51
|
Zhang F, Min Y, Yu Y, Xu N, Wang W, Wu S. Vitamin A deficiency and its treatment in captive Sunda pangolins. Vet Med Sci 2020; 7:554-558. [PMID: 33058569 PMCID: PMC8025615 DOI: 10.1002/vms3.367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 06/13/2020] [Accepted: 09/09/2020] [Indexed: 02/05/2023] Open
Abstract
The high incidence of disease in captive pangolins is a major obstacle in pangolin-conservation breeding programs. Therefore, elucidating pangolins' susceptibility to disease is the key to conservation progress. At the Pangolin Research Base for Artificial Rescue and Conservation Breeding of South China Normal University (PRB-SCNU), vitamin A deficiency was diagnosed in 14 captive Sunda pangolins. Typical eye signs included lacrimal eyes, keratopathy and a blank, milky orb. The afflicted pangolins were treated with vitamins A and D for 15-30 days; all individuals recovered. We report the detection and treatment of vitamin A deficiency in captive Sunda pangolins at the PRB-SCNU. Our results could provide guidance for the future prevention and treatment of vitamin A deficiency and associated diseases in pangolin species, both to reduce the incidence of these diseases in captive pangolins and to aid conservation efforts.
Collapse
Affiliation(s)
- Fuhua Zhang
- School of Life Science, South China Normal University, Guangzhou, P. R. China
| | - Yue Min
- School of Life Science, South China Normal University, Guangzhou, P. R. China
| | - Yishuang Yu
- School of Life Science, South China Normal University, Guangzhou, P. R. China
| | - Na Xu
- School of Life Science, South China Normal University, Guangzhou, P. R. China
| | - Wenhua Wang
- School of Life Science, South China Normal University, Guangzhou, P. R. China
| | - Shibao Wu
- School of Life Science, South China Normal University, Guangzhou, P. R. China
| |
Collapse
|
52
|
Zhang M, Li Q, Yang T, Meng F, Lai X, Liang L, Li C, Sun H, Sun J, Zheng H. Positive feedback between retinoic acid and 2-phospho-L-ascorbic acid trisodium salt during somatic cell reprogramming. ACTA ACUST UNITED AC 2020; 9:17. [PMID: 33000315 PMCID: PMC7527398 DOI: 10.1186/s13619-020-00057-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/03/2020] [Indexed: 12/02/2022]
Abstract
Retinoic acid (RA) and 2-phospho-L-ascorbic acid trisodium salt (AscPNa) promote the reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells. In the current studies, the lower abilities of RA and AscPNa to promote reprogramming in the presence of each other suggested that they may share downstream pathways at least partially. The hypothesis was further supported by the RNA-seq analysis which demonstrated a high-level overlap between RA-activated and AscPNa activated genes during reprogramming. In addition, RA upregulated Glut1/3, facilitated the membrane transportation of dehydroascorbic acid, the oxidized form of L-ascorbic acid, and subsequently maintained intracellular L-ascorbic acid at higher level and for longer time. On the other hand, AscPNa facilitated the mesenchymal-epithelial transition during reprogramming, downregulated key mesenchymal transcriptional factors like Zeb1 and Twist1, subsequently suppressed the expression of Cyp26a1/b1 which mediates the metabolism of RA, and sustained the intracellular level of RA. Furthermore, the different abilities of RA and AscPNa to induce mesenchymal-epithelial transition, pluripotency, and neuronal differentiation explain their complex contribution to reprogramming when used individually or in combination. Therefore, the current studies identified a positive feedback between RA and AscPNa, or possibility between vitamin A and C, and further explored their contributions to reprogramming.
Collapse
Affiliation(s)
- Mengdan Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave., Science City, Guangzhou, 510530, Huangpu District, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Li
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave., Science City, Guangzhou, 510530, Huangpu District, China.,Guangzhou Medical University, Guangzhou, 511436, China
| | - Tingting Yang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave., Science City, Guangzhou, 510530, Huangpu District, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Meng
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave., Science City, Guangzhou, 510530, Huangpu District, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaowei Lai
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave., Science City, Guangzhou, 510530, Huangpu District, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lining Liang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave., Science City, Guangzhou, 510530, Huangpu District, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, China
| | - Changpeng Li
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave., Science City, Guangzhou, 510530, Huangpu District, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, China
| | - Hao Sun
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave., Science City, Guangzhou, 510530, Huangpu District, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaqi Sun
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China
| | - Hui Zheng
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave., Science City, Guangzhou, 510530, Huangpu District, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Institutes for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
53
|
Singh V. Can Vitamins, as Epigenetic Modifiers, Enhance Immunity in COVID-19 Patients with Non-communicable Disease? Curr Nutr Rep 2020; 9:202-209. [PMID: 32661859 PMCID: PMC7356139 DOI: 10.1007/s13668-020-00330-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW The highly infectious transmissible disease, the novel SARS-CoV-2, causing the coronavirus disease (COVID-19), has a median incubation time of 5 to 15 days. The symptoms vary from person to person and many are "hidden carriers." Few people experience immediate reaction and even death within 48 h of infection. However, many show mild to chronic symptoms and recover. Nevertheless, the death rate due to COVID-19 transmission is high especially among patients with non-communicable diseases. The purpose of this review is to provide evidence to consider vitamins as epigenetic modifiers to enhance immunity and reduce inflammatory response in COVID-19 patients with non-communicable diseases. RECENT FINDINGS Clinical evidence has suggested the risk of getting infected is high among individuals with non-communicable diseases such as cardiovascular disease, type-2 diabetes, cancer, acute respiratory distress syndrome, and renal disease, as well as the elderly with high mortality rate among the cohort. The impact is due to an already compromised immune system of patients. Every patient has a different response to COVID-19, which shows that the ability to combat the deadly virus varies individually. Thus, treatment can be personalized and adjusted to help protect and combat COVID-19 infections, especially in individuals with non-communicable diseases. Based on current published scientific and medical evidence, the suggestions made in this article for combination of vitamin therapy as epigenetic modifiers to control the unregulated inflammatory and cytokine marker expressions, further needs to be clinically proven. Future research and clinical trials can apply the suggestions given in this article to support metabolic activities in patients and enhance the immune response.
