51
|
Sato H, Frank DW. Multi-Functional Characteristics of the Pseudomonas aeruginosa Type III Needle-Tip Protein, PcrV; Comparison to Orthologs in other Gram-negative Bacteria. Front Microbiol 2011; 2:142. [PMID: 21772833 PMCID: PMC3131520 DOI: 10.3389/fmicb.2011.00142] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Accepted: 06/15/2011] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas aeruginosa possesses a type III secretion system (T3SS) to intoxicate host cells and evade innate immunity. This virulence-related machinery consists of a molecular syringe and needle assembled on the bacterial surface, which allows delivery of T3 effector proteins into infected cells. To accomplish a one-step effector translocation, a tip protein is required at the top end of the T3 needle structure. Strains lacking expression of the functional tip protein fail to intoxicate host cells. P. aeruginosa encodes a T3S that is highly homologous to the proteins encoded by Yersinia spp. The needle-tip proteins of Yersinia, LcrV, and P. aeruginosa, PcrV, share 37% identity and 65% similarity. Other known tip proteins are AcrV (Aeromonas), IpaD (Shigella), SipD (Salmonella), BipD (Burkholderia), EspA (EPEC, EHEC), Bsp22 (Bordetella), with additional proteins identified from various Gram-negative species, such as Vibrio and Bordetella. The tip proteins can serve as a protective antigen or may be critical for sensing host cells and evading innate immune responses. Recognition of the host microenvironment transcriptionally activates synthesis of T3SS components. The machinery appears to be mechanically controlled by the assemblage of specific junctions within the apparatus. These junctions include the tip and base of the T3 apparatus, the needle proteins and components within the bacterial cytoplasm. The tip proteins likely have chaperone functions for translocon proteins, allowing the proper assembly of translocation channels in the host membrane and completing vectorial delivery of effector proteins into the host cytoplasm. Multi-functional features of the needle-tip proteins appear to be intricately controlled. In this review, we highlight the functional aspects and complex controls of T3 needle-tip proteins with particular emphasis on PcrV and LcrV.
Collapse
Affiliation(s)
- Hiromi Sato
- Center for Infectious Disease Research, Medical College of Wisconsin Milwaukee, WI, USA
| | | |
Collapse
|
52
|
Dasanayake D, Richaud M, Cyr N, Caballero-Franco C, Pittroff S, Finn RM, Ausió J, Luo W, Donnenberg MS, Jardim A. The N-terminal amphipathic region of the Escherichia coli type III secretion system protein EspD is required for membrane insertion and function. Mol Microbiol 2011; 81:734-50. [PMID: 21651628 DOI: 10.1111/j.1365-2958.2011.07727.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Enterohemorrhagic Escherichia coli is a causative agent of gastrointestinal and diarrheal diseases. These pathogenic E. coli express a syringe-like protein machine, known as the type III secretion system (T3SS), used for the injection of virulence factors into the cytosol of the host epithelial cell. Breaching the epithelial plasma membrane requires formation of a translocation pore that contains the secreted protein EspD. Here we demonstrate that the N-terminal segment of EspD, encompassing residues 1-171, contains two amphipathic domains spanning residues 24-41 and 66-83, with the latter of these helices being critical for EspD function. Fluorescence and circular dichroism analysis revealed that, in solution, His₆-EspD₁₋₁₇₁ adopts a native disordered structure; however, on binding anionic small unilamellar vesicles composed of phosphatidylserine, His₆-EspD₁₋₁₇₁ undergoes a pH depended conformational change that increases the α-helix content of this protein approximately sevenfold. This change coincides with insertion of the region circumscribing Trp₄₇ into the hydrophobic core of the lipid bilayer. On the HeLa cell plasma membrane, His₆-EspD₁₋₁₇₁ forms a homodimer that is postulated to promote EspD-EspD oligomerization and pore formation. Complementation of ΔespD null mutant bacteria with an espDΔ66-83 gene showed that this protein was secreted but non-functional.
Collapse
Affiliation(s)
- Dayal Dasanayake
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, Ste-Anne-de-Bellevue, Québec H9X3V9, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Farfán MJ, Toro CS, Barry EM, Nataro JP. Shigella enterotoxin-2 is a type III effector that participates in Shigella-induced interleukin 8 secretion by epithelial cells. ACTA ACUST UNITED AC 2011; 61:332-9. [PMID: 21219446 DOI: 10.1111/j.1574-695x.2011.00778.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have previously described a protein termed Shigella enterotoxin 2 (ShET-2), which induces rises in short-circuit current in rabbit ileum mounted in the Ussing chamber. Published reports have postulated that ShET-2 may be secreted by the Shigella type III secretion system (T3SS). In this study, we show that ShET-2 secretion into the extracellular space requires the T3SS in Shigella flexneri 2a strain 2457T and a ShET-2-TEM fusion was translocated into epithelial cells in a T3SS-dependent manner. The ShET-2 gene, sen, is encoded downstream of the ospC1 gene of S. flexneri, and we show that sen is cotranscribed with this T3SS-secreted product. Considering that T3SS effectors have diverse roles in Shigella infection and that vaccine constructs lacking ShET-2 are attenuated in volunteers, we asked whether ShET-2 has a function other than its enterotoxic activity. We constructed a ShET-2 mutant in 2457T and tested its effect on epithelial cell invasion, plaque formation, guinea pig keratoconjunctivitis and interleukin 8 (IL-8) secretion from infected monolayers. Although other phenotypes were not different compared with the wild-type parent, we found that HEp-2 and T84 cells infected with the ShET-2 mutant exhibited significantly reduced IL-8 secretion into the basolateral compartment, suggesting that ShET-2 might participate in the Shigella-induced inflammation of epithelial cells.
Collapse
Affiliation(s)
- Mauricio J Farfán
- Centro de Estudios Moleculares, Departamento de Pediatría, Hospital Luis Calvo Mackennna, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | | | | | |
Collapse
|
54
|
Cornelis GR. The type III secretion injectisome, a complex nanomachine for intracellular 'toxin' delivery. Biol Chem 2011; 391:745-51. [PMID: 20482311 DOI: 10.1515/bc.2010.079] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The type III secretion injectisome is a nanomachine that delivers bacterial proteins into the cytosol of eukaryotic target cells. It consists of a cylindrical basal structure spanning the two bacterial membranes and the peptidoglycan, connected to a hollow needle, eventually followed by a filament (animal pathogens) or to a long pilus (plant pathogens). Export employs a type III pathway. During assembly, all the protein subunits of external elements are sequentially exported by the basal structure itself, implying that the export apparatus can switch its substrate specificity over time. The length of the needle is controlled by a protein that it also secreted during assembly and presumably acts as a molecular ruler.
Collapse
Affiliation(s)
- Guy R Cornelis
- Biozentrum der Universität Basel, CH-4056 Basel, Switzerland.
| |
Collapse
|
55
|
Latella G, Fiocchi C, Caprili R. News from the "5th International Meeting on Inflammatory Bowel Diseases" CAPRI 2010. J Crohns Colitis 2010; 4:690-702. [PMID: 21122584 DOI: 10.1016/j.crohns.2010.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 08/22/2010] [Indexed: 02/06/2023]
Abstract
At the "5th International Meeting on Inflammatory Bowel Diseases selected topics of inflammatory bowel disease (IBD), including the environment, genetics, the gut flora, the cell response and immunomodulation were discussed in order to better understand specific clinical and therapeutic aspects. The incidence of IBD continues to rise, both in low and in high-incidence areas. It is believed that factors associated with 'Westernization' may be conditioning the expression of these disorders. The increased incidence of IBD among migrants from low-incidence to high-incidence areas within the same generation suggests a strong environmental influence. The development of genome-wide association scanning (GWAS) technologies has lead to the discovery of more than 100 IBD loci. Some, as the Th 17 pathway genes, are shared between Crohn's disease (CD) and ulcerative colitis (UC), while other are IBD subtype-specific (autophagy genes, epithelial barrier genes). Disease-specific therapies targeting these pathways should be developed. Epigenetic regulation of the inflammatory response also appears to play an important role in the pathogenesis of IBD. The importance of gut flora in intestinal homeostasis and inflammation was reinforced, the concepts of eubiosis and dysbiosis were introduced, and some strategies for reverting dysbiosis to a homeostatic state of eubiosis were proposed. The current status of studies on the human gut microbiota metagenome, metaprotome, and metabolome was also presented. The cell response in inflammation, including endoplasmic reticulum (ER) stress responses, autophagy and inflammasome-dependent events were related to IBD pathogenesis. It was suggested that inflammation-associated ER stress responses may be a common trait in the pathogenesis of various chronic immune and metabolic diseases. How innate and adaptive immunity signaling events can perpetuate chronic inflammation was discussed extensively. Signal transduction pathways provide intracellular mechanisms by which cells respond and adapt to multiple environmental stresses. The identification of these signals has led to a greater mechanistic understanding of IBD pathogenesis and pointed to potentially new therapeutic targets. A critical analysis of clinical trials and of risk-benefit of biological therapy was presented. The problem of Epstein-Barr virus (EBV) and lymphoma in IBD was extensively discussed. Lymphomas can develop in intestinal segments affected by IBD and are in most cases associated with EBV. The reasons of treatment failure were also analyzed both from basic and clinical points of view. Two very interesting presentations on the integration of research and clinical care in the near future closed the meeting. These presentations were focused on macrotrends affecting healthcare delivery and research, and the need to innovate traditional infrastructures to deal with these changing trends as well as new opportunities to accelerate scientific knowledge.
