51
|
Fasciani R, Mosca L, Giannico MI, Ambrogio SA, Balestrazzi E. Subconjunctival and/or intrastromal bevacizumab injections as preconditioning therapy to promote corneal graft survival. Int Ophthalmol 2014; 35:221-7. [PMID: 24715230 DOI: 10.1007/s10792-014-9938-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 03/22/2014] [Indexed: 10/25/2022]
Abstract
The purpose of this study is to investigate whether subconjunctival and/or intrastromal Bevacizumab injections could help to prevent graft failure in high-risk keratoplasties. Twenty seven eyes of 27 patients, affected by high immune rejection risk and corneal neovascularization, were involved in this prospective interventional case-control series (case group: 14 eyes and control group: 13 eyes). Case group was submitted to a cycle of three subconjunctival and/or intrastromal injections of 5 mg/0.2 ml Bevacizumab. After a mean period of 6.36 months ± 3.38 SD from the last injection, all patients underwent keratoplasty. An adjunctive injection was performed intraoperatively at the end of the surgical procedure. Control group did not receive any Bevacizumab injection, but directly underwent keratoplasty. Each patient was submitted to a complete eye examination and corneal confocal microscopy. The absence of immune rejection signs in the graft, at clinical and confocal microscopy examination, was considered as main outcome measure. All cases showed less ocular inflammation and activity of vessels. No side effects were detected after the injection procedure. No corneal graft rejection was seen during the follow-up (mean 26.1 months ± 5.7 SD) in the case group. Six eyes of the control group showed graft rejection 3.8 months ± 1.4 SD after keratoplasty. As a conclusion, Bevacizumab injection may represent a preconditioning treatment to improve prognosis in high-risk corneal transplantation. The procedure seems to be safe and it may help to reduce the inflammatory stimulus that plays a key role in corneal graft rejection.
Collapse
Affiliation(s)
- Romina Fasciani
- Ophthalmology Department, A. Gemelli Policlinic, Catholic University of "Sacro Cuore", Largo A. Gemelli 8, 00168, Rome, Italy,
| | | | | | | | | |
Collapse
|
52
|
He H, Tan Y, Duffort S, Perez VL, Tseng SCG. In vivo downregulation of innate and adaptive immune responses in corneal allograft rejection by HC-HA/PTX3 complex purified from amniotic membrane. Invest Ophthalmol Vis Sci 2014; 55:1647-56. [PMID: 24519420 DOI: 10.1167/iovs.13-13094] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Heavy chain-hyaluronic acid (HC-HA)/PTX3 purified from human amniotic membrane (AM) was previously observed to suppress inflammatory responses in vitro. We now examine whether HC-HA/PTX3 is able to exert a similar effect in vivo, using murine models for keratitis and corneal allograft rejection. METHODS The in vitro effect of HC-HA/PTX3 was tested using OTII ovalbumin (OVA) transgenic, purified CD4(+) T cells, or IFN-γ/lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Cytokine production was measured by ELISA, while cell surface markers and cell proliferation were determined by flow cytometry. In vivo effects of HC-HA/PTX3 were analyzed by quantifying the recruitment of enhanced green fluorescence-labeled macrophages and by measuring the expression of arginase 1 (Arg-1), IL-10, and IL-12 in LPS-induced keratitis in the macrophage Fas-induced apoptosis (Mafia) mouse. The effect of corneal allograft survival in a complete major histocompatibility complex (MHC) mismatched mouse model was assessed by grading corneal opacification. RESULTS In vitro studies demonstrated that HC-HA/PTX3 significantly enhanced the expansion of FOXP3 T cells and suppressed cell proliferation and protein expression of IFN-γ, IL-2, CD25, and CD69 in activated CD4(+) T cells. Furthermore, immobilized HC-HA/PTX3 significantly upregulated IL-10 gene expression but downregulated that of IL-12 and IL-23 in activated RAW264.7 cells. Finally, in vivo subconjunctival injection of HC-HA/PTX3 significantly prolonged corneal allograft survival, suppressed macrophage infiltration, and promoted M2 polarization by upregulating Arg-1 and IL-10 but downregulating IL-12. CONCLUSIONS HC-HA/PTX3 can suppress inflammatory responses in vivo by modulating both innate and adaptive immunity of macrophages and CD4(+) T cells.
Collapse
Affiliation(s)
- Hua He
- TissueTech, Inc., Miami, Florida
| | | | | | | | | |
Collapse
|
53
|
Lee HJ, Ko JH, Ko AY, Kim MK, Wee WR, Oh JY. Intravenous infusion of mesenchymal stem/stromal cells decreased CCR7(+) antigen presenting cells in mice with corneal allotransplantation. Curr Eye Res 2014; 39:780-9. [PMID: 24502523 DOI: 10.3109/02713683.2013.877489] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE To investigate the effects of intravenous (IV) infusion of human mesenchymal stem/stromal cells (hMSCs) on activation and migration of CCR7(+) antigen presenting cells (APCs) in allogeneic corneal transplantation. MATERIALS AND METHODS We first analyzed the cellular and molecular profiles of draining lymph nodes (DLNs) in early and late phases after syngeneic or allogeneic corneal transplantation in mice, and then investigated the effects of hMSCs on APCs expressing CCR7, a key molecule implicated in APC migration to DLNs. RESULTS After early transplantation, the numbers of MHC class II(+)CD11b(+)CD11c(-), MHC class II(+)CD11b(-)CD11c(+), and MHC II(+)CD11b(+)CD11c(+) cells as well as the levels of APC-derived cytokines (IL-12a and IL-12b) driving the Th1 response were increased in both syngeneic and allogeneic transplants indicating activation of APCs. In late phase, the numbers of CD3(+)CD4(+)CD8(-) and CD3(+)CD4(-)CD8(+) cells and the levels of T cell-derived cytokines were increased in allogeneic transplants, but not in syngeneic transplants indicating immune rejection. The peri-transplant infusion of IV hMSCs significantly reduced the numbers of CCR7(+)CD11b(+) or CCR7(+)CD11c(+) cells in DLNs and the cornea in the early phase. Also, the expression of CCR7 and its ligands, CCL19, CCL21, and CXC3R as well as IL-12 were markedly decreased by hMSCs in the cornea and DLNs. CONCLUSIONS IV hMSCs reduced the activation and migration of CCR7(+) APCs in the cornea and DLNs in allogeneic corneal transplantation.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Department of Ophthalmology, Seoul National University Hospital , Seoul , Korea and
| | | | | | | | | | | |
Collapse
|
54
|
