteins via distinct regulated mechanisms which are either ER/Golgi dependent or microvesicle mediated. The release of microvesicles has been shown to provide a novel mechanism for intercellular communication. Exosomes are nanometer sized cup-shaped membrane vesicles which are secreted from normal and cancerous cells. They are present in various biological fluids and are rich in characteristic proteins. Exosomes may thus have potential both in facilitating early diagnosis via less invasive procedures or be candidates for novel therapeutic approaches for castration resistance prostate cancer. Because exosomes have been shown previously to have a role in cell-cell communication in the local tumor microenvironment, conferring activation of numerous survival mechanisms, we characterized constitutive lipids, cholesterol and proteins from exosomes derived from six prostate cell lines and tracked their uptake in both cancerous and benign prostate cell lines respectively. Our comprehensive proteomic and lipidomic analysis of prostate derived exosomes could provide insight for future work on both biomarker and therapeutic targets for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Elham Hosseini-Beheshti
- Department of Experimental Medicine, University of British Columbia, Vancouver, British Columbia, V6H 3Z6, Canada
| | | | | | | | | |
Collapse
|
75
|
Sandvig K, Llorente A. Proteomic analysis of microvesicles released by the human prostate cancer cell line PC-3. Mol Cell Proteomics 2012; 11:M111.012914. [PMID: 22457534 DOI: 10.1074/mcp.m111.012914] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cancer biomarkers are invaluable tools for cancer detection, prognosis, and treatment. Recently, microvesicles have appeared as a novel source for cancer biomarkers. We present here the results from a proteomic analysis of microvesicles released to the extracellular environment by the metastatic prostate cancer cell line PC-3. Using nanocapillary liquid chromatography-tandem mass spectrometry 266 proteins were identified with two or more peptide sequences. Further analysis showed that 16% of the proteins were classified as extracellular and that intracellular proteins were annotated in a variety of locations. Concerning biological processes, the proteins found in PC-3 cell-released microvesicles are mainly involved in transport, cell organization and biogenesis, metabolic process, response to stimulus, and regulation of biological processes. Several of the proteins identified (tetraspanins, annexins, Rab proteins, integrins, heat shock proteins, cytoskeletal proteins, 14-3-3 proteins) have previously been found in microvesicles isolated from other sources. However, some of the proteins seem to be more specific to the vesicular population released by the metastatic prostate cancer PC-3 cell line. Among these proteins are the tetraspanin protein CD151 and the glycoprotein CUB domain-containing protein 1. Interestingly, our results show these proteins are promising biomarkers for prostate cancer and therefore candidates for clinical validation studies in biological fluids.
Collapse
Affiliation(s)
- Kirsten Sandvig
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital- The Norwegian Radium Hospital, 0379 Oslo, Norway
| | | |
Collapse
|
76
|
Inder KL, Zheng YZ, Davis MJ, Moon H, Loo D, Nguyen H, Clements JA, Parton RG, Foster LJ, Hill MM. Expression of PTRF in PC-3 Cells modulates cholesterol dynamics and the actin cytoskeleton impacting secretion pathways. Mol Cell Proteomics 2012; 11:M111.012245. [PMID: 22030351 PMCID: PMC3277761 DOI: 10.1074/mcp.m111.012245] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/23/2011] [Indexed: 01/08/2023] Open
Abstract
Expression of caveolin-1 is up-regulated in prostate cancer metastasis and is associated with aggressive recurrence of the disease. Intriguingly, caveolin-1 is also secreted from prostate cancer cell lines and has been identified in secreted prostasomes. Caveolin-1 is the major structural component of the plasma membrane invaginations called caveolae. Co-expression of the coat protein Polymerase I and transcript release factor (PTRF) is required for caveolae formation. We recently found that expression of caveolin-1 in the aggressive prostate cancer cell line PC-3 is not accompanied by PTRF, leading to noncaveolar caveolin-1 lipid rafts. Moreover, ectopic expression of PTRF in PC-3 cells sequesters caveolin-1 into caveolae. Here we quantitatively analyzed the effect of PTRF expression on the PC-3 proteome using stable isotope labeling by amino acids in culture and subcellular proteomics. We show that PTRF reduced the secretion of a subset of proteins including secreted proteases, cytokines, and growth regulatory proteins, partly via a reduction in prostasome secretion. To determine the cellular mechanism accounting for the observed reduction in secreted proteins we analyzed total membrane and the detergent-resistant membrane fractions. Our data show that PTRF expression selectively impaired the recruitment of actin cytoskeletal proteins to the detergent-resistant membrane, which correlated with altered cholesterol distribution in PC-3 cells expressing PTRF. Consistent with this, modulating cellular cholesterol altered the actin cytoskeleton and protein secretion in PC-3 cells. Intriguingly, several proteins that function in ER to Golgi trafficking were reduced by PTRF expression. Taken together, these results suggest that the noncaveolar caveolin-1 found in prostate cancer cells generates a lipid raft microenvironment that accentuates secretion pathways, possibly at the step of ER sorting/exit. Importantly, these effects could be modulated by PTRF expression.
