51
|
Kaiyrzhanov R, Perry L, Rocca C, Zaki MS, Hosny H, Araujo Martins Moreno C, Phadke R, Zaharieva I, Camelo Gontijo C, Beetz C, Pini V, Movahedinia M, Zanoteli E, DiTroia S, Vuillaumier‐Barrot S, Isapof A, Mehrjardi MYV, Ghasemi N, Sarkozy A, Muntoni F, Whalen S, Vona B, Houlden H, Maroofian R.
GGPS1
‐associated muscular dystrophy with and without hearing loss. Ann Clin Transl Neurol 2022; 9:1465-1474. [PMID: 35869884 PMCID: PMC9463955 DOI: 10.1002/acn3.51633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/22/2022] [Accepted: 07/03/2022] [Indexed: 11/06/2022] Open
Abstract
Ultra‐rare biallelic pathogenic variants in geranylgeranyl diphosphate synthase 1 (GGPS1) have recently been associated with muscular dystrophy/hearing loss/ovarian insufficiency syndrome. Here, we describe 11 affected individuals from four unpublished families with ultra‐rare missense variants in GGPS1 and provide follow‐up details from a previously reported family. Our cohort replicated most of the previously described clinical features of GGPS1 deficiency; however, hearing loss was present in only 46% of the individuals. This report consolidates the disease‐causing role of biallelic variants in GGPS1 and demonstrates that hearing loss and ovarian insufficiency might be a variable feature of the GGPS1‐associated muscular dystrophy.
Collapse
Affiliation(s)
- Rauan Kaiyrzhanov
- Department of Neuromuscular Disorders UCL Queen Square Institute of Neurology London WC1N 3BG UK
| | - Luke Perry
- The Dubowitz Neuromuscular Centre University College London, Great Ormond Street, Institute of Child Health and MRC Centre for Neuromuscular Diseases, Neurosciences Unit, Great Ormond Street Hospital London UK
- MRC UCL International Centre for Genomic Medicine in Neuromuscular Diseases (ICGNMD) London UK
| | - Clarissa Rocca
- Department of Neuromuscular Disorders UCL Queen Square Institute of Neurology London WC1N 3BG UK
| | - Maha S. Zaki
- Clinical Genetics Department Human Genetics and Genome Research Division, National Research Centre 12622 Cairo Egypt
| | - Heba Hosny
- National Institute of Neuromotor System Cairo Egypt
- Diagnostic Department Centogene GmbH 18055 Rostock Germany
| | | | - Rahul Phadke
- The Dubowitz Neuromuscular Centre University College London, Great Ormond Street, Institute of Child Health and MRC Centre for Neuromuscular Diseases, Neurosciences Unit, Great Ormond Street Hospital London UK
| | - Irina Zaharieva
- The Dubowitz Neuromuscular Centre University College London, Great Ormond Street, Institute of Child Health and MRC Centre for Neuromuscular Diseases, Neurosciences Unit, Great Ormond Street Hospital London UK
| | - Clara Camelo Gontijo
- Department of Neurology School of Medicine of Universidade de Sao Paulo Sao Paulo Brazil
| | | | - Veronica Pini
- The Dubowitz Neuromuscular Centre University College London, Great Ormond Street, Institute of Child Health and MRC Centre for Neuromuscular Diseases, Neurosciences Unit, Great Ormond Street Hospital London UK
| | - Mojtaba Movahedinia
- Children Growth Disorder Research Center Shahid Sadoughi University of Medical Sciences Yazd Iran
| | - Edmar Zanoteli
- Department of Neurology School of Medicine of Universidade de Sao Paulo Sao Paulo Brazil
| | - Stephanie DiTroia
- Program in Medical and Population Genetics and Center for Mendelian Genomics Broad Institute of MIT and Harvard Cambridge Massachusetts USA
| | | | - Arnaud Isapof
- Service de neuropédiatrie APHP, Sorbonne Université, Hôpital Armand Trousseau 75012 Paris France
| | | | - Nasrin Ghasemi
- Abortion Research Centre Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences 8916978477 Yazd Iran
| | - Anna Sarkozy
- The Dubowitz Neuromuscular Centre University College London, Great Ormond Street, Institute of Child Health and MRC Centre for Neuromuscular Diseases, Neurosciences Unit, Great Ormond Street Hospital London UK
- MRC UCL International Centre for Genomic Medicine in Neuromuscular Diseases (ICGNMD) London UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre University College London, Great Ormond Street, Institute of Child Health and MRC Centre for Neuromuscular Diseases, Neurosciences Unit, Great Ormond Street Hospital London UK
- MRC UCL International Centre for Genomic Medicine in Neuromuscular Diseases (ICGNMD) London UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre Great Ormond Street Institute of Child Health, University College London London UK
| | - Sandra Whalen
- UF de Génétique Clinique Centre de Référence Maladies Rares Anomalies du Développement et Syndromes Malformatifs, AP‐HP. Sorbonne Université, Hôpital Armand Trousseau 75012 Paris France
| | - Barbara Vona
- Institute of Human Genetics University Medical Center Göttingen Göttingen Germany
- Institute for Auditory Neuroscience and Inner Ear Lab University Medical Center Göttingen Göttingen Germany
| | - Henry Houlden
- Department of Neuromuscular Disorders UCL Queen Square Institute of Neurology London WC1N 3BG UK
| | - Reza Maroofian
- Department of Neuromuscular Disorders UCL Queen Square Institute of Neurology London WC1N 3BG UK
| |
Collapse
|
52
|
Mutant p53, the Mevalonate Pathway and the Tumor Microenvironment Regulate Tumor Response to Statin Therapy. Cancers (Basel) 2022; 14:cancers14143500. [PMID: 35884561 PMCID: PMC9323637 DOI: 10.3390/cancers14143500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor cells have the ability to co-opt multiple metabolic pathways, enhance glucose uptake and utilize aerobic glycolysis to promote tumorigenesis, which are characteristics constituting an emerging hallmark of cancer. Mutated tumor suppressor and proto-oncogenes are frequently responsible for enhanced metabolic pathway signaling. The link between mutant p53 and the mevalonate (MVA) pathway has been implicated in the advancement of various malignancies, with tumor cells relying heavily on increased MVA signaling to fuel their rapid growth, metastatic spread and development of therapy resistance. Statin drugs inhibit HMG-CoA reductase, the pathway’s rate-limiting enzyme, and as such, have long been studied as a potential anti-cancer therapy. However, whether statins provide additional anti-cancer properties is worthy of debate. Here, we examine retrospective, prospective and pre-clinical studies involving the use of statins in various cancer types, as well as potential issues with statins’ lack of efficacy observed in clinical trials and future considerations for upcoming clinical trials.
Collapse
|
53
|
Li Y, Yu P, Gan Y, Wang R. Labeling of prenylated proteins via Ene-ligation using naturally-occurring citronellol. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
54
|
Gouni S, Strati P, Toruner G, Aradhya A, Landgraf R, Bilbao D, Vega F, Agarwal NK. Statins enhance the chemosensitivity of R-CHOP in diffuse large B-cell lymphoma. Leuk Lymphoma 2022; 63:1302-1313. [PMID: 34969327 PMCID: PMC11973980 DOI: 10.1080/10428194.2021.2020782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/15/2021] [Indexed: 12/31/2022]
Abstract
The beneficial effect of statins on the anti-lymphoma activity of the rituximab-based chemotherapy regimen is controversial. Here, we retrospectively reviewed patients with naïve-treated advanced diffuse large B-cell lymphoma (DLBCL) receiving frontline R-CHOP, and for whom data regarding differential statins use was available at the time of initiation of treatment. We observe that patients treated with statins and R-CHOP experienced a significantly higher CR rate as compared to those who received R-CHOP only. We further show that patients receiving medium or high intensity statins and R-CHOP experienced a significantly higher CR as compared to those treated with R-CHOP. Six-year progression free survival was higher for patients who received medium or higher intensity statins as compared to low or no statins. The potential contribution of cholesterol pathway in doxorubicin sensitivity was supported by in vitro/in vivo studies. Our study suggests that targeting cholesterol-using lovastatin could be a therapeutic strategy to enhance responses to R-CHOP in DLBCL patients.