Collapse
Affiliation(s)
- Varsha Singh
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
54
|
Godoy-Parejo C, Deng C, Zhang Y, Liu W, Chen G. Roles of vitamins in stem cells. Cell Mol Life Sci 2020; 77:1771-1791. [PMID: 31676963 PMCID: PMC11104807 DOI: 10.1007/s00018-019-03352-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/12/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
Stem cells can differentiate to diverse cell types in our body, and they hold great promises in both basic research and clinical therapies. For specific stem cell types, distinctive nutritional and signaling components are required to maintain the proliferation capacity and differentiation potential in cell culture. Various vitamins play essential roles in stem cell culture to modulate cell survival, proliferation and differentiation. Besides their common nutritional functions, specific vitamins are recently shown to modulate signal transduction and epigenetics. In this article, we will first review classical vitamin functions in both somatic and stem cell cultures. We will then focus on how stem cells could be modulated by vitamins beyond their nutritional roles. We believe that a better understanding of vitamin functions will significantly benefit stem cell research, and help realize their potentials in regenerative medicine.
Collapse
Affiliation(s)
- Carlos Godoy-Parejo
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Chunhao Deng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Yumeng Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
- Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
55
|
Li H, He P, Lin T, Guo H, Li Y, Song Y, Wang B, Liu C, Liu L, Li J, Zhang Y, Huo Y, Zhou H, Yang Y, Ling W, Wang X, Zhang H, Xu X, Qin X. Association between plasma retinol levels and the risk of all-cause mortality in general hypertensive patients: A nested case-control study. J Clin Hypertens (Greenwich) 2020; 22:906-913. [PMID: 32352642 DOI: 10.1111/jch.13866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/11/2020] [Accepted: 03/19/2020] [Indexed: 01/21/2023]
Abstract
To evaluate the association between plasma retinol levels with all-cause mortality and investigate the possible effect modifiers in general hypertensive patients with no previous cardiovascular disease (CVD). This case-control study was nested in the China Stroke Primary Prevention Trial (CSPPT), a randomized, double-blind, controlled trial conducted in 32 communities in Anhui and Jiangsu provinces in China. The current study included 617 cases of all-cause mortality and 617 controls matched on age (≤1 year), sex, treatment group, and study site. All-cause mortality was the main outcome in this analysis, which included death due to any reason. The median follow-up duration was 4.5 years. Overall, there was a U-shaped relation of plasma retinol with all-cause mortality. In the threshold effect analysis, the risk of all-cause mortality significantly decreased with the increase in plasma retinol (per 10 μg/dL increments: OR, 0.73; 95% CI: 0.61-0.87) in participants with plasma retinol <58.3 μg/dL and increased with the increase in plasma retinol (per 10 μg/dL increments: OR, 1.08; 95% CI: 1.01-1.16) in those with plasma retinol ≥58.3 μg/L. In participants with plasma retinol <58.3 μg/dL, a stronger inverse association was observed in those with higher time-averaged SBP (≥140 vs <140 mm Hg; P-interaction = .034), or higher vitamin E levels (≥11.5 [quartile 4]; vs <11.5 μg/mL; P-interaction = .013). The present study demonstrated that there was a U-shaped relationship of plasma retinol levels with the risk of all-cause mortality in general hypertensive patients, with a turning point around 58.3 μg/dL.
Collapse
Affiliation(s)
- Huan Li
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Panpan He
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tengfei Lin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Huiyuan Guo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Youbao Li
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yun Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Binyan Wang
- Institute of Biomedicine, Anhui Medical University, Hefei, China
| | | | - Lishun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Houqing Zhou
- Department of Clinical Laboratory, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| | - Yan Yang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, China.,Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, China
| | - Wenhua Ling
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, China.,Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiping Xu
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Institute of Biomedicine, Anhui Medical University, Hefei, China
| | - Xianhui Qin
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Institute of Biomedicine, Anhui Medical University, Hefei, China
| |
Collapse
|
56
|
How Dietary Deficiency Studies Have Illuminated the Many Roles of Vitamin A During Development and Postnatal Life. Subcell Biochem 2020; 95:1-26. [PMID: 32297294 DOI: 10.1007/978-3-030-42282-0_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Vitamin A deficiency studies have been carried out since the early 1900s. Initially, these studies led to the identification of fat soluble A as a unique and essential component of the diet of rodents, birds, and humans. Continuing work established that vitamin A deficiency produces biochemical and physiological dysfunction in almost every vertebrate organ system from conception to death. This chapter begins with a review of representative historical and current studies that used the nutritional vitamin A deficiency research model to gain an understanding of the many roles vitamin A plays in prenatal and postnatal development and well-being. This is followed by a discussion of recent studies that show specific effects of vitamin A deficiency on prenatal development and postnatal maintenance of the olfactory epithelium, brain, and heart. Vitamin A deficiency studies have helped define the necessity of vitamin A for the health of all vertebrates, including farm animals, but the breadth of deficient states and their individual effects on health have not been fully determined. Future work is needed to develop tools to assess the complete vitamin A status of an organism and to define the levels of vitamin A that optimally support molecular and systems level processes during all ages and stages of life.