Zhu J, Liu Y, Pi Y, Jia L, Wang L, Huang Y. Systemic application of sphingosine 1-phosphate receptor 1 immunomodulator inhibits corneal allograft rejection in mice. Acta Ophthalmol 2014; 92:e12-21. [PMID: 23910624 DOI: 10.1111/aos.12237] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE This study aims to investigate the effects of systemic application of sphingosine 1-phosphate receptor 1(S1P1) on allogeneic corneal transplantation in mice. METHODS A total of 112 BALB/c mice received corneal grafts from C57BL/6 donors. Recipients were randomly divided into seven groups and treated with intraperitoneal injections of S1P1 (5 mg/kg/days), cyclosporine A (5 mg/kg/days), dexamethasone (1 mg/kg/days) and rapamycin (2 mg/kg/days). S1P1was combined with rapamycin or cyclosporine A, and saline served as negative control. Serum levels of IL-2, IL-10, TGF-β1 and IFN-γ were measured by Elisa. The numbers of CD4+ T and regulatory (Treg) cell phenotype were measured by flow cytometry. Cytokine mRNA expression was analysed by real-time quantitative PCR. CD4+ T cells and cytokines were histologically identified by immunofluorescence staining. RESULTS Corneal graft survival was prolonged by intraperitoneal injections in S1P1 alone (mean survival time MST, 35.3 ± 5.6 days), S1P1 combined with rapamycin (MST, 38.7 ± 6.5 days) or S1P1 and cyclosporine A (MST, 32.7 ± 4.8 days) compared with the controls (MST, 14.6 ± 0.2 days; n = 5, p < 0.01). S1P1 alone increased CD4+ T (p < 0.01) and Treg cells (p < 0.01; n = 5) in the cervical and mesenteric lymph nodes compared with the controls and S1P1 + rapamycin (p < 0.05; n = 5). TGF-β1 and IL-10 mRNA transcriptions in corneal grafts following S1P1+ rapamycin increased (both p < 0.01; n = 3), and TGF-β1 and IL-10 in the serum level following S1P1 alone increased (both p < 0.01; n = 3). These results paralleled the findings obtained from immunofluorescence. CONCLUSION S1P1 has significant effect in corneal allograft rejection inhibition. The combined treatment of S1P1 and rapamycin results in synergistic effect.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Ophthalmology, the First Affiliated Hospital of the Chinese PLA General Hospital, Beijing 100038, ChinaDepartment of Ophthalmology, Chinese PLA General Hospital, Beijing 100853, ChinaDepartment of Ophthalmology, Chinese PLA Air force General Hospital, Beijing 100038, China
| | | | | | | | | | | |
Collapse
|
55
|
Niederkorn JY. Role of NKT cells in anterior chamber-associated immune deviation. Expert Rev Clin Immunol 2014; 5:137-144. [PMID: 20046994 DOI: 10.1586/1744666x.5.2.137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cells in the eye have a limited capacity for regeneration and, as such, immune-mediated inflammation can lead to blindness. The eye is designed to quench immune-mediated inflammation - a condition known as immune privilege. An important component of immune privilege is the dynamic immunoregulatory process termed anterior chamber-associated immune deviation (ACAID), which is initiated when antigens enter the eye. ACAID suppresses the initiation of antigen-specific inflammation in the eye and the effector stages of immune reactions. Four organ systems are crucial for the induction of ACAID: the eye, thymus, spleen and sympathetic nervous system. Multiple cell populations contribute to ACAID, with natural killer T cells playing a crucial role in the thymic and splenic phases of ACAID. Interactions between natural killer T cells and multiple cell populations in the spleen culminate in the tight regulation of immune-mediated inflammation in the eye and the preservation of vision.
Collapse
Affiliation(s)
- Jerry Y Niederkorn
- Department of Ophthalmology, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA, Tel.: +1 214 648 3829, ,
| |
Collapse
|
56
|
Tan Y, Abdulreda MH, Cruz-Guilloty F, Cutrufello N, Shishido A, Martinez RE, Duffort S, Xia X, Echegaray-Mendez J, Levy RB, Berggren PO, Perez VL. Role of T cell recruitment and chemokine-regulated intra-graft T cell motility patterns in corneal allograft rejection. Am J Transplant 2013; 13:1461-73. [PMID: 23679575 DOI: 10.1111/ajt.12228] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 02/13/2013] [Accepted: 02/19/2013] [Indexed: 01/25/2023]
Abstract
Keratoplasty is the primary treatment to cure blindness due to corneal opacification. However, immune-mediated rejection remains the leading cause of keratoplasty failure. Here, we utilize an in vivo imaging approach to monitor, track, and characterize in real-time the recruitment of GFP-labeled allo-specific activated (Bonzo) T cells during corneal allograft rejection. We show that the recruitment of effector T cells to the site of transplantation determined the fate of corneal allografts, and that local intra-graft production of CCL5 and CXCL9/10 regulated motility patterns of effector T cells in situ, and correlated with allograft rejection. We also show that different motility patterns associate with distinct in vivo phenotypes (round, elongated, and ruffled) of graft-infiltrating effector T cells with varying proportions during progression of rejection. The ruffled phenotype was characteristic of activated effectors T cells and predominated during ongoing rejection, which associated with significantly increased T cell dynamics within the allografts. Importantly, CCR5/CXCR3 blockade decreased the motility, size, and number of infiltrating T cells and significantly prolonged allograft survival. Our findings indicate that chemokines produced locally within corneal allografts play an important role in the in situ activation and dynamic behavior of infiltrating effector T cells, and may guide targeted interventions to promote graft survival.
Collapse
Affiliation(s)
- Y Tan
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Effect of glucocorticoid (triamcinolone acetonide) pretreatment in a murine penetrating keratoplasty and suture model. Cornea 2013; 31:1468-75. [PMID: 22677639 DOI: 10.1097/ico.0b013e3182473356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE To evaluate the effect of glucocorticoid (triamcinolone acetonide injectable suspension) pretreatment on corneal neovascularization, lymphangiogenesis, and inflammation in a murine penetrating keratoplasty (PK) and corneal suture model. METHODS For the PK model, BALB/c mice were used as recipients and C57BL/6 mice were used as donors. A group pretreated with subconjunctival glucocorticoid and a combination of post-subconjunctival and topical glucocorticoids (group I) was compared with two groups that did not receive glucocorticoid pretreatment [one group received a combination of subconjunctival and topical glucocorticoids postoperatively (group II) and the other group received only topical glucocorticoid treatment postoperatively (group III)]. All groups were treated with subconjunctival glucocorticoid on the day of surgery. For the corneal suture model, BALB/c mice were used. A group receiving only pre-suture glucocorticoid treatment (group A) and a group receiving only post-suture glucocorticoid treatment (group C) were compared with a control group that did not receive glucocorticoid therapy (group B). The degree of neovascularization, lymphangiogenesis, and inflammatory infiltration was compared in each of these models. RESULTS In the PK model, the group receiving glucocorticoid pretreatment (group I) showed less neovascularization compared with the posttreatment-only groups (group II, P=0.043; group III, P=0.020) and less lymphangiogenesis compared with group III (P=0.005). In the corneal suture model, the glucocorticoid pretreatment group showed a similar level of neovascularization, lymphangiogenesis, and inflammatory infiltration as the posttreatment-only groups (P>0.05). CONCLUSIONS Glucocorticoid pretreatment before PK decreases neovascularization and lymphangiogenesis compared with posttransplant glucocorticoid treatment alone.