Collapse
Affiliation(s)
- Kerry L. Inder
- From the ‡The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Yu Zi Zheng
- From the ‡The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
- §Centre for High-Throughput Biology and Department of Biochemistry and Molecular Biology, 2125 East Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Melissa J. Davis
- ¶Queensland Facility for Advanced Bioinformatics, Brisbane, Queensland 4072, Australia
- **The University of Queensland Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia
| | - Hyeongsun Moon
- From the ‡The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Dorothy Loo
- From the ‡The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Hien Nguyen
- From the ‡The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Judith A. Clements
- ‖Australian Prostate Cancer Research Centre –Queensland, Institute for Molecular Bioscience, The University of Queensland, University of Technology, Brisbane, Queensland 4059, Australia
| | - Robert G. Parton
- **The University of Queensland Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia
| | - Leonard J. Foster
- §Centre for High-Throughput Biology and Department of Biochemistry and Molecular Biology, 2125 East Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Michelle M. Hill
- From the ‡The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
| |
Collapse
|
77
|
Wang C, Guo K, Gao D, Kang X, Jiang K, Li Y, Sun L, Zhang S, Sun C, Liu X, Wu W, Yang P, Liu Y. Identification of transaldolase as a novel serum biomarker for hepatocellular carcinoma metastasis using xenografted mouse model and clinic samples. Cancer Lett 2011; 313:154-166. [PMID: 22023829 DOI: 10.1016/j.canlet.2011.08.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/29/2011] [Accepted: 08/31/2011] [Indexed: 01/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of serious disorders with the highest morbidities and mortalities worldwide. Metastasis is the major concern that causes death in HCC. The goal of this study was to screen and identify potential serum proteins indicating HCC metastasis. Serum samples collected from control and HCCLM3-R metastatic HCC tumor model at specific stages of metastasis (1 wk, 3 wks and 6 wks) were subjected to iTRAQ labeling followed by 2DLC-ESI-MS/MS analysis. A total of 554 proteins were identified and 80 proteins were differential expressed at least between one adjacent time points. Among them, expression level of transaldolase (TALDO) was validated in mouse and human serum. The level of TALDO protein was found to be higher in metastatic mice serum compared to that of non-metastatic mice. Human specific TALDO was then identified in mouse serum through human specific peptides. Immunohistochemical and western blot analysis showed that the expression of TALDO in human HCC tissues and HCC cell lines was associated with its metastatic behavior. Subsequent screening of TALDO expression in 72 clinical serum samples (comprising 36 non-metastatic HCC and 36 metastatic HCC samples) revealed higher TALDO level in the serum of metastatic HCC patients. A receiver operating characteristic (ROC) curve estimated a maximal sensitivity of 77.8% and 86.1% specificity for TALDO in detection of HCC metastasis. The present results demonstrated that the nude mouse xenograft model is an efficient system for performing metastasis-related biomarker discovery. TALDO may be useful biomarkers for the detection of HCC metastasis.