Collapse
|
57
|
Grignard E, Håkansson H, Munn S. Regulatory needs and activities to address the retinoid system in the context of endocrine disruption: The European viewpoint. Reprod Toxicol 2020; 93:250-258. [PMID: 32171711 PMCID: PMC7322530 DOI: 10.1016/j.reprotox.2020.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 01/01/2023]
Abstract
Endocrine disruption continues to be a matter of high concern, and a subject of intensive activities at the public, political, regulatory and academic levels. Currently, available regulatory test guidelines (TGs) relevant to the identification of endocrine disrupters are largely limited to estrogen, androgen, thyroid and steroidogenesis (EATS) pathways. Thus, there is an increasing interest and need to develop test methods, biomarkers, and Adverse Outcome Pathways (AOPs), for identification and evaluation of endocrine disrupters in addition to the EATS pathways. An activity focusing on the retinoid system has been jointly initiated by the Swedish Chemicals Agency and the European Commission. The retinoid system is involved in fundamental life processes and has been described, in previous work at the OECD, as a system susceptible to environmental endocrine disruption, the disruption of which could contribute to the increasing incidence of certain disorders in humans and wildlife populations.
Collapse
Affiliation(s)
- Elise Grignard
- European Commission, Joint Research Centre (JRC), Italy.
| | - Helen Håkansson
- Institute of Environmental Medicine (IMM), Karolinska Institutet, Sweden.
| | - Sharon Munn
- European Commission, Joint Research Centre (JRC), Italy.
| |
Collapse
|
58
|
Abstract
Epigenetic modifications play an important role in disease pathogenesis and therefore are a focus of intense investigation. Epigenetic changes include DNA, RNA, and histone modifications along with expression of non-coding RNAs. Various factors such as environment, diet, and lifestyle can influence the epigenome. Dietary nutrients like vitamins can regulate both physiological and pathological processes through their direct impact on epigenome. Vitamin A acts as a major regulator of above-mentioned epigenetic mechanisms. B group vitamins including biotin, niacin, and pantothenic acid also participate in modulation of various epigenome. Further, vitamin C has shown to modulate both DNA methylation and histone modifications while few reports have also supported its role in miRNA-mediated pathways. Similarly, vitamin D also influences various epigenetic modifications of both DNA and histone by controlling the regulatory mechanisms. Despite the information that vitamins can modulate the epigenome, the detailed mechanisms of vitamin-mediated epigenetic regulations have not been explored fully and hence further detailed studies are required to decipher their role at epigenome level in both normal and disease pathogenesis. The current review summarizes the available literature on the role of vitamins as epigenetic modifier and highlights the key evidences for developing vitamins as potential epidrugs.
Collapse
Affiliation(s)
- Suza Mohammad Nur
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Suvasmita Rath
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Madison, WI, USA
| | - Varish Ahmad
- Health Information Technology Department, Faculty of Applied Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bushra Ateeq
- Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur (IIT K), Kanpur, India
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
59
|
Ramírez-Moreno A, Quintanar Escorza MA, García Garza R, Hady K, Meléndez Valenzuela A, Marszalek JE, Sharara-Núñez I, Delgadillo-Guzmán D. All-trans retinoic acid improves pancreatic cell proliferation on induced type 1 diabetic rats. Fundam Clin Pharmacol 2019; 34:345-351. [PMID: 31762099 DOI: 10.1111/fcp.12523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 10/26/2019] [Accepted: 11/20/2019] [Indexed: 12/22/2022]
Abstract
All-trans retinoic acid (ATRA) has been extensively studied as an integrating component of endocrine functions in the pancreas. The aim of this study was to evaluate the effects of ATRA on physiopathological biomarkers in an experimental model of rat with type 1 diabetes induced by alloxan (T1D). Twenty Wistar rats were divided equally into five groups, each receiving a different treatment: a control group (CG), a diabetic group without T1D treatment, a diabetic group treated with ATRA, a diabetic group supplemented with vitamin E (VIT E), and a group that was given olive oil (V). The administration of ATRA for 17 days produced a significant reduction in weight and glucose levels, compared to the T1D and VIT E groups. The evaluation of total antioxidant capacity (TAC) and lipoperoxidation showed no relevant difference among the groups. The results of the histological analysis showed similarities both in the size and in the number of islets of Langerhans in the pancreatic tissue obtained from the ATRA group and the CG. ATRA displayed a significant reduction of glycemic values in diabetic rats. Ultrastructurally, ß-cells, acinar, and ductal cells restored their normal appearance. ATRA can contribute to the recovery of pancreatic damage due to alloxan induction. It seems that the antioxidant effect of ATRA is not responsible for the differences observed.