Collapse
Affiliation(s)
- Sushanth Gouni
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Paolo Strati
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gokce Toruner
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Akanksha Aradhya
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ralf Landgraf
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
- UT Health Graduate School of Biomedical Sciences, Houston Texas
| | - Nitin Kumar Agarwal
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
55
|
Targeting of Mevalonate-Isoprenoid Pathway in Acute Myeloid Leukemia Cells by Bisphosphonate Drugs. Biomedicines 2022; 10:biomedicines10051146. [PMID: 35625883 PMCID: PMC9138592 DOI: 10.3390/biomedicines10051146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 11/27/2022] Open
Abstract
Metabolic reprogramming represents a hallmark of tumorigenesis to sustain survival in harsh conditions, rapid growth and metastasis in order to resist to cancer therapies. These metabolic alterations involve glucose metabolism, known as the Warburg effect, increased glutaminolysis and enhanced amino acid and lipid metabolism, especially the cholesterol biosynthesis pathway known as the mevalonate pathway and these are upregulated in several cancer types, including acute myeloid leukemia (AML). In particular, it was demonstrated that the mevalonate pathway has a pivotal role in cellular transformation. Therefore, targeting this biochemical process with drugs such as statins represents a promising therapeutic strategy to be combined with other anticancer treatments. In the last decade, several studies have revealed that amino-bisphosphonates (BP), primarily used for bone fragility disorders, also exhibit potential anti-cancer activity in leukemic cells, as well as in patients with symptomatic multiple myeloma. Indeed, these compounds inhibit the farnesyl pyrophosphate synthase, a key enzyme in the mevalonate pathway, reducing isoprenoid formation of farnesyl pyrophosphate and geranylgeranyl pyrophosphate. This, in turn, inhibits the prenylation of small Guanosine Triphosphate-binding proteins, such as Ras, Rho, Rac, Rab, which are essential for regulating cell survival membrane ruffling and trafficking, interfering with cancer key signaling events involved in clonal expansion and maturation block of progenitor cells in myeloid hematological malignancies. Thus, in this review, we discuss the recent advancements about bisphosphonates’ effects, especially zoledronate, analyzing the biochemical mechanisms and anti-tumor effects on AML model systems. Future studies will be oriented to investigate the clinical relevance and significance of BP treatment in AML, representing an attractive therapeutic strategy that could be integrated into chemotherapy.
Collapse
|
56
|
Marchwicka A, Kamińska D, Monirialamdari M, Błażewska KM, Gendaszewska-Darmach E. Protein Prenyltransferases and Their Inhibitors: Structural and Functional Characterization. Int J Mol Sci 2022; 23:ijms23105424. [PMID: 35628237 PMCID: PMC9141697 DOI: 10.3390/ijms23105424] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/06/2023] Open
Abstract
Protein prenylation is a post-translational modification controlling the localization, activity, and protein–protein interactions of small GTPases, including the Ras superfamily. This covalent attachment of either a farnesyl (15 carbon) or a geranylgeranyl (20 carbon) isoprenoid group is catalyzed by four prenyltransferases, namely farnesyltransferase (FTase), geranylgeranyltransferase type I (GGTase-I), Rab geranylgeranyltransferase (GGTase-II), and recently discovered geranylgeranyltransferase type III (GGTase-III). Blocking small GTPase activity, namely inhibiting prenyltransferases, has been proposed as a potential disease treatment method. Inhibitors of prenyltransferase have resulted in substantial therapeutic benefits in various diseases, such as cancer, neurological disorders, and viral and parasitic infections. In this review, we overview the structure of FTase, GGTase-I, GGTase-II, and GGTase-III and summarize the current status of research on their inhibitors.
Collapse
Affiliation(s)
- Aleksandra Marchwicka
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland; (A.M.); (D.K.)
| | - Daria Kamińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland; (A.M.); (D.K.)
| | - Mohsen Monirialamdari
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (M.M.); (K.M.B.)
| | - Katarzyna M. Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (M.M.); (K.M.B.)
| | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland; (A.M.); (D.K.)
- Correspondence:
| |
Collapse
|
57
|
The mevalonate pathway in breast cancer biology. Cancer Lett 2022; 542:215761. [DOI: 10.1016/j.canlet.2022.215761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023]
|
58
|
Kumar N, Goel N. Recent development of imidazole derivatives as potential anticancer agents. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Cancer, one of the key health problems globally, is a group of related diseases that share a number of characteristics primarily the uncontrolled growth and invasive to surrounding tissues. Chemotherapy is one of the ways for the treatment of cancer which uses one or more anticancer agents as per chemotherapy regimen. Limitations of most anticancer drugs due to a variety of reasons such as serious side effects, drug resistance, lack of sensitivity and efficacy etc. generate the necessity towards the designing of novel anticancer lead molecules. In this regard, the synthesis of biologically active heterocyclic molecules is an appealing research area. Among heterocyclic compounds, nitrogen containing heterocyclic molecules has fascinated tremendous consideration due to broad range of pharmaceutical activity. Imidazoles, extensively present in natural products as well as synthetic molecules, have two nitrogen atoms, and are five membered heterocyclic rings. Because of their countless physiological and pharmacological characteristics, medicinal chemists are enthused to design and synthesize new imidazole derivatives with improved pharmacodynamic and pharmacokinetic properties. The aim of this present chapter is to discuss the synthesis, chemistry, pharmacological activity, and scope of imidazole-based molecules in anticancer drug development. Finally, we have discussed the current challenges and future perspectives of imidazole-based derivatives in anticancer drug development.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Indore , Madhya Pradesh 453552 , India
| | - Nidhi Goel
- Department of Chemistry , Institute of Science, Banaras Hindu University , Varanasi , Uttar Pradesh 221005 , India
| |
Collapse
|
59
|
Efficacy of Oregano Essential Oil Extract in the Inhibition of Bacterial Lipopolysaccharide (LPS)-Induced Osteoclastogenesis Using RAW 264.7 Murine Macrophage Cell Line—An In-Vitro Study. SEPARATIONS 2021. [DOI: 10.3390/separations8120240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Gram-negative, anaerobic bacterias are predominate in periapical infections. The bacterial lipopolysaccharide (LPS) initiates the process of inflammation and periapical bone resorption. Usage of various medicaments retards or inactivates the bacterial endotoxin (LPS). However, the results are not highly effective. In recent years, owing to antimicrobial resistance, the shift from conventional agents to herbal agents has been increased tremendously in research. Keeping this in mind, the present study was formulated to evaluate the efficacy of oregano essential oil in inhibiting bacterial LPS- induced osteoclastogenesis. Four different concentrations (0 ng/mL, 25 ng/mL, 50 ng/mL, and 100 ng/mL) of oregano essential oil extract were added into 96-well culture plate. Under light microscope, quantification of osteoclast cells was performed. One-way ANOVA with post-hoc Tukey test was carried out on SPSS v21. A significant reduction (p < 0.001) in the osteoclast was observed in the experimental groups compared to no oregano essential oil extract (control). A dose-dependent significant reduction (p < 0.001) in osteoclast formation was observed among the experimental groups, with lesser osteoclast seen in group IV with 100 ng/mL of oregano essential oil extract. Thus, it can be concluded that oregano essential oil extract can be utilized as a therapeutic agent that can target bacterial LPS-induced osteoclastogenesis. However, randomized controlled studies should be conducted to assess the potential use of this extract in the periapical bone resorption of endodontic origin.
