51
|
Sorboni SG, Moghaddam HS, Jafarzadeh-Esfehani R, Soleimanpour S. A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. Clin Microbiol Rev 2022; 35:e0033820. [PMID: 34985325 PMCID: PMC8729913 DOI: 10.1128/cmr.00338-20] [Citation(s) in RCA: 234] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human body is full of an extensive number of commensal microbes, consisting of bacteria, viruses, and fungi, collectively termed the human microbiome. The initial acquisition of microbiota occurs from both the external and maternal environments, and the vast majority of them colonize the gastrointestinal tract (GIT). These microbial communities play a central role in the maturation and development of the immune system, the central nervous system, and the GIT system and are also responsible for essential metabolic pathways. Various factors, including host genetic predisposition, environmental factors, lifestyle, diet, antibiotic or nonantibiotic drug use, etc., affect the composition of the gut microbiota. Recent publications have highlighted that an imbalance in the gut microflora, known as dysbiosis, is associated with the onset and progression of neurological disorders. Moreover, characterization of the microbiome-host cross talk pathways provides insight into novel therapeutic strategies. Novel preclinical and clinical research on interventions related to the gut microbiome for treating neurological conditions, including autism spectrum disorders, Parkinson's disease, schizophrenia, multiple sclerosis, Alzheimer's disease, epilepsy, and stroke, hold significant promise. This review aims to present a comprehensive overview of the potential involvement of the human gut microbiome in the pathogenesis of neurological disorders, with a particular emphasis on the potential of microbe-based therapies and/or diagnostic microbial biomarkers. This review also discusses the potential health benefits of the administration of probiotics, prebiotics, postbiotics, and synbiotics and fecal microbiota transplantation in neurological disorders.
Collapse
Affiliation(s)
| | | | - Reza Jafarzadeh-Esfehani
- Blood Borne Infectious Research Center, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Centre, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
52
|
Foshati S, Akhlaghi M, Babajafari S. The Effect of Pro-/Synbiotic Supplementation on Brain-Derived Neurotrophic Factor: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Food Funct 2022; 13:8754-8765. [DOI: 10.1039/d2fo01330d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is a growing interest in supplementation with pro-/synbiotics for brain and mental health. Animal studies have reported that pro-/synbiotic administration can increase brain-derived neurotrophic factor (BDNF), a key regulator...
Collapse
|
53
|
Abstract
PURPOSE OF REVIEW The gut microbiota has emerged as a key conduit in mental health and is a promising target for interventions. This review provides an update on recent advances in using microbiota-targeted approaches for the management of mental health. RECENT FINDINGS Approaches that have emerged as microbiota-targeted interventions in the management of mental health include probiotics, prebiotics, synbiotics, fecal microbiota transplant as well as diet. Among these approaches, probiotic supplementation has been investigated most prominently, providing promising evidence for its use in improving mood and anxiety. There is also growing interest in the use of multistrain probiotics, whole dietary interventions or combined approaches, with encouraging results emerging from recent studies. SUMMARY Although the current literature preliminarily supports targeting the microbiota to manage mental health and use as adjuvant therapies for certain brain disorders, large gaps remain and especially data including clinical cohorts remains scarce. Research studies including larger cohorts, well-characterized clinical populations and defined duration and dosage of the intervention are required to develop evidence-based guidelines for microbiota-targeted strategies.
Collapse
Affiliation(s)
| | - John F. Cryan
- APC Microbiome Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
54
|
The Role of the Gut Microbiota in the Development and Progression of Major Depressive and Bipolar Disorder. Nutrients 2021; 14:nu14010037. [PMID: 35010912 PMCID: PMC8746924 DOI: 10.3390/nu14010037] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
A growing number of studies in rodents indicate a connection between the intestinal microbiota and the brain, but comprehensive human data is scarce. Here, we systematically reviewed human studies examining the connection between the intestinal microbiota and major depressive and bipolar disorder. In this review we discuss various changes in bacterial abundance, particularly on low taxonomic levels, in terms of a connection with the pathophysiology of major depressive and bipolar disorder, their use as a diagnostic and treatment response parameter, their health-promoting potential, as well as novel adjunctive treatment options. The diversity of the intestinal microbiota is mostly decreased in depressed subjects. A consistent elevation of phylum Actinobacteria, family Bifidobacteriaceae, and genus Bacteroides, and a reduction of family Ruminococcaceae, genus Faecalibacterium, and genus Roseburia was reported. Probiotics containing Bifidobacterium and/or Lactobacillus spp. seemed to improve depressive symptoms, and novel approaches with different probiotics and synbiotics showed promising results. Comparing twin studies, we report here that already with an elevated risk of developing depression, microbial changes towards a “depression-like” microbiota were found. Overall, these findings highlight the importance of the microbiota and the necessity for a better understanding of its changes contributing to depressive symptoms, potentially leading to new approaches to alleviate depressive symptoms via alterations of the gut microbiota.
Collapse
|
55
|
Zhang Y, Wei X, Sun Q, Qian W, Liu X, Li J, Long Y, Wan X. Different Types and Functional Effects of Probiotics on Human Health through Regulating Glucose Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14781-14791. [PMID: 34855398 DOI: 10.1021/acs.jafc.1c04291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the increasing improvement of people's living standards, hyperglycemia has become one of the most frequent diseases in the world. The current drug therapy may have some negative effects and even cause some complications. As one of the most popular functional ingredients, probiotic bacteria have been proven to play important roles in balancing the glucose homeostasis level in animal and human clinic trials. In this perspective, we sorted three types of probiotics, discussed probiotic safety evaluation, and listed the known probiotic functional foods that assist to control glucose homeostasis. Then, the further summarization of the mechanisms on how probiotic bacteria could regulate glucose homeostasis and the developing trend of probiotic functional foods were discussed.
Collapse
Affiliation(s)
- Yong Zhang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, People's Republic of China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, People's Republic of China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Company, Limited, Beijing 100192, People's Republic of China
| | - Xun Wei
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, People's Republic of China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, People's Republic of China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Company, Limited, Beijing 100192, People's Republic of China
| | - Qian Sun
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, People's Republic of China
| | - Weiyi Qian
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, People's Republic of China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, People's Republic of China
| | - Xinjie Liu
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, People's Republic of China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, People's Republic of China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Company, Limited, Beijing 100192, People's Republic of China
| | - Jinping Li
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, People's Republic of China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Company, Limited, Beijing 100192, People's Republic of China
| | - Yan Long
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, People's Republic of China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, People's Republic of China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Company, Limited, Beijing 100192, People's Republic of China
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, People's Republic of China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, People's Republic of China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Company, Limited, Beijing 100192, People's Republic of China
| |
Collapse
|
56
|
Role of Phytoconstituents as PPAR Agonists: Implications for Neurodegenerative Disorders. Biomedicines 2021; 9:biomedicines9121914. [PMID: 34944727 PMCID: PMC8698906 DOI: 10.3390/biomedicines9121914] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 12/16/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPAR-γ, PPAR-α, and PPAR-β/δ) are ligand-dependent nuclear receptors that play a critical role in the regulation of hundreds of genes through their activation. Their expression and targeted activation play an important role in the treatment of a variety of diseases, including neurodegenerative, cardiovascular, diabetes, and cancer. In recent years, several reviews have been published describing the therapeutic potential of PPAR agonists (natural or synthetic) in the disorders listed above; however, no comprehensive report defining the role of naturally derived phytoconstituents as PPAR agonists targeting neurodegenerative diseases has been published. This review will focus on the role of phytoconstituents as PPAR agonists and the relevant preclinical studies and mechanistic insights into their neuroprotective effects. Exemplary research includes flavonoids, fatty acids, cannabinoids, curcumin, genistein, capsaicin, and piperine, all of which have been shown to be PPAR agonists either directly or indirectly. Additionally, a few studies have demonstrated the use of clinical samples in in vitro investigations. The role of the fruit fly Drosophila melanogaster as a potential model for studying neurodegenerative diseases has also been highlighted.