Collapse
Affiliation(s)
- Agustina Ramírez-Moreno
- Faculty of Biological Sciences, Autonomous University of Coahuila, Carr. Torreón- Matamoros, km 7.5. C.P.27276, Torreón, Coahuila, Mexico
| | - Martha Angélica Quintanar Escorza
- Department of Biochemistry and Health School of Medicine and Nutrition, Juarez University of the State of Durango, Durango Unit, Durango, Mexico
| | - Rubén García Garza
- Departament of Histology, Faculty of Medicine T.U, Autonomous University of Coahuila, Torreón, Coahuila, Mexico
| | - Keita Hady
- Drug Research Laboratoy, Federal University of Amapá, Rodivia Juscelino Kubitscheck, km 2, Jardim Marco Zero, CEP: 68903-419, Macapa, Amapá, Brazil
| | - Adrian Meléndez Valenzuela
- Department of Pharmacology, Faculty of Medicine, Autonomous University of Coahuila, Torreón Unit, Torreón, Coahuila, Mexico
| | - Jolanta E Marszalek
- Faculty of Biological Sciences, Autonomous University of Coahuila, Carr. Torreón- Matamoros, km 7.5. C.P.27276, Torreón, Coahuila, Mexico
| | - Ibrahim Sharara-Núñez
- Department of Pharmacology, Faculty of Medicine, Autonomous University of Coahuila, Torreón Unit, Torreón, Coahuila, Mexico
| | - Dealmy Delgadillo-Guzmán
- Department of Pharmacology, Faculty of Medicine, Autonomous University of Coahuila, Torreón Unit, Torreón, Coahuila, Mexico
| |
Collapse
|
60
|
Heidor R, Affonso JM, Ong TP, Moreno FS. Nutrition and Liver Cancer Prevention. NUTRITION AND CANCER PREVENTION 2019:339-367. [DOI: 10.1039/9781788016506-00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Liver cancer represents a major public health problem. Hepatocarcinogenesis is a complex process that comprises several stages and is caused by multiple factors. Both progressive genetic and epigenetic alterations are described in liver cancer development. The most effective strategy to reduce the impact of this disease is through prevention. In addition to vaccination against HBV and treatment of HCV infection, other preventive measures include avoiding ingesting aflatoxin-contaminated foods and drinking alcoholic beverages, as well as maintaining healthy body weight and practicing physical exercise. Bioactive compounds from fruits and vegetables present great potential for liver cancer chemoprevention. Among them, tea catechins, carotenoids, retinoids, β-ionone, geranylgeraniol and folic acid can be highlighted. In addition, butyric acid, tributyrin and structured lipids based on butyric acid and other fatty acids represent additional promising chemopreventive agents. These bioactive food compounds have been shown to modulate key cellular and molecular processes that are deregulated in hepatocarcinogenesis. Furthermore, combinations of different classes of bioactive food compounds or of bioactive food compounds with synthetic drugs could lead to synergistic liver cancer chemopreventive effects.
Collapse
Affiliation(s)
- R. Heidor
- University of São Paulo, Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Food Research Center (FoRC) São Paulo 05508-000 Brazil
| | - J. M. Affonso
- University of São Paulo, Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Food Research Center (FoRC) São Paulo 05508-000 Brazil
| | - T. P. Ong
- University of São Paulo, Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Food Research Center (FoRC) São Paulo 05508-000 Brazil
| | - F. S. Moreno
- University of São Paulo, Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Food Research Center (FoRC) São Paulo 05508-000 Brazil
| |
Collapse
|
61
|
Maternal serum retinol, 25(OH)D and 1,25(OH)2D concentrations during pregnancy and peak bone mass and trabecular bone score in adult offspring at 26-year follow-up. PLoS One 2019; 14:e0222712. [PMID: 31557195 PMCID: PMC6762137 DOI: 10.1371/journal.pone.0222712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 09/05/2019] [Indexed: 12/19/2022] Open
Abstract
Background Vitamin A and D deficiency is prevalent in pregnant women worldwide. Both vitamins are involved in fetal skeletal development. A positive association between maternal vitamin D levels and offspring bone mineral density (BMD) at adulthood has been observed. The impact of maternal vitamin A status in pregnancy on offspring peak bone mass remains unclear. Method and findings Forty-one mother-child pairs were recruited from a population-based prospective cohort study in Trondheim, Norway, where pregnant women were followed from gestational week 17. Their term-born infants were followed from birth (1986–88). Regression analyses were performed for vitamin A (retinol), 25-hydroxyvitamin D [25(OH)D] and 1,25-dihydroxyvitamin D [1,25(OH)2D] in maternal serum (gestational weeks 17, 33, 37) and cord blood. Offspring BMD and spine trabecular bone score (TBS), a measure of bone quality, were analyzed by dual x-ray absorptiometry at 26 years. Average levels during pregnancy of retinol, 25(OH)D and 1,25(OH)2D were 1.66 (0.32) μmol/L, 59.0 (20.6) nmol/L, and 251.3 (62.4) pmol/L, respectively. 1,25(OH)2D levels were similar in those with 25(OH)D levels <30 and >75 nmol/L. After adjustment for maternal age, BMI, smoking, and education, and offspring birth weight, maternal serum retinol was positively associated with offspring spine BMD [mean change 30.8 (CI 7.6, 54.0) mg/cm2 per 0.2 μmol/L retinol], and with offspring TBS, although non-significant (p = 0.08). No associations were found between maternal 25(OH)D and 1,25(OH)2D levels and offspring bone parameters. Vitamin levels in cord blood were not associated with offspring BMD or TBS. Conclusions This is the first study to show an association between maternal vitamin A status and offspring peak bone mass. Our findings may imply increase future risk for osteoporotic fracture in offspring of mothers with suboptimal vitamin A level. No associations were observed between 25(OH)D and 1,25(OH)2D and offspring BMD.