Collapse
Affiliation(s)
- Giovanni Latella
- Department of Internal Medicine, GI Unit, University of L'Aquila, L'Aquila, Italy.
| | | | | |
Collapse
|
56
|
Priyadarshi A, Tang L. Crystallization and preliminary crystallographic analysis of the type III secretion translocator chaperone SicA from Salmonella enterica. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1533-5. [PMID: 21045315 DOI: 10.1107/s1744309110037954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 09/22/2010] [Indexed: 01/04/2023]
Abstract
SicA is a member of the class II chaperones in type III secretion systems which bind to the pore-forming translocators in the bacterial cytoplasm and prevent them from premature association and degradation. In this study, SicA from Salmonella enterica serovar Typhimurium was overexpressed, purified and crystallized using PEG 8000 as the precipitant. X-ray diffraction data were collected using synchrotron radiation and processed at 3.5 Å resolution. The crystal belonged to the monoclinic space group C2, with unit-cell parameters a = 180.4, b = 94.1, c = 131.8 Å, β = 130.9°. There may be eight monomers in the crystallographic asymmetric unit, corresponding to a V(M) of 2.52 Å(3) Da(-1) and a solvent content of 51.1%. This suggests an oligomerization state that differs from those of previously reported type III secretion chaperones.
Collapse
Affiliation(s)
- Amit Priyadarshi
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | | |
Collapse
|
57
|
EseG, an effector of the type III secretion system of Edwardsiella tarda, triggers microtubule destabilization. Infect Immun 2010; 78:5011-21. [PMID: 20855515 DOI: 10.1128/iai.00152-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Edwardsiella tarda is a Gram-negative enteric pathogen that causes hemorrhagic septicemia in fish and both gastrointestinal and extraintestinal infections in humans. A type III secretion system (T3SS) was recently shown to contribute to pathogenesis, since deletions of various T3SS genes increased the 50% lethal dose (LD(50)) by about 1 log unit in the blue gourami infection model. In this study, we report EseG as the first identified effector protein of T3SS. EseG shares partial homology with two Salmonella T3SS effectors (SseG and SseF) over a conserved domain (amino acid residues 142 to 192). The secretion of EseG is dependent on a functional T3SS and, in particular, requires the chaperone EscB. Experiments using TEM-1 β-lactamase as a fluorescence-based reporter showed that EseG was translocated into HeLa cells at 35°C. Fractionation of infected HeLa cells demonstrated that EseG was localized to the host membrane fraction after translocation. EseG is able to disassemble microtubule structures when overexpressed in mammalian cells. This phenotype may require a conserved motif of EseG (EseG(142-192)), since truncated versions of EseG devoid of this motif lose their ability to cause microtubule destabilization. By demonstrating the function of EseG, our study contributes to the understanding of E. tarda pathogenesis. Moreover, the approach established in this study to identify type III effectors can be used to identify and characterize more type III and possible type VI effectors in Edwardsiella.
Collapse
|
58
|
The inflammatory cytokine tumor necrosis factor modulates the expression of Salmonella typhimurium effector proteins. JOURNAL OF INFLAMMATION-LONDON 2010; 7:42. [PMID: 20704730 PMCID: PMC2925363 DOI: 10.1186/1476-9255-7-42] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 08/12/2010] [Indexed: 01/26/2023]
Abstract
Tumor necrosis factor alpha (TNF-alpha)is a host inflammatory factor. Bacteria increase TNF-alpha expression in a variety of human diseases including infectious diseases, inflammatory bowel diseases, and cancer. It is unknown, however, how TNF-alpha directly modulates bacterial protein expression during intestinal infection and chronic inflammation. In the current study, we hypothesize that Salmonella typhimurium senses TNF-alpha and show that TNF-alpha treatment modulates Salmonella virulent proteins (called effectors), thus changing the host-bacterial interaction in intestinal epithelial cells. We investigated the expression of 23 Salmonella effectors after TNF-alpha exposure. We found that TNF-alpha treatment led to differential effector expression: effector SipA was increased by TNF-alpha treatment, whereas the expression levels of other effectors, including gogB and spvB, decreased in the presence of TNF-alpha. We verified the protein expression of Salmonella effectors AvrA and SipA by Western blots. Furthermore, we used intestinal epithelial cells as our experimental model to explore the response of human intestinal cells to TNF-alpha pretreated Salmonella. More bacterial invasion was found in host cells colonized with Salmonella strains pretreated with TNF-alpha compared to Salmonella without TNF-alpha treatment. TNF-alpha pretreated Salmonella induced higher proinflammatory JNK signalling responses compared to the Salmonella strains without TNF-alpha exposure. Exposure to TNF-alpha made Salmonella to induce more inflammatory cytokine IL-8 in intestinal epithelial cells. JNK inhibitor treatment was able to suppress the effects of TNF-pretreated-Salmonella in enhancing expressions of phosphorylated-JNK and c-jun and secretion of IL-8. Overall, our study provides new insights into Salmonella-host interactions in intestinal inflammation.
Collapse
|
59
|
Lin Y, Wang P, Yang H, Xu Y. Crystallization and preliminary crystallographic analysis of the ADP-ribosyltransferase HopU1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:932-4. [PMID: 20693672 DOI: 10.1107/s1744309110022463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 06/11/2010] [Indexed: 11/11/2022]
Abstract
Several Gram-negative pathogens of plants and animals and some eukaryotic associated bacteria use type III protein-secretion systems (T3SSs) to deliver bacterial virulence-associated ;effector' proteins directly into host cells. HopU1 is a type III effector protein from the plant pathogen Pseudomonas syringae, which causes plant bacterial speck disease. HopU1 quells host immunity through ADP-ribosylation of GRP7 as a substrate. HopU1 has been reported as the first ADP-ribosyltransferase virulence protein to be identified in a plant pathogen. Although several structures of ADP-ribosyltransferases have been determined to date, no structure of an ADP-ribosyltransferase from a plant pathogen has been determined. Here, the protein expression, purification, crystallization and preliminary crystallographic analysis of HopU1 are reported. Diffracting crystals were grown by hanging-drop vapour diffusion using polyethylene glycol 10,000 as a precipitant. Native and SAD data sets were collected using native and selenomethionine-derivative HopU1 crystals. The diffraction pattern of the crystal extended to 2.7 A resolution using synchrotron radiation. The crystals belonged to space group P4(3), with unit-cell parameters a=92.6, b=92.6, c=101.6 A.
Collapse
Affiliation(s)
- Yan Lin
- School of Life Sciences, Fudan University, 220 Han-Dan Road, Shanghai 200433, People's Republic of China
| | | | | | | |
Collapse
|
60
|
Diepold A, Amstutz M, Abel S, Sorg I, Jenal U, Cornelis GR. Deciphering the assembly of the Yersinia type III secretion injectisome. EMBO J 2010; 29:1928-40. [PMID: 20453832 DOI: 10.1038/emboj.2010.84] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 04/13/2010] [Indexed: 01/05/2023] Open
Abstract
The assembly of the Yersinia enterocolitica type III secretion injectisome was investigated by grafting fluorescent proteins onto several components, YscC (outer-membrane (OM) ring), YscD (forms the inner-membrane (IM) ring together with YscJ), YscN (ATPase), and YscQ (putative C ring). The recombinant injectisomes were functional and appeared as fluorescent spots at the cell periphery. Epistasis experiments with the hybrid alleles in an array of injectisome mutants revealed a novel outside-in assembly order: whereas YscC formed spots in the absence of any other structural protein, formation of YscD foci required YscC, but not YscJ. We therefore propose that the assembly starts with YscC and proceeds through the connector YscD to YscJ, which was further corroborated by co-immunoprecipitation experiments. Completion of the membrane rings allowed the subsequent assembly of cytosolic components. YscN and YscQ attached synchronously, requiring each other, the interacting proteins YscK and YscL, but no further injectisome component for their assembly. These results show that assembly is initiated by the formation of the OM ring and progresses inwards to the IM ring and, finally, to a large cytosolic complex.
Collapse
Affiliation(s)
- Andreas Diepold
- Infection Biology, Biozentrum der Universität Basel, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
61
|
N-terminal type III secretion signal of enteropathogenic Escherichia coli translocator proteins. J Bacteriol 2010; 192:3534-9. [PMID: 20400543 DOI: 10.1128/jb.00046-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We report that the N terminus of the type III secretion system translocator proteins EspB, EspD, and EspA mediate protein secretion and translocation from wild-type enteropathogenic Escherichia coli and hypersecretion from sepL and sepD mutants. EspA containing the translocation signal of Map and Tir containing the secretion signal of EspA are biologically active.
Collapse
|
62
|
Mukaihara T, Tamura N, Iwabuchi M. Genome-wide identification of a large repertoire of Ralstonia solanacearum type III effector proteins by a new functional screen. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:251-62. [PMID: 20121447 DOI: 10.1094/mpmi-23-3-0251] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The gram-negative plant-pathogenic bacterium Ralstonia solanacearum utilizes the hypersensitive response and pathogenicity (Hrp) type III secretion system (T3SS) to cause disease in plants. To determine the entire repertoire of effector proteins possessed by R. solanacearum RS1000, we constructed a transposon carrying a calmodulin-dependent adenylate cyclase reporter that can be used to specifically detect rip (Ralstonia protein injected into plant cells) genes by monitoring the cAMP level in plant leaves inoculated with insertion mutants. From the new functional screen using this transposon, we identified 38 new Rip proteins translocated into plant cells via the Hrp T3SS. In addition, most of the 34 known effectors of RS1000 could be detected by the screen, except for three effectors that appear to be small in size or only weakly expressed. Finally, we identified 72 Rips in RS1000, which include 68 effector proteins classified into over 50 families and four extracellular components of the Hrp T3SS. Interestingly, one-third of the effectors are specific to R. solanacearum. Many effector proteins contain various repeated amino acid sequences or known enzyme motifs. We also show that most of the R. solanacearum effector proteins, but not Hrp extracellular components, require an Hrp-associated protein, HpaB, for their effective translocation into plant cells.