Collapse
|
58
|
Guo J, Chen H, Wang Y, Cao CB, Guan GQ. A novel porcine acellular dermal matrix scaffold used in periodontal regeneration. Int J Oral Sci 2013; 5:37-43. [PMID: 23492902 PMCID: PMC3632768 DOI: 10.1038/ijos.2013.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 01/14/2013] [Indexed: 01/07/2023] Open
Abstract
Regeneration of periodontal tissue is the most promising method for restoring periodontal structures. To find a suitable bioactive three-dimensional scaffold promoting cell proliferation and differentiation is critical in periodontal tissue engineering. The objective of this study was to evaluate the biocompatibility of a novel porcine acellular dermal matrix as periodontal tissue scaffolds both in vitro and in vivo. The scaffolds in this study were purified porcine acellular dermal matrix (PADM) and hydroxyapatite-treated PADM (HA-PADM). The biodegradation patterns of the scaffolds were evaluated in vitro. The biocompatibility of the scaffolds in vivo was assessed by implanting them into the sacrospinal muscle of 20 New Zealand white rabbits. The hPDL cells were cultured with PADM or HA-PADM scaffolds for 3, 7, 14, 21 and 28 days. Cell viability assay, scanning electron microscopy (SEM), hematoxylin and eosin (H&E) staining, immunohistochemistry and confocal microscopy were used to evaluate the biocompatibility of the scaffolds. In vitro, both PADM and HA-PADM scaffolds displayed appropriate biodegradation pattern, and also, demonstrated favorable tissue compatibility without tissue necrosis, fibrosis and other abnormal response. The absorbance readings of the WST-1 assay were increased with the time course, suggesting the cell proliferation in the scaffolds. The hPDL cells attaching, spreading and morphology on the surface of the scaffold were visualized by SEM, H&E staining, immnuohistochemistry and confocal microscopy, demonstrated that hPDL cells were able to grow into the HA-PADM scaffolds and the amount of cells were growing up in the course of time. This study proved that HA-PADM scaffold had good biocompatibility in animals in vivo and appropriate biodegrading characteristics in vitro. The hPDL cells were able to proliferate and migrate into the scaffold. These observations may suggest that HA-PADM scaffold is a potential cell carrier for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Jing Guo
- Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan, China
| | | | | | | | | |
Collapse
|
59
|
Stevenson W, Cheng SF, Emami-Naeini P, Hua J, Paschalis EI, Dana R, Saban DR. Gamma-irradiation reduces the allogenicity of donor corneas. Invest Ophthalmol Vis Sci 2012; 53:7151-8. [PMID: 22991417 PMCID: PMC3474589 DOI: 10.1167/iovs.12-9609] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/26/2012] [Accepted: 08/30/2012] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To evaluate the utility and allogenicity of gamma-irradiated corneal allografts. METHODS Corneal buttons were harvested from C57BL/6 mice and decellularized with gamma irradiation. Cell viability was assessed using TUNEL and viability/cytotoxicity assays. Orthotopic penetrating keratoplasty was performed using irradiated or nonirradiated (freshly excised) C57BL/6 donor grafts and BALB/c or C57BL/6 recipients. Graft opacity was assessed over an 8-week period and graft survival was evaluated using Kaplan-Meier survival curves. Mixed-lymphocyte reactions and delayed-type hypersensitivity assays were performed to evaluate T-cell alloreactivity. Real-time PCR was used to investigate the corneal expression of potentially pathogenic T-helper 1, 2, and 17 cell-associated cytokines. RESULTS Corneal cells were devitalized by gamma irradiation as evidenced by widespread cellular apoptosis and plasma membrane disruption. Nonirradiated allograft and isograft rates of survival were superior to irradiated allograft and isograft rates of survival (P < 0.001). Mixed lymphocyte reactions demonstrated that T-cells from irradiated allograft recipients did not exhibit a secondary alloimmune response (P < 0.001). Delayed-type hypersensitivity assays demonstrated that irradiated allografts did not elicit an alloreactive delayed-type hypersensitivity response in graft recipients (P ≤ 0.01). The corneal expression of T-helper 1, 2, and 17 cell-associated cytokines was significantly lower in failed irradiated allografts than rejected nonirradiated allografts (P ≤ 0.001). CONCLUSIONS Gamma-irradiated corneas failed to remain optically clear following murine penetrating keratoplasty; however, gamma irradiation reduced the allogenicity of these corneas, potentially supporting their use in procedures such as anterior lamellar keratoplasty or keratoprosthesis implantation.
Collapse
|
60
|
Jia Z, Jiao C, Zhao S, Li X, Ren X, Zhang L, Han ZC, Zhang X. Immunomodulatory effects of mesenchymal stem cells in a rat corneal allograft rejection model. Exp Eye Res 2012; 102:44-9. [PMID: 22800963 DOI: 10.1016/j.exer.2012.06.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/07/2012] [Accepted: 06/29/2012] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are promising candidates for immunomodulatory therapy that are currently being tested in several organ transplant rejection models. In this study, we tested the immunomodulatory effects of MSC injection in a rat model of corneal allograft rejection. MSCs were isolated and cultured from bone marrow of Wistar rats. A rat corneal allograft rejection model was established using Wistar rats as donors and Lewis rats as recipients. Lewis rats were randomly separated into 12 groups and treated with MSCs alone or MSCs combined with Cyclosporin A (CsA) at different doses. In MSC-treated rats, the T cell response to ConA was evaluated, Th1/Th2 cytokines produced by T lymphocytes were measured, and the number of CD4+CD25+Foxp3+ regulatory T cells (Treg) was assessed. Results demonstrated that postoperative injection of MSCs prolonged graft survival time. MSCs significantly inhibited proliferation of pathogenic T cells in vitro and prevented T cell response in vivo (p < 0.05). Postoperative injection also reduced Th1 pro-inflammatory cytokines and elevated IL-4 cytokine secretion from T lymphocytes derived from cornea-transplanted rats. In addition, Tregs were upregulated by MSC treatment. Unexpectedly, the application of MSCs combined with low dose CsA therapy (1 mg/kg) accelerated graft rejection compared with postoperative MSC therapy alone. However, when 2 mg/kg CsA was given together with MSCs, graft survival was significantly prolonged. These results suggested that MSCs could exert therapeutic effect against corneal allograft rejection, and further investigation of combined MSC and CsA treatment be required as opposite effects were observed depending on CsA dose.
Collapse
Affiliation(s)
- Zhe Jia
- Tianjin Medical University Eye Center, Tianjin Medical University Eye Institute, China
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Tan Y, Cruz-Guilloty F, Medina-Mendez CA, Cutrufello NJ, Martinez RE, Urbieta M, Wilson D, Li Y, Perez VL. Immunological disruption of antiangiogenic signals by recruited allospecific T cells leads to corneal allograft rejection. THE JOURNAL OF IMMUNOLOGY 2012; 188:5962-9. [PMID: 22593618 DOI: 10.4049/jimmunol.1103216] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Corneal transplantation is the most common solid organ transplantation. The immunologically privileged nature of the cornea results in high success rates. However, T cell-mediated rejection is the most common cause of corneal graft failure. Using antiangiogenesis treatment to prevent corneal neovascularization, which revokes immune privilege, prevents corneal allograft rejection. Endostatin is an antiangiogenic factor that maintains corneal avascularity. In this study, we directly test the role of antiangiogenic and immunological signals in corneal allograft survival, specifically the potential correlation of endostatin production and T cell recruitment. We report that 75% of the corneal allografts of BALB/c mice rejected after postoperative day (POD) 20, whereas all syngeneic grafts survived through POD60. This correlates with endogenous endostatin, which increased and remained high in syngeneic grafts but decreased after POD10 in allografts. Immunostaining demonstrated that early recruitment of allospecific T cells into allografts around POD10 correlated with decreased endostatin production. In Rag(-/-) mice, both allogeneic and syngeneic corneal grafts survived; endostatin remained high throughout. However, after T cell transfer, the allografts eventually rejected, and endostatin decreased. Furthermore, exogenous endostatin treatment delayed allograft rejection and promoted survival secondary to angiogenesis inhibition. Our results suggest that endostatin plays an important role in corneal allograft survival by inhibiting neovascularization and that early recruitment of allospecific T cells into the grafts promotes destruction of endostatin-producing cells, resulting in corneal neovascularization, massive infiltration of effector T cells, and ultimately graft rejection. Therefore, combined antiangiogenesis and immune suppression will be more effective in maintaining corneal allograft survival.