Collapse
|
62
|
Chen G, Du YT, Liu JH, Li Y, Zheng L, Qin XS, Cao YM. Modulation of anti-malaria immunity by vitamin A in C57BL/6J mice infected with heterogenic plasmodium. Int Immunopharmacol 2019; 76:105882. [PMID: 31520991 DOI: 10.1016/j.intimp.2019.105882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022]
Abstract
Vitamin A (VA) is an anti-inflammatory agent that is important in modulating and balancing the immune system. The present study aimed to investigate the immunoregulatory effects of vitamin A supplement (VAS) in C57BL/6J mice infected with Plasmodium yoelii 17XL (P.y17XL) or Plasmodium berghei ANKA (P.bANKA). Following VA treatment, parasitaemia decreased, but survival rate did not significantly change during P.y17XL infection. However, in P.bANKA infected C57BL/6J mice, VA pretreatment decreased parasitaemia, and a lag in cerebral malaria (CM) was observed during the early stages of infection. Furthermore, VA pretreatment was also demonstrated to upregulate MHCII expression in dendritic cells (DCs), downregulate Th1 and Tregs, and downregulate TNF-α and IFN-γ production. The results of the current study indicated that VAS downregulated the inflammation response in CM, but did not exhibit an immunoregulatory effect against P.y17XL infection. VAS protected the onset of CM by reducing inflammation, and was also correlated with the downregulation of Th1 by modifying the function of DCs and Tregs. However, no significant effect was observed during P.y17XL infection.
Collapse
Affiliation(s)
- Guang Chen
- Department of Basic Medical Sciences, Taizhou University Hospital, Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou 318000, China; Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110013, China
| | - Yun-Ting Du
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110013, China; Department of Clinical Lab, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Number 44 Xiaoheyan Road, Dadong District, Shenyang 110042, China
| | - Jian-Hua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ying Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Li Zheng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110013, China
| | - Xiao-Song Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ya-Ming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110013, China.
| |
Collapse
|
63
|
One-Carbon Metabolism Links Nutrition Intake to Embryonic Development via Epigenetic Mechanisms. Stem Cells Int 2019; 2019:3894101. [PMID: 30956668 PMCID: PMC6431457 DOI: 10.1155/2019/3894101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/06/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023] Open
Abstract
Beyond energy production, nutrient metabolism plays a crucial role in stem cell lineage determination. Changes in metabolism based on nutrient availability and dietary habits impact stem cell identity. Evidence suggests a strong link between metabolism and epigenetic mechanisms occurring during embryonic development and later life of offspring. Metabolism regulates epigenetic mechanisms such as modifications of DNA, histones, and microRNAs. In turn, these epigenetic mechanisms regulate metabolic pathways to modify the metabolome. One-carbon metabolism (OCM) is a crucial metabolic process involving transfer of the methyl groups leading to regulation of multiple cellular activities. OCM cycles and its related micronutrients are ubiquitously present in stem cells and feed into the epigenetic mechanisms. In this review, we briefly introduce the OCM process and involved micronutrients and discuss OCM-associated epigenetic modifications, including DNA methylation, histone modification, and microRNAs. We further consider the underlying OCM-mediated link between nutrition and epigenetic modifications in embryonic development.