Collapse
Affiliation(s)
- Cun Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Moon PG, You S, Lee JE, Hwang D, Baek MC. Urinary exosomes and proteomics. MASS SPECTROMETRY REVIEWS 2011; 30:1185-1202. [PMID: 21544848 DOI: 10.1002/mas.20319] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 07/23/2010] [Accepted: 07/23/2010] [Indexed: 05/30/2023]
Abstract
A number of highly abundant proteins in urine have been identified through proteomics approaches, and some have been considered as disease-biomarker candidates. These molecules might be clinically useful in diagnosis of various diseases. However, none has proven to be specifically indicative of perturbations of cellular processes in cells associated with urogenital diseases. Exosomes could be released into urine which flows through the kidney, ureter, bladder and urethra, with a process of filtration and reabsorption. Urinary exosomes have been recently suggested as alternative materials that offer new opportunities to identify useful biomarkers, because these exosomes secreted from epithelial cells lining the urinary track might reflect the cellular processes associated with the pathogenesis of diseases in their donor cells. Proteomic analysis of such urinary exosomes assists the search of urinary biomarkers reflecting pathogenesis of various diseases and also helps understanding the function of urinary exosomes in urinary systems. Thus, it has been recently suggested that urinary exosomes are one of the most valuable targets for biomarker development and to understand pathophysiology of relevant diseases.
Collapse
Affiliation(s)
- Pyong-Gon Moon
- Department of Molecular Medicine, Cell and Matrix Biology Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | | | | | | | | |
Collapse
|
79
|
Naslavsky N, Caplan S. EHD proteins: key conductors of endocytic transport. Trends Cell Biol 2011; 21:122-31. [PMID: 21067929 PMCID: PMC3052690 DOI: 10.1016/j.tcb.2010.10.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/07/2010] [Accepted: 10/07/2010] [Indexed: 12/12/2022]
Abstract
Regulation of endocytic transport is controlled by an elaborate network of proteins. Rab GTP-binding proteins and their effectors have well-defined roles in mediating specific endocytic transport steps, but until recently less was known about the four mammalian dynamin-like C-terminal Eps15 homology domain (EHD) proteins that also regulate endocytic events. In recent years, however, great strides have been made in understanding the structure and function of these unique proteins. Indeed, a growing body of literature addresses EHD protein structure, interactions with binding partners, functions in mammalian cells, and the generation of various new model systems. Accordingly, this is now an opportune time to pause and review the function and mechanisms of action of EHD proteins, and to highlight some of the challenges and future directions for the field.
Collapse
Affiliation(s)
- Naava Naslavsky
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE 68130, USA
| | | |
Collapse
|
80
|
Duijvesz D, Luider T, Bangma CH, Jenster G. Exosomes as biomarker treasure chests for prostate cancer. Eur Urol 2010; 59:823-31. [PMID: 21196075 DOI: 10.1016/j.eururo.2010.12.031] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 12/20/2010] [Indexed: 01/07/2023]
Abstract
CONTEXT Although progress has been made with regard to types of markers (protein, DNA, RNA, and metabolites) and implementation of improved technologies (mass spectrometry, arrays, and deep sequencing), the discovery of novel biomarkers for prostate cancer (PCa) in complex fluids, such as serum and urine, remains a challenge. Meanwhile, recent studies have reported that many cancer-derived proteins and RNAs are secreted through small vesicles known as exosomes. OBJECTIVE This narrative review describes recent progress in exosome research, focusing on the potential role of exosomes as novel biomarkers for PCa. The purpose of this review is to acquaint clinicians and researchers in the field of urology with the potential role of exosomes as biomarker treasure chests and with their clinical value. EVIDENCE ACQUISITION Medline and Embase entries between 1966 and September 2010 were searched using the keywords exosomes, microvesicles, prostasomes, biomarkers, prostate cancer, and urology. Leading publications and articles constructively contributing to exosome research were selected for this review. EVIDENCE SYNTHESIS Exosomes are small vesicles (50-100 nm) secreted by almost all tissues; they represent their tissue origin. Purification of prostate- and PCa-derived exosomes will allow us to profile exosomes, providing a promising source of protein and RNA biomarkers for PCa. This profiling will contribute to the discovery of novel markers for the early diagnosis and reliable prognosis of PCa. CONCLUSIONS Although the initial results are promising, further investigations are required to assess the clinical value of these exosomes in PCa.