Collapse
Affiliation(s)
- Yaohong Tan
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Lapp T, Reinhold D, Maier P, Reinhard T. [Old immune system- new information? Importance of mononuclear phagocytes in corneal allograft rejection]. Ophthalmologe 2012; 109:869-78. [PMID: 22526010 DOI: 10.1007/s00347-012-2584-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mononuclear phagocytes are derived from bone marrow precursor cells and are part of the innate immune system. These cells circulate in the blood as monocytes but differentiate in the peripheral circulation into tissue macrophages and dendritic cells under the influence of various cytokines. In addition to antimicrobial properties, macrophages also participate in wound healing; however, they also support degenerative and inflammatory processes. In cases of acute corneal allograft rejection, mononuclear cells initially form the main component of the cellular anterior chamber infiltrate. How monocytes are recruited into the anterior chamber is currently uncertain. Furthermore, no information is available about the possible cytotoxic effects on corneal endothelial cells. Gaining insight into these mechanisms may lead to potential pharmacological interventions.
Collapse
Affiliation(s)
- T Lapp
- Division of Infection and Immunity, University College London, The Cruciform Building, London, UK.
| | | | | | | |
Collapse
|
63
|
Ziaei M, Sharif-Paghaleh E, Manzouri B. Pharmacotherapy of corneal transplantation. Expert Opin Pharmacother 2012; 13:829-40. [DOI: 10.1517/14656566.2012.673588] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
64
|
Wacker K, Gründemann C, Kern Y, Bredow L, Huber R, Reinhard T, Schwartzkopff J. Inhibition of corneal inflammation following keratoplasty by birch leaf extract. Exp Eye Res 2012; 97:24-30. [PMID: 22360995 DOI: 10.1016/j.exer.2012.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/23/2011] [Accepted: 01/04/2012] [Indexed: 10/28/2022]
Abstract
The objective of this study was to determine the effect of birch leaf (Betula pendula) extract (BPE) on corneal inflammation following keratoplasty in the rat model. T cells were stimulated in vitro in the presence of BPE. Proliferation, activation phenotype and the number of apoptotic/necrotic cells in cell culture were analyzed by flow cytometry. Corneal transplantation was performed between Fisher and Lewis rats. Recipient rats were either treated with cyclosporine A at a low dosage (Low-dose CsA=LDCsA) or received LDCsA in combination with BPE (2×1ml/day). Clinical signs for corneal inflammation and rejection time points were determined. Infiltrating leukocytes were analyzed histologically. BPE specifically inhibited T cell proliferation in vitro by inducing apoptosis. The phenotype was not affected. In vivo, BPE significantly delayed the onset of corneal opacification (p<0.05). The amount of infiltrating CD45(+) leukocytes and CD4(+) T cells (p<0.001) was significantly reduced by BPE, whereas infiltration of CD163(+) macrophages was not significantly different between the two groups. BPE selectively induces apoptosis of activated T cells. Accordingly, BPE treatment significantly reduces infiltrating T cells and subsequent corneal opacification following keratoplasty. Our findings suggest BPE as a promising anti-inflammatory drug to treat corneal inflammation.
Collapse
Affiliation(s)
- Katrin Wacker
- University Eye Hospital Freiburg, Killianstr. 5, 79106 Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
65
|
Abstract
PURPOSE We characterized the presence of hemangiogenesis (HA) and lymphangiogenesis (LA) in human corneal specimens exhibiting 13 underlying pathologies. METHODS Human corneal specimens were obtained from consenting subjects (n = 2 or n = 3 for each pathology; total sample size, n = 35). The pathological specimens were stained with hematoxylin and eosin (H&E) to determine the presence or absence of corneal neovascularization (NV) and superficial or deep stromal distribution of NV. Immunohistochemical staining was then performed to differentiate HA (positive for CD31) from LA (positive for lymphatic vessel endothelial hyaluronan receptor-1 [LYVE-1]). RESULTS The double-negative (CD31(-)/LYVE-1(-)) immunostaining, indicating the absence of NV, was exhibited by 21 specimens (60%). CD31(-)/LYVE-1(-), indicating the presence of HA and absence of LA, was exhibited by 12 specimens (34%). The double-positive (CD31(+)/LYVE-1(+)) phenotype, indicating both HA and LA, was exhibited by 2 specimens (6%). Notably, the CD31(-)/LYVE-1(-) phenotype, indicating the presence of LA and absence of HA, was not detected among the specimens. Deep stromal NV was exhibited in a 4:3 ratio to superficial stromal NV. The double-negative immunostaining was more prevalent in noninflammatory pathologies, particularly in comparison with combined neovascular phenotypes (ie, CD31(+) or LYVE-1(+)). Among the neovascular phenotypes, HA was 7 times more common than LA. Specimens exhibiting LA presented only with the double-positive phenotype. CONCLUSIONS HA is the predominant component of NV in corneal pathologies. LA accompanies HA; however, isolated LA (from lymphatics in the conjunctiva) does not occur in these corneal pathologies. Our results suggest the potential therapeutic utility of targeting antineovascular therapies specifically for corneal HA and/or LA pathology.
Collapse
|
66
|
Srinivas SP. Cell signaling in regulation of the barrier integrity of the corneal endothelium. Exp Eye Res 2012; 95:8-15. [PMID: 21963716 PMCID: PMC3271188 DOI: 10.1016/j.exer.2011.09.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/12/2011] [Accepted: 09/16/2011] [Indexed: 11/29/2022]
Abstract
The barrier integrity of the corneal endothelium, which is conferred by its tight and adherens junctions, is critical for the maintenance of deturgescence of the corneal stroma. Although characteristically leaky, the barrier integrity restricts fluid leakage into the stroma such that the rate of leak does not exceed the rate of the endothelial active fluid transport directed toward the aqueous humor. At a molecular level, the barrier integrity is influenced by the actin cytoskeleton and microtubules, which are coupled to tight and adherens junctions via a variety of linker proteins. Since the cytoskeleton is affected by Rho family small GTPases and p38 MAP kinase, among others, many pathophysiological stimuli induce plasticity to the cytoskeleton and thereby elicit dynamic regulation of the barrier integrity. This review presents an overview of the impact of several bioactive factors on the barrier integrity of the corneal endothelium through altered actin cytoskeleton and/or disassembly of microtubules. The main focus is on the effect of TNF-α (tumor necrosis factor-α) which is a pro-inflammatory molecule found in the intraocular milieu during allograft rejection and anterior uveitis. This cytokine elicits acute activation of p38 MAP kinase, induces disassembly of microtubules, disrupts the peri-junctional actomyosin ring, and concomitantly breaks down the barrier integrity. These effects of TNF-α could be inhibited by stabilizing the microtubules, co-treating with a selective p38 MAP kinase inhibitor, and elevating intracellular cAMP via A2B receptors or direct exposure to forskolin. Overall, the corneal edema following a potential breakdown of the endothelial barrier integrity can be rescued pharmacologically by inhibiting specific cell-signaling mechanisms.