Collapse
|
57
|
Brierley MEE, Albertella L, Rotaru K, Destree L, Thompson EM, Liu C, Christensen E, Lowe A, Segrave RA, Richardson KE, Kayayan E, Chamberlain SR, Grant JE, Lee RSC, Hughes S, Yücel M, Fontenelle LF. The role of psychological distress in the relationship between lifestyle and compulsivity: An analysis of independent, bi-national samples. CNS Spectr 2021; 28:1-10. [PMID: 34895362 PMCID: PMC7614722 DOI: 10.1017/s1092852921001048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Poor mental health is a state of psychological distress that is influenced by lifestyle factors such as sleep, diet, and physical activity. Compulsivity is a transdiagnostic phenotype cutting across a range of mental illnesses including obsessive-compulsive disorder, substance-related and addictive disorders, and is also influenced by lifestyle. Yet, how lifestyle relates to compulsivity is presently unknown, but important to understand to gain insights into individual differences in mental health. We assessed (a) the relationships between compulsivity and diet quality, sleep quality, and physical activity, and (b) whether psychological distress statistically contributes to these relationships. METHODS We collected harmonized data on compulsivity, psychological distress, and lifestyle from two independent samples (Australian n = 880 and US n = 829). We used mediation analyses to investigate bidirectional relationships between compulsivity and lifestyle factors, and the role of psychological distress. RESULTS Higher compulsivity was significantly related to poorer diet and sleep. Psychological distress statistically mediated the relationship between poorer sleep quality and higher compulsivity, and partially statistically mediated the relationship between poorer diet and higher compulsivity. CONCLUSIONS Lifestyle interventions in compulsivity may target psychological distress in the first instance, followed by sleep and diet quality. As psychological distress links aspects of lifestyle and compulsivity, focusing on mitigating and managing distress may offer a useful therapeutic approach to improve physical and mental health. Future research may focus on the specific sleep and diet patterns which may alter compulsivity over time to inform lifestyle targets for prevention and treatment of functionally impairing compulsive behaviors.
Collapse
Affiliation(s)
- Mary-Ellen E Brierley
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences & Monash Biomedical Imaging Facility, Monash University, Clayton, Victoria, Australia
| | - Lucy Albertella
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences & Monash Biomedical Imaging Facility, Monash University, Clayton, Victoria, Australia
| | - Kristian Rotaru
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences & Monash Biomedical Imaging Facility, Monash University, Clayton, Victoria, Australia
- Monash Business School, Monash University, Caulfield, Victoria, Australia
| | - Louise Destree
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences & Monash Biomedical Imaging Facility, Monash University, Clayton, Victoria, Australia
| | - Emma M Thompson
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences & Monash Biomedical Imaging Facility, Monash University, Clayton, Victoria, Australia
| | - Chang Liu
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences & Monash Biomedical Imaging Facility, Monash University, Clayton, Victoria, Australia
| | - Erynn Christensen
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences & Monash Biomedical Imaging Facility, Monash University, Clayton, Victoria, Australia
| | - Amelia Lowe
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences & Monash Biomedical Imaging Facility, Monash University, Clayton, Victoria, Australia
| | - Rebecca A Segrave
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences & Monash Biomedical Imaging Facility, Monash University, Clayton, Victoria, Australia
| | - Karyn E Richardson
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences & Monash Biomedical Imaging Facility, Monash University, Clayton, Victoria, Australia
| | - Edouard Kayayan
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences & Monash Biomedical Imaging Facility, Monash University, Clayton, Victoria, Australia
| | - Samuel R Chamberlain
- Department of Psychiatry, University of Southampton, Southampton, United Kingdom
- Southern Health NHS Foundation Trust, Southampton, United Kingdom
| | - Jon E Grant
- Department of Psychiatry and Behavioural Neuroscience, University of Chicago, Chicago, Illinois, USA
| | - Rico S C Lee
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences & Monash Biomedical Imaging Facility, Monash University, Clayton, Victoria, Australia
| | - Sam Hughes
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences & Monash Biomedical Imaging Facility, Monash University, Clayton, Victoria, Australia
| | - Murat Yücel
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences & Monash Biomedical Imaging Facility, Monash University, Clayton, Victoria, Australia
| | - Leonardo F Fontenelle
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences & Monash Biomedical Imaging Facility, Monash University, Clayton, Victoria, Australia
- Obsessive, Compulsive, and Anxiety Spectrum Research Program, Institute of Psychiatry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| |
Collapse
|
58
|
Hofmeister M, Clement F, Patten S, Li J, Dowsett LE, Farkas B, Mastikhina L, Egunsola O, Diaz R, Cooke NCA, Taylor VH. The effect of interventions targeting gut microbiota on depressive symptoms: a systematic review and meta-analysis. CMAJ Open 2021; 9:E1195-E1204. [PMID: 34933877 PMCID: PMC8695538 DOI: 10.9778/cmajo.20200283] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite their popularity, the efficacy of interventions targeting gut microbiota to improve depressive symptoms is unknown. Our objective is to summarize the effect of microbiome-targeting interventions on depressive symptoms. METHODS We conducted a systematic review and meta-analysis. We searched MEDLINE, Embase, PsycINFO, Database of Abstracts of Reviews of Effects, Cochrane Database of Systematic Reviews and the Cochrane Controlled Register of Trials from inception to Mar. 5, 2021. We included studies that evaluated probiotic, prebiotic, synbiotic, paraprobiotic or fecal microbiota transplant interventions in an adult population (age ≥ 18 yr) with an inactive or placebo comparator (defined by the absence of active intervention). Studies must have measured depressive symptoms with a validated scale, and used a randomized controlled trial study design. We conducted a random effects meta-analysis of change scores, using standardized mean difference as the measure of effect. RESULTS Sixty-two studies formed the final data set, with 50 included in the meta-analysis. Probiotic, prebiotic, and synbiotic interventions on depressive symptoms showed statistically significant benefits. In the single studies evaluating each of fecal microbiota transplant and paraprobiotic interventions, neither showed a statistically significant benefit. INTERPRETATION Despite promising findings of benefit of probiotic, prebiotic and synbiotic interventions for depressive symptoms in study populations, there is not yet strong enough evidence to favour inclusion of these interventions in treatment guidelines for depression. Critical questions about species administered, dosage and timing relative to other antidepressant medications remain to be answered. STUDY REGISTRATION PROSPERO no. 143178.
Collapse
Affiliation(s)
- Mark Hofmeister
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Fiona Clement
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Scott Patten
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Joyce Li
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Laura E Dowsett
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Brenlea Farkas
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Liza Mastikhina
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Oluwaseun Egunsola
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Ruth Diaz
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Noah C A Cooke
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Valerie H Taylor
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta.
| |
Collapse
|
59
|
Brierley MEE, Thompson EM, Albertella L, Fontenelle LF. Lifestyle Interventions in the Treatment of Obsessive-Compulsive and Related Disorders: A Systematic Review. Psychosom Med 2021; 83:817-833. [PMID: 34334731 DOI: 10.1097/psy.0000000000000988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Lifestyle medicine is increasingly important in psychiatry for its efficacy as a transdiagnostic treatment, its preventative potential, and its increased tolerability compared with first-line strategies. Although the impact of lifestyle medicine is strong across many psychiatric illnesses, our understanding of the effectiveness of lifestyle interventions in treating obsessive-compulsive and related disorders (OCRDs) is minimal. We aimed to conduct a systematic review examining the effect of lifestyle interventions (targeting diet, exercise, sleep, stress management, and tobacco/alcohol use) on OCRD symptoms. METHODS We systematically searched four electronic databases for published randomized controlled trials reporting on lifestyle interventions for OCRDs. We qualitatively synthesized results of eligible studies and calculated mean changes in symptom severity from baseline to end point and standardized between-group effect sizes. RESULTS We identified 33 eligible studies. Poor efficacy was noted across a number of rigorous dietary supplement interventions with some promising data in four (of six) studies regarding N-acetylcysteine for trichotillomania, skin picking, and obsessive-compulsive disorder. Stress management interventions, generally characterized by high risk of bias, reported mild effectiveness with greater effects noted for mind-body exercises (yoga) for obsessive-compulsive disorder. Greater improvements may be achieved when lifestyle intervention is adjunct to first-line treatments and delivered by facilitators. CONCLUSIONS Diet (particularly N-acetylcysteine) and stress management interventions seem promising avenues for OCRDs treatment. We present an action plan to move the lifestyle interventions for OCRDs field forward. Further high-quality lifestyle interventions are required to improve the certainty of findings and to inform clinical treatment guidelines.Review Registration Number: CRD42020151407.