Collapse
|
64
|
Petrelli B, Bendelac L, Hicks GG, Fainsod A. Insights into retinoic acid deficiency and the induction of craniofacial malformations and microcephaly in fetal alcohol spectrum disorder. Genesis 2019; 57:e23278. [DOI: 10.1002/dvg.23278] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Berardino Petrelli
- Regenerative Medicine Program and the Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of Manitoba Winnipeg Manitoba Canada
| | - Liat Bendelac
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel‐CanadaFaculty of Medicine, Hebrew University Jerusalem Israel
| | - Geoffrey G. Hicks
- Regenerative Medicine Program and the Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of Manitoba Winnipeg Manitoba Canada
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel‐CanadaFaculty of Medicine, Hebrew University Jerusalem Israel
| |
Collapse
|
65
|
Shu X, Dong Z, Cheng L, Shu S. DNA hypermethylation of Fgf16 and Tbx22 associated with cleft palate during palatal fusion. J Appl Oral Sci 2019; 27:e20180649. [PMID: 31596367 PMCID: PMC6768118 DOI: 10.1590/1678-7757-2018-0649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/17/2019] [Accepted: 03/12/2019] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Cleft palate (CP) is a congenital birth defect caused by the failure of palatal fusion. Little is known about the potential role of DNA methylation in the pathogenesis of CP. This study aimed to explore the potential role of DNA methylation in the mechanism of CP. METHODOLOGY We established an all-trans retinoic acid (ATRA)-induced CP model in C57BL/6J mice and used methylation-dependent restriction enzymes (MethylRAD, FspEI) combined with high-throughput sequencing (HiSeq X Ten) to compare genome-wide DNA methylation profiles of embryonic mouse palatal tissues, between embryos from ATRA-treated vs. untreated mice, at embryonic gestation day 14.5 (E14.5) (n=3 per group). To confirm differentially methylated levels of susceptible genes, real-time quantitative PCR (qPCR) was used to correlate expression of differentially methylated genes related to CP. RESULTS We identified 196 differentially methylated genes, including 17,298 differentially methylated CCGG sites between ATRA-treated vs. untreated embryonic mouse palatal tissues (P<0.05, log2FC>1). The CP-related genes Fgf16 (P=0.008, log2FC=1.13) and Tbx22 (P=0.011, log2FC=1.64,) were hypermethylated. Analysis of Fgf16 and Tbx22, using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), identified 3 GO terms and 1 KEGG pathway functionally related to palatal fusion. The qPCR showed that changes in expression level negatively correlated with methylation levels. CONCLUSIONS Taken together, these results suggest that hypermethylation of Fgf16 and Tbx22 is associated with decreased gene expression, which might be responsible for developmental failure of palatal fusion, eventually resulting in the formation of CP.
Collapse
Affiliation(s)
- Xuan Shu
- Second Affiliated Hospital of Shantou University Medical College, Cleft Lip and Palate Treatment Center, Shantou, Guangdong, China
| | - Zejun Dong
- Second Affiliated Hospital of Shantou University Medical College, Cleft Lip and Palate Treatment Center, Shantou, Guangdong, China
| | - Liuhanghang Cheng
- Second Affiliated Hospital of Shantou University Medical College, Cleft Lip and Palate Treatment Center, Shantou, Guangdong, China
| | - Shenyou Shu
- Second Affiliated Hospital of Shantou University Medical College, Cleft Lip and Palate Treatment Center, Shantou, Guangdong, China
- Corresponding address: Shenyou Shu Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College 69 Dongxia North Road, Jinping District, Shantou 515041 - China. Phone: +86-18023235288 - Fax: +86-0754-83141156 e-mail:
| |
Collapse
|
66
|
Saeed A, Dullaart RPF, Schreuder TCMA, Blokzijl H, Faber KN. Disturbed Vitamin A Metabolism in Non-Alcoholic Fatty Liver Disease (NAFLD). Nutrients 2017; 10:nu10010029. [PMID: 29286303 PMCID: PMC5793257 DOI: 10.3390/nu10010029] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022] Open
Abstract
Vitamin A is required for important physiological processes, including embryogenesis, vision, cell proliferation and differentiation, immune regulation, and glucose and lipid metabolism. Many of vitamin A’s functions are executed through retinoic acids that activate transcriptional networks controlled by retinoic acid receptors (RARs) and retinoid X receptors (RXRs).The liver plays a central role in vitamin A metabolism: (1) it produces bile supporting efficient intestinal absorption of fat-soluble nutrients like vitamin A; (2) it produces retinol binding protein 4 (RBP4) that distributes vitamin A, as retinol, to peripheral tissues; and (3) it harbors the largest body supply of vitamin A, mostly as retinyl esters, in hepatic stellate cells (HSCs). In times of inadequate dietary intake, the liver maintains stable circulating retinol levels of approximately 2 μmol/L, sufficient to provide the body with this vitamin for months. Liver diseases, in particular those leading to fibrosis and cirrhosis, are associated with impaired vitamin A homeostasis and may lead to vitamin A deficiency. Liver injury triggers HSCs to transdifferentiate to myofibroblasts that produce excessive amounts of extracellular matrix, leading to fibrosis. HSCs lose the retinyl ester stores in this process, ultimately leading to vitamin A deficiency. Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome and is a spectrum of conditions ranging from benign hepatic steatosis to non-alcoholic steatohepatitis (NASH); it may progress to cirrhosis and liver cancer. NASH is projected to be the main cause of liver failure in the near future. Retinoic acids are key regulators of glucose and lipid metabolism in the liver and adipose tissue, but it is unknown whether impaired vitamin A homeostasis contributes to or suppresses the development of NAFLD. A genetic variant of patatin-like phospholipase domain-containing 3 (PNPLA3-I148M) is the most prominent heritable factor associated with NAFLD. Interestingly, PNPLA3 harbors retinyl ester hydrolase activity and PNPLA3-I148M is associated with low serum retinol level, but enhanced retinyl esters in the liver of NAFLD patients. Low circulating retinol in NAFLD may therefore not reflect true “vitamin A deficiency”, but rather disturbed vitamin A metabolism. Here, we summarize current knowledge about vitamin A metabolism in NAFLD and its putative role in the progression of liver disease, as well as the therapeutic potential of vitamin A metabolites.