Collapse
Affiliation(s)
- Sangly P Srinivas
- School of Optometry, Indiana University, 800 East Atwater Avenue, Bloomington, IN 47405, USA.
| |
Collapse
|
67
|
Hosseini A, Lattanzio FA, Samudre SS, DiSandro G, Sheppard JD, Williams PB. Efficacy of a phosphorodiamidate morpholino oligomer antisense compound in the inhibition of corneal transplant rejection in a rat cornea transplant model. J Ocul Pharmacol Ther 2011; 28:194-201. [PMID: 22149555 DOI: 10.1089/jop.2011.0135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE The cornea is one of the most commonly transplanted tissues. The morpholino-oligomer antisense compound AVI-5126 suppresses expression of proto-oncogene c-myc, a key factor in transplant rejection. AVI-5126 was evaluated in a rat cornea transplant model. METHODS Donor corneas obtained from August x Copenhagen Irish rats were stored in Optisol™ containing 1.0 or 0.5 mg/mL AVI-5126 or Optisol alone for 24 h before transplant. Recipient Lewis rats were treated topically 3x/d with TobraDex™ and with 1.0 or 0.5 mg/mL of AVI-5126 or saline with daily monitoring for rejection using a modified McDonald-Shadduck Slit Lamp Scale. Using the high-performance liquid chromatography technique, the stability of AVI-5126 (0.5 mg/mL) in Optisol was evaluated for 30 days. AVI-5126 corneal transport was measured using Ussing chamber mounted rabbit corneas. The potential ocular toxicity of AVI-5126 (0.5 mg/mL) was evaluated after 8 days of 3x/d topical application in rats and in-vitro by incubation of human corneas for 8 days. RESULTS Cornea storage in Optisol containing 1.0 mg/mL AVI-5126 plus post-transplant topical tid AVI-5126 (1.0 mg/mL) application significantly increased graft survival (7.0±1.6 days) versus 5.0±0.8 days for Optisol alone storage plus post-transplant topical tid saline application (P<0.001). After 30 days of storage, no significant degradation of AVI-5126 in Optisol was noted by high-performance liquid chromatography analysis. After 24 h, 5 μg/mL (1% of total dose) crossed the corneas mounted in Ussing chambers. Neither extended topical application of AVI-5126 to rats nor incubation of human corneas in AVI-5126 decreased endothelial cell density. CONCLUSIONS Graft rejection was significantly delayed after pretransplantation storage of graft corneas in Optisol containing AVI-5126 followed by topical application of AVI-5126 post-transplantation. AVI-5126 was well tolerated, stable, and effectively penetrated the cornea.
Collapse
Affiliation(s)
- Alireza Hosseini
- T.R. Lee Center for Ocular Pharmacology, Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA.
| | | | | | | | | | | |
Collapse
|
68
|
Bai L, Lu XH, Sun FY, Zhong YY, Yu J, Tang MF, Zhang J. Blockade of toll-like receptor 2 expression and membrane translocation in rat corneal epithelial cells by glucocorticoid (TobraDex) after penetrating keratoplasty. Cornea 2011; 30:1253-1259. [PMID: 21918429 DOI: 10.1097/ico.0b013e318213f389] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE To evaluate the role of Toll-like receptor (TLR) 2 and the effect of glucocorticoid on immune rejection of penetrating keratoplasty. METHODS Allograft corneal transplantation was performed between host Sprague Dawley (SD) and Wistar donor rats. The expression of TLR2 messenger RNA (mRNA) and protein in corneas was determined by reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry, and immunofluorescence on days 5, 7, and 9 after operation. Three groups were included: allograft, allograft treated with TobraDex (Alcon, Rijksweg, Belgium), and isograft. Normal rat corneas were included as an additional control. RESULTS Various degrees of congregation of inflammatory cells and neovascularization of grafts were confirmed by histopathology. Immunohistochemistry revealed that TLR2 was expressed in epithelial, stromal, and endothelial cells of normal tissue, and in all of the grafts. Immunofluorescence analysis of TLR2 showed membrane staining of epithelial cells in the allografts on days 7 and 9. This was absent in the isografts and the allografts treated with TobraDex. TLR2 mRNA was detected in normal corneas, and levels were increased in all of the grafts, as determined by quantitative reverse transcription-polymerase chain reaction. By day 9 after transplantation, a 3.6-fold increase in TLR2 mRNA was observed in the allografts compared with the isografts or the allografts treated with TobraDex, which was statistically significant, at P < 0.005. CONCLUSIONS Expression of TLR2 in the rat cornea was significantly increased and concurred with the allograft rejection, but was effectively blocked by treatment with TobraDex.
Collapse
Affiliation(s)
- Lang Bai
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, [corrected] China.
| | | | | | | | | | | | | |
Collapse
|
69
|
Deng C, Qi H, Wang X, Zhou H, Deng S, Li F. Role of T and Dendritic Cells in Mouse Islet Allografts Treated With Anti-CD45RB Monoclonal Antibodies. Transplant Proc 2011; 43:2721-7. [DOI: 10.1016/j.transproceed.2011.05.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 03/29/2011] [Accepted: 05/11/2011] [Indexed: 01/09/2023]
|
70
|
Abstract
The ocular surface is continuously exposed to environmental agents such as allergens, pollutants, and microorganisms, which could provoke inflammation. However, an array of anatomical, physiological, and immunological features of the ocular surface conspire to limit corneal inflammation and endow the eye with immune privilege. A remarkable example of ocular immune privilege is the success of corneal allografts, which unlike all other forms of organ transplantation, survive without the use of systemic immunosuppressive drugs or MHC matching. This review describes the anatomical, physiological, and dynamic immunoregulatory processes that contribute to immune privilege.
Collapse
Affiliation(s)
- Jerry Y Niederkorn
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
71
|
Hara H, Koike N, Long C, Piluek J, Roh DS, SundarRaj N, Funderburgh JL, Mizuguchi Y, Isse K, Phelps CJ, Ball SF, Ayares DL, Cooper DKC. Initial in vitro investigation of the human immune response to corneal cells from genetically engineered pigs. Invest Ophthalmol Vis Sci 2011; 52:5278-86. [PMID: 21596821 DOI: 10.1167/iovs.10-6947] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To compare the in vitro human humoral and cellular immune responses to wild-type (WT) pig corneal endothelial cells (pCECs) with those to pig aortic endothelial cells (pAECs). These responses were further compared with CECs from genetically engineered pigs (α1,3-galactosyltransferase gene-knockout [GTKO] pigs and pigs expressing a human complement-regulatory protein [CD46]) and human donors. METHODS The expression of Galα1,3Gal (Gal), swine leukocyte antigen (SLA) class I and class II on pCECs and pAECs, with or without activation by porcine IFN-γ, was tested by flow cytometry. Pooled human serum was used to measure IgM/IgG binding to and complement-dependent cytotoxicity (CDC) to cells from WT, GTKO, and GTKO/CD46 pigs. The human CD4(+) T-cell response to cells from WT, GTKO, GTKO/CD46 pigs and human was tested by mixed lymphocyte reaction (MLR). RESULTS There was a lower level of expression of the Gal antigen and of SLA class I and II on the WT pCECs than on the WT pAECs, resulting in less antibody binding and reduced human CD4(+) T-cell proliferation. However, lysis of the WT pCECs was equivalent to that of the pAECs, suggesting more susceptibility to injury. There were significantly weaker humoral and cellular responses to the pCECs from GTKO/CD46 pigs compared with the WT pCECs, although the cellular response to the GTKO/CD46 pCECs was greater than to the human CECs. CONCLUSIONS These data provide the first report of in vitro investigations of CECs from genetically engineered pigs and suggest that pig corneas may provide an acceptable alternative to human corneas for clinical transplantation.