Collapse
Affiliation(s)
- Mary-Ellen E Brierley
- From the BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences (Brierley, Thompson, Albertella, Fontenelle), Monash University, Victoria, Australia; Obsessive, Compulsive, and Anxiety Spectrum Research Program. Institute of Psychiatry (Fontenelle), Federal University of Rio de Janeiro (UFRJ); and D'Or Institute for Research and Education (Fontenelle), Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
60
|
Poluektova EU, Danilenko VN. Probiotic Bacteria in the Correction of Depression Symptoms, Their Active Genes and Proteins. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542109009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
61
|
La Torre D, Verbeke K, Dalile B. Dietary fibre and the gut-brain axis: microbiota-dependent and independent mechanisms of action. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2021; 2:e3. [PMID: 39296317 PMCID: PMC11406392 DOI: 10.1017/gmb.2021.3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 09/21/2024]
Abstract
Dietary fibre is an umbrella term comprising various types of carbohydrate polymers that cannot be digested nor absorbed by the human small intestine. Consumption of dietary fibre is linked to beneficial effects on cognitive and affective processes, although not all fibres produce the same effects. Fibres that increase short-chain fatty acid (SCFA) production following modulation of the gut microbiota are thought to be the most potent fibres to induce effects on cognitive and affective processes. SCFAs can exert their effects by improving central, peripheral and systemic immunity, lowering hypertension and enhancing intestinal barrier integrity. Here, we propose additional mechanisms by which dietary fibres may contribute to improvements in affective and cognitive processes. Fibre-induced modulation of the gut microbiota may influence affective processes and cognition by increasing brain-derived neurotrophic factor levels. Depending on the physicochemical properties of dietary fibre, additional effects on affect and cognition may occur via non-microbiota-related routes, such as enhancement of the immune system and lowering cholesterol levels and subsequently lowering blood pressure. Mechanistic randomised placebo-controlled trials are needed to establish the effects of dietary fibre consumption and the magnitude of explained variance in affect and cognition when incorporating measurements of microbiota-dependent and microbiota-independent mechanisms in humans.
Collapse
Affiliation(s)
- Danique La Torre
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Kristin Verbeke
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Boushra Dalile
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
62
|
Divyashri G, Sadanandan B, Chidambara Murthy KN, Shetty K, Mamta K. Neuroprotective Potential of Non-Digestible Oligosaccharides: An Overview of Experimental Evidence. Front Pharmacol 2021; 12:712531. [PMID: 34497516 PMCID: PMC8419344 DOI: 10.3389/fphar.2021.712531] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
Non-digestible oligosaccharides (NDOs) from dietary sources have the potential as prebiotics for neuroprotection. Globally, diverse populations suffering from one or the other forms of neurodegenerative disorders are on the rise, and NDOs have the potential as supportive complementary therapeutic options against these oxidative-linked disorders. Elevated levels of free radicals cause oxidative damage to biological molecules like proteins, lipids, and nucleic acids associated with various neurological disorders. Therefore, investigating the therapeutic or prophylactic potential of prebiotic bioactive molecules such as NDOs as supplements for brain and cognitive health has merits. Few prebiotic NDOs have shown promise as persuasive therapeutic solutions to counter oxidative stress by neutralizing free radicals directly or indirectly. Furthermore, they are also known to modulate through brain-derived neurotrophic factors through direct and indirect mechanisms conferring neuroprotective and neuromodulating benefits. Specifically, NDOs such as fructo-oligosaccharides, xylo-oligosaccharides, isomalto-oligosaccharides, manno-oligosaccharides, pectic-oligosaccharides, and similar oligosaccharides positively influence the overall health via various mechanisms. Increasing evidence has suggested that the beneficial role of such prebiotic NDOs is not only directed towards the colon but also distal organs including the brain. Despite the wide applications of these classes of NDOs as health supplements, there is limited understanding of the possible role of these NDOs as neuroprotective therapeutics. This review provides important insights into prebiotic NDOs, their source, and production with special emphasis on existing direct and indirect evidence of their therapeutic potential in neuroprotection.
Collapse
Affiliation(s)
- Gangaraju Divyashri
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, India
| | - Bindu Sadanandan
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, India
| | - Kotamballi N Chidambara Murthy
- Central Research Laboratory and Division of Research and Patents, Ramaiah Medical College and Hospital, Bengaluru, India
| | - Kalidas Shetty
- Department of Plant Science, North Dakota State University, Fargo, ND, United States
| | - Kumari Mamta
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, India
| |
Collapse
|
63
|
Lee HJ, Hong JK, Kim JK, Kim DH, Jang SW, Han SW, Yoon IY. Effects of Probiotic NVP-1704 on Mental Health and Sleep in Healthy Adults: An 8-Week Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2021; 13:2660. [PMID: 34444820 PMCID: PMC8398773 DOI: 10.3390/nu13082660] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
The human gut microbiome is closely linked to mental health and sleep. We aimed to verify the efficacy and safety of probiotic NVP-1704, a mixture of Lactobacillus reuteri NK33 and Bifidobacterium adolescentis NK98, in improving stress, depression, anxiety, and sleep disturbances, along with the measurement of some blood biomarkers. A total of 156 healthy adults with subclinical symptoms of depression, anxiety, and insomnia were retrospectively registered and randomly assigned to receive either NVP-1704 (n = 78) or a placebo (n = 78) for eight weeks. Participants completed the Stress Response Inventory, Beck's Depression and Anxiety Inventory, Pittsburg Sleep Quality Index, and Insomnia Severity Index at baseline, at four and eight weeks of treatment. Pre- and post-treatment blood tests for biomarkers were conducted. After intervention, gut microbiota composition was quantified by pyrosequencing the bacterial 16S rRNA gene. The NVP-1704 group had a more significant reduction in depressive symptoms at four and eight weeks of treatment, and anxiety symptoms at four weeks compared to the placebo group. Those receiving NVP-1704 also experienced an improvement in sleep quality. NVP-1704 treatment led to a decrease in serum interleukin-6 levels. Furthermore, NVP-1704 increased Bifidobacteriaceae and Lactobacillacea, whereas it decreased Enterobacteriaceae in the gut microbiota composition. Our findings suggest that probiotic NVP-1704 could be beneficial for mental health and sleep.
Collapse
Affiliation(s)
- Hyuk Joo Lee
- Department of Psychiatry, Uijeongbu Eulji Medical Center, Eulji University, Gyeonggi 11759, Korea;
- Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon 34824, Korea
| | - Jung Kyung Hong
- Department of Psychiatry, Bundang Hospital, Seoul National University, Seongnam 13620, Korea;
| | - Jeon-Kyung Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (J.-K.K.); (D.-H.K.)