Collapse
|
60
|
Elsabrouty R, Jo Y, Hwang S, Jun DJ, DeBose-Boyd RA. Type 1 polyisoprenoid diphosphate phosphatase modulates geranylgeranyl-mediated control of HMG CoA reductase and UBIAD1. eLife 2021; 10:64688. [PMID: 34842525 PMCID: PMC8641950 DOI: 10.7554/elife.64688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/28/2021] [Indexed: 11/18/2022] Open
Abstract
UbiA prenyltransferase domain-containing protein-1 (UBIAD1) utilizes geranylgeranyl pyrophosphate (GGpp) to synthesize the vitamin K2 subtype menaquinone-4. The prenyltransferase has emerged as a key regulator of sterol-accelerated, endoplasmic reticulum (ER)-associated degradation (ERAD) of HMG CoA reductase, the rate-limiting enzyme in synthesis of cholesterol and nonsterol isoprenoids including GGpp. Sterols induce binding of UBIAD1 to reductase, inhibiting its ERAD. Geranylgeraniol (GGOH), the alcohol derivative of GGpp, disrupts this binding and thereby stimulates ERAD of reductase and translocation of UBIAD1 to Golgi. We now show that overexpression of Type 1 polyisoprenoid diphosphate phosphatase (PDP1), which dephosphorylates GGpp and other isoprenyl pyrophosphates to corresponding isoprenols, abolishes protein geranylgeranylation as well as GGOH-induced ERAD of reductase and Golgi transport of UBIAD1. Conversely, these reactions are enhanced in the absence of PDP1. Our findings indicate PDP1-mediated hydrolysis of GGpp significantly contributes to a feedback mechanism that maintains optimal intracellular levels of the nonsterol isoprenoid.
Collapse
Affiliation(s)
- Rania Elsabrouty
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Youngah Jo
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Seonghwan Hwang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Dong-Jae Jun
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| |
Collapse
|
61
|
Li D, Li C, Wang T, Zhang C, Zhu Z, Zhang G, Fang B. Geranylgeranyl diphosphate synthase 1 knockdown suppresses NLRP3 inflammasome activity via promoting autophagy in sepsis-induced acute lung injury. Int Immunopharmacol 2021; 100:108106. [PMID: 34530204 DOI: 10.1016/j.intimp.2021.108106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND NOD-like receptor protein 3 (NLRP3) inflammasome activation has emerged as a crucial contributor to sepsis-induced lung injury. Geranylgeranyl diphosphate synthase 1 (GGPPS1) reportedly exerts the pro-inflammatory capability via activation of NLRP3 inflammasome. However, little is known about the role and mechanism of GGPPS1 in sepsis-induced lung injury. METHODS Mice underwent cecal ligation and puncture (CLP) surgery to establish the in vivo model of sepsis. The lung injury of mice was assessed by analyzing the histological changes, the lung wet/dry ratio, PaO2/FiO2 ratio, myeloperoxidase (MPO) activity, total protein content, total cell, and polymorphonuclear leukocyte counts. Mouse alveolar macrophages MH-S were exposed to LPS for developing in vitro model of sepsis. The mRNA and protein expression levels of GGPPS1, beclin-1, and autophagy and inflammasome-related genes were detected using quantitative reverse transcription-polymerase chain reaction and western blot assays. Enzyme-linked immunosorbent assay was conducted to determine the levels of interleukin (IL)-1β and IL-18. RESULTS We successfully established sepsis-induced acute lung injury in vivo by CLP surgery. GGPPS1 was upregulated in the lung tissues of CLP-induced septic mice. The activation of autophagy and NLRP3 inflammasome were found in the lung tissues of CLP-induced septic mice. The addition of exogenous GGPP (synthesis products catalyzed by GGPPS1) and autophagic inhibitor 3-MA aggravated sepsis-induced hypoxemia, alveolar inflammatory response, intrapulmonary hemorrhage, and pulmonary edema, as evidenced by increased lung injury score, lung wet/dry weight ratio, MPO activity, total protein content, total cell, and PMNs counts, and decreased PaO2/FiO2 ratio. While NLRP3 inhibitor MCC950 exerted the opposite effects. Additionally, administration of exogenous GGPP could inhibit the activation of autophagy, enhance the activity of NLRP3 inflammasome, and the production of IL-1β and IL-18. Inhibition of autophagy by 3-MA treatment also promoted the activity of NLRP3 inflammasome and the production of IL-1β and IL-18. While MCC950 restrained the activity of NLRP3 inflammasome, but did not affect the activation of autophagy. Notably, the expression of GGPPS1 was unaltered in CLP-induced mice following GGPP, 3-MA, or MCC950 treatment. Moreover, GGPPS1 was upregulated in MH-S cells stimulated with LPS, and GGPPS1 knockdown enhanced the activation of autophagy and inhibited the activity of NLRP3 inflammasome in vitro. Importantly, depletion of GGPPS1 could alleviate LPS-induced inflammatory response by inducing autophagy-dependent NLRP3 inflammasome inhibition. CONCLUSION GGPPS1 knockdown suppressed NLRP3 inflammasome activity via promoting autophagy and then attenuated sepsis-induced acute lung injury, revealing a novel target for treating sepsis-induced lung injury.
Collapse
Affiliation(s)
- Dahuan Li
- Department of Emergency, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Chunyan Li
- Department of Obstetrics, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Tianzhong Wang
- Department of Emergency, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Chong Zhang
- Department of Emergency, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Zhao Zhu
- Department of Emergency, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Guoxiu Zhang
- Department of Emergency, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China.
| | - Bangjiang Fang
- Department of Emergency, Longhua Hospital Affiliated to Shanghai University of Chinese Medicine, China.
| |
Collapse
|
62
|
Sarsenbayeva A, Jui BN, Fanni G, Barbosa P, Ahmed F, Kristófi R, Cen J, Chowdhury A, Skrtic S, Bergsten P, Fall T, Eriksson JW, Pereira MJ. Impaired HMG-CoA Reductase Activity Caused by Genetic Variants or Statin Exposure: Impact on Human Adipose Tissue, β-Cells and Metabolome. Metabolites 2021; 11:574. [PMID: 34564389 PMCID: PMC8468287 DOI: 10.3390/metabo11090574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/20/2022] Open
Abstract
Inhibition of 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase is associated with an increased risk of new-onset type 2 diabetes. We studied the association of genetic or pharmacological HMG-CoA reductase inhibition with plasma and adipose tissue (AT) metabolome and AT metabolic pathways. We also investigated the effects of statin-mediated pharmacological inhibition of HMG-CoA reductase on systemic insulin sensitivity by measuring the HOMA-IR index in subjects with or without statin therapy. The direct effects of simvastatin (20-250 nM) or its active metabolite simvastatin hydroxy acid (SA) (8-30 nM) were investigated on human adipocyte glucose uptake, lipolysis, and differentiation and pancreatic insulin secretion. We observed that the LDL-lowering HMGCR rs12916-T allele was negatively associated with plasma phosphatidylcholines and sphingomyelins, and HMGCR expression in AT was correlated with various metabolic and mitochondrial pathways. Clinical data showed that statin treatment was associated with HOMA-IR index after adjustment for age, sex, BMI, HbA1c, LDL-c levels, and diabetes status in the subjects. Supra-therapeutic concentrations of simvastatin reduced glucose uptake in adipocytes and normalized fatty acid-induced insulin hypersecretion from β-cells. Our data suggest that inhibition of HMG-CoA reductase is associated with insulin resistance. However, statins have a very mild direct effect on AT and pancreas, hence, other tissues as the liver or muscle appear to be of greater importance.