Collapse
Affiliation(s)
- Hidetaka Hara
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
Although corneal transplantation (Tx) is readily available in the United States and certain other regions of the developed world, the need for human donor corneas worldwide far exceeds supply. There is currently renewed interest in the possibility of using corneas from other species, especially pigs, for Tx into humans (xeno-Tx). The biomechanical properties of human and pig corneas are similar. Studies in animal models of corneal xeno-Tx have documented both humoral and cellular immune responses that play roles in xenograft rejection. The results obtained from the Tx of corneas from wild-type (ie, genetically unmodified) pigs into nonhuman primates have been surprisingly good and encouraging. Recent progress in the genetic manipulation of pigs has led to the prospect that the remaining immunological barriers will be overcome. There is every reason for optimism that corneal xeno-Tx will become a clinical reality within the next few years.
Collapse
|
73
|
Cunnusamy K, Chen PW, Niederkorn JY. IL-17A-dependent CD4+CD25+ regulatory T cells promote immune privilege of corneal allografts. THE JOURNAL OF IMMUNOLOGY 2011; 186:6737-45. [PMID: 21551366 DOI: 10.4049/jimmunol.1100101] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
IL-17A is a proinflammatory cytokine that has received attention for its role in the pathogenesis of several autoimmune diseases. IL-17A has also been implicated in cardiac and renal allograft rejection. Accordingly, we hypothesized that depletion of IL-17A would enhance corneal allograft survival. Instead, our results demonstrate that blocking IL-17A in a mouse model of keratoplasty accelerated the tempo and increased the incidence of allograft rejection from 50 to 90%. We describe a novel mechanism by which CD4(+)CD25(+) regulatory T cells (Tregs) respond to IL-17A and enhance corneal allograft survival. Our findings suggest the following: 1) IL-17A is necessary for ocular immune privilege; 2) IL-17A is not required for the induction of anterior chamber-associated immune deviation; 3) Tregs require IL-17A to mediate a contact-dependent suppression; 4) corneal allograft Tregs suppress the efferent arm of the immune response and are Ag specific; 5) Tregs are not required for corneal allograft survival beyond day 30; and 6) corneal allograft-induced Treg-mediated suppression is transient. Our findings identify IL-17A as a cytokine essential for the maintenance of corneal immune privilege and establish a new paradigm whereby interplay between IL-17A and CD4(+)CD25(+) Tregs is necessary for survival of corneal allografts.
Collapse
Affiliation(s)
- Khrishen Cunnusamy
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | |
Collapse
|
74
|
Abstract
PURPOSE OF REVIEW Corneal allografts are routinely performed without HLA typing or systemic immunosuppressive drugs. However, certain conditions create high risks for immune rejection. This review discusses recent insights into the mechanisms that rob the corneal allograft of its immune privilege. RECENT FINDINGS Studies in mice have revealed that stimuli that induce new blood vessel growth in the cornea also elicit proliferation of lymph vessels. Lymph vessels facilitate migration of antigen-presenting cells to regional lymph nodes in which they induce alloimmune responses. The presence of blood vessels in the corneal graft bed creates a unique chemokine milieu that stimulates recruitment of sensitized lymphocytes into the corneal allograft. Other data indicate that although corneal allograft survival is closely associated with Foxp3 expression in CD4+CD25+Foxp3+ T regulatory cells (Tregs), reduced expression of Foxp3 in Tregs creates a high risk for graft rejection. Recent evidence indicates that allergic diseases have a profound impact on the immune response and produce a dramatic increase in corneal allograft rejection. SUMMARY Understanding the underlying mechanisms that create 'high-risk' hosts may provide important therapeutic targets for restoring immune privilege of corneal allografts and enhancing their survival.
Collapse
|
75
|
Molecular and cellular characterization of expanded and cryopreserved human limbal epithelial stem cells reveal unique immunological properties. Exp Eye Res 2011; 92:47-56. [DOI: 10.1016/j.exer.2010.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 10/15/2010] [Accepted: 11/01/2010] [Indexed: 12/24/2022]
|
76
|
Hara H, Cooper DKC. The immunology of corneal xenotransplantation: a review of the literature. Xenotransplantation 2010; 17:338-49. [DOI: 10.1111/j.1399-3089.2010.00608.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
77
|
Cunnusamy K, Paunicka K, Reyes N, Yang W, Chen PW, Niederkorn JY. Two different regulatory T cell populations that promote corneal allograft survival. Invest Ophthalmol Vis Sci 2010; 51:6566-74. [PMID: 20702818 DOI: 10.1167/iovs.10-6161] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To compare and contrast the T regulatory cells (Tregs) induced by anterior chamber (AC) injection of antigen with those induced by orthotopic corneal allografts. METHODS Anterior chamber-associated immune deviation (ACAID) Tregs were induced by injecting C57BL/6 spleen cells into the AC of BALB/c mice. Delayed-type hypersensitivity responses to C57BL/6 alloantigens were evaluated by a conventional ear swelling assay. Corneal allograft Tregs were induced by applying orthotopic C57BL/6 corneal allografts onto BALB/c hosts. The effects of anti-CD25, anti-CD8, anti-interferon-γ (IFN-γ), anti-IL-17A, or cyclophosphamide treatments on corneal allograft survival and ACAID were evaluated. RESULTS Administration of either anti-CD25 or anti-IFN-γ antibodies prevented the expression of ACAID and abolished the immune privilege of corneal allografts. By contrast, in vivo treatment with anti-CD8 antibody abrogated ACAID but had no effect on corneal allograft survival. Further discordance between ACAID and corneal allograft survival emerged in experiments in which the induction of allergic conjunctivitis or the administration of anti-IL-17A abolished the immune privilege of corneal allografts but had no effect on the induction or expression of ACAID. CONCLUSIONS Although orthotopic corneal allografts are strategically located for the induction of ACAID by the sloughing of corneal cells into the AC, the results reported here indicate that the Tregs induced by orthotopic corneal allografts are remarkably different from the Tregs that are induced by AC injection of alloantigen. Although both of these Treg populations promote corneal allograft survival, they display distinctly different phenotypes.