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (J.-K.K.); (D.-H.K.)
| | - Seok Won Jang
- PB Department, Navipharm Inc., Suwon 16209, Korea; (S.W.J.); (S.-W.H.)
| | - Seung-Won Han
- PB Department, Navipharm Inc., Suwon 16209, Korea; (S.W.J.); (S.-W.H.)
| | - In-Young Yoon
- Department of Psychiatry, Bundang Hospital, Seoul National University, Seongnam 13620, Korea;
- Department of Psychiatry, School of Medicine, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
64
|
The Putative Antidepressant Mechanisms of Probiotic Bacteria: Relevant Genes and Proteins. Nutrients 2021; 13:nu13051591. [PMID: 34068669 PMCID: PMC8150869 DOI: 10.3390/nu13051591] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Probiotic bacteria are widely accepted as therapeutic agents against inflammatory bowel diseases for their immunostimulating effects. In the last decade, more evidence has emerged supporting the positive effects of probiotics on the course of neurodegenerative and psychiatric diseases. This brief review summarizes the data from clinical studies of probiotics possessing antidepressant properties and focuses on the potential genes and proteins underlying these mechanisms. Data from small-sample placebo-controlled pilot studies indicate that certain strains of bacteria can significantly reduce the symptoms of depression, especially in depressed patients. Despite the disparity between studies attempting to pinpoint the bacterial putative genes and proteins accounting for these mechanisms, they ultimately show that bacteria are a potential source of metabiotics—microbial metabolites or structural components. Since the constituents of cells—namely, secreted proteins, peptides and cell wall components—are most likely to be entangled in the gut–brain axis, they can serve as starting point in the search for probiotics with concrete properties.
Collapse
|
65
|
Methiwala HN, Vaidya B, Addanki VK, Bishnoi M, Sharma SS, Kondepudi KK. Gut microbiota in mental health and depression: role of pre/pro/synbiotics in their modulation. Food Funct 2021; 12:4284-4314. [PMID: 33955443 DOI: 10.1039/d0fo02855j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microbiome residing in the human gut performs a wide range of biological functions. Recently, it has been elucidated that a change in dietary habits is associated with alteration in the gut microflora which results in increased health risks and vulnerability towards various diseases. Falling in line with the same concept, depression has also been shown to increase its prevalence around the globe, especially in the western world. Various research studies have suggested that changes in the gut microbiome profile further result in decreased tolerance of stress. Although currently available medications help in relieving the symptoms of depressive disorders briefly, these drugs are not able to completely reverse the multifactorial pathology of depression. The discovery of the communication pathway between gut microbes and the brain, i.e. the Gut-Brain Axis, has led to new areas of research to find more effective and safer alternatives to current antidepressants. The use of probiotics and prebiotics has been suggested as being effective in various preclinical studies and clinical trials for depression. Therefore, in the present review, we address the new antidepressant mechanisms via gut microbe alterations and provide insight into how these can provide an alternative to antidepressant therapy without the side effects and risk of adverse drug reactions.
Collapse
Affiliation(s)
- Hasnain N Methiwala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India.
| | | | | | | | | | | |
Collapse
|
66
|
Cheng Y, Liu J, Ling Z. Short-chain fatty acids-producing probiotics: A novel source of psychobiotics. Crit Rev Food Sci Nutr 2021; 62:7929-7959. [PMID: 33955288 DOI: 10.1080/10408398.2021.1920884] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Psychobiotics-live microorganisms with potential mental health benefits, which can modulate the microbiota-gut-brain-axis via immune, humoral, neural, and metabolic pathways-are emerging as novel therapeutic options for the effective treatment of psychiatric disorders Recently, microbiome studies have identified numerous putative psychobiotic strains, of which short-chain fatty acids (SCFAs) producing bacteria have attracted special attention from neurobiologists. Recent studies have highlighted that SCFAs-producing bacteria such as Lactobacillus, Bifidobacterium and Clostridium have a very specific function in various psychiatric disorders, suggesting that these bacteria can be potential novel psychobiotics. SCFAs, potential mediators of microbiota-gut-brain axis, might modulate function of neurological processes. While the specific roles and mechanisms of SCFAs-producing bacteria of microbiota-targeted interventions on neuropsychiatric disease are largely unknown. This Review summarizes existing knowledge on the neuroprotective effects of the SCFAs-producing bacteria in neurological disorders via modulating microbiota-gut-brain axis and illustrate their possible mechanisms by which SCFAs-producing bacteria may act on these disorders, which will shed light on the SCFAs-producing bacteria as a promising novel source of psychobiotics.
Collapse
Affiliation(s)
- Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Microbe & Host Health, Linyi University, Linyi, Shandong, China
| |
Collapse
|
67
|
Moludi J, Khedmatgozar H, Nachvak SM, Abdollahzad H, Moradinazar M, Sadeghpour Tabaei A. The effects of co-administration of probiotics and prebiotics on chronic inflammation, and depression symptoms in patients with coronary artery diseases: a randomized clinical trial. Nutr Neurosci 2021; 25:1659-1668. [PMID: 33641656 DOI: 10.1080/1028415x.2021.1889451] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND It has been shown that dysbiosis might have a role in developing of chronic inflammation and depression. In this study, we are interested in exploring of anti-inflammatory and anti-depressant effects of Lactobacillus Rhamnosus G (LGG), a probiotic strain, alone or in combination with a prebiotic, Inulin, in patients with coronary artery disease (CAD). METHODS This randomized, double-blind clinical trial was held on 96 patients with CAD. Patients were randomly allocated into four different groups: LGG [a capsule/day, contained 1.9 × 109 colony-forming unit of Lactobacillus Rhamnosus G], inulin (15 g/day), co-supplemented (LGG and inulin), and placebo. Participants consumed the supplements for two months. Beck Depression Inventory (BDI), MacNew questionnaire and Spielberger state-trait anxiety inventory (STAI-Y) were used to assess depression, quality of life and anxiety, respectively. Serum levels of C-reactive protein (hs-CRP), lipopolysaccharide (LPS), tumor necrosis factor (TNF)-α, and Interleukin (IL)-10 were also measured. RESULTS Probiotic-Inulin Co-supplementation significantly decreased BDI (-11.52 ± 0+3.20 vs. +2.97 ± 0.39, P = 0.001), STAI-state (-17.63 ± 3.22 vs. -0.60 ± 0.33, P = 0.021), and STAI-trait (-24.31 ± 7.41 vs. -1.45 ± 0.66, P = 0.020) scores, hs-CRP (-1.69 ± 0+66 vs. +0.82 ± 0.39 mg/dL, P = 0.020), LPS (-22.02 ± 5.40 vs. +0.31 ± 0.18 (EU/L), P = 0.047), and TNF-α (-25.05 ± 7.41 vs. +0.79 ± 0.71 (ng/L), P = 0.032) in comparison to placebo. CONCLUSION Co-supplementation of probiotics and inulin in CAD subjects for eight weeks had beneficial effects on depression, anxiety, and inflammatory biomarkers. Adding inulin to probiotic supplements improved psychological outcomes and inflammatory biomarkers more effectively than two supplements separately.Trial registration: Iranian Registry of Clinical Trials identifier: IRCT20180712040438N4..