Collapse
Affiliation(s)
- Takafumi Mukaihara
- Agricultural Experimental Station, Okayama Prefectural General Agriculture Center, 1174-1 Koda-Oki, Akaiwa 709-0801, Japan.
| | | | | |
Collapse
|
63
|
Arnold R, Jehl A, Rattei T. Targeting effectors: the molecular recognition of Type III secreted proteins. Microbes Infect 2010; 12:346-58. [PMID: 20178857 DOI: 10.1016/j.micinf.2010.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Accepted: 02/10/2010] [Indexed: 01/01/2023]
Abstract
The Type III secretion system (TTSS) facilitates the export of effector proteins from pathogenic and symbiotic Gram-negative bacteria into the cytosol of eukaryotic host cells. The current functional and evolutionary knowledge on the molecular recognition of TTSS substrates and computational models of the secretion signal are discussed in this review.
Collapse
Affiliation(s)
- Roland Arnold
- Department of Genome Oriented Bioinformatics, Technische Universität München, Wissenschaftszentrum Weihenstephan, 85350 Freising, Germany
| | | | | |
Collapse
|
64
|
Antivirulence drugs to target bacterial secretion systems. Curr Opin Microbiol 2010; 13:100-5. [DOI: 10.1016/j.mib.2009.12.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 11/29/2009] [Accepted: 12/01/2009] [Indexed: 02/03/2023]
|
65
|
Arbeloa A, Garnett J, Lillington J, Bulgin RR, Berger CN, Lea SM, Matthews S, Frankel G. EspM2 is a RhoA guanine nucleotide exchange factor. Cell Microbiol 2009; 12:654-64. [PMID: 20039879 PMCID: PMC2871174 DOI: 10.1111/j.1462-5822.2009.01423.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We investigated how the type III secretion system WxxxE effectors EspM2 of enterohaemorrhagic Escherichia coli, which triggers stress fibre formation, and SifA of Salmonella enterica serovar Typhimurium, which is involved in intracellular survival, modulate Rho GTPases. We identified a direct interaction between EspM2 or SifA and nucleotide-free RhoA. Nuclear Magnetic Resonance Spectroscopy revealed that EspM2 has a similar fold to SifA and the guanine nucleotide exchange factor (GEF) effector SopE. EspM2 induced nucleotide exchange in RhoA but not in Rac1 or H-Ras, while SifA induced nucleotide exchange in none of them. Mutating W70 of the WxxxE motif or L118 and I127 residues, which surround the catalytic loop, affected the stability of EspM2. Substitution of Q124, located within the catalytic loop of EspM2, with alanine, greatly attenuated the RhoA GEF activity in vitro and the ability of EspM2 to induce stress fibres upon ectopic expression. These results suggest that binding of SifA to RhoA does not trigger nucleotide exchange while EspM2 is a unique Rho GTPase GEF.
Collapse
Affiliation(s)
- Ana Arbeloa
- Centre for Molecular Microbiology and Infection, Imperial College London, UK
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Kim OK, Garrity-Ryan LK, Bartlett VJ, Grier MC, Verma AK, Medjanis G, Donatelli JE, Macone AB, Tanaka SK, Levy SB, Alekshun MN. N-hydroxybenzimidazole inhibitors of the transcription factor LcrF in Yersinia: novel antivirulence agents. J Med Chem 2009; 52:5626-34. [PMID: 19708663 PMCID: PMC2778250 DOI: 10.1021/jm9006577] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
LcrF, a multiple adaptational response (MAR) transcription factor, regulates virulence in Yersinia pestis and Yersinia pseudotuberculosis. In a search for small molecule inhibitors of LcrF, an acrylic amide series of N-hydroxybenzimidazoles was synthesized and the SAR (structure-activity relationship) was examined. Selected test compounds demonstrated inhibitory activity in a primary cell-free LcrF-DNA binding assay as well as in a secondary whole cell assay (type III secretion system dependent Y. pseudotuberculosis cytotoxicity assay). The inhibitors exhibited no measurable antibacterial activity in vitro, confirming that they do not target bacterial growth. These results demonstrate that N-hydroxybenzimidazole inhibitors, exemplified by 14, 22, and 36, are effective antivirulence agents and have the potential to prevent infections caused by Yersinia spp.
Collapse
Affiliation(s)
- Oak K Kim
- Paratek Pharmaceuticals, Inc., 75 Kneeland Street, Boston, Massachusetts 02111, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Sun J. Pathogenic Bacterial Proteins and their Anti-Inflammatory Effects in the Eukaryotic Host. Antiinflamm Antiallergy Agents Med Chem 2009; 8:214-227. [PMID: 20090866 DOI: 10.2174/187152309789151986] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacteria use multiple strategies to bypass the inflammatory responses in order to survive in the host cells. In this review, we discuss the mechanism of the bacerial proteins in inhibiting inflammation. We highlight the anti-inflammatory roles of the type three secretion proteins including Salmonella AvrA, Enteropathogenic Escherichia coli Cif, and Yersinia YopJ, Staphylococcus aureus extracellular adherence protein, and Chlamydia proteins. We also discuss the research progress on the structures of these anti-inflammatory bacterial proteins. The current therapeutic methods for diseases, such as inflammatory bowel diseases, sclerosis, lack influence on the course of chronic inflammation and infection. Therefore, based on the molecular mechanism of the anti-inflammatory bacterial proteins and their 3-Dimension structure, we can design new peptides or non-peptidic molecules that serve as anti-inflammatory drugs without the possible side effect of promoting bacterial infection.
Collapse
Affiliation(s)
- Jun Sun
- Department of Medicine, Gastroenterology & Hepatology Division and Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Ave., Rochester, New York 14642, USA
| |
Collapse
|
68
|
Ni Y, Chen R. Extracellular recombinant protein production from Escherichia coli. Biotechnol Lett 2009; 31:1661-70. [PMID: 19597765 DOI: 10.1007/s10529-009-0077-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 06/09/2009] [Accepted: 06/11/2009] [Indexed: 01/17/2023]
Abstract
Escherichia coli is the most commonly used host for recombinant protein production and metabolic engineering. Extracellular production of enzymes and proteins is advantageous as it could greatly reduce the complexity of a bioprocess and improve product quality. Extracellular production of proteins is necessary for metabolic engineering applications in which substrates are polymers such as lignocelluloses or xenobiotics since adequate uptake of these substrates is often an issue. The dogma that E. coli secretes no protein has been challenged by the recognition of both its natural ability to secrete protein in common laboratory strains and increased ability to secrete proteins in engineered cells. The very existence of this review dedicated to extracellular production is a testimony for outstanding achievements made collectively by the community in this regard. Four strategies have emerged to engineer E. coli cells to secrete recombinant proteins. In some cases, impressive secretion levels, several grams per liter, were reached. This secretion level is on par with other eukaryotic expression systems. Amid the optimism, it is important to recognize that significant challenges remain, especially when considering the success cannot be predicted a priori and involves much trials and errors. This review provides an overview of recent developments in engineering E. coli for extracellular production of recombinant proteins and an analysis of pros and cons of each strategy.
Collapse
Affiliation(s)
- Ye Ni
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China
| | | |
Collapse
|
69
|
Yersinia pestis endowed with increased cytotoxicity is avirulent in a bubonic plague model and induces rapid protection against pneumonic plague. PLoS One 2009; 4:e5938. [PMID: 19529770 PMCID: PMC2691952 DOI: 10.1371/journal.pone.0005938] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 05/15/2009] [Indexed: 12/20/2022] Open
Abstract
An important virulence strategy evolved by bacterial pathogens to overcome host defenses is the modulation of host cell death. Previous observations have indicated that Yersinia pestis, the causative agent of plague disease, exhibits restricted capacity to induce cell death in macrophages due to ineffective translocation of the type III secretion effector YopJ, as opposed to the readily translocated YopP, the YopJ homologue of the enteropathogen Yersinia enterocolitica Oratio8. This led us to suggest that reduced cytotoxic potency may allow pathogen propagation within a shielded niche, leading to increased virulence. To test the relationship between cytotoxic potential and virulence, we replaced Y. pestis YopJ with YopP. The YopP-expressing Y. pestis strain exhibited high cytotoxic activity against macrophages in vitro. Following subcutaneous infection, this strain had reduced ability to colonize internal organs, was unable to induce septicemia and exhibited at least a 10(7)-fold reduction in virulence. Yet, upon intravenous or intranasal infection, it was still as virulent as the wild-type strain. The subcutaneous administration of the cytotoxic Y. pestis strain appears to activate a rapid and potent systemic, CTL-independent, immunoprotective response, allowing the organism to overcome simultaneous coinfection with 10,000 LD(50) of virulent Y. pestis. Moreover, three days after subcutaneous administration of this strain, animals were also protected against septicemic or primary pneumonic plague. Our findings indicate that an inverse relationship exists between the cytotoxic potential of Y. pestis and its virulence following subcutaneous infection. This appears to be associated with the ability of the engineered cytotoxic Y. pestis strain to induce very rapid, effective and long-lasting protection against bubonic and pneumonic plague. These observations have novel implications for the development of vaccines/therapies against Y. pestis and shed new light on the virulence strategies of Y. pestis in nature.