Collapse
Affiliation(s)
- Khrishen Cunnusamy
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9057, USA
| | | | | | | | | | | |
Collapse
|
78
|
Stanojlovic S, Schlickeiser S, Appelt C, Vogt K, Schmitt-Knosalla I, Haase S, Ritter T, Sawitzki B, Pleyer U. Influence of combined treatment of low dose rapamycin and cyclosporin A on corneal allograft survival. Graefes Arch Clin Exp Ophthalmol 2010; 248:1447-56. [DOI: 10.1007/s00417-010-1420-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Revised: 05/11/2010] [Accepted: 05/14/2010] [Indexed: 01/18/2023] Open
|
79
|
Shivanna M, Jalimarada SS, Srinivas SP. Lovastatin inhibits the thrombin-induced loss of barrier integrity in bovine corneal endothelium. J Ocul Pharmacol Ther 2010; 26:1-10. [PMID: 20148651 DOI: 10.1089/jop.2009.0025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Increased actomyosin contraction of the dense band of actin cytoskeleton at the apical junctional complex (perijunctional actomyosin ring, PAMR) breaks down the barrier integrity of corneal endothelium. This study has investigated the efficacy of statins, which inhibit activation of RhoA, in opposing the thrombin-induced loss of barrier integrity of monolayers of cultured bovine corneal endothelium. METHODS Myosin light chain (MLC) phosphorylation, a biochemical measure of actomyosin contraction, was assayed by urea-glycerol gel electrophoresis, followed by western blot analysis. The locus of MLC phosphorylation and changes in the organization of the PAMR were visualized by immunostaining. Phosphorylation of MYPT1, a regulatory subunit of myosin light-chain phosphatase (MLCP), was assessed by Western blot analysis to determine down-regulation of RhoA. The barrier integrity was assessed in terms of trans-endothelial electrical resistance (TER), and further confirmed by determining permeability to FITC dextran (10 kDa) and distribution of ZO-1, a marker of tight junctional assembly. RESULTS Lovastatin, a prototype of lipophilic statins, induced MLC dephosphorylation under basal conditions. It opposed increase in phosphorylation of MLC and MYPT1 in response to thrombin and nocodazole, agents known to activate RhoA in the endothelium. Pretreatment with the statin opposed the thrombin- and nocodazole-induced disruption of the PAMR and the thrombin-induced decline in TER. Lovastatin also opposed the thrombin- and nocodazole-induced increase in permeability to FITC dextran and redistribution of ZO-1. However, upon supplementation with GGPP (geranylgeranyl pyrophosphate), lovastatin failed to oppose the effects of thrombin and nocodazole on the PAMR, ppMLC, and ZO-1 distribution. CONCLUSIONS Lovastatin attenuates RhoA activation in the corneal endothelium presumably by reducing its isoprenylation. This underlies the suppression of the thrombin-induced loss in barrier integrity of the corneal endothelium.
Collapse
Affiliation(s)
- Mahesh Shivanna
- School of Optometry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | |
Collapse
|
80
|
Abstract
Corneal transplantation has been performed successfully for over 100 years. Normally, HLA typing and systemic immunosuppressive drugs are not utilized, yet 90% of corneal allografts survive. In rodents, corneal allografts representing maximal histoincompatibility enjoy >50% survival even without immunosuppressive drugs. By contrast, other categories of transplants are invariably rejected in such donor/host combinations. The acceptance of corneal allografts compared to other categories of allografts is called immune privilege. The cornea expresses factors that contribute to immune privilege by preventing the induction and expression of immune responses to histocompatibility antigens on the corneal allograft. Among these are soluble and cell membrane molecules that block immune effector elements and also apoptosis of T lymphocytes. However, some conditions rob the corneal allograft of its immune privilege and promote rejection, which remains the leading cause of corneal allograft failure. Recent studies have examined new strategies for restoring immune privilege to such high-risk hosts.
Collapse
Affiliation(s)
- Jerry Y Niederkorn
- University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA.
| | | |
Collapse
|
81
|
Abstract
The corneal endothelium maintains stromal deturgescence, which is a prerequisite for corneal transparency. The principal challenge to stromal deturgescence is the swelling pressure associated with the hydrophilic glycosaminoglycans in the stroma. This negative pressure induces fluid leak into the stroma from the anterior chamber, but the rate of leak is restrained by the tight junctions of the endothelium. This role of the endothelium represents its barrier function. In healthy cornea, the fluid leak is counterbalanced by an active fluid pump mechanism associated with the endothelium itself. Although this pump-leak hypothesis was postulated several decades ago, the mechanisms underlying regulation of the balance between the pump and leak functions remain largely unknown. In the last couple of decades, the ion transport systems that support the fluid pump activity have been discovered. In contrast, despite significant evidence for corneal edema secondary to endothelial barrier dysfunction, the molecular aspects underlying its regulation are relatively unknown. Recent findings in our laboratory, however, indicate that barrier integrity (i.e., structural and functional integrity of the tight junctions) of the endothelium is sensitive to remodeling of its peri-junctional actomyosin ring, which is located at the apical junctional complex. This review provides a focused perspective on dynamic regulation of the barrier integrity of endothelium vis-à-vis plasticity of the peri-junctional actomyosin ring and its association with cell signaling downstream of small GTPases of the Rho family. Based on findings to date, it appears that development of specific pharmacological strategies to treat corneal edema in response to inflammatory stress would be possible in the near future.
Collapse
|
82
|
Esposito A, Suedekum B, Liu J, An F, Lass J, Strainic MG, Lin F, Heeger P, Medof ME. Decay accelerating factor is essential for successful corneal engraftment. Am J Transplant 2010; 10:527-34. [PMID: 20055803 PMCID: PMC3520429 DOI: 10.1111/j.1600-6143.2009.02961.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In contrast to immune restrictions that pertain for solid organ transplants, the tolerogenic milieu of the eye permits successful corneal transplantation without systemic immunosuppression, even across a fully MHC disparate barrier. Here we show that recipient and donor expression of decay accelerating factor (DAF or CD55), a cell surface C3/C5 convertase regulator recently shown to modulate T-cell responses, is essential to sustain successful corneal engraftment. Whereas wild-type (WT) corneas transplanted into multiple minor histocompatibility antigen (mH), or HY disparate WT recipients were accepted, DAF's absence on either the donor cornea or in the recipient bed induced rapid rejection. Donor or recipient DAF deficiency led to expansion of donor-reactive IFN-gamma producing CD4(+) and CD8(+) T cells, as well as inhibited antigen-induced IL-10 and TGF-beta, together demonstrating that DAF deficiency precludes immune tolerance. In addition to demonstrating a requisite role for DAF in conferring ocular immune privilege, these results raise the possibility that augmenting DAF levels on donor corneal endothelium and/or the recipient bed could have therapeutic value for transplants that clinically are at high risk for rejection.
Collapse
Affiliation(s)
- Andrew Esposito
- Department of Ophthalmology, Case Western Reserve University, Cleveland, Ohio
| | - Brandon Suedekum
- Department of Ophthalmology, Case Western Reserve University, Cleveland, Ohio
| | - Jinbo Liu
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Fengqi An
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Jonathan Lass
- Department of Ophthalmology, Case Western Reserve University, Cleveland, Ohio
| | - Michael G Strainic
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Feng Lin
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Peter Heeger
- Department of Medicine Mount Sinai School of Medicine, New York, New York
| | - M. Edward Medof
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio,Address correspondence to: M. Edward Medof, M.D., Ph.D., Institute of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Room 301, Cleveland, OH 44106. Phone 1-216-368-5434; Fax 1-216-368-0495;
| |
Collapse
|
83
|
Penetrating keratoplasty for unilateral corneal disease: outcomes from a tertiary care hospital in Australia. Eye Contact Lens 2009; 36:6-9. [PMID: 19927002 DOI: 10.1097/icl.0b013e3181c00d19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To assess the visual outcome after unilateral penetrating keratoplasty (PKP) in a heterogenous group of patients with unilateral corneal disease. METHODS A retrospective analysis of hospital records of patients who had undergone PKP at the Royal Victorian Eye and Ear Hospital, Melbourne, Australia, over a 10-year period, was performed. All cases with a history of corneal transplantation surgery in one eye and a best-corrected visual acuity (BCVA) more than or equal to 0.5 in the fellow eye with no corneal pathologic condition were included. Outcome measures included BCVA at 2 years, and overall graft survival. RESULTS Of the 498 grafts performed during the study period, 30 eyes (6%) met the inclusion criteria. The most common indications for PKP in the study group were bullous keratopathy (40%) and keratoconus (34%). The mean postoperative BCVA at 2 years (0.31 +/- 0.25; range, 0.033-1) was less than the mean BCVA of the fellow eye (0.77 +/- 0.20; range, 0.5-1) (P<0.00). Although there was a significant difference between the preoperative and postoperative BCVA (P<0.00), only 22% of patients could attain BCVA of more than or equal to 0.5. The major complications encountered were graft rejection (40%) and secondary graft failure (20%). CONCLUSIONS Unilateral PKP is most commonly performed to treat bullous keratopathy and keratoconus in Australia and may be associated with suboptimal visual outcome as compared to the normal fellow eye.