Collapse
Affiliation(s)
- Assel Sarsenbayeva
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85 Uppsala, Sweden; (A.S.); (B.N.J.); (G.F.); (F.A.); (R.K.); (T.F.); (J.W.E.)
| | - Bipasha Nandi Jui
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85 Uppsala, Sweden; (A.S.); (B.N.J.); (G.F.); (F.A.); (R.K.); (T.F.); (J.W.E.)
| | - Giovanni Fanni
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85 Uppsala, Sweden; (A.S.); (B.N.J.); (G.F.); (F.A.); (R.K.); (T.F.); (J.W.E.)
| | - Pedro Barbosa
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Fozia Ahmed
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85 Uppsala, Sweden; (A.S.); (B.N.J.); (G.F.); (F.A.); (R.K.); (T.F.); (J.W.E.)
| | - Robin Kristófi
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85 Uppsala, Sweden; (A.S.); (B.N.J.); (G.F.); (F.A.); (R.K.); (T.F.); (J.W.E.)
| | - Jing Cen
- Department of Medical Cell Biology, Uppsala University, 751 85 Uppsala, Sweden; (J.C.); (A.C.); (P.B.)
| | - Azazul Chowdhury
- Department of Medical Cell Biology, Uppsala University, 751 85 Uppsala, Sweden; (J.C.); (A.C.); (P.B.)
| | - Stanko Skrtic
- Innovation Strategies & External Liaison, Pharmaceutical Technologies & Development, AstraZeneca, 431 83 Gothenburg, Sweden;
- Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, 751 85 Uppsala, Sweden; (J.C.); (A.C.); (P.B.)
| | - Tove Fall
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85 Uppsala, Sweden; (A.S.); (B.N.J.); (G.F.); (F.A.); (R.K.); (T.F.); (J.W.E.)
| | - Jan W. Eriksson
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85 Uppsala, Sweden; (A.S.); (B.N.J.); (G.F.); (F.A.); (R.K.); (T.F.); (J.W.E.)
| | - Maria J. Pereira
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85 Uppsala, Sweden; (A.S.); (B.N.J.); (G.F.); (F.A.); (R.K.); (T.F.); (J.W.E.)
| |
Collapse
|
63
|
Jeong A, Cheng S, Zhong R, Bennett DA, Bergö MO, Li L. Protein farnesylation is upregulated in Alzheimer's human brains and neuron-specific suppression of farnesyltransferase mitigates pathogenic processes in Alzheimer's model mice. Acta Neuropathol Commun 2021; 9:129. [PMID: 34315531 PMCID: PMC8314463 DOI: 10.1186/s40478-021-01231-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/16/2021] [Indexed: 11/10/2022] Open
Abstract
The pathogenic mechanisms underlying the development of Alzheimer's disease (AD) remain elusive and to date there are no effective prevention or treatment for AD. Farnesyltransferase (FT) catalyzes a key posttranslational modification process called farnesylation, in which the isoprenoid farnesyl pyrophosphate is attached to target proteins, facilitating their membrane localization and their interactions with downstream effectors. Farnesylated proteins, including the Ras superfamily of small GTPases, are involved in regulating diverse physiological and pathological processes. Emerging evidence suggests that isoprenoids and farnesylated proteins may play an important role in the pathogenesis of AD. However, the dynamics of FT and protein farnesylation in human brains and the specific role of neuronal FT in the pathogenic progression of AD are not known. Here, using postmortem brain tissue from individuals with no cognitive impairment (NCI), mild cognitive impairment (MCI), or Alzheimer's dementia, we found that the levels of FT and membrane-associated H-Ras, an exclusively farnesylated protein, and its downstream effector ERK were markedly increased in AD and MCI compared with NCI. To elucidate the specific role of neuronal FT in AD pathogenesis, we generated the transgenic AD model APP/PS1 mice with forebrain neuron-specific FT knockout, followed by a battery of behavioral assessments, biochemical assays, and unbiased transcriptomic analysis. Our results showed that the neuronal FT deletion mitigates memory impairment and amyloid neuropathology in APP/PS1 mice through suppressing amyloid generation and reversing the pathogenic hyperactivation of mTORC1 signaling. These findings suggest that aberrant upregulation of protein farnesylation is an early driving force in the pathogenic cascade of AD and that targeting FT or its downstream signaling pathways presents a viable therapeutic strategy against AD.
Collapse
|
64
|
Voss L, Guttek K, Reddig A, Reinhold A, Voss M, Simeoni L, Schraven B, Reinhold D. Pitavastatin Is a Highly Potent Inhibitor of T-Cell Proliferation. Pharmaceuticals (Basel) 2021; 14:ph14080727. [PMID: 34451823 PMCID: PMC8399298 DOI: 10.3390/ph14080727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Repositioning of approved drugs is an alternative time- and cost-saving strategy to classical drug development. Statins are 3-hydroxy-3-methylglutaryl-CoA (HMG CoA) reductase inhibitors that are usually used as cholesterol-lowering medication, and they also exhibit anti-inflammatory effects. In the present study, we observed that the addition of Pitavastatin at nanomolar concentrations inhibits the proliferation of CD3/CD28 antibody-stimulated human T cells of healthy donors in a dose-dependent fashion. The 50% inhibition of proliferation (IC50) were 3.6 and 48.5 nM for freshly stimulated and pre-activated T cells, respectively. In addition, Pitavastatin suppressed the IL-10 and IL-17 production of stimulated T cells. Mechanistically, we found that treatment of T cells with doses <1 µM of Pitavastatin induced hyperphosphorylation of ERK1/2, and activation of caspase-9, -3 and -7, thus leading to apoptosis. Mevalonic acid, cholesterol and the MEK1/2 inhibitor U0126 reversed this Pitavastatin-mediated ERK1/2 activation and apoptosis of T cells. In summary, our results suggest that Pitavastatin is a highly potent inhibitor of T-cell proliferation, which induces apoptosis via pro-apoptotic ERK1/2 activation, thus representing a potential repositioning candidate for the treatment of T-cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Linda Voss
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (L.V.); (K.G.); (A.R.); (A.R.); (M.V.); (L.S.); (B.S.)
| | - Karina Guttek
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (L.V.); (K.G.); (A.R.); (A.R.); (M.V.); (L.S.); (B.S.)
| | - Annika Reddig
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (L.V.); (K.G.); (A.R.); (A.R.); (M.V.); (L.S.); (B.S.)
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (L.V.); (K.G.); (A.R.); (A.R.); (M.V.); (L.S.); (B.S.)
- Health Campus Immunology, Infection and Inflammation (GC-I3), Medical Fakulty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Martin Voss
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (L.V.); (K.G.); (A.R.); (A.R.); (M.V.); (L.S.); (B.S.)
| | - Luca Simeoni
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (L.V.); (K.G.); (A.R.); (A.R.); (M.V.); (L.S.); (B.S.)
- Health Campus Immunology, Infection and Inflammation (GC-I3), Medical Fakulty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (L.V.); (K.G.); (A.R.); (A.R.); (M.V.); (L.S.); (B.S.)
- Health Campus Immunology, Infection and Inflammation (GC-I3), Medical Fakulty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (L.V.); (K.G.); (A.R.); (A.R.); (M.V.); (L.S.); (B.S.)