Collapse
Affiliation(s)
- Ali Saeed
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
- Institute of Molecular Biology & Bio-Technology, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Robin P F Dullaart
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Tim C M A Schreuder
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
67
|
Metabolomic Profiling of Serum Retinol in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. Sci Rep 2017; 7:10601. [PMID: 28878287 PMCID: PMC5587770 DOI: 10.1038/s41598-017-09698-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/27/2017] [Indexed: 12/14/2022] Open
Abstract
The role of retinol in the prevention of multifactorial chronic diseases remains uncertain, and there is sparse evidence regarding biological actions and pathways implicated in its effects on various outcomes. The aim is to investigate whether serum retinol in an un-supplemented state is associated with low molecular weight circulating metabolites. We performed a metabolomic analysis of 1,282 male smoker participants based on pre-supplementation fasting serum in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. We examined the association between 947 metabolites measured by ultra-high performance LC-MS/GC-MS and retinol concentration (from HPLC) using linear regression that estimated the difference in metabolite concentrations per unit difference in retinol concentration as standardized β-coefficients and standard errors (SE). We identified 63 metabolites associated with serum retinol below the Bonferroni-corrected P-value (p < 5.3 × 10–5). The strongest signals were for N-acetyltryptophan (β = 0.27; SE = 0.032; p = 9.8 × 10−17), myo-inositol (β = 0.23; SE = 0.032; p = 9.8 × 10−13), and 1-palmitoylglycerophosphoethanolamine (β = 0.22; SE = 0.032; p = 3.2 × 10−12). Several chemical class pathways were strongly associated with retinol, including amino acids (p = 1.6 × 10−10), lipids (p = 3.3 × 10–7), and cofactor/vitamin metabolites (3.3 × 10−7). The strongest sub-pathway association was for inositol metabolism (p = 2.0 × 10–14). Serum retinol concentration is associated with circulating metabolites in various metabolic pathways, particularly lipids, amino acids, and cofactors/vitamins. These interrelationships may have relevance to the biological actions of retinol, including its role in carcinogenesis.
Collapse
|
68
|
Kumar P, Gogulamudi VR, Periasamy R, Raghavaraju G, Subramanian U, Pandey KN. Inhibition of HDAC enhances STAT acetylation, blocks NF-κB, and suppresses the renal inflammation and fibrosis in Npr1 haplotype male mice. Am J Physiol Renal Physiol 2017; 313:F781-F795. [PMID: 28566502 PMCID: PMC5625105 DOI: 10.1152/ajprenal.00166.2017] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/24/2017] [Accepted: 05/29/2017] [Indexed: 11/22/2022] Open
Abstract
Guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) plays a critical role in the regulation of blood pressure and fluid volume homeostasis. Mice lacking functional Npr1 (coding for GC-A/NPRA) exhibit hypertension and congestive heart failure. However, the underlying mechanisms remain largely less clear. The objective of the present study was to determine the physiological efficacy and impact of all-trans-retinoic acid (ATRA) and sodium butyrate (NaBu) in ameliorating the renal fibrosis, inflammation, and hypertension in Npr1 gene-disrupted haplotype (1-copy; +/-) mice (50% expression levels of NPRA). Both ATRA and NaBu, either alone or in combination, decreased the elevated levels of renal proinflammatory and profibrotic cytokines and lowered blood pressure in Npr1+/- mice compared with untreated controls. The treatment with ATRA-NaBu facilitated the dissociation of histone deacetylase (HDAC) 1 and 2 from signal transducer and activator of transcription 1 (STAT1) and enhanced its acetylation in the kidneys of Npr1+/- mice. The acetylated STAT1 formed a complex with nuclear factor-κB (NF-κB) p65, thereby inhibiting its DNA-binding activity and downstream proinflammatory and profibrotic signaling cascades. The present results demonstrate that the treatment of the haplotype Npr1+/- mice with ATRA-NaBu significantly lowered blood pressure and reduced the renal inflammation and fibrosis involving the interactive roles of HDAC, NF-κB (p65), and STAT1. The current findings will help in developing the molecular therapeutic targets and new treatment strategies for hypertension and renal dysfunction in humans.
Collapse
Affiliation(s)
- Prerna Kumar
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana
| | - Venkateswara R Gogulamudi
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana
| | - Ramu Periasamy
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana
| | - Giri Raghavaraju
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana
| | - Umadevi Subramanian
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana
| | - Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana
| |
Collapse
|
69
|
Selvaag AM, Kirkhus E, Törnqvist L, Lilleby V, Aulie HA, Flatø B. Radiographic damage in hands and wrists of patients with juvenile idiopathic arthritis after 29 years of disease duration. Pediatr Rheumatol Online J 2017; 15:20. [PMID: 28399930 PMCID: PMC5387251 DOI: 10.1186/s12969-017-0151-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/23/2017] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND There are few studies on radiographic outcome after long-term disease duration in juvenile idiopathic arthritis (JIA). We wanted to evaluate 29-year radiographic outcome in hands/wrists and predictors of damage in patients with long-term active JIA. METHODS Patients diagnosed from 1980 to 1985, who had active disease at 15-, 23- or 29-year follow-up and arthritis in the wrists during the disease course, were reexamined with radiographs of hands/wrists. We used the adapted version of the Sharp van der Heijde (aSvdH) score and Carpal Height Ratio (CHR) to evaluate radiographic outcome. RESULTS Sixty patients, mean age 38 years, were reexamined at median 29-year follow-up. 33 patients (55%) had an aSvdH score >0, median score was 4.0 (range 0-313), and 25% of the scores were high (≥53). Most patients with radiographic damage (88%) had both erosions and JSN. 52% of the patients had damage in the wrists, 43% in the MCP joints and 40% in the PIP joints. The CHR correlated strongly with the aSvdH. Both scores had high correlations with the Juvenile Arthritis Damage Index and the number of joints with limited range of motion (LROM) (rs = -0.688 to 0.743, p ≤ 0.001). The aSvdH correlated weakly with measures of disease activity. The number of joints with LROM, ESR and the HAQ disability score at 15 years and HLAB27 positivity predicted the aSvdH score and the CHR at 29-year follow-up. CONCLUSIONS The majority of patients with long-term active JIA had modest radiographic damage, but more frequently in wrists than in fingers. The radiographic scores correlated well with measures of disease damage. Restricted mobility in joints at 15 years was the most important predictor of radiographic damage at 29 years.