Collapse
Affiliation(s)
- Diederick Duijvesz
- Department of Urology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
81
|
Chaput N, Théry C. Exosomes: immune properties and potential clinical implementations. Semin Immunopathol 2010; 33:419-40. [PMID: 21174094 DOI: 10.1007/s00281-010-0233-9] [Citation(s) in RCA: 410] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 11/28/2010] [Indexed: 12/20/2022]
Abstract
To communicate, cells are known to release in their environment proteins which bind to receptors on surrounding cells. But cells also secrete more complex structures, called membrane vesicles, composed of a lipid bilayer with inserted transmembrane proteins, enclosing an internal content of hydrophilic components. Exosomes represent a specific subclass of such secreted membrane vesicles, which, despite having been described more than 20 years ago by two groups studying reticulocyte maturation, have only recently received attention from the scientific community. This renewed interest originated first from the description of exosome secretion by antigen-presenting cells, suggesting a potential role in immune responses, and very recently by the identification of the presence of RNA (both messenger and microRNA) in exosomes, suggesting a potential transfer of genetic information between cells. In this review, we will describe the conclusions of 20 years of studies on the immune properties of exosomes and the most recent advances on their roles and potential uses as markers or as therapeutic tools during pathologies, especially in cancer.
Collapse
Affiliation(s)
- Nathalie Chaput
- Institut National de la Santé et de la Recherche Médicale U1015, Villejuif, 94805, France
| | | |
Collapse
|
82
|
Madu CO, Lu Y. Novel diagnostic biomarkers for prostate cancer. J Cancer 2010; 1:150-77. [PMID: 20975847 PMCID: PMC2962426 DOI: 10.7150/jca.1.150] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 10/04/2010] [Indexed: 01/08/2023] Open
Abstract
Prostate cancer is the most frequently diagnosed malignancy in American men, and a more aggressive form of the disease is particularly prevalent among African Americans. The therapeutic success rate for prostate cancer can be tremendously improved if the disease is diagnosed early. Thus, a successful therapy for this disease depends heavily on the clinical indicators (biomarkers) for early detection of the presence and progression of the disease, as well as the prediction after the clinical intervention. However, the current clinical biomarkers for prostate cancer are not ideal as there remains a lack of reliable biomarkers that can specifically distinguish between those patients who should be treated adequately to stop the aggressive form of the disease and those who should avoid overtreatment of the indolent form. A biomarker is a characteristic that is objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. A biomarker reveals further information to presently existing clinical and pathological analysis. It facilitates screening and detecting the cancer, monitoring the progression of the disease, and predicting the prognosis and survival after clinical intervention. A biomarker can also be used to evaluate the process of drug development, and, optimally, to improve the efficacy and safety of cancer treatment by enabling physicians to tailor treatment for individual patients. The form of the prostate cancer biomarkers can vary from metabolites and chemical products present in body fluid to genes and proteins in the prostate tissues. Current advances in molecular techniques have provided new tools facilitating the discovery of new biomarkers for prostate cancer. These emerging biomarkers will be beneficial and critical in developing new and clinically reliable indicators that will have a high specificity for the diagnosis and prognosis of prostate cancer. The purpose of this review is to examine the current status of prostate cancer biomarkers, with special emphasis on emerging markers, by evaluating their diagnostic and prognostic potentials. Both genes and proteins that reveal loss, mutation, or variation in expression between normal prostate and cancerous prostate tissues will be covered in this article. Along with the discovery of prostate cancer biomarkers, we will describe the criteria used when selecting potential biomarkers for further development towards clinical use. In addition, we will address how to appraise and validate candidate markers for prostate cancer and some relevant issues involved in these processes. We will also discuss the new concept of the biomarkers, existing challenges, and perspectives of biomarker development.