- Health Campus Immunology, Infection and Inflammation (GC-I3), Medical Fakulty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
- Correspondence: ; Tel.: +49-391-6715857
| |
Collapse
|
65
|
Jiang W, Hu JW, He XR, Jin WL, He XY. Statins: a repurposed drug to fight cancer. J Exp Clin Cancer Res 2021; 40:241. [PMID: 34303383 PMCID: PMC8306262 DOI: 10.1186/s13046-021-02041-2] [Citation(s) in RCA: 222] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
As competitive HMG-CoA reductase (HMGCR) inhibitors, statins not only reduce cholesterol and improve cardiovascular risk, but also exhibit pleiotropic effects that are independent of their lipid-lowering effects. Among them, the anti-cancer properties of statins have attracted much attention and indicated the potential of statins as repurposed drugs for the treatment of cancer. A large number of clinical and epidemiological studies have described the anticancer properties of statins, but the evidence for anticancer effectiveness of statins is inconsistent. It may be that certain molecular subtypes of cancer are more vulnerable to statin therapy than others. Whether statins have clinical anticancer effects is still an active area of research. Statins appear to enhance the efficacy and address the shortcomings associated with conventional cancer treatments, suggesting that statins should be considered in the context of combined therapies for cancer. Here, we present a comprehensive review of the potential of statins in anti-cancer treatments. We discuss the current understanding of the mechanisms underlying the anti-cancer properties of statins and their effects on different malignancies. We also provide recommendations for the design of future well-designed clinical trials of the anti-cancer efficacy of statins.
Collapse
Affiliation(s)
- Wen Jiang
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Jin-Wei Hu
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Xu-Ran He
- Department of Finance, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Xin-Yang He
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China.
| |
Collapse
|
66
|
Gendaszewska-Darmach E, Garstka MA, Błażewska KM. Targeting Small GTPases and Their Prenylation in Diabetes Mellitus. J Med Chem 2021; 64:9677-9710. [PMID: 34236862 PMCID: PMC8389838 DOI: 10.1021/acs.jmedchem.1c00410] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
A fundamental role
of pancreatic β-cells to maintain proper
blood glucose level is controlled by the Ras superfamily of small
GTPases that undergo post-translational modifications, including prenylation.
This covalent attachment with either a farnesyl or a geranylgeranyl
group controls their localization, activity, and protein–protein
interactions. Small GTPases are critical in maintaining glucose homeostasis
acting in the pancreas and metabolically active tissues such as skeletal
muscles, liver, or adipocytes. Hyperglycemia-induced upregulation
of small GTPases suggests that inhibition of these pathways deserves
to be considered as a potential therapeutic approach in treating T2D.
This Perspective presents how inhibition of various points in the
mevalonate pathway might affect protein prenylation and functioning
of diabetes-affected tissues and contribute to chronic inflammation
involved in diabetes mellitus (T2D) development. We also demonstrate
the currently available molecular tools to decipher the mechanisms
linking the mevalonate pathway’s enzymes and GTPases with diabetes.
Collapse
Affiliation(s)
- Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 4/10, 90-924 Łódź, Poland
| | - Malgorzata A Garstka
- Core Research Laboratory, Department of Endocrinology, Department of Tumor and Immunology, Precision Medical Institute, Western China Science and Technology Innovation Port, School of Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, DaMingGong, Jian Qiang Road, Wei Yang district, Xi'an 710016, China
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego Street 116, 90-924 Łódź, Poland
| |
Collapse
|
67
|
Chamani S, Liberale L, Mobasheri L, Montecucco F, Al-Rasadi K, Jamialahmadi T, Sahebkar A. The role of statins in the differentiation and function of bone cells. Eur J Clin Invest 2021; 51:e13534. [PMID: 33656763 DOI: 10.1111/eci.13534] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/09/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Statins are 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors blocking cholesterol biosynthesis in hepatic cells, thereby causing an increase in low-density lipoprotein (LDL) receptors resulting in enhanced uptake and clearance of atherogenic LDL-cholesterol (LDL-C) from the blood. Accordingly, statins decrease the risk of developing atherosclerosis and its acute complications, such as acute myocardial infarction and ischaemic stroke. Besides the LDL-C-lowering impact, statins also have other so-called pleiotropic effects. Among them, the ability to modulate differentiation and function of bone cells and exert direct effects on osteosynthesis factors. Specifically, earlier studies have shown that statins cause in vitro and in vivo osteogenic differentiation. DESIGN The most relevant papers on the bone-related 'pleiotropic' effects of statins were selected following literature search in databases and were reveiwed. RESULTS Statins increase the expression of many mediators involved in bone metabolism including bone morphogenetic protein-2 (BMP-2), glucocorticoids, transforming growth factor-beta (TGF-β), alkaline phosphatase (ALP), type I collagen and collagenase-1. As a result, they enhance bone formation and improve bone mineral density by modulating osteoblast and osteoclast differentiation. CONCLUSION This review summarizes the literature exploring bone-related 'pleiotropic' effects of statins and suggests an anabolic role in the bone tissue for this drug class. Accordingly, current knowledge encourages further clinical trials to assess the therapeutic potential of statins in the treatment of bone disorders, such as arthritis and osteoporosis.
Collapse
Affiliation(s)
- Sajad Chamani
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Luca Liberale
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland.,First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Leila Mobasheri
- Department of Pharmacology, Faculty of medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | | | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
68
|
Suazo KF, Park KY, Distefano MD. A Not-So-Ancient Grease History: Click Chemistry and Protein Lipid Modifications. Chem Rev 2021; 121:7178-7248. [PMID: 33821625 PMCID: PMC8820976 DOI: 10.1021/acs.chemrev.0c01108] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein lipid modification involves the attachment of hydrophobic groups to proteins via ester, thioester, amide, or thioether linkages. In this review, the specific click chemical reactions that have been employed to study protein lipid modification and their use for specific labeling applications are first described. This is followed by an introduction to the different types of protein lipid modifications that occur in biology. Next, the roles of click chemistry in elucidating specific biological features including the identification of lipid-modified proteins, studies of their regulation, and their role in diseases are presented. A description of the use of protein-lipid modifying enzymes for specific labeling applications including protein immobilization, fluorescent labeling, nanostructure assembly, and the construction of protein-drug conjugates is presented next. Concluding remarks and future directions are presented in the final section.
Collapse
Affiliation(s)
- Kiall F. Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Keun-Young Park
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
69
|
Cirone M. Cancer cells dysregulate PI3K/AKT/mTOR pathway activation to ensure their survival and proliferation: mimicking them is a smart strategy of gammaherpesviruses. Crit Rev Biochem Mol Biol 2021; 56:500-509. [PMID: 34130564 DOI: 10.1080/10409238.2021.1934811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The serine/threonine kinase mammalian target of rapamycin (mTOR) is the catalytic subunit of two complexes, mTORC1 and mTORC2, which have common and distinct subunits that mediate separate and overlapping functions. mTORC1 is activated by plenty of nutrients, and the two complexes can be activated by PI3K signaling. mTORC2 acts as an upstream regulator of AKT, and mTORC1 acts as a downstream effector. mTOR signaling integrates both intracellular and extracellular signals, acting as a key regulator of cellular metabolism, growth, and survival. A dysregulated activation of mTOR, as result of PI3K pathway or mTOR regulatory protein mutations or even due to the presence of cellular or viral oncogenes, is a common finding in cancer and represents a central mechanism in cancerogenesis. In the final part of this review, we will focus on the PI3K/AKT/mTOR activation by the human gammaherpesviruses EBV and KSHV that hijack this pathway to promote their-mediated oncogenic transformation and pathologies.