Collapse
|
70
|
Autoproteolysis of YscU of Yersinia pseudotuberculosis is important for regulation of expression and secretion of Yop proteins. J Bacteriol 2009; 191:4259-67. [PMID: 19395493 DOI: 10.1128/jb.01730-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
YscU of Yersinia can be autoproteolysed to generate a 10-kDa C-terminal polypeptide designated YscU(CC). Autoproteolysis occurs at the conserved N downward arrowPTH motif of YscU. The specific in-cis-generated point mutants N263A and P264A were found to be defective in proteolysis. Both mutants expressed and secreted Yop proteins (Yops) in calcium-containing medium (+Ca(2+) conditions) and calcium-depleted medium (-Ca(2+) conditions). The level of Yop and LcrV secretion by the N263A mutant was about 20% that of the wild-type strain, but there was no significant difference in the ratio of the different secreted Yops, including LcrV. The N263A mutant secreted LcrQ regardless of the calcium concentration in the medium, corroborating the observation that Yops were expressed and secreted in Ca(2+)-containing medium by the mutant. YscF, the type III secretion system (T3SS) needle protein, was secreted at elevated levels by the mutant compared to the wild type when bacteria were grown under +Ca(2+) conditions. YscF secretion was induced in the mutant, as well as in the wild type, when the bacteria were incubated under -Ca(2+) conditions, although the mutant secreted smaller amounts of YscF. The N263A mutant was cytotoxic for HeLa cells, demonstrating that the T3SS-mediated delivery of effectors was functional. We suggest that YscU blocks Yop release and that autoproteolysis is required to relieve this block.
Collapse
|
71
|
Zhou X, Konkel ME, Call DR. Type III secretion system 1 of Vibrio parahaemolyticus induces oncosis in both epithelial and monocytic cell lines. MICROBIOLOGY-SGM 2009; 155:837-851. [PMID: 19246755 DOI: 10.1099/mic.0.024919-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Vibrio parahaemolyticus type III secretion system 1 (T3SS1) induces cytotoxicity in mammalian epithelial cells. We characterized the cell death phenotype in both epithelial (HeLa) and monocytic (U937) cell lines following infection with V. parahaemolyticus. Using a combination of the wild-type strain and gene knockouts, we confirmed that V. parahaemolyticus strain NY-4 was able to induce cell death in both cell lines via a T3SS1-dependent mechanism. Bacterial contact, but not internalization, was required for T3SS1-induced cytotoxicity. The mechanism of cell death involves formation of a pore structure on the surface of infected HeLa and U937 cells, as demonstrated by cellular swelling, uptake of cell membrane-impermeable dye and protection of cytotoxicity by osmoprotectant (PEG3350). Western blot analysis showed that poly ADP ribose polymerase (PARP) was not cleaved and remained in its full-length active form. This result was evident for seven different V. parahaemolyticus strains. V. parahaemolyticus-induced cytotoxicity was not inhibited by addition of the pan-caspase inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK) or the caspase-1 inhibitor N-acetyl-tyrosyl-valyl-alanyl-aspartyl-aldehyde (Ac-YVAD-CHO); thus, caspases were not involved in T3SS1-induced cytotoxicity. DNA fragmentation was not evident following infection and autophagic vacuoles were not observed after monodansylcadaverine staining. We conclude that T3SS1 of V. parahaemolyticus strain NY-4 induces a host cell death primarily via oncosis rather than apoptosis, pyroptosis or autophagy.
Collapse
Affiliation(s)
- Xiaohui Zhou
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Michael E Konkel
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Douglas R Call
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| |
Collapse
|
72
|
Arnold R, Brandmaier S, Kleine F, Tischler P, Heinz E, Behrens S, Niinikoski A, Mewes HW, Horn M, Rattei T. Sequence-based prediction of type III secreted proteins. PLoS Pathog 2009; 5:e1000376. [PMID: 19390696 PMCID: PMC2669295 DOI: 10.1371/journal.ppat.1000376] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 03/11/2009] [Indexed: 12/30/2022] Open
Abstract
The type III secretion system (TTSS) is a key mechanism for host cell interaction used by a variety of bacterial pathogens and symbionts of plants and animals including humans. The TTSS represents a molecular syringe with which the bacteria deliver effector proteins directly into the host cell cytosol. Despite the importance of the TTSS for bacterial pathogenesis, recognition and targeting of type III secreted proteins has up until now been poorly understood. Several hypotheses are discussed, including an mRNA-based signal, a chaperon-mediated process, or an N-terminal signal peptide. In this study, we systematically analyzed the amino acid composition and secondary structure of N-termini of 100 experimentally verified effector proteins. Based on this, we developed a machine-learning approach for the prediction of TTSS effector proteins, taking into account N-terminal sequence features such as frequencies of amino acids, short peptides, or residues with certain physico-chemical properties. The resulting computational model revealed a strong type III secretion signal in the N-terminus that can be used to detect effectors with sensitivity of approximately 71% and selectivity of approximately 85%. This signal seems to be taxonomically universal and conserved among animal pathogens and plant symbionts, since we could successfully detect effector proteins if the respective group was excluded from training. The application of our prediction approach to 739 complete bacterial and archaeal genome sequences resulted in the identification of between 0% and 12% putative TTSS effector proteins. Comparison of effector proteins with orthologs that are not secreted by the TTSS showed no clear pattern of signal acquisition by fusion, suggesting convergent evolutionary processes shaping the type III secretion signal. The newly developed program EffectiveT3 (http://www.chlamydiaedb.org) is the first universal in silico prediction program for the identification of novel TTSS effectors. Our findings will facilitate further studies on and improve our understanding of type III secretion and its role in pathogen-host interactions.
Collapse
Affiliation(s)
- Roland Arnold
- Technische Universität München, Department of Genome Oriented Bioinformatics, Wissenschaftszentrum Weihenstephan, Freising, Germany
| | - Stefan Brandmaier
- Technische Universität München, Department of Genome Oriented Bioinformatics, Wissenschaftszentrum Weihenstephan, Freising, Germany
| | - Frederick Kleine
- Technische Universität München, Department of Genome Oriented Bioinformatics, Wissenschaftszentrum Weihenstephan, Freising, Germany
| | - Patrick Tischler
- Technische Universität München, Department of Genome Oriented Bioinformatics, Wissenschaftszentrum Weihenstephan, Freising, Germany
| | - Eva Heinz
- Institute for Bioinformatics and Systems Biology (MIPS), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Sebastian Behrens
- Technische Universität München, Department of Genome Oriented Bioinformatics, Wissenschaftszentrum Weihenstephan, Freising, Germany
| | - Antti Niinikoski
- Technische Universität München, Department of Genome Oriented Bioinformatics, Wissenschaftszentrum Weihenstephan, Freising, Germany
| | - Hans-Werner Mewes
- Institute for Bioinformatics and Systems Biology (MIPS), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Matthias Horn
- University of Vienna, Department of Microbial Ecology, Vienna, Austria
| | - Thomas Rattei
- Technische Universität München, Department of Genome Oriented Bioinformatics, Wissenschaftszentrum Weihenstephan, Freising, Germany
| |
Collapse
|
73
|
Kvitko BH, Park DH, Velásquez AC, Wei CF, Russell AB, Martin GB, Schneider DJ, Collmer A. Deletions in the repertoire of Pseudomonas syringae pv. tomato DC3000 type III secretion effector genes reveal functional overlap among effectors. PLoS Pathog 2009; 5:e1000388. [PMID: 19381254 PMCID: PMC2663052 DOI: 10.1371/journal.ppat.1000388] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 03/19/2009] [Indexed: 12/23/2022] Open
Abstract
The gamma-proteobacterial plant pathogen Pseudomonas syringae pv. tomato DC3000 uses the type III secretion system to inject ca. 28 Avr/Hop effector proteins into plants, which enables the bacterium to grow from low inoculum levels to produce bacterial speck symptoms in tomato, Arabidopsis thaliana, and (when lacking hopQ1-1) Nicotiana benthamiana. The effectors are collectively essential but individually dispensable for the ability of the bacteria to defeat defenses, grow, and produce symptoms in plants. Eighteen of the effector genes are clustered in six genomic islands/islets. Combinatorial deletions involving these clusters and two of the remaining effector genes revealed a redundancy-based structure in the effector repertoire, such that some deletions diminished growth in N. benthamiana only in combination with other deletions. Much of the ability of DC3000 to grow in N. benthamiana was found to be due to five effectors in two redundant-effector groups (REGs), which appear to separately target two high-level processes in plant defense: perception of external pathogen signals (AvrPto and AvrPtoB) and deployment of antimicrobial factors (AvrE, HopM1, HopR1). Further support for the membership of HopR1 in the same REG as AvrE was gained through bioinformatic analysis, revealing the existence of an AvrE/DspA/E/HopR effector superfamily, which has representatives in virtually all groups of proteobacterial plant pathogens that deploy type III effectors.