Collapse
Affiliation(s)
- Jalal Moludi
- Student Research Committee, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Research Center for Environmental Determinants of Health (RCEDH)s, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamed Khedmatgozar
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, USA
| | - Seyed Mostafa Nachvak
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Abdollahzad
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Moradinazar
- Research Center for Environmental Determinants of Health (RCEDH)s, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Sadeghpour Tabaei
- Department of Cardiac Surgery, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
68
|
Haghighat N, Mohammadshahi M, Shayanpour S, Haghighizadeh MH, Rahmdel S, Rajaei M. The Effect of Synbiotic and Probiotic Supplementation on Mental Health Parameters in Patients Undergoing Hemodialysis: A Double-blind, Randomized, Placebo-controlled Trial. Indian J Nephrol 2021; 31:149-156. [PMID: 34267437 PMCID: PMC8240938 DOI: 10.4103/ijn.ijn_341_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/29/2019] [Accepted: 03/07/2020] [Indexed: 12/27/2022] Open
Abstract
Introduction The purpose of this double-blind clinical trial, was to examine the effect of supplementation with the synbiotic and probiotic on the mental health, quality of life, and anemia in HD patients. Methods Seventy-five HD patients were randomly assigned to receive the synbiotic (n = 23) as 15 g of prebiotics, 5 g of probiotic powder containing Lactobacillus acidophilus, Bifidobacterium bifidum, Bifidobacterium lactis, and Bifidobacterium longum (2.7 × 107 CFU/g each); probiotics (n = 23) as 5 g probiotics similar to the synbiotic group with 15 g of maltodextrin as placebo; and placebo (n = 19) as 20 g of maltodextrin. Serum hemoglobin (Hb) and albumin (Alb) were measured. Beck depression and anxiety index (BDI/BAI) was used to assess symptoms of depression and anxiety. The health-related quality of life (HRQoL) was assessed using the questionnaire SF-36. Results From baseline to 12 weeks, synbiotic and probiotic supplementation resulted in a significant decrease in BDI and BAI score in comparison to the placebo (P < 0.05). Between and intergroup comparison showed no significant changes between the groups in terms of HRQoL. However, the serum Hb level increased significantly in the synbiotic and probiotic group compared to the placebo group (P < 0.001). Conclusion Overall, 12 weeks of synbiotic and probiotic supplementation resulted in an improvement in mental health and anemia compared with the placebo, whereas they failed to enhance the quality of life in HD patients.
Collapse
Affiliation(s)
- Neda Haghighat
- Laparoscopy Research Center, School of Medicine, Shiraz University of Medical Sciences, Ahvaz, Iran
| | - Majid Mohammadshahi
- Nutrition and Metabolic Diseases Research Center and Department of Nutrition, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shokouh Shayanpour
- Department of Nephrology, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Hossein Haghighizadeh
- Department of Biostatistics and Epidemiology, Faculty of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samaneh Rahmdel
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majdadin Rajaei
- Department of Radiation Oncology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
69
|
Gravesteijn E, Mensink RP, Plat J. Effects of nutritional interventions on BDNF concentrations in humans: a systematic review. Nutr Neurosci 2021; 25:1425-1436. [PMID: 33427118 DOI: 10.1080/1028415x.2020.1865758] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objectives: Brain-derived neurotrophic factor (BDNF) plays an essential role in brain and metabolic health. The fact that higher concentrations are associated with improved cognitive performance has resulted in numerous intervention trials that aim at elevating BDNF levels. This systematic review provides an overview of the relation between various nutritional factors and BDNF concentrations in controlled human intervention studies. Methods: A systematic search in May 2020 identified 48 articles that examined the effects of dietary patterns or foods (n = 3), diets based on energy intake (n = 7), vitamins and minerals (n = 7), polyphenols (n = 11), long-chain omega-3 polyunsaturated fatty acids (n = 5), probiotics (n = 8), and miscellaneous food supplements (n = 7). Results: In particular, studies with dietary patterns or foods showed increased peripheral BDNF concentrations. There are also strong indications that polyphenols tend to have a positive effect on BDNF concentrations. Four of the 11 included studies with a polyphenol intervention showed a significant increase in BDNF concentrations, one study showed an increase but this was not statistically analyzed, and two studies showed a trend to an increase. Discussion: The two polyphenol classes, phenolic acids, and other phenolic compounds were responsible for the significant effects. No clear effect was found for the other dietary factors, which might also be related to whether serum or plasma was used for BDNF analysis. More work is needed to understand the relation between peripheral and central BDNF concentrations.
Collapse
Affiliation(s)
- Elske Gravesteijn
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+ (MUMC+), Maastricht, Netherlands
| | - Ronald P Mensink
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+ (MUMC+), Maastricht, Netherlands
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+ (MUMC+), Maastricht, Netherlands
| |
Collapse
|
70
|
Chopra P, Ayers CK, Antick JR, Kansagara D, Kondo K. The Effectiveness of Depression Treatment for Adults with ESKD: A Systematic Review. KIDNEY360 2021; 2:558-585. [PMID: 35369008 PMCID: PMC8785990 DOI: 10.34067/kid.0003142020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/04/2021] [Indexed: 02/04/2023]
Abstract
Adults with dialysis-dependent ESKD experience higher rates of depression than the general population, yet efficacy of depression treatments in this population is not well understood. We conducted a systematic review of the benefits and harms of depression treatment in adults with ESKD. We searched multiple data sources through June 2020 for English-language, controlled trials that compared interventions for depression in adults with ESKD to another intervention, placebo, or usual care, and reported depression treatment-related outcomes. Observational studies were included for harms. Two investigators independently screened all studies using prespecified criteria. One reviewer abstracted data on study design, interventions, implementation characteristics, and outcomes, and a second reviewer provided confirmation. Two reviewers independently assessed study quality and resolved any discords through discussion or a third reviewer. Strength of evidence (SOE) was assessed and agreed upon by review-team consensus. We qualitatively analyzed the data and present syntheses in text and tables. We included 26 RCTs and three observational studies. SSRIs were the most studied type of drug and the evidence was largely insufficient. We found moderate SOE that long-term, high-dose vitamin D3 is ineffective for reducing depression severity. Cognitive behavioral therapy is more effective than (undefined) psychotherapy and placebo for depression improvement and quality of life (low SOE), and acupressure is more effective than usual care or sham acupressure in reducing depression severity (low SOE). There is limited research evaluating treatment for depression in adults with ESKD, and existing studies may not be generalizable to adults in the United States. Studies suffer from limitations related to methodologic quality or reporting. More research replicating studies of promising interventions in US populations, with larger samples, is needed. Systematic Review registry name and registration number: PROSPERO, CRD42020140227.
Collapse
Affiliation(s)
- Pavan Chopra
- Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Chelsea K. Ayers
- Evidence Synthesis Program, Veterans Affairs Portland Health Care System, Portland, Oregon
| | - Jennifer R. Antick
- School of Graduate Psychology, Pacific University, Hillsboro, Oregon,Legacy Good Samaritan Medical Center, Portland, Oregon
| | - Devan Kansagara
- Department of Medicine, Oregon Health and Science University, Portland, Oregon,Evidence Synthesis Program, Veterans Affairs Portland Health Care System, Portland, Oregon,Center to Improve Veteran Involvement in Care, Veterans Affairs Portland Health Care System, Portland, Oregon
| | - Karli Kondo
- Evidence Synthesis Program, Veterans Affairs Portland Health Care System, Portland, Oregon,Research Integrity Office, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
71
|
Westfall S, Caracci F, Zhao D, Wu QL, Frolinger T, Simon J, Pasinetti GM. Microbiota metabolites modulate the T helper 17 to regulatory T cell (Th17/Treg) imbalance promoting resilience to stress-induced anxiety- and depressive-like behaviors. Brain Behav Immun 2021; 91:350-368. [PMID: 33096252 PMCID: PMC7986984 DOI: 10.1016/j.bbi.2020.10.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 02/08/2023] Open
Abstract
Chronic stress disrupts immune homeostasis while gut microbiota-derived metabolites attenuate inflammation, thus promoting resilience to stress-induced immune and behavioral abnormalities. There are both peripheral and brain region-specific maladaptations of the immune response to chronic stress that produce interrelated mechanistic considerations required for the design of novel therapeutic strategies for prevention of stress-induced psychological impairment. This study shows that a combination of probiotics and polyphenol-rich prebiotics, a synbiotic, attenuates the chronic-stress induced inflammatory responses in the ileum and the prefrontal cortex promoting resilience to the consequent depressive- and anxiety-like behaviors in male mice. Pharmacokinetic studies revealed that this effect may be attributed to specific synbiotic-produced metabolites including 4-hydroxyphenylpropionic, 4-hydroxyphenylacetic acid and caffeic acid. Using a model of chronic unpredictable stress, behavioral abnormalities were associated to strong immune cell activation and recruitment in the ileum while inflammasome pathways were implicated in the prefrontal cortex and hippocampus. Chronic stress also upregulated the ratio of activated proinflammatory T helper 17 (Th17) to regulatory T cells (Treg) in the liver and ileum and it was predicted with ingenuity pathway analysis that the aryl hydrocarbon receptor (AHR) could be driving the synbiotic's effect on the ileum's inflammatory response to stress. Synbiotic treatment indiscriminately attenuated the stress-induced immune and behavioral aberrations in both the ileum and the brain while in a gut-immune co-culture model, the synbiotic-specific metabolites promoted anti-inflammatory activity through the AHR. Overall, this study characterizes a novel synbiotic treatment for chronic-stress induced behavioral impairments while defining a putative mechanism of gut-microbiota host interaction for modulating the peripheral and brain immune systems.