Collapse
Affiliation(s)
- Mara Cirone
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.,Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
70
|
Cholesterol metabolism: a new molecular switch to control inflammation. Clin Sci (Lond) 2021; 135:1389-1408. [PMID: 34086048 PMCID: PMC8187928 DOI: 10.1042/cs20201394] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/30/2022]
Abstract
The immune system protects the body against harm by inducing inflammation. During the immune response, cells of the immune system get activated, divided and differentiated in order to eliminate the danger signal. This process relies on the metabolic reprogramming of both catabolic and anabolic pathways not only to produce energy in the form of ATP but also to generate metabolites that exert key functions in controlling the response. Equally important to mounting an appropriate effector response is the process of immune resolution, as uncontrolled inflammation is implicated in the pathogenesis of many human diseases, including allergy, chronic inflammation and cancer. In this review, we aim to introduce the reader to the field of cholesterol immunometabolism and discuss how both metabolites arising from the pathway and cholesterol homeostasis are able to impact innate and adaptive immune cells, staging cholesterol homeostasis at the centre of an adequate immune response. We also review evidence that demonstrates the clear impact that cholesterol metabolism has in both the induction and the resolution of the inflammatory response. Finally, we propose that emerging data in this field not only increase our understanding of immunometabolism but also provide new tools for monitoring and intervening in human diseases, where controlling and/or modifying inflammation is desirable.
Collapse
|
71
|
Abnormal brain cholesterol homeostasis in Alzheimer's disease-a targeted metabolomic and transcriptomic study. NPJ Aging Mech Dis 2021; 7:11. [PMID: 34075056 PMCID: PMC8169871 DOI: 10.1038/s41514-021-00064-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 03/18/2021] [Indexed: 02/02/2023] Open
Abstract
The role of brain cholesterol metabolism in Alzheimer's disease (AD) remains unclear. Peripheral and brain cholesterol levels are largely independent due to the impermeability of the blood brain barrier (BBB), highlighting the importance of studying the role of brain cholesterol homeostasis in AD. We first tested whether metabolite markers of brain cholesterol biosynthesis and catabolism were altered in AD and associated with AD pathology using linear mixed-effects models in two brain autopsy samples from the Baltimore Longitudinal Study of Aging (BLSA) and the Religious Orders Study (ROS). We next tested whether genetic regulators of brain cholesterol biosynthesis and catabolism were altered in AD using the ANOVA test in publicly available brain tissue transcriptomic datasets. Finally, using regional brain transcriptomic data, we performed genome-scale metabolic network modeling to assess alterations in cholesterol biosynthesis and catabolism reactions in AD. We show that AD is associated with pervasive abnormalities in cholesterol biosynthesis and catabolism. Using transcriptomic data from Parkinson's disease (PD) brain tissue samples, we found that gene expression alterations identified in AD were not observed in PD, suggesting that these changes may be specific to AD. Our results suggest that reduced de novo cholesterol biosynthesis may occur in response to impaired enzymatic cholesterol catabolism and efflux to maintain brain cholesterol levels in AD. This is accompanied by the accumulation of nonenzymatically generated cytotoxic oxysterols. Our results set the stage for experimental studies to address whether abnormalities in cholesterol metabolism are plausible therapeutic targets in AD.
Collapse
|
72
|
Zhang J, Li Y, Wang S, Wang R. Labeling of prenylated nucleic acid by Ene-type fluorination under physiological condition. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
73
|
Suazo KF, Jeong A, Ahmadi M, Brown C, Qu W, Li L, Distefano MD. Metabolic labeling with an alkyne probe reveals similarities and differences in the prenylomes of several brain-derived cell lines and primary cells. Sci Rep 2021; 11:4367. [PMID: 33623102 PMCID: PMC7902609 DOI: 10.1038/s41598-021-83666-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Protein prenylation involves the attachment of one or two isoprenoid group(s) onto cysteine residues positioned near the C-terminus. This modification is essential for many signal transduction processes. In this work, the use of the probe C15AlkOPP for metabolic labeling and identification of prenylated proteins in a variety of cell lines and primary cells is explored. Using a single isoprenoid analogue, 78 prenylated protein groups from the three classes of prenylation substrates were identified including three novel prenylation substrates in a single experiment. Applying this method to three brain-related cell lines including neurons, microglia, and astrocytes showed substantial overlap (25%) in the prenylated proteins identified. In addition, some unique prenylated proteins were identified in each type. Eight proteins were observed exclusively in neurons, five were observed exclusively in astrocytes and three were observed exclusively in microglia, suggesting their unique roles in these cells. Furthermore, inhibition of farnesylation in primary astrocytes revealed the differential responses of farnesylated proteins to an FTI. Importantly, these results provide a list of 19 prenylated proteins common to all the cell lines studied here that can be monitored using the C15AlkOPP probe as well as a number of proteins that were observed in only certain cell lines. Taken together, these results suggest that this chemical proteomic approach should be useful in monitoring the levels and exploring the underlying role(s) of prenylated proteins in various diseases.
Collapse
Affiliation(s)
- Kiall F Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Angela Jeong
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mina Ahmadi
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Caroline Brown
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wenhui Qu
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
74
|
Key Enzymes for the Mevalonate Pathway in the Cardiovascular System. J Cardiovasc Pharmacol 2021; 77:142-152. [PMID: 33538531 DOI: 10.1097/fjc.0000000000000952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/15/2020] [Indexed: 11/25/2022]
Abstract
ABSTRACT Isoprenylation is an important post-transcriptional modification of small GTPases required for their activation and function. Isoprenoids, including farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate, are indispensable for isoprenylation by serving as donors of a prenyl moiety to small G proteins. In the human body, isoprenoids are mainly generated by the mevalonate pathway (also known as the cholesterol-synthesis pathway). The hydroxymethylglutaryl coenzyme A reductase catalyzes the first rate-limiting steps of the mevalonate pathway, and its inhibitor (statins) are widely used as lipid-lowering agents. In addition, the FPP synthase is also of critical importance for the regulation of the isoprenoids production, for which the inhibitor is mainly used in the treatment of osteoporosis. Synthetic FPP can be further used to generate geranylgeranyl pyrophosphate and cholesterol. Recent studies suggest a role for isoprenoids in the genesis and development of cardiovascular disorders, such as pathological cardiac hypertrophy, fibrosis, endothelial dysfunction, and fibrotic responses of smooth-muscle cells. Furthermore, statins and FPP synthase inhibitors have also been applied for the management of heart failure and other cardiovascular diseases rather than their clinical use for hyperlipidemia or bone diseases. In this review, we focus on the function of several critical enzymes, including hydroxymethylglutaryl coenzyme A reductase, FPP synthase, farnesyltransferase, and geranylgeranyltransferase in the mevalonate pathway which are involved in regulating the generation of isoprenoids and isoprenylation of small GTPases, and their pathophysiological role in the cardiovascular system. Moreover, we summarize recent research into applications of statins and the FPP synthase inhibitors to treat cardiovascular diseases, rather than for their traditional indications respectively.
Collapse
|
75
|
Kusy D, Marchwicka A, Małolepsza J, Justyna K, Gendaszewska-Darmach E, Błażewska KM. Synthesis of the 6-Substituted Imidazo[1,2-a]Pyridine-3-yl-2- Phosphonopropionic Acids as Potential Inhibitors of Rab Geranylgeranyl Transferase. Front Chem 2021; 8:596162. [PMID: 33490034 PMCID: PMC7815931 DOI: 10.3389/fchem.2020.596162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/26/2020] [Indexed: 12/26/2022] Open
Abstract
Twelve phosphonopropionates derived from 2-hydroxy-3-imidazo[1,2-a]pyridin-3-yl-2-phosphonopropionic acid (3-IPEHPC) were synthesized and evaluated for their activity as inhibitors of protein geranylgeranylation. The nature of the substituent in the C6 position of imidazo[1,2-a]pyridine ring was responsible for the compound's activity against Rab geranylgeranyl transferase (RGGT). The most active inhibitors disrupted Rab11A prenylation in the human cervical carcinoma HeLa cell line. The esterification of carboxylic acid in the phosphonopropionate moiety turned the inhibitor into an inactive analog.