Collapse
Affiliation(s)
- Brian H. Kvitko
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Duck Hwan Park
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - André C. Velásquez
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - Chia-Fong Wei
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Alistair B. Russell
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Gregory B. Martin
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - David J. Schneider
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- United States Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
| | - Alan Collmer
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
74
|
Tseng TT, Tyler BM, Setubal JC. Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol 2009; 9 Suppl 1:S2. [PMID: 19278550 PMCID: PMC2654662 DOI: 10.1186/1471-2180-9-s1-s2] [Citation(s) in RCA: 277] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Protein secretion plays a central role in modulating the interactions of bacteria with their environments. This is particularly the case when symbiotic bacteria (whether pathogenic, commensal or mutualistic) are interacting with larger host organisms. In the case of Gram-negative bacteria, secretion requires translocation across the outer as well as the inner membrane, and a diversity of molecular machines have been elaborated for this purpose. A number of secreted proteins are destined to enter the host cell (effectors and toxins), and thus several secretion systems include apparatus to translocate proteins across the plasma membrane of the host also. The Plant-Associated Microbe Gene Ontology (PAMGO) Consortium has been developing standardized terms for describing biological processes and cellular components that play important roles in the interactions of microbes with plant and animal hosts, including the processes of bacterial secretion. Here we survey bacterial secretion systems known to modulate interactions with host organisms and describe Gene Ontology terms useful for describing the components and functions of these systems, and for capturing the similarities among the diverse systems.
Collapse
Affiliation(s)
- Tsai-Tien Tseng
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | | | | |
Collapse
|
75
|
Persson OP, Pinhassi J, Riemann L, Marklund BI, Rhen M, Normark S, González JM, Hagström A. High abundance of virulence gene homologues in marine bacteria. Environ Microbiol 2009; 11:1348-57. [PMID: 19207573 PMCID: PMC2702493 DOI: 10.1111/j.1462-2920.2008.01861.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Marine bacteria can cause harm to single-celled and multicellular eukaryotes. However, relatively little is known about the underlying genetic basis for marine bacterial interactions with higher organisms. We examined whole-genome sequences from a large number of marine bacteria for the prevalence of homologues to virulence genes and pathogenicity islands known from bacteria that are pathogenic to terrestrial animals and plants. As many as 60 out of 119 genomes of marine bacteria, with no known association to infectious disease, harboured genes of virulence-associated types III, IV, V and VI protein secretion systems. Type III secretion was relatively uncommon, while type IV was widespread among alphaproteobacteria (particularly among roseobacters) and type VI was primarily found among gammaproteobacteria. Other examples included homologues of the Yersinia murine toxin and a phage-related ‘antifeeding’ island. Analysis of the Global Ocean Sampling metagenomic data indicated that virulence genes were present in up to 8% of the planktonic bacteria, with highest values in productive waters. From a marine ecology perspective, expression of these widely distributed genes would indicate that some bacteria infect or even consume live cells, that is, generate a previously unrecognized flow of organic matter and nutrients directly from eukaryotes to bacteria.
Collapse
Affiliation(s)
- Olof P Persson
- Marine Microbiology, Department of Natural Sciences, University of Kalmar, Kalmar, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Wiesand U, Sorg I, Amstutz M, Wagner S, van den Heuvel J, Lührs T, Cornelis GR, Heinz DW. Structure of the Type III Secretion Recognition Protein YscU from Yersinia enterocolitica. J Mol Biol 2009; 385:854-66. [DOI: 10.1016/j.jmb.2008.10.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 10/06/2008] [Accepted: 10/08/2008] [Indexed: 12/30/2022]
|
77
|
The plant phenolic compound p-coumaric acid represses gene expression in the Dickeya dadantii type III secretion system. Appl Environ Microbiol 2008; 75:1223-8. [PMID: 19114532 DOI: 10.1128/aem.02015-08] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The type III secretion system (T3SS) is a major virulence factor in many gram-negative bacterial pathogens. This secretion system translocates effectors directly into the cytosol of eukaryotic host cells, where the effector proteins facilitate bacterial pathogenesis by interfering with host cell signal transduction and other cellular processes. Plants defend themselves against bacterial pathogens by recognizing either the type 3 effectors or their actions and initiating a cascade of defense responses that often results in programmed cell death of the plant cell being attacked. Here we show that a plant phenolic compound, p-coumaric acid (PCA), represses the expression of T3SS genes of the plant pathogen Dickeya dadantii, suggesting that plants can also defend against bacterial pathogens by manipulating the expression of the T3SS. PCA repressed the expression of T3SS regulatory genes through the HrpX/Y two-component system, a core regulator of the T3SS, rather than through the global regulator GacS/A, which indirectly regulates the T3SS. A further analysis of several PCA analogs suggests that the para positioning of the hydroxyl group in the phenyl ring and the double bond of PCA may be important for its biological activity.
Collapse
|
78
|
Jamison WP, Hackstadt T. Induction of type III secretion by cell-free Chlamydia trachomatis elementary bodies. Microb Pathog 2008; 45:435-40. [PMID: 18984037 PMCID: PMC2592499 DOI: 10.1016/j.micpath.2008.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 09/30/2008] [Accepted: 10/02/2008] [Indexed: 11/27/2022]
Abstract
Chlamydiae secrete type III effector proteins at two distinct stages of their developmental cycle. Elementary bodies (EBs) secrete at least one pre-formed effector protein, Tarp, across the host plasma membrane from an extracellular location. Once internalized, a set of newly transcribed proteins are secreted to modify the inclusion membrane. In an effort to better understand the triggers for chlamydial type III secretion and develop means to identify new effectors, we investigated various inducers of T3SS in other Gram-negative bacterial systems to determine if they were able to activate chlamydial type III secretion from EBs using Tarp secretion as an indicator of activation. Chlamydial EBs are induced to secrete Tarp by exposure to FBS, BSA, or sphingolipid and cholesterol-rich liposomes (SCRLs). The induction by FBS and BSA, but not SCRL, is enhanced in the presence of the calcium-chelator, EGTA. This secretion was temperature dependent and inhibited by paraformaldehyde fixation of the EBs.
Collapse
Affiliation(s)
- Wendy P. Jamison
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840
| | - Ted Hackstadt
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840
| |
Collapse
|
79
|
Burkholderia thailandensis as a model system for the study of the virulence-associated type III secretion system of Burkholderia pseudomallei. Infect Immun 2008; 76:5402-11. [PMID: 18779342 DOI: 10.1128/iai.00626-08] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei is a bacterial pathogen that causes a broad spectrum of clinical symptoms collectively known as melioidosis. Since it can be acquired by inhalation and is difficult to eradicate due to its resistance to a wide group of antibiotics and capacity for latency, work with B. pseudomallei requires a biosafety level 3 (BSL-3) containment facility. The bsa (Burkholderia secretion apparatus)-encoded type III secretion system (TTSS) has been shown to be required for its full virulence in a number of animal models. TTSSs are export devices found in a variety of gram-negative bacteria that translocate bacterial effector proteins across host cell membranes into the cytoplasm of host cells. Although the Bsa TTSS has been shown to play an important role in the ability of B. pseudomallei to survive and replicate in mammalian cells, escape from the endocytic vacuole, and spread from cell to cell, little is known about its effectors mediating these functions. Using bioinformatics, we identified homologs of several known TTSS effectors from other bacteria in the B. pseudomallei genome. In addition, we show that orthologs of these putative effectors exist in the genome of B. thailandensis, a closely related bacterium that is rarely pathogenic to humans. By generating a Bsa TTSS mutant B. thailandensis strain, we also demonstrated that the Bsa TTSS has similar functions in the two species. Therefore, we propose B. thailandensis as a useful BSL-1 model system to study the role of the Bsa TTSS during Burkholderia infection of mammalian cells and animals.
Collapse
|
80
|
Navarro L, Jay F, Nomura K, He SY, Voinnet O. Suppression of the microRNA pathway by bacterial effector proteins. Science 2008; 321:964-7. [PMID: 18703740 DOI: 10.1126/science.1159505] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Plants and animals sense pathogen-associated molecular patterns (PAMPs) and in turn differentially regulate a subset of microRNAs (miRNAs). However, the extent to which the miRNA pathway contributes to innate immunity remains unknown. Here, we show that miRNA-deficient mutants of Arabidopsis partly restore growth of a type III secretion-defective mutant of Pseudomonas syringae. These mutants also sustained growth of nonpathogenic Pseudomonas fluorescens and Escherichia coli strains, implicating miRNAs as key components of plant basal defense. Accordingly, we have identified P. syringae effectors that suppress transcriptional activation of some PAMP-responsive miRNAs or miRNA biogenesis, stability, or activity. These results provide evidence that, like viruses, bacteria have evolved to suppress RNA silencing to cause disease.
Collapse
Affiliation(s)
- Lionel Navarro
- Institut de Biologie Moléculaire des Plantes, CNRS UPR 2353-Université Louis Pasteur, 12 Rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|
81
|
BOCSANCZY ANAM, NISSINEN RIITTAM, OH CHANG, BEER STEVENV. HrpN of Erwinia amylovora functions in the translocation of DspA/E into plant cells. MOLECULAR PLANT PATHOLOGY 2008; 9:425-34. [PMID: 18705858 PMCID: PMC6640523 DOI: 10.1111/j.1364-3703.2008.00471.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The type III secretion system (T3SS) is required by plant pathogenic bacteria for the translocation of certain bacterial proteins to the cytoplasm of plant cells or secretion of some proteins to the apoplast. The T3SS of Erwinia amylovora, which causes fire blight of pear, apple and other rosaceous plants, secretes DspA/E, which is an indispensable pathogenicity factor. Several other proteins, including HrpN, a critical virulence factor, are also secreted by the T3SS. Using a CyaA reporter system, we demonstrated that DspA/E is translocated into the cells of Nicotiana tabacum'Xanthi'. To determine if other T3-secreted proteins are needed for translocation of DspA/E, we examined its translocation in several mutants of E. amylovora strain Ea321. DspA/E was translocated by both hrpW and hrpK mutants, although with some delay, indicating that these two proteins are dispensable in the translocation of DspA/E. Remarkably, translocation of DspA/E was essentially abolished in both hrpN and hrpJ mutants; however, secretion of DspA/E into medium was not affected in any of the mentioned mutants. In contrast to the more virulent strain Ea273, secretion of HrpN was abolished in a hrpJ mutant of strain Ea321. In addition, HrpN was weakly translocated into plant cytoplasm. These results suggest that HrpN plays a significant role in the translocation of DspA/E, and HrpJ affects the translocation of DspA/E by affecting secretion or stability of HrpN. Taken together, these results explain the critical importance of HrpN and HrpJ to the development of fire blight.