Collapse
|
84
|
Shivanna M, Rajashekhar G, Srinivas SP. Barrier dysfunction of the corneal endothelium in response to TNF-alpha: role of p38 MAP kinase. Invest Ophthalmol Vis Sci 2009; 51:1575-82. [PMID: 19797215 DOI: 10.1167/iovs.09-4343] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE TNF-alpha is elevated in the cornea and aqueous humor during allograft rejection and anterior uveitis. The authors investigated the involvement of p38 MAP kinase in the TNF-alpha-induced loss of barrier integrity in monolayers of cultured bovine corneal endothelial cells. METHODS Transendothelial electrical resistance (TER), a measure of barrier integrity, was determined by electrical cell-substrate impedance sensing. Barrier integrity was further assessed in terms of permeability to FITC dextran. Reorganization of the apical junctional complex (AJC) in response to TNF-alpha was visualized by immunofluorescence. The expression of TNF-alpha receptors was confirmed by RT-PCR. Activation of p38 MAP kinase in response to TNF-alpha was determined by Western blot analysis. RESULTS Exposure to TNF-alpha induced a continuous decline in TER that persisted for more than 20 hours. It also led to a significant increase in permeability to FITC dextran. At the AJC, the cytokine caused disassembly of microtubules, disruption of perijunctional actomyosin ring (PAMR), and dislocation of ZO-1 and cadherins. Western blot analysis showed that TNF-alpha also led to the activation of p38 MAP kinase. All these responses to the cytokine were opposed by treatment with SB-203580, a selective p38 MAP kinase inhibitor. TNFR1, but not TNFR2, was expressed in untreated cells with no change in the expression pattern on treatment with the cytokine. CONCLUSIONS TNF-alpha breaks down the barrier integrity of corneal endothelium, concomitant with the disruption of PAMR, remodeling of AJC, and disassembly of microtubules. These effects are mediated by transient activation of p38 MAP kinase. Thus, the TNF-alpha-induced barrier dysfunction in the corneal endothelium can be suppressed by inhibitors of p38 MAP kinase and agents downstream of the kinase that affect the cytoskeleton.
Collapse
Affiliation(s)
- Mahesh Shivanna
- School of Optometry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | |
Collapse
|
85
|
Microtubule stabilization opposes the (TNF-alpha)-induced loss in the barrier integrity of corneal endothelium. Exp Eye Res 2009; 89:950-9. [PMID: 19695246 DOI: 10.1016/j.exer.2009.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 08/06/2009] [Accepted: 08/07/2009] [Indexed: 11/23/2022]
Abstract
Microtubule disassembly breaks down the barrier integrity in a number of epithelial and endothelial monolayers. This study has investigated effects of TNF-alpha, which is implicated in corneal allograft rejection, on microtubules and barrier integrity in cultured bovine corneal endothelial cells. Exposure to TNF-alpha led to disassembly of the microtubules, and also caused disruption of the perijunctional actomyosin ring (PAMR). As a measure of barrier integrity, trans-endothelial electrical resistance (TER) was determined based on electrical cell-substrate impedance sensing in realtime. Exposure to TNF-alpha caused a slow decline in TER for > 20 h, and a similar exposure to cells grown on porous culture inserts led to a significant increase in permeability to FITC dextran. These changes, indicating a loss of barrier integrity, were also reflected by dislocation of ZO-1 at the cell border and disassembly of cadherins. These effects of TNF-alpha were inhibited upon stabilization of microtubules by pre-treatment with paclitaxel or epothilone B. Microtubule stabilization may be a useful strategy to overcome (TNF-alpha)-induced loss of the barrier integrity of corneal endothelium during inflammation associated with transplant rejection and uveitis.
Collapse
|
86
|
Anti-CD45RB monoclonal antibody induces immunologic toleration by suppressing dendritic cells. Transpl Immunol 2009; 21:136-9. [DOI: 10.1016/j.trim.2009.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 04/07/2009] [Accepted: 04/10/2009] [Indexed: 11/22/2022]
|
87
|
Current world literature. Curr Opin Organ Transplant 2009; 14:103-11. [PMID: 19337155 DOI: 10.1097/mot.0b013e328323ad31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
88
|
Yin and yang of cytokine regulation in solid organ graft rejection and tolerance. Clin Lab Med 2009; 28:469-79, vii-viii. [PMID: 19028264 DOI: 10.1016/j.cll.2008.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Solid organ transplantation is the therapy of choice for end stage diseases. The alloimmune response generated after transplantation induces the production of a "cytokine storm" that can lead to either the rejection of the organ or graft acceptance. These key decisions, which determine the transplant fate, depend on the type of cytokine response (Th1/Th2). An inflammatory response will lead to graft loss; a tolerogenic response assists in graft acceptance. A balance between different factors often determines outcome. The same cytokine may assist in either allograft rejection or graft survival depending on: (1) the cell types in the vicinity, (2) the amount of each cytokine produced, (3) different sites, and (4) if it acts in a synergistic or antagonistic manner with other cytokines. This review focuses on cytokines that manipulate the alloimmune response after organ transplantation and that play a role either in graft rejection (yin) or tolerance (yang).
Collapse
|
89
|
Nagaosa K, Nakashima C, Kishimoto A, Nakanishi Y. Immune response to bacteria in seminiferous epithelium. Reproduction 2009; 137:879-88. [PMID: 19225044 DOI: 10.1530/rep-08-0460] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The luminal part of the seminiferous epithelium, a tissue compartment protected by the blood-testis barrier, has been considered a site of immune privilege. However, there are reports describing the production of anti-microbial peptides and the expression of Toll-like receptors in cells present in the seminiferous epithelium, evoking the possibility that this tissue compartment is immunologically active at least with regard to the innate immune response. To test this, we injected Escherichia coli into seminiferous tubules of live mice and examined the fate of bacteria, the production of chemokines and inflammatory cytokines, and the infiltration of neutrophils. The bacteria actively propagated and reached a maximal level in a day, but started to decrease after 5 days and completely disappeared in 2 months. The expression of macrophage inflammatory protein-2 and tumor necrosis factor-alpha became evident in macrophages present in the interstitial compartment of testes as early as 1-3 h after the inoculation of bacteria. Neutrophils first accumulated in the interstitial space at 9-12 h and entered the tubules after a day. On the other hand, impairment of spermatogenesis was observed a day after bacteria injection and seemed unrecoverable even after the bacteria were eliminated. By contrast, bacteria injected into the interstitial compartment were more rapidly cleared with no damage in the seminiferous epithelium. These results suggest the existence of immunity against invading microbes in the seminiferous epithelium although its effectiveness in maintaining tissue homeostasis remains equivocal.
Collapse
Affiliation(s)
- Kaz Nagaosa
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | | | | | | |
Collapse
|
90
|
|
91
|
Affiliation(s)
- Helene Lam
- Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | | |
Collapse
|
92
|
|