Collapse
Affiliation(s)
- Damian Kusy
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Łódź, Poland
| | - Aleksandra Marchwicka
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Łódź, Poland
| | - Joanna Małolepsza
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Łódź, Poland
| | - Katarzyna Justyna
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Łódź, Poland.,Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Łódź, Poland
| | - Edyta Gendaszewska-Darmach
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Łódź, Poland
| | | |
Collapse
|
76
|
Xie Y, Chen L, Xu Z, Li C, Ni Y, Hou M, Chen L, Chang H, Yang Y, Wang H, He R, Chen R, Qian L, Luo Y, Zhang Y, Li N, Zhu Y, Ji M, Liu Y. Predictive Modeling of MAFLD Based on Hsp90α and the Therapeutic Application of Teprenone in a Diet-Induced Mouse Model. Front Endocrinol (Lausanne) 2021; 12:743202. [PMID: 34659125 PMCID: PMC8515197 DOI: 10.3389/fendo.2021.743202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/03/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND AIMS The heat shock protein (Hsp) 90α is induced by stress and regulates inflammation through multiple pathways. Elevated serum Hsp90α had been found in nonalcoholic steatohepatitis (NASH). Geranylgeranylacetone (GGA, also called teprenone) is a terpenoid derivative. It was reported to induce Hsp and alleviate insulin resistance. We aimed to evaluate the Hsp90α as a biomarker in predicting metabolic-associated fatty liver disease (MAFLD) and define the therapeutic effects of geranylgeranylacetone for the disease. METHODS A clinical study was conducted to analyze the elements associated with Hsp90α, and a predictive model of MAFLD was developed based on Hsp90α. The histopathological correlation between Hsp90α and MAFLD was investigated through a diet-induced mouse model. Furthermore, GGA was applied to the mouse model. RESULTS Serum Hsp90α was increased in patients with MAFLD. A positive linear relationship was found between age, glycosylated hemoglobin (HbA1c), MAFLD, and serum Hsp90α. Meanwhile, a negative linear relationship with body mass index (BMI) was found. A model using Hsp90α, BMI, HbA1c, and ALT was established for predicting MAFLD. The area under the receiver operating characteristic (ROC) curves was 0.94 (95% CI 0.909-0.971, p = 0.000). The sensitivity was 84.1%, and the specificity was 93.1%. In vitro experiments, GGA induced Hsp90α in steatosis cells. In the mice model, Hsp90α decreased in the GGA treatment group. Hepatic steatosis, inflammation, insulin resistance, and glucose intolerance were improved in the GGA-treated group. Serum Hsp90α was positively correlated with steatohepatitis activity according to hepatic histopathology. CONCLUSIONS Serum Hsp90α was elevated in MAFLD, and a positive correlation between serum Hsp90α and the grade of activity of steatohepatitis was observed. The model using BMI, HbA1c, and alanine aminotransferase (ALT) had a good value to predict MAFLD. The findings also revealed the effectiveness of GGA in the treatment of MAFLD.
Collapse
Affiliation(s)
- Yuan Xie
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Lu Chen
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Zhipeng Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Chen Li
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Yangyue Ni
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Min Hou
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Lin Chen
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Hao Chang
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Yuxuan Yang
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Huiquan Wang
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Rongbo He
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Rourou Chen
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Li Qian
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Yan Luo
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Ying Zhang
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Na Li
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Yuxiao Zhu
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Minjun Ji
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
- *Correspondence: Minjun Ji, ; Yu Liu,
| | - Yu Liu
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Minjun Ji, ; Yu Liu,
| |
Collapse
|
77
|
Wang S, Zhao J, Wang L, Zhang J, Hu H, Yu P, Wang R. Inducible DNA Polymerase Chain Reaction Triggered by Oxidative Species. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sheng Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy Tongji Medical College Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 P. R. China
| | - Jizhong Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy Tongji Medical College Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 P. R. China
| | - Li Wang
- Wuhan No.1 Hospital 215 Zhongshan Avenue Wuhan Hubei 430022 P. R. China
| | - Jingwen Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy Tongji Medical College Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 P. R. China
| | - Hongmei Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy Tongji Medical College Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 P. R. China
| | - Ping Yu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy Tongji Medical College Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 P. R. China
| | - Rui Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy Tongji Medical College Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 P. R. China
| |
Collapse
|
78
|
Eungsuwan N, Chayjarung P, Pankam J, Pilaisangsuree V, Wongshaya P, Kongbangkerd A, Sriphannam C, Limmongkon A. Production and antimicrobial activity of trans-resveratrol, trans-arachidin-1 and trans-arachidin-3 from elicited peanut hairy root cultures in shake flasks compared with bioreactors. J Biotechnol 2020; 326:28-36. [PMID: 33359213 DOI: 10.1016/j.jbiotec.2020.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Abstract
Obtaining large-scale hairy root cultures is a major challenge to increasing root biomass and secondary metabolite production. Enhanced production of stilbene compounds such as trans-resveratrol, trans-arachidin-1 and trans-arachidin-3 was achieved using an elicitor treatment procedure. Two different hairy root inoculum densities were investigated and compared between shake flask and bioreactor cultures. The lowest growth index was observed using a 20 g/L inoculum size in the bioreactor, which differed significantly from bioreactor of 5 g/L. Increasing the hairy root inoculum size from 5 g/L to 20 g/L in both the shake flask and bioreactor significantly improve antioxidant activity, phenolic content and stilbene compound levels. The highest ABTS and FRAP antioxidant activity, and levels of total phenolic compounds, trans-arachidin-1 and trans-arachidin-3 in the crude extract were demonstrated in shake flask cultures with a 20 g/L inoculum after elicitation for 72 h. The minimum inhibitory concentrations (MICs) of the crude extract to inhibit growth of foodborne microbes, S. aureus, S. typhimurium and E. coli, were 187.5, 250 and 500 μg/mL, respectively. This was due to the ability of the crude extract to disrupt the cell membrane, as observed by scanning electron microscopy (SEM) showing ruptured pores on the S. aureus and S. typhimurium cell surfaces. Moreover, the E. coli cell division process could be inhibited by the crude extract, which promoted an increase in cell size. A DNA nicking assay indicated that a 50 μg/mL concentration of the crude extract caused plasmid DNA damage that might be due to a genotoxic effect of the pro-oxidant activity of the crude extract.
Collapse
Affiliation(s)
- Nichanan Eungsuwan
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Phadtraphorn Chayjarung
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Jintana Pankam
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Vijakhana Pilaisangsuree
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Pakwuan Wongshaya
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Anupan Kongbangkerd
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Chayaphon Sriphannam
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Apinun Limmongkon
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
79
|
Deveau CM, Rodriguez E, Schroering A, Yamamoto BK. Serotonin transporter regulation by cholesterol-independent lipid signaling. Biochem Pharmacol 2020; 183:114349. [PMID: 33245902 DOI: 10.1016/j.bcp.2020.114349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/26/2022]
Abstract
Serotonin neurotransmission is largely governed by the regulation of the serotonin transporter (SERT). SERT is modulated in part by cholesterol, but the role of cholesterol and lipid signaling intermediates in regulating SERT are unknown. Serotonergic neurons were treated with statins to decrease cholesterol and lipid signaling intermediates. Contrary to reported decreases in 5-HT uptake after cholesterol depletion, biochemical and imaging methods both showed that statins increased 5-HT uptake in a fluoxetine-dependent manner. Simvastatin lowered the Km without changing Vmax for 5-HT or SERT distribution to the plasma membrane. Cholesterol repletion did not block enhanced 5-HT uptake by simvastatin but the enhanced uptake was blocked by lipid isoprenylation intermediates farnesyl pyrophosphate and geranylgeranyl pyrophosphate. Blockade of geranylgeranylation alone without statins also enhanced 5-HT uptake. Overall, this study revealed a specific neuronal effect of statin drugs and identified lipid signaling through geranylgeranylation within the isoprenylation pathway regulates SERT in a cholesterol-independent manner.