Collapse
Affiliation(s)
- Chikezie O Madu
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | | |
Collapse
|
83
|
Welton JL, Khanna S, Giles PJ, Brennan P, Brewis IA, Staffurth J, Mason MD, Clayton A. Proteomics analysis of bladder cancer exosomes. Mol Cell Proteomics 2010; 9:1324-38. [PMID: 20224111 DOI: 10.1074/mcp.m000063-mcp201] [Citation(s) in RCA: 319] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Exosomes are nanometer-sized vesicles, secreted by various cell types, present in biological fluids that are particularly rich in membrane proteins. Ex vivo analysis of exosomes may provide biomarker discovery platforms and form non-invasive tools for disease diagnosis and monitoring. These vesicles have never before been studied in the context of bladder cancer, a major malignancy of the urological tract. We present the first proteomics analysis of bladder cancer cell exosomes. Using ultracentrifugation on a sucrose cushion, exosomes were highly purified from cultured HT1376 bladder cancer cells and verified as low in contaminants by Western blotting and flow cytometry of exosome-coated beads. Solubilization in a buffer containing SDS and DTT was essential for achieving proteomics analysis using an LC-MALDI-TOF/TOF MS approach. We report 353 high quality identifications with 72 proteins not previously identified by other human exosome proteomics studies. Overrepresentation analysis to compare this data set with previous exosome proteomics studies (using the ExoCarta database) revealed that the proteome was consistent with that of various exosomes with particular overlap with exosomes of carcinoma origin. Interrogating the Gene Ontology database highlighted a strong association of this proteome with carcinoma of bladder and other sites. The data also highlighted how homology among human leukocyte antigen haplotypes may confound MASCOT designation of major histocompatability complex Class I nomenclature, requiring data from PCR-based human leukocyte antigen haplotyping to clarify anomalous identifications. Validation of 18 MS protein identifications (including basigin, galectin-3, trophoblast glycoprotein (5T4), and others) was performed by a combination of Western blotting, flotation on linear sucrose gradients, and flow cytometry, confirming their exosomal expression. Some were confirmed positive on urinary exosomes from a bladder cancer patient. In summary, the exosome proteomics data set presented is of unrivaled quality. The data will aid in the development of urine exosome-based clinical tools for monitoring disease and will inform follow-up studies into varied aspects of exosome manufacture and function.
Collapse
Affiliation(s)
- Joanne L Welton
- Section of Oncology and Palliative Medicine, Department of Pharmacology, Oncology and Radiology, School of Medicine, Cardiff University, Velindre Cancer Centre, Whitchurch, Cardiff CF14 2TL, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Guescini M, Genedani S, Stocchi V, Agnati LF. Astrocytes and Glioblastoma cells release exosomes carrying mtDNA. J Neural Transm (Vienna) 2009; 117:1-4. [PMID: 19680595 DOI: 10.1007/s00702-009-0288-8] [Citation(s) in RCA: 501] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 07/29/2009] [Indexed: 01/16/2023]
Abstract
Cells can exchange information not only by means of chemical and/or electrical signals, but also via microvesicles released into the intercellular space. The present paper, for the first time, provides evidence that Glioblastoma and Astrocyte cells release microvesicles, which carry mitochondrial DNA (mtDNA). These microvesicles have been characterised as exosomes in view of the presence of some protein markers of exosomes, such as Tsg101, CD9 and Alix. Thus, the important finding has been obtained that bonafide exosomes, constitutively released by Glioblastoma cells and Astrocytes, can carry mtDNA, which can be, therefore, transferred between cells. This datum may help the understanding of some diseases due to mitochondrial alterations.