Collapse
|
82
|
Lorenz C, Schulz S, Wolsch T, Rossier O, Bonas U, Büttner D. HpaC controls substrate specificity of the Xanthomonas type III secretion system. PLoS Pathog 2008; 4:e1000094. [PMID: 18584024 PMCID: PMC2427183 DOI: 10.1371/journal.ppat.1000094] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 05/28/2008] [Indexed: 12/04/2022] Open
Abstract
The Gram-negative bacterial plant pathogen Xanthomonas campestris pv. vesicatoria employs a type III secretion (T3S) system to inject bacterial effector proteins into the host cell cytoplasm. One essential pathogenicity factor is HrpB2, which is secreted by the T3S system. We show that secretion of HrpB2 is suppressed by HpaC, which was previously identified as a T3S control protein. Since HpaC promotes secretion of translocon and effector proteins but inhibits secretion of HrpB2, HpaC presumably acts as a T3S substrate specificity switch protein. Protein–protein interaction studies revealed that HpaC interacts with HrpB2 and the C-terminal domain of HrcU, a conserved inner membrane component of the T3S system. However, no interaction was observed between HpaC and the full-length HrcU protein. Analysis of HpaC deletion derivatives revealed that the binding site for the C-terminal domain of HrcU is essential for HpaC function. This suggests that HpaC binding to the HrcU C terminus is key for the control of T3S. The C terminus of HrcU also provides a binding site for HrpB2; however, no interaction was observed with other T3S substrates including pilus, translocon and effector proteins. This is in contrast to HrcU homologs from animal pathogenic bacteria suggesting evolution of distinct mechanisms in plant and animal pathogenic bacteria for T3S substrate recognition. The Gram-negative plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria is the causal agent of bacterial spot disease in pepper and tomato. Pathogenicity of X. campestris pv. vesicatoria depends on a type III protein secretion (T3S) system that injects bacterial effector proteins directly into the host cell cytosol. The T3S system is a highly complex nanomachine that spans both bacterial membranes and is associated with an extracellular pilus and a translocon that inserts into the host cell membrane. Given the architecture of the secretion apparatus, it is conceivable that pilus formation precedes effector protein secretion. The pilus presumably consists of two components, i.e., the major pilus subunit HrpE and HrpB2, which is required for pilus assembly. Secretion of HrpB2 is suppressed by HpaC that switches substrate specificity of the T3S system from secretion of HrpB2 to secretion of translocon and effector proteins. The substrate specificity switch depends on the cytoplasmic domain of HrcU, which is a conserved inner membrane protein of the T3S apparatus that interacts with HrpB2 and HpaC.
Collapse
Affiliation(s)
- Christian Lorenz
- Institut für Biologie, Bereich Genetik, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Steve Schulz
- Institut für Biologie, Bereich Genetik, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Thomas Wolsch
- Institut für Biologie, Bereich Genetik, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Ombeline Rossier
- Institut für Biologie, Bereich Genetik, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Ulla Bonas
- Institut für Biologie, Bereich Genetik, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Daniela Büttner
- Institut für Biologie, Bereich Genetik, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
- * E-mail:
| |
Collapse
|
83
|
A second pilus type in Streptococcus pneumoniae is prevalent in emerging serotypes and mediates adhesion to host cells. J Bacteriol 2008; 190:5480-92. [PMID: 18515415 DOI: 10.1128/jb.00384-08] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of publicly available genomes of Streptococcus pneumoniae has led to the identification of a new genomic element containing genes typical of gram-positive pilus islets (PIs). Here, we demonstrate that this genomic region, herein referred to as PI-2 (consisting of pitA, sipA, pitB, srtG1, and srtG2) codes for a second functional pilus in pneumococcus. Polymerization of the PI-2 pilus requires the backbone protein PitB as well as the sortase SrtG1 and the signal peptidase-like protein SipA. Presence of PI-2 correlates with the genotype as defined by multilocus sequence typing and clonal complex (CC). The PI-2-positive CCs are associated with serotypes 1, 2, 7F, 19A, and 19F, considered to be emerging serotypes in both industrialized and developing countries. Interestingly, strains belonging to CC271 (where sequence type 271 is the predicted founder of the CC) contain both PI-1 and PI-2, as revealed by genome analyses. In these strains both pili are surface exposed and independently assembled. Furthermore, in vitro experiments provide evidence that the pilus encoded by PI-2 of S. pneumoniae is involved in adherence. Thus, pneumococci encode at least two types of pili that play a role in the initial host cell contact to the respiratory tract and are potential antigens for inclusion in a new generation of pneumococcal vaccines.
Collapse
|
84
|
Contribution of trimeric autotransporter C-terminal domains of oligomeric coiled-coil adhesin (Oca) family members YadA, UspA1, EibA, and Hia to translocation of the YadA passenger domain and virulence of Yersinia enterocolitica. J Bacteriol 2008; 190:5031-43. [PMID: 18487327 DOI: 10.1128/jb.00161-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Oca family is a novel class of autotransporter-adhesins with highest structural similarity in their C-terminal transmembrane region, which supposedly builds a beta-barrel pore in the outer membrane (OM). The prototype of the Oca family is YadA, an adhesin of Yersinia enterocolitica and Yersinia pseudotuberculosis. YadA forms a homotrimeric lollipop-like structure on the bacterial surface. The C-terminal regions of three YadA monomers form a barrel in the OM and translocate the trimeric N-terminal passenger domain, consisting of stalk, neck, and head region to the exterior. To elucidate the structural and functional role of the C-terminal translocator domain (TLD) and to assess its promiscuous capability with respect to transport of related passenger domains, we constructed chimeric YadA proteins, which consist of the N-terminal YadA passenger domain and C-terminal TLDs of Oca family members UspA1 (Moraxella catarrhalis), EibA (Escherichia coli), and Hia (Haemophilus influenzae). These constructs were expressed in Y. enterocolitica and compared for OM localization, surface exposure, oligomerization, adhesion properties, serum resistance, and mouse virulence. We demonstrate that all chimeric YadA proteins translocated the YadA passenger domain across the OM. Y. enterocolitica strains producing YadA chimeras or wild-type YadA showed comparable binding to collagen and epithelial cells. However, strains producing YadA chimeras were attenuated in serum resistance and mouse virulence. These results demonstrate for the first time that TLDs of Oca proteins of different origin are efficient translocators of the YadA passenger domain and that the cognate TLD of YadA is essential for bacterial survival in human serum and mouse virulence.
Collapse
|
85
|
Alamuri P, Mobley HLT. A novel autotransporter of uropathogenic Proteus mirabilis is both a cytotoxin and an agglutinin. Mol Microbiol 2008; 68:997-1017. [PMID: 18430084 DOI: 10.1111/j.1365-2958.2008.06199.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
One of the six predicted Proteus mirabilis autotransporters (ATs), ORF c2341, is predicted to contain a serine protease motif and was earlier identified as an immunogenic outer membrane protein in P. mirabilis. The 3.2 kb gene encodes a 117 kDa protein with a 58-amino-acid-long signal peptide, a 75-kDa-long N-terminal passenger domain and a 30-kDa-long C-terminal translocator. Affinity-purified 110 kDa AT exhibited chymotrypsin-like activity and hydrolysed N-Suc-Ala-Ala-Pro-Phe-pNa and N-Suc-Ala-Ala-Pro-Leu-pNa with a K(M) of 22 muM and 31 muM, respectively, under optimal pH of 8.5-9.0 in a Ca(2+)-dependent manner. Activity was inhibited by subtilase-specific inhibitors leupeptin and chymostatin. Both the cell-associated and purified form elicited cytopathic effects on cultured kidney and bladder epithelial cells. Substrate hydrolysis as well as cytotoxicity was associated with the passenger domain and was compromised upon mutation of any of the catalytic residues (Ser366, His147 and Asp533). At alkaline pH and optimal cell density, the AT also promoted autoaggregation of P. mirabilis and this function was independent of its protease activity. Cytotoxicity, autoaggregation and virulence were significantly reduced in an isogenic pta mutant of P. mirabilis. Proteus toxic agglutinin (Pta) represents a novel autotransported cytotoxin with no bacterial homologues that works optimally in the alkalinized urinary tract, a characteristic of urease-mediated urea hydrolysis during P. mirabilis infection.