Collapse
Affiliation(s)
- Carmen M Deveau
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Eric Rodriguez
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Allen Schroering
- The University of Toledo, Department of Neuroscience, Toledo, OH, United States
| | - Bryan K Yamamoto
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
80
|
Klimpel A, Stillger K, Wiederstein JL, Krüger M, Neundorf I. Cell-permeable CaaX-peptides affect K-Ras downstream signaling and promote cell death in cancer cells. FEBS J 2020; 288:2911-2929. [PMID: 33112492 DOI: 10.1111/febs.15612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 08/17/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022]
Abstract
Cysteine prenylation is a post-translational modification that is used by nature to control crucial biological functions of proteins, such as membrane trafficking, signal transduction, and apoptosis. It mainly occurs in eukaryotic proteins at a C-terminal CaaX box and is mediated by prenyltransferases. Since the discovery of prenylated proteins, various tools have been developed to study the mechanisms of prenyltransferases, as well as to visualize and to identify prenylated proteins. Herein, we introduce cell-permeable peptides bearing a C-terminal CaaX motif based on Ras sequences. We demonstrate that intracellular accumulation of those peptides in different cells is controlled by the presence of their CaaX motif and that they specifically interact with intracellular prenyltransferases. As proof of concept, we further highlight their utilization to alter downstream signaling of Ras proteins, particularly of K-Ras-4B, in pancreatic cancer cells. Application of this strategy holds great promise to better understand and regulate post-translational cysteine prenylation.
Collapse
Affiliation(s)
- Annika Klimpel
- Institute for Biochemistry, University of Cologne, Germany
| | | | - Janica L Wiederstein
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Germany
| | - Ines Neundorf
- Institute for Biochemistry, University of Cologne, Germany
| |
Collapse
|
81
|
Qu W, Suazo KF, Liu W, Cheng S, Jeong A, Hottman D, Yuan LL, Distefano MD, Li L. Neuronal Protein Farnesylation Regulates Hippocampal Synaptic Plasticity and Cognitive Function. Mol Neurobiol 2020; 58:1128-1144. [PMID: 33098528 DOI: 10.1007/s12035-020-02169-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022]
Abstract
Protein prenylation is a post-translational lipid modification that governs a variety of important cellular signaling pathways, including those regulating synaptic functions and cognition in the nervous system. Two enzymes, farnesyltransferase (FT) and geranylgeranyltransferase type I (GGT), are essential for the prenylation process. Genetic reduction of FT or GGT ameliorates neuropathology but only FT haplodeficiency rescues cognitive function in transgenic mice of Alzheimer's disease. A follow-up study showed that systemic or forebrain neuron-specific deficiency of GGT leads to synaptic and cognitive deficits under physiological conditions. Whether FT plays different roles in shaping neuronal functions and cognition remains elusive. This study shows that in contrast to the detrimental effects of GGT reduction, systemic haplodeficiency of FT has little to no impact on hippocampal synaptic plasticity and cognition. However, forebrain neuron-specific FT deletion also leads to reduced synaptic plasticity, memory retention, and hippocampal dendritic spine density. Furthermore, a novel prenylomic analysis identifies distinct pools of prenylated proteins that are affected in the brain of forebrain neuron-specific FT and GGT knockout mice, respectively. Taken together, this study uncovers that physiological levels of FT and GGT in neurons are essential for normal synaptic/cognitive functions and that the prenylation status of specific signaling molecules regulates neuronal functions.
Collapse
Affiliation(s)
- Wenhui Qu
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Kiall F Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wenfeng Liu
- Department of Experimental and Clinical Pharmacology, University of Minnesota, McGuire Translational Research Facility (MTRF) 4-208, 2001 6th Street SE, Minneapolis, MN, 55455, USA
| | - Shaowu Cheng
- Department of Experimental and Clinical Pharmacology, University of Minnesota, McGuire Translational Research Facility (MTRF) 4-208, 2001 6th Street SE, Minneapolis, MN, 55455, USA
| | - Angela Jeong
- Department of Experimental and Clinical Pharmacology, University of Minnesota, McGuire Translational Research Facility (MTRF) 4-208, 2001 6th Street SE, Minneapolis, MN, 55455, USA
| | - David Hottman
- Department of Experimental and Clinical Pharmacology, University of Minnesota, McGuire Translational Research Facility (MTRF) 4-208, 2001 6th Street SE, Minneapolis, MN, 55455, USA
| | - Li-Lian Yuan
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, 50312, USA
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ling Li
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA. .,Department of Experimental and Clinical Pharmacology, University of Minnesota, McGuire Translational Research Facility (MTRF) 4-208, 2001 6th Street SE, Minneapolis, MN, 55455, USA. .,Graduate Program in Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
82
|
Vicente I, Baroncelli R, Morán-Diez ME, Bernardi R, Puntoni G, Hermosa R, Monte E, Vannacci G, Sarrocco S. Combined Comparative Genomics and Gene Expression Analyses Provide Insights into the Terpene Synthases Inventory in Trichoderma. Microorganisms 2020; 8:E1603. [PMID: 33081019 PMCID: PMC7603203 DOI: 10.3390/microorganisms8101603] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Trichoderma is a fungal genus comprising species used as biocontrol agents in crop plant protection and with high value for industry. The beneficial effects of these species are supported by the secondary metabolites they produce. Terpenoid compounds are key players in the interaction of Trichoderma spp. with the environment and with their fungal and plant hosts; however, most of the terpene synthase (TS) genes involved in their biosynthesis have yet not been characterized. Here, we combined comparative genomics of TSs of 21 strains belonging to 17 Trichoderma spp., and gene expression studies on TSs using T. gamsii T6085 as a model. An overview of the diversity within the TS-gene family and the regulation of TS genes is provided. We identified 15 groups of TSs, and the presence of clade-specific enzymes revealed a variety of terpenoid chemotypes evolved to cover different ecological demands. We propose that functional differentiation of gene family members is the driver for the high number of TS genes found in the genomes of Trichoderma. Expression studies provide a picture in which different TS genes are regulated in many ways, which is a strong indication of different biological functions.
Collapse
Affiliation(s)
- Isabel Vicente
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (R.B.); (G.P.); (G.V.); (S.S.)
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Campus Villamayor, 37185 Salamanca, Spain; (R.B.); (M.E.M.-D.); (R.H.); (E.M.)
| | - Riccardo Baroncelli
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Campus Villamayor, 37185 Salamanca, Spain; (R.B.); (M.E.M.-D.); (R.H.); (E.M.)
| | - María Eugenia Morán-Diez
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Campus Villamayor, 37185 Salamanca, Spain; (R.B.); (M.E.M.-D.); (R.H.); (E.M.)
| | - Rodolfo Bernardi
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (R.B.); (G.P.); (G.V.); (S.S.)
| | - Grazia Puntoni
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (R.B.); (G.P.); (G.V.); (S.S.)
| | - Rosa Hermosa
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Campus Villamayor, 37185 Salamanca, Spain; (