Collapse
Affiliation(s)
- Susan Westfall
- Icahn School of Medicine at Mount Sinai, Department of Neurology, New York, NY, USA
| | - Francesca Caracci
- Icahn School of Medicine at Mount Sinai, Department of Neurology, New York, NY, USA
| | - Danyue Zhao
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Qing-li Wu
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Tal Frolinger
- Icahn School of Medicine at Mount Sinai, Department of Neurology, New York, NY, USA
| | - James Simon
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Giulio Maria Pasinetti
- Icahn School of Medicine at Mount Sinai, Department of Neurology, New York, NY, USA; Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA.
| |
Collapse
|
72
|
Vafa S, Zarrati M, Malakootinejad M, Totmaj AS, Zayeri F, Salehi M, Sanati V, Haghighat S. Calorie restriction and synbiotics effect on quality of life and edema reduction in breast cancer-related lymphedema, a clinical trial. Breast 2020; 54:37-45. [PMID: 32898787 PMCID: PMC7486474 DOI: 10.1016/j.breast.2020.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/24/2020] [Accepted: 08/16/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Little evidence exists regarding the clinical value of synbiotics in the management of post-treatment complications of breast cancer especially breast cancer-related lymphedema (BCRL). This study aimed to investigate the effects of synbiotic supplementation along with calorie restriction on quality of life and edema volume in patients with BCRL. METHODS This randomized, placebo-controlled, clinical trial was conducted on 135 overweight and obese women with BCRL aged 18-65 years old. Participants were randomly allocated to receive a calorie-restricted diet plus 109 CFU synbiotic supplement (CRS group; n = 45) or placebo (CRP group; n = 45), daily for 10 weeks. Also, a control group (n = 45) with no intervention was included in the trial. All of the participants received Complete Decongestive Therapy for lymphedema treatment. The quality of life score, edema volume and body mass index (BMI) were measured at baseline and end of the trial. RESULTS A total of 121 subjects completed the trial. CRS group showed a significant decrease in the total quality of life score (P = 0.004), and it's psychosocial (P = 0.022) and functional (P = 0.002) domain scores, as well as edema volume (P = 0.002) and BMI (P < 0.001) in comparison to the control. However, there were no significant differences in changes in trial outcomes between the CRS and CRP groups. CONCLUSION Synbiotic supplementation along with a low-calorie diet was effective in quality of life, edema volume, and BMI improvement; mostly due to low-calorie diet. It seems that adding a dietitian consultation on the lymphedema management strategy may provide a better result in lymphedema control.
Collapse
Affiliation(s)
- Saeideh Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Zarrati
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Marjan Malakootinejad
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Saneei Totmaj
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farid Zayeri
- Proteomics Research Center and Department of Biostatistics, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Salehi
- Department of Biostatistics, School of Public Health, Health, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Sanati
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Shahpar Haghighat
- Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
73
|
Nadort E, Schouten RW, Witte SHS, Broekman BFP, Honig A, Siegert CEH, van Oppen P. Treatment of current depressive symptoms in dialysis patients: A systematic review and meta-analysis. Gen Hosp Psychiatry 2020; 67:26-34. [PMID: 32919306 DOI: 10.1016/j.genhosppsych.2020.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Symptoms of depression are highly prevalent and undertreated in dialysis patients. To aid clinicians in offering treatment to patients with depression, we conducted a systematic review and meta-analysis on the treatment of current depressive symptoms in dialysis patients. METHODS Nine databases were searched on January 8th 2020 for randomized controlled trials on the treatment of depressive symptoms in dialysis patients. In contradiction to previous reviews, we only included studies who selected patients with a score above a defined cut-off for depressive symptoms and used an inactive control group, to investigate the effectiveness of treatments in currently depressed patients. All interventions aimed to treat depressive symptoms were accepted for inclusion. Standardized mean differences were calculated in a random effect meta-analysis. RESULTS Seventeen studies were included in the systematic review (1640 patients). Nine studies could be included in the meta-analysis. A pooled analysis of 7 studies on psychotherapy showed a standardized mean difference of -0.48 [-0.87; -0.08], with a moderate heterogeneity (I2 = 52%, X2 = 12.56, p = .05). All studies on psychotherapy performed a per protocol analysis and scored high on potential bias. A pooled analysis of two studies on SSRI's showed no statistically significant improvement of depressive symptoms (SMD -0.57 [-6.17; 5.02], I2 = 71%, X2 = 0.2474, p = .06). CONCLUSIONS Psychotherapy is a promising treatment for currently depressed dialysis patients, although quality of evidence is low. More evidence is needed regarding the efficacy of SSRI's, exercise therapy and dietary supplements in this population. PROSPERO CRD42018073969.
Collapse
Affiliation(s)
- Els Nadort
- Department of Nephrology, OLVG hospital, Jan Tooropstraat 164, 1061 AE Amsterdam, the Netherlands; Department of Psychiatry, OLVG hospital, Jan Tooropstraat 164, 1061 AE Amsterdam, the Netherlands.
| | - Robbert W Schouten
- Department of Nephrology, OLVG hospital, Jan Tooropstraat 164, 1061 AE Amsterdam, the Netherlands.
| | - Simon H S Witte
- Department of Psychiatry, OLVG hospital, Jan Tooropstraat 164, 1061 AE Amsterdam, the Netherlands.
| | - Birit F P Broekman
- Department of Psychiatry, OLVG hospital, Jan Tooropstraat 164, 1061 AE Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam University Medical Center, GGZinGeest, Oldenaller 1, 1081 HJ Amsterdam, the Netherlands.
| | - Adriaan Honig
- Department of Psychiatry, OLVG hospital, Jan Tooropstraat 164, 1061 AE Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam University Medical Center, GGZinGeest, Oldenaller 1, 1081 HJ Amsterdam, the Netherlands.
| | - Carl E H Siegert
- Department of Nephrology, OLVG hospital, Jan Tooropstraat 164, 1061 AE Amsterdam, the Netherlands.
| | - Patricia van Oppen
- Department of Psychiatry, Amsterdam University Medical Center, GGZinGeest, Oldenaller 1, 1081 HJ Amsterdam, the Netherlands.
| |
Collapse
|
74
|
Suganya K, Koo BS. Gut-Brain Axis: Role of Gut Microbiota on Neurological Disorders and How Probiotics/Prebiotics Beneficially Modulate Microbial and Immune Pathways to Improve Brain Functions. Int J Mol Sci 2020; 21:E7551. [PMID: 33066156 PMCID: PMC7589356 DOI: 10.3390/ijms21207551] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
The gut microbiome acts as an integral part of the gastrointestinal tract (GIT) that has the largest and vulnerable surface with desirable features to observe foods, nutrients, and environmental factors, as well as to differentiate commensals, invading pathogens, and others. It is well-known that the gut has a strong connection with the central nervous system (CNS) in the context of health and disease. A healthy gut with diverse microbes is vital for normal brain functions and emotional behaviors. In addition, the CNS controls most aspects of the GI physiology. The molecular interaction between the gut/microbiome and CNS is complex and bidirectional, ensuring the maintenance of gut homeostasis and proper digestion. Besides this, several mechanisms have been proposed, including endocrine, neuronal, toll-like receptor, and metabolites-dependent pathways. Changes in the bidirectional relationship between the GIT and CNS are linked with the pathogenesis of gastrointestinal and neurological disorders; therefore, the microbiota/gut-and-brain axis is an emerging and widely accepted concept. In this review, we summarize the recent findings supporting the role of the gut microbiota and immune system on the maintenance of brain functions and the development of neurological disorders. In addition, we highlight the recent advances in improving of neurological diseases by probiotics/prebiotics/synbiotics and fecal microbiota transplantation via the concept of the gut-brain axis.