Collapse
Affiliation(s)
- Praveen Alamuri
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA
| | | |
Collapse
|
86
|
Lanoix J, Paramithiotis E. Secretory vesicle analysis for discovery of low abundance plasma biomarkers. ACTA ACUST UNITED AC 2008; 2:475-85. [DOI: 10.1517/17530059.2.5.475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
87
|
Sriramulu DD. Adaptive expression of foreign genes in the clonal variants of bacteria: from proteomics to clinical application. Proteomics 2008; 8:882-92. [PMID: 18297656 DOI: 10.1002/pmic.200700811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Clonal variants of bacteria are able to colonize environmental niches and patients. The factors, that determine the interplay between the colonization of diverse habitats and adaptation, are acquired through horizontal gene transfer. Elucidation of mechanisms, which lead to the prevalence of dominant bacterial clones in patients and the environment, requires the knowledge of complex phenotypes. It was found in the genomes of most bacteria, that upon a conserved chromosomal backbone there were regions of plasticity achieved by insertions, deletions and rearrangements of genomic islands and islets as well as large chromosomal inversions. However, it had been shown that environmental and clinical isolates are indistinguishable in certain pathogenic and biodegradative properties. For example, clonal variants of Pseudomonas aeruginosa exhibit convergent phenotypes despite the presence of numerous DNA insertions in the genome. Apart from this feature, expression of a few genes from the acquired genetic material is important for niche-based adaptation of this organism. Protein expression patterns at the cellular and sub-cellular levels showed common virulence factors and novel drug targets among clonal variants of bacteria. This review will give a short overview on proteomics of different clonal variants of bacteria with respect to clinical applications.
Collapse
Affiliation(s)
- Dinesh D Sriramulu
- Division of Cell and Immune Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| |
Collapse
|
88
|
Dou D, Kale SD, Wang X, Chen Y, Wang Q, Wang X, Jiang RHY, Arredondo FD, Anderson RG, Thakur PB, McDowell JM, Wang Y, Tyler BM. Conserved C-terminal motifs required for avirulence and suppression of cell death by Phytophthora sojae effector Avr1b. THE PLANT CELL 2008; 20:1118-33. [PMID: 18390593 PMCID: PMC2390733 DOI: 10.1105/tpc.107.057067] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 02/26/2008] [Accepted: 03/17/2008] [Indexed: 05/17/2023]
Abstract
The sequenced genomes of oomycete plant pathogens contain large superfamilies of effector proteins containing the protein translocation motif RXLR-dEER. However, the contributions of these effectors to pathogenicity remain poorly understood. Here, we show that the Phytophthora sojae effector protein Avr1b can contribute positively to virulence and can suppress programmed cell death (PCD) triggered by the mouse BAX protein in yeast, soybean (Glycine max), and Nicotiana benthamiana cells. We identify three conserved motifs (K, W, and Y) in the C terminus of the Avr1b protein and show that mutations in the conserved residues of the W and Y motifs reduce or abolish the ability of Avr1b to suppress PCD and also abolish the avirulence interaction of Avr1b with the Rps1b resistance gene in soybean. W and Y motifs are present in at least half of the identified oomycete RXLR-dEER effector candidates, and we show that three of these candidates also suppress PCD in soybean. Together, these results indicate that the W and Y motifs are critical for the interaction of Avr1b with host plant target proteins and support the hypothesis that these motifs are critical for the functions of the very large number of predicted oomycete effectors that contain them.
Collapse
Affiliation(s)
- Daolong Dou
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Hughes DT, Sperandio V. Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol 2008; 6:111-20. [PMID: 18197168 PMCID: PMC2667375 DOI: 10.1038/nrmicro1836] [Citation(s) in RCA: 493] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Microorganisms and their hosts communicate with each other through an array of hormonal signals. This cross-kingdom cell-to-cell signalling involves small molecules, such as hormones that are produced by eukaryotes and hormone-like chemicals that are produced by bacteria. Cell-to-cell signalling between bacteria, usually referred to as quorum sensing, was initially described as a means by which bacteria achieve signalling in microbial communities to coordinate gene expression within a population. Recent evidence shows, however, that quorum-sensing signalling is not restricted to bacterial cell-to-cell communication, but also allows communication between microorganisms and their hosts.
Collapse
Affiliation(s)
- David T Hughes
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | |
Collapse
|
90
|
Sun P, Tropea JE, Austin BP, Cherry S, Waugh DS. Structural characterization of the Yersinia pestis type III secretion system needle protein YscF in complex with its heterodimeric chaperone YscE/YscG. J Mol Biol 2008; 377:819-30. [PMID: 18281060 DOI: 10.1016/j.jmb.2007.12.067] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 12/11/2007] [Accepted: 12/21/2007] [Indexed: 01/07/2023]
Abstract
The plague-causing bacterium Yersinia pestis utilizes a type III secretion system to deliver effector proteins into mammalian cells where they interfere with signal transduction pathways that mediate phagocytosis and the inflammatory response. Effector proteins are injected through a hollow needle structure composed of the protein YscF. YscG and YscE act as "chaperones" to prevent premature polymerization of YscF in the cytosol of the bacterium prior to assembly of the needle. Here, we report the crystal structure of the YscEFG protein complex at 1.8 A resolution. Overall, the structure is similar to that of the analogous PscEFG complex from the Pseudomonas aeruginosa type III secretion system, but there are noteworthy differences. The structure confirms that, like PscG, YscG is a member of the tetratricopeptide repeat family of proteins. YscG binds tightly to the C-terminal half of YscF, implying that it is this region of YscF that controls its polymerization into the needle structure. YscE interacts with the N-terminal tetratricopeptide repeat motif of YscG but makes very little direct contact with YscF. Its function may be to stabilize the structure of YscG and/or to participate in recruiting the complex to the secretion apparatus. No electron density could be observed for the 49 N-terminal residues of YscF. This and additional evidence suggest that the N-terminus of YscF is disordered in the complex with YscE and YscG. As expected, conserved residues in the C-terminal half of YscF mediate important intra- and intermolecular interactions in the complex. Moreover, the phenotypes of some previously characterized mutations in the C-terminal half of YscF can be rationalized in terms of the structure of the heterotrimeric YscEFG complex.
Collapse
Affiliation(s)
- Ping Sun
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD, USA
| | | | | | | | | |
Collapse
|
91
|
Büttner CR, Sorg I, Cornelis GR, Heinz DW, Niemann HH. Structure of the Yersinia enterocolitica Type III Secretion Translocator Chaperone SycD. J Mol Biol 2008; 375:997-1012. [DOI: 10.1016/j.jmb.2007.11.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 11/05/2007] [Accepted: 11/06/2007] [Indexed: 01/04/2023]
|
92
|
Disparity between Yersinia pestis and Yersinia enterocolitica O:8 in YopJ/YopP-dependent functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007. [PMID: 17966427 DOI: 10.1007/978-0-387-72124-8_28] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
Abstract
YopP in Y. enterocolitica and YopJ in Y. pseudotuberculosis, have been shown to exert a variety of adverse effects on cell signaling leading to suppression of cytokine expression and induction of programmed cell death. A comparative in vitro study with Y. pestis and Y. enterocolitica O:8 virulent strains shows some critical disparity in YopJ/YopP-related effects on immune cells. Involvement of yopJ in virulence was evaluated in mouse model of bubonic plague.
Collapse
|
93
|
Pearson MM, Mobley HLT. The type III secretion system of Proteus mirabilis HI4320 does not contribute to virulence in the mouse model of ascending urinary tract infection. J Med Microbiol 2007; 56:1277-1283. [PMID: 17893161 DOI: 10.1099/jmm.0.47314-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Gram-negative enteric bacterium Proteus mirabilis is a frequent cause of urinary tract infections (UTIs) in individuals with long-term indwelling catheters or with complicated urinary tracts. The recent release of the P. mirabilis strain HI4320 genome sequence has facilitated identification of potential virulence factors in this organism. Genes appearing to encode a type III secretion system (TTSS) were found in a low GC-content pathogenicity island in the P. mirabilis chromosome. This island contains 24 intact genes that appear to encode all components necessary to assemble a TTSS needle complex, plus at least two putative secreted effector proteins and their chaperones. The genetic organization of the TTSS genes is very similar to that of the TTSS of Shigella flexneri. RT-PCR analysis indicated that these genes are expressed at low levels in vitro. However, insertional mutation of two putative TTSS genes, encoding the requisite ATPase and a possible negative regulator, resulted in no change in either the growth rate of the mutant or the secreted protein profile compared to wild-type. Furthermore, there was no difference in quantitative cultures of urine, bladder and kidney between the ATPase mutant and the wild-type strain in the mouse model of ascending UTI in either independent challenge or co-challenge experiments. The role of the P. mirabilis TTSS, if any, is yet to be determined.
Collapse
Affiliation(s)
- Melanie M Pearson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA
| | - Harry L T Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA
| |
Collapse
|
94
|
Shapiro JA. Bacteria are small but not stupid: cognition, natural genetic engineering and socio-bacteriology. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2007; 38:807-819. [PMID: 18053935 DOI: 10.1016/j.shpsc.2007.09.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Forty years' experience as a bacterial geneticist has taught me that bacteria possess many cognitive, computational and evolutionary capabilities unimaginable in the first six decades of the twentieth century. Analysis of cellular processes such as metabolism, regulation of protein synthesis, and DNA repair established that bacteria continually monitor their external and internal environments and compute functional outputs based on information provided by their sensory apparatus. Studies of genetic recombination, lysogeny, antibiotic resistance and my own work on transposable elements revealed multiple widespread bacterial systems for mobilizing and engineering DNA molecules. Examination of colony development and organization led me to appreciate how extensive multicellular collaboration is among the majority of bacterial species. Contemporary research in many laboratories on cell-cell signaling, symbiosis and pathogenesis show that bacteria utilise sophisticated mechanisms for intercellular communication and even have the ability to commandeer the basic cell biology of 'higher' plants and animals to meet their own needs. This remarkable series of observations requires us to revise basic ideas about biological information processing and recognise that even the smallest cells are sentient beings.