Collapse
Affiliation(s)
- Michele Guescini
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', Urbino, Italy
| | | | | | | |
Collapse
|
85
|
Di Vizio D, Kim J, Hager MH, Morello M, Yang W, Lafargue CJ, True L, Rubin MA, Adam RM, Beroukhim R, Demichelis F, Freeman MR. Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res 2009; 69:5601-9. [PMID: 19549916 PMCID: PMC2853876 DOI: 10.1158/0008-5472.can-08-3860] [Citation(s) in RCA: 326] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oncosomes have recently been described as membrane-derived microvesicles secreted by cancer cells, which transfer oncogenic signals and protein complexes across cell boundaries. Here, we show the rapid formation and secretion of oncosomes from DU145 and LNCaP human prostate cancer cells. Oncosome formation was stimulated by epidermal growth factor receptor activation and also by overexpression of membrane-targeted Akt1. Microvesicles shed from prostate cancer cells contained numerous signal transduction proteins and were capable of activating rapid phospho-tyrosine and Akt pathway signaling, and stimulating proliferation and migration, in recipient tumor cells. They also induced a stromal reaction in recipient normal cells. Knockdown of the actin nucleating protein Diaphanous Related Formin 3 (DRF3/Dia2) by RNA interference enhanced rates of oncosome formation, indicating that these structures resemble, and may be identical to, nonapoptotic membrane blebs, a feature of the amoeboid form of cell motility. Analysis of primary and metastatic human prostate tumors using 100K single nucleotide polymorphism arrays revealed a significantly higher frequency of deletion of the locus encoding DRF3 (DIAPH3) in metastatic tumors (P = 0.001) in comparison with organ-confined tumors. Fluorescence in situ hybridization confirmed increased chromosomal loss of DIAPH3 in metastatic tumors in a different cohort of patients (P = 0.006). These data suggest that microvesicles shed from prostate cancer cells can alter the tumor microenvironment in a manner that may promote disease progression. They also show that DRF3 is a physiologically relevant protein that seems to regulate this process.
Collapse
Affiliation(s)
- Dolores Di Vizio
- The Urological Diseases Research Center, Children’s Hospital Boston, Boston, MA
- Departments of Surgery, Harvard Medical School, Boston, MA
| | - Jayoung Kim
- The Urological Diseases Research Center, Children’s Hospital Boston, Boston, MA
- Departments of Surgery, Harvard Medical School, Boston, MA
| | - Martin H. Hager
- The Urological Diseases Research Center, Children’s Hospital Boston, Boston, MA
| | - Matteo Morello
- The Urological Diseases Research Center, Children’s Hospital Boston, Boston, MA
| | - Wei Yang
- The Urological Diseases Research Center, Children’s Hospital Boston, Boston, MA
| | - Christopher J. Lafargue
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Lawrence True
- Department of Pathology, University of Washington Medical Center, Seattle, WA
| | - Mark A. Rubin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Rosalyn M. Adam
- The Urological Diseases Research Center, Children’s Hospital Boston, Boston, MA
- Departments of Surgery, Harvard Medical School, Boston, MA
| | - Rameen Beroukhim
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Francesca Demichelis
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY
| | - Michael R. Freeman
- The Urological Diseases Research Center, Children’s Hospital Boston, Boston, MA
- Departments of Surgery, Harvard Medical School, Boston, MA
- Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| |
Collapse
|
86
|
Wang P, Whiteaker JR, Paulovich AG. The evolving role of mass spectrometry in cancer biomarker discovery. Cancer Biol Ther 2009; 8:1083-94. [PMID: 19502776 PMCID: PMC2957893 DOI: 10.4161/cbt.8.12.8634] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although the field of mass spectrometry-based proteomics is still in its infancy, recent developments in targeted proteomic techniques have left the field poised to impact the clinical protein biomarker pipeline now more than at any other time in history. for proteomics to meet its potential for finding biomarkers, clinicians, statisticians, epidemiologists and chemists must work together in an interdisciplinary approach. These interdisciplinary efforts will have the greatest chance for success if participants from each discipline have a basic working knowledge of the other disciplines. To that end, the purpose of this review is to provide a nontechnical overview of the emerging/evolving roles that mass spectrometry (especially targeted modes of mass spectrometry) can play in the biomarker pipeline, in hope of making the technology more accessible to the broader community for biomarker discovery efforts. Additionally, the technologies discussed are broadly applicable to proteomic studies, and are not restricted to biomarker discovery.
Collapse
Affiliation(s)
- Pei Wang
- Fred Hutchinson Cancer Research Center; Seattle, WA USA
| | | | | |
Collapse
|