Collapse
Affiliation(s)
- Kanmani Suganya
- Department of Oriental Medicine, Dongguk University, Gyeongju 38066, Korea;
- Department of Oriental Neuropsychiatry, Graduate School of Oriental Medicine, Dongguk University, Ilsan Hospital, 814 Siksa-dong, Goyang-si, Gyeonggi-do 10326, Korea
| | - Byung-Soo Koo
- Department of Oriental Medicine, Dongguk University, Gyeongju 38066, Korea;
- Department of Oriental Neuropsychiatry, Graduate School of Oriental Medicine, Dongguk University, Ilsan Hospital, 814 Siksa-dong, Goyang-si, Gyeonggi-do 10326, Korea
| |
Collapse
|
75
|
Heidarzadeh-Rad N, Gökmen-Özel H, Kazemi A, Almasi N, Djafarian K. Effects of a Psychobiotic Supplement on Serum Brain-derived Neurotrophic Factor Levels in Depressive Patients: A Post Hoc Analysis of a Randomized Clinical Trial. J Neurogastroenterol Motil 2020; 26:486-495. [PMID: 32989186 PMCID: PMC7547201 DOI: 10.5056/jnm20079] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/15/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
Background/Aims Psychobiotics are probiotics or prebiotics that, upon ingestion in adequate amounts, yield positive influence on mental health via microbiota-gut-brain axis regulation to modulate the circulating cytokines, chemokines, neurotransmitters, or neurotrophins levels. We have recently shown that a psychobiotic combination (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175; CEREBIOME) significantly improved depression symptoms in patients with depression. Recent animal data suggest the influence of the gut microbiota on brain-derived neurotrophic factor (BDNF), which was shown to correlate with antidepressant response in depressive patients. Therefore, we conducted this exploratory post hoc analysis of BDNF levels to clarify the mechanism of action of this psychobiotic in our cohort. Methods Our study was a double-blind, randomized controlled trial of patients with low-to-moderate depression receiving either a probiotic combination, prebiotic or placebo. From the 110 patients randomized in the trial, 78 were included in this post hoc analysis (probiotic, n = 28; prebiotic and placebo, n = 25). We compared serum BDNF levels from participants at baseline and endpoint, and assessed the Pearson correlation between depression severity and BDNF levels for each intervention. Results We found that post-intervention BDNF levels were significantly different between groups (P < 0.001). Furthermore, BDNF levels increased significantly in the probiotic group compared to both the prebiotic (P < 0.001) and placebo groups (P = 0.021), which inversely correlated with depression severity compared to placebo (ANOVA/ANCOVA, P = 0.012; Pearson, r = -0.79, P < 0.001). In the prebiotic group, BDNF levels reduced but not significantly compared with placebo group (P > 0.05). Conclusion Eight-week supplementation with B. longum and L. helveticus in depressive patients improved depression symptoms, possibly by increasing BDNF levels.
Collapse
Affiliation(s)
- Nazanin Heidarzadeh-Rad
- Department of Nutrition and Dietetics, Hacettepe University Faculty of Health Sciences, Ankara, Turkey
| | - Hülya Gökmen-Özel
- Department of Nutrition and Dietetics, Hacettepe University Faculty of Health Sciences, Ankara, Turkey
| | - Asma Kazemi
- Nutrition Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Almasi
- Department of Nutrition and Dietetics, Hacettepe University Faculty of Health Sciences, Ankara, Turkey
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
76
|
Bear TLK, Dalziel JE, Coad J, Roy NC, Butts CA, Gopal PK. The Role of the Gut Microbiota in Dietary Interventions for Depression and Anxiety. Adv Nutr 2020; 11:890-907. [PMID: 32149335 PMCID: PMC7360462 DOI: 10.1093/advances/nmaa016] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 12/16/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
There is emerging evidence that an unhealthy dietary pattern may increase the risk of developing depression or anxiety, whereas a healthy dietary pattern may decrease it. This nascent research suggests that dietary interventions could help prevent, or be an alternative or adjunct therapy for, depression and anxiety. The relation, however, is complex, affected by many confounding variables, and is also likely to be bidirectional, with dietary choices being affected by stress and depression. This complexity is reflected in the data, with sometimes conflicting results among studies. As the research evolves, all characteristics of the relation need to be considered to ensure that we obtain a full understanding, which can potentially be translated into clinical practice. A parallel and fast-growing body of research shows that the gut microbiota is linked with the brain in a bidirectional relation, commonly termed the microbiome-gut-brain axis. Preclinical evidence suggests that this axis plays a key role in the regulation of brain function and behavior. In this review we discuss possible reasons for the conflicting results in diet-mood research, and present examples of areas of the diet-mood relation in which the gut microbiota is likely to be involved, potentially explaining some of the conflicting results from diet and depression studies. We argue that because diet is one of the most significant factors that affects human gut microbiota structure and function, nutritional intervention studies need to consider the gut microbiota as an essential piece of the puzzle.
Collapse
Affiliation(s)
- Tracey L K Bear
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Julie E Dalziel
- Riddet Institute, Massey University, Palmerston North, New Zealand
- AgResearch Ltd Grasslands Research Centre, Palmerston North, New Zealand
| | - Jane Coad
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Nicole C Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand
- AgResearch Ltd Grasslands Research Centre, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Christine A Butts
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Pramod K Gopal
- Riddet Institute, Massey University, Palmerston North, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
77
|
Intermingling of gut microbiota with brain: Exploring the role of probiotics in battle against depressive disorders. Food Res Int 2020; 137:109489. [PMID: 33233143 DOI: 10.1016/j.foodres.2020.109489] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
Depression is a debilitating psychiatric ailment which exerts disastrous effects on one's mental and physical health. Depression is accountable for augmentation of various life-threatening maladies such as neurodegenerative anomalies, cardiovascular diseases and diabetes. Depressive episodes are recurrent, pose a negative impact on life quality, decline life expectancy and enhance suicidal tendencies. Anti-depression chemotherapy displays marked adverse effects and frequent relapses. Thus, newer therapeutic interventions to prevent or combat depression are desperately required. Discovery of gut microbes as our mutualistic partner was made a long time ago and it is surprising that their functions still continue to expand and as of yet many are still to be uncovered. Experimental studies have revealed astonishing role of gut commensals in gut-brain signaling, immune homeostasis and hormonal regulation. Now, it is a well-established fact that gut microbes can alleviate stress or depression associated symptoms by modulating brain functions. Here in, we provide an overview of physiological alleyways involved in cross-talk between gut and brain, part played by probiotics in regulation of these pathways and use of probiotic bacteria as psychobiotics in various mental or depressive disorders.