Collapse
Affiliation(s)
- J A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 E. 57th Street, Chicago IL 60637, USA.
| |
Collapse
|
95
|
Burr SE, Frey J. Analysis of type III effector genes in typical and atypical Aeromonas salmonicida. JOURNAL OF FISH DISEASES 2007; 30:711-714. [PMID: 17958615 DOI: 10.1111/j.1365-2761.2007.00859.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Affiliation(s)
- S E Burr
- Institute of Veterinary Bacteriology, Universität Bern, Bern, Switzerland
| | | |
Collapse
|
96
|
Allen LAH, McCaffrey RL. To activate or not to activate: distinct strategies used by Helicobacter pylori and Francisella tularensis to modulate the NADPH oxidase and survive in human neutrophils. Immunol Rev 2007; 219:103-17. [PMID: 17850485 DOI: 10.1111/j.1600-065x.2007.00544.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neutrophils accumulate rapidly at sites of infection, and the ability of these cells to phagocytose and kill microorganisms is an essential component of the innate immune response. Relatively few microbial pathogens are able to evade neutrophil killing. Herein, we describe the novel strategies used by Helicobacter pylori and Francisella tularensis to disrupt neutrophil function, with a focus on assembly and activation of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase.
Collapse
Affiliation(s)
- Lee-Ann H Allen
- Inflammation Program, Department of Internal Medicine, University of Iowa, VA Medical Center, Iowa City, IA 52241, USA.
| | | |
Collapse
|
97
|
Kingston R, Burke F, Robinson JH, Bedford PA, Jones SM, Knight SC, Williamson ED. The fraction 1 and V protein antigens of Yersinia pestis activate dendritic cells to induce primary T cell responses. Clin Exp Immunol 2007; 149:561-9. [PMID: 17645768 PMCID: PMC2219336 DOI: 10.1111/j.1365-2249.2007.03452.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2007] [Indexed: 12/18/2022] Open
Abstract
The F1 and V antigens of Yersinia pestis, despite acting as virulence factors secreted by the organism during infection, also combine to produce an effective recombinant vaccine against plague, currently in clinical trial. The protective mechanisms induced by rF1 + rV probably involve interactions with dendritic cells (DC) as antigen uptake, processing and presenting cells. To study such interactions, naive ex vivo DC from bone marrow, spleen and lymph node were cultured with rF1, rV or combined antigens and demonstrated to secrete interleukin (IL)-4 and IL-12 into the culture supernatant. Cytokine production in response to pulsing was dependent on the maturity of the bone marrow-derived DC culture, so that pulsed 8-day-old cultures had accumulated significantly more intracellular IL-4 and IL-12 than unpulsed cells. DC, pulsed with rF1 + rV for 2-24 h, were able to prime naive autologous lymph node T cells to proliferate in an antigen dose-dependent manner, with an order of potency of 3d bone marrow-derived DC (BMDC) > 7d BMDC > splenic DC. Significantly, cell-free supernatants from rF1 + rV-pulsed BMDC and splenic DC were also able to induce specific primary responses effectively in naive T cells, suggesting that these supernatants contained stimulatory factor(s). This study suggests an important role for DC, or factors secreted by them, in the induction of protective immunity to plague by the rF1 and rV antigens.
Collapse
Affiliation(s)
- R Kingston
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St Mark's Campus, Watford Road, Harrow, UK
| | | | | | | | | | | | | |
Collapse
|
98
|
Fehr D, Burr SE, Gibert M, d'Alayer J, Frey J, Popoff MR. Aeromonas Exoenzyme T of Aeromonas salmonicida Is a Bifunctional Protein That Targets the Host Cytoskeleton. J Biol Chem 2007; 282:28843-28852. [PMID: 17656370 DOI: 10.1074/jbc.m704797200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type III protein secretion has been shown recently to be important in the virulence of the fish pathogen Aeromonas salmonicida. The ADP-ribosylating toxin Aeromonas exoenzyme T (AexT) is one effector protein targeted for secretion via this system. In this study, we identified muscular and nonmuscular actin as substrates of the ADP-ribosylating activity of AexT. Furthermore, we show that AexT also functions as a GTPase-activating protein (GAP), displaying GAP activity against monomeric GTPases of the Rho family, specifically Rho, Rac, and Cdc42. Transfection of fish cells with wild type AexT resulted in depolymerization of the actin cytoskeleton and cell rounding. Point mutations within either the GAP or the ADP-ribosylating active sites of AexT (Arg-143 as well as Glu-398 and Glu-401, respectively) abolished enzymatic activity, yet did not prevent actin filament depolymerization. However, inactivation of the two catalytic sites simultaneously did. These results suggest that both the GAP and ADP-ribosylating domains of AexT contribute to its biological activity. This is the first bacterial virulence factor to be described that has a specific actin ADP-ribosylation activity and GAP activity toward Rho, Rac, and Cdc42, both enzymatic activities contributing to actin filament depolymerization.
Collapse
Affiliation(s)
- Désirée Fehr
- Institute of Veterinary Bacteriology, Universität Bern, Länggassstrasse 122, Postfach, CH-3001 Bern, Switzerland and
| | - Sarah E Burr
- Institute of Veterinary Bacteriology, Universität Bern, Länggassstrasse 122, Postfach, CH-3001 Bern, Switzerland and
| | - Maryse Gibert
- Unité des Bacteries Anaerobies et Toxines, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Jacques d'Alayer
- Plateforme d'Analyse et de Microsequençage des Protéines, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Joachim Frey
- Institute of Veterinary Bacteriology, Universität Bern, Länggassstrasse 122, Postfach, CH-3001 Bern, Switzerland and.
| | - Michel R Popoff
- Unité des Bacteries Anaerobies et Toxines, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
99
|
Ashare A, Monick MM, Nymon AB, Morrison JM, Noble M, Powers LS, Yarovinsky TO, Yahr TL, Hunninghake GW. Pseudomonas aeruginosa delays Kupffer cell death via stabilization of the X-chromosome-linked inhibitor of apoptosis protein. THE JOURNAL OF IMMUNOLOGY 2007; 179:505-13. [PMID: 17579071 DOI: 10.4049/jimmunol.179.1.505] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Kupffer cells are important for bacterial clearance and cytokine production during infection. We have previously shown that severe infection with Pseudomonas aeruginosa ultimately results in loss of Kupffer cells and hepatic bacterial clearance. This was associated with prolonged hepatic inflammation. However, there is a period of time during which there is both preserved hepatic bacterial clearance and increased circulating TNF-alpha. We hypothesized that early during infection, Kupffer cells are protected against TNF-alpha-induced cell death via activation of survival pathways. KC13-2 cells (a clonal Kupffer cell line) were treated with P. aeruginosa (strain PA103), TNF-alpha, or both. At early time points, TNF-alpha induced caspase-mediated cell death, but PA103 did not. When we combined the two exposures, PA103 protected KC13-2 cells from TNF-alpha-induced cell death. PA103, in the setting of TNF exposure, stabilized the X-chromosome-linked inhibitor of apoptosis protein (XIAP). Stabilization of XIAP can occur via PI3K and Akt. We found that PA103 activated Akt and that pretreatment with the PI3K inhibitor, LY294002, prevented PA103-induced protection against TNF-alpha-induced cell death. The effects of LY294002 included decreased levels of XIAP and increased amounts of cleaved caspase-3. Overexpression of Akt mimicked the effects of PA103 by protecting cells from TNF-alpha-induced cell death and XIAP cleavage. Transfection with a stable, nondegradable XIAP mutant also protected cells against TNF-alpha-induced cell death. These studies demonstrate that P. aeruginosa delays TNF-alpha-induced Kupffer cell death via stabilization of XIAP.
Collapse
Affiliation(s)
- Alix Ashare
- Division of Pulmonary, Critical Care, and Occupational Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Saier MH. Protein Secretion and Membrane Insertion Systems in Gram-Negative Bacteria. J Membr Biol 2007; 214:75-90. [PMID: 17546510 DOI: 10.1007/s00232-006-0049-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 11/07/2006] [Indexed: 12/30/2022]
Abstract
In contrast to other organisms, gram-negative bacteria have evolved numerous systems for protein export. Eight types are known that mediate export across or insertion into the cytoplasmic membrane, while eight specifically mediate export across or insertion into the outer membrane. Three of the former secretory pathway (SP) systems, type I SP (ISP, ABC), IIISP (Fla/Path) and IVSP (Conj/Vir), can export proteins across both membranes in a single energy-coupled step. A fourth generalized mechanism for exporting proteins across the two-membrane envelope in two distinct steps (which we here refer to as type II secretory pathways [IISP]) utilizes either the general secretory pathway (GSP or Sec) or the twin-arginine targeting translocase for translocation across the inner membrane, and either the main terminal branch or one of several protein-specific export systems for translocation across the outer membrane. We here survey the various well-characterized protein translocation systems found in living organisms and then focus on the systems present in gram-negative bacteria. Comparisons between these systems suggest specific biogenic, mechanistic and evolutionary similarities as well as major differences.
Collapse
Affiliation(s)
- Milton H Saier
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA.
| |
Collapse
|