Collapse
Affiliation(s)
- Anne M. Selvaag
- grid.55325.34Department of Rheumatology, Oslo University Hospital, Rikshospitalet, Post-box 4950, Nydalen, 0424 Oslo, Norway
| | - Eva Kirkhus
- grid.55325.34Department of Radiology and Nuclear Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway ,grid.5510.1Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lena Törnqvist
- grid.55325.34Department of Radiology and Nuclear Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway ,grid.5640.7Present address: Department of Radiology, Linköping University, Linköping, Sweden
| | - Vibke Lilleby
- grid.55325.34Department of Rheumatology, Oslo University Hospital, Rikshospitalet, Post-box 4950, Nydalen, 0424 Oslo, Norway
| | - Hanne A. Aulie
- grid.55325.34Department of Rheumatology, Oslo University Hospital, Rikshospitalet, Post-box 4950, Nydalen, 0424 Oslo, Norway ,grid.413684.cPresent address: Department of Internal Medicine, Diakonhjemmet Hospital, Oslo, Norway
| | - Berit Flatø
- grid.55325.34Department of Rheumatology, Oslo University Hospital, Rikshospitalet, Post-box 4950, Nydalen, 0424 Oslo, Norway ,grid.5510.1Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
70
|
Abstract
There are several extrinsic and intrinsic factors involving reactive oxygen species that play critical roles in tumor development and progression by inducing DNA mutations, genomic instability, and aberrant pro-tumorigenic signaling. There are various essential micronutrients including minerals and vitamins in the diet, which play pivotal roles in maintaining and reinforcing antioxidant performance, affecting the complex network of genes (nutrigenomic approach) and encoding proteins for carcinogenesis. A lot of these antioxidant agents are available as dietary supplements and are predominant worldwide. However, the best antioxidant micronutrient (or a combination of micronutrients) for reducing cancer risks is unknown. The purpose of this review is to survey the literature on modern biological theories of cancer and the roles of dietary antioxidants in cancer. The roles and functions of antioxidant micronutrients, such as vitamin C (ascorbate), vitamin E (alpha-tocopherol), selenium, and vitamin A, provided through diet for the prevention of cancer are discussed in the present work.
Collapse
Affiliation(s)
- Xiayu Wu
- a School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming , Yunnan , China
| | - Jiaoni Cheng
- b Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Yunnan Stem Cell Translational Research Center, Kunming University , Kunming , China
| | - Xu Wang
- a School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming , Yunnan , China
| |
Collapse
|
71
|
DUSP1 promoter methylation in peripheral blood leukocyte is associated with triple-negative breast cancer risk. Sci Rep 2017; 7:43011. [PMID: 28220843 PMCID: PMC5318948 DOI: 10.1038/srep43011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/18/2017] [Indexed: 12/13/2022] Open
Abstract
DNA methylation is one of the most common epigenetic alterations, providing important information regarding cancer risk and prognosis. A case-control study (423 breast cancer cases, 509 controls) and a case-only study (326 cases) were conducted to evaluate the association of DUSP1 promoter methylation with breast cancer risk and clinicopathological characteristics. No significant association between DUSP1 methylation in peripheral blood leukocyte (PBL) DNA and breast cancer risk was observed. DUSP1 methylation was significantly associated with ER/PR-negative status; in particular, triple-negative breast cancer patients showed the highest frequency of DUSP1 methylation in both tumour DNA and PBL DNA. Soybean intake was significantly correlated with methylated DUSP1 only in ER-negative (OR 2.978; 95% CI 1.245-7.124) and PR negative (OR 2.735; 95% CI 1.315-5.692) patients. Irregular menstruation was significantly associated with methylated DUSP1 only in ER-positive (OR 3.564; 95% CI 1.691-7.511) and PR-positive (OR 3.902, 95% CI 1.656-9.194) patients. Thus, DUSP1 methylation is a cancer-associated hypermethylation event that is closely linked with triple-negative status. Further investigations are warranted to confirm the association of environmental factors, including fruit and soybean intake, irregular menstruation, and ER/PR status, with DUSP1 methylation in breast tumour DNA.
Collapse
|