Collapse
|
78
|
Zhang Y, Luan D, Liu Y, Li H, Dong J, Zhang X, Yuan L, Zhong Z, Jiang L, Li X, Ye M, Tong J. Helicid Reverses Lipopolysaccharide-Induced Inflammation and Promotes GDNF Levels in C6 Glioma Cells through Modulation of Prepronociceptin. Chem Biodivers 2020; 17:e2000063. [PMID: 32329965 DOI: 10.1002/cbdv.202000063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022]
Abstract
Helicid suppresses inflammatory factors and protects nerve cells in the hippocampus of rats with depression, but the mechanisms underlying its protective effects are unclear at present. In this investigation, we conducted gene silencing, Helicid intervention and rescue experiments to explore the protective actions of PNOC, the prepronociceptin gene known to regulate inflammatory processes, and Helicid on a C6 cell model of inflammation induced by LPS. Collective data from Western blots, ELISA, immunofluorescence and flow cytometry experiments showed that PNOC silencing or administration of Helicid led to reduced inflammatory factor levels, oxidative stress and expression of glial fibrillary acidic protein (GFAP), along with increased glial cell lines-derived neurotrophic factor (GDNF) expression. Furthermore, expression of p-Akt in the Akt signaling pathway was increased. Interestingly, overexpression of PNOC in the Helicid treatment group partially reversed the Helicid-induced changes in the above biochemical indexes. Our collective results provide strong evidence of Helicid-mediated regulation of the Akt signaling pathway through PNOC to improve cell inflammation and oxidative stress.
Collapse
Affiliation(s)
| | - Di Luan
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, P. R. China
| | - Yanhao Liu
- Wannan Medical College, Wuhu, 241000, P. R. China
| | - Hongjin Li
- Wannan Medical College, Wuhu, 241000, P. R. China
| | - Jian Dong
- Wannan Medical College, Wuhu, 241000, P. R. China
| | | | - Lili Yuan
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, P. R. China
| | - Zhengling Zhong
- Department of Clinical Pharmacy, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, P. R. China
| | - Lan Jiang
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, P. R. China
| | - Xuyi Li
- China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Mingquan Ye
- Wannan Medical College, Wuhu, 241000, P. R. China
| | - Jiucui Tong
- Wannan Medical College, Wuhu, 241000, P. R. China.,Department of Clinical Pharmacy, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, P. R. China
| |
Collapse
|
79
|
Rahimlou M, Hosseini SA, Majdinasab N, Haghighizadeh MH, Husain D. Effects of long-term administration of Multi-Strain Probiotic on circulating levels of BDNF, NGF, IL-6 and mental health in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled trial. Nutr Neurosci 2020; 25:411-422. [PMID: 32500827 DOI: 10.1080/1028415x.2020.1758887] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Mental disorders is one of the main causes of disability and lower life expectancy among patients with Multiple Sclerosis (MS). The present trial aimed to examine the efficacy of multi-strain probiotic supplementation on circulating levels of BDNF, NGF, IL-6 and mental health in patients with MS.Methods: This trial was conducted among 70 patients with MS that referred to the MS Association. Patients were randomized into intervention and control groups to receive 2 multi-strain probiotic capsules or placebo, daily for six months. Serum BDNF, NGF and IL-6 was measured by ELISA kits. Mental health parameters were assessed by valid questionnaires in the baseline and end of the study.Results: Of the 70 patients enrolled in this study, 65 subjects were included in the final analysis. From baseline to 6 months, probiotic supplementation resulted in a significant increase in BDNF and a significant reduction in the IL-6 levels (P < 0.001). Our findings revealed that probiotic supplementation compared to placebo caused a significant improvement in the general health questionnaire-28 (GHQ-28) (-5.31 ± 4.62 vs. -1.81 ± 4.23; P = 0.002), Beck Depression Inventory-II (BDI-II) (-4.81 ± 0.79 vs. -1.90 ± 0.96; P = 0.001), Fatigue Severity Scale (FSS) (-3.81 ± 6.56 vs. 0.24 ± 5.44; P = 0.007) and Pain Rating Index (PRI) (-3.15 ± 4.51 vs. -0.09 ± 3.67; P = 0.004). However, we not found any significant difference between the two groups in other factors (P > 0.05).Conclusion: Overall, six months of probiotic supplementation resulted in greater improvement in mental health parameters.
Collapse
Affiliation(s)
- Mehran Rahimlou
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nutrition & Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ahmad Hosseini
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nutrition & Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nastaran Majdinasab
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Hosein Haghighizadeh
- Department of Biostatistics and Epidemiology, School of Health Ahvaz Jundishapur University of Medical sciences, Ahvaz, Iran
| | - Durdana Husain
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nutrition & Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
80
|
Parohan M, Djalali M, Sarraf P, Yaghoubi S, Seraj A, Foroushani AR, Ranji-Burachaloo S, Javanbakht MH. Effect of probiotic supplementation on migraine prophylaxis: a systematic review and meta-analysis of randomized controlled trials. Nutr Neurosci 2020; 25:511-518. [PMID: 32420827 DOI: 10.1080/1028415x.2020.1764292] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective: The prevalence of migraine is higher in patients with gastrointestinal disorders. Possible underlying mechanisms could be increased intestinal permeability and systemic inflammation. Probiotics may reduce gut permeability as well as inflammation, and therefore may improve the clinical features of migraine. This systematic review and meta-analysis aimed to evaluate the impact of probiotic supplementation on the frequency and severity of migraine attacks.Methods: A systematic review of the literature was conducted using ISI Web of Science, PubMed/Medline, Scopus, Cochrane Library, EMBASE, Google Scholar, Magiran.com and Sid.ir to identify eligible studies published up to October 2019. A meta-analysis of eligible trials was performed using the random-effects model to estimate pooled effect size.Results: Three randomized controlled trials with 179 patients (probiotic group = 94, placebo group = 85) were included. Probiotic supplementation had no significant effect on frequency (weighted mean difference (WMD) = -2.54 attacks/month, 95%CI: -5.31-0.22, p = 0.071) and severity of migraine attacks (WMD = -1.23 visual analog scale (VAS) score, 95%CI = -3.37-0.92, p = 0.262) with significant heterogeneity among the studies (I2 = 98%, p < 0.001).Conclusions: A pooled analysis of available randomized controlled clinical trials showed that probiotic supplementation had no significant effect on the frequency and severity of episodic migraine attacks.
Collapse
Affiliation(s)
- Mohammad Parohan
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Djalali
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Payam Sarraf
- Iranian center of Neurological research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Yaghoubi
- Department of Clinical Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Asal Seraj
- Department of Nursing, Damavand Branch, Islamic Azad University, Damavand, Iran
| | - Abbas Rahimi Foroushani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sakineh Ranji-Burachaloo
- Iranian center of Neurological research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Javanbakht
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
81
|
Westfall S, Pasinetti GM. The Gut Microbiota Links Dietary Polyphenols With Management of Psychiatric Mood Disorders. Front Neurosci 2019; 13:1196. [PMID: 31749681 PMCID: PMC6848798 DOI: 10.3389/fnins.2019.01196] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
The pathophysiology of depression is multifactorial yet generally aggravated by stress and its associated physiological consequences. To effectively treat these diverse risk factors, a broad acting strategy is required and is has been suggested that gut-brain-axis signaling may play a pinnacle role in promoting resilience to several of these stress-induced changes including pathogenic load, inflammation, HPA-axis activation, oxidative stress and neurotransmitter imbalances. The gut microbiota also manages the bioaccessibility of phenolic metabolites from dietary polyphenols whose multiple beneficial properties have known therapeutic efficacy against depression. Although several potential therapeutic mechanisms of dietary polyphenols toward establishing cognitive resilience to neuropsychiatric disorders have been established, only a handful of studies have systematically identified how the interaction of the gut microbiota with dietary polyphenols can synergistically alleviate the biological signatures of depression. The current review investigates several of these potential mechanisms and how synbiotics, that combine probiotics with dietary polyphenols, may provide a novel therapeutic strategy for depression. In particular, synbiotics have the potential to alleviate neuroinflammation by modulating microglial and inflammasome activation, reduce oxidative stress and balance serotonin metabolism therefore simultaneously targeting several of the major pathological risk factors of depression. Overall, synbiotics may act as a novel therapeutic paradigm for neuropsychiatric disorders and further understanding the fundamental mechanisms of gut-brain-axis signaling will allow full utilization of the gut microbiota's as a therapeutic tool.
Collapse
Affiliation(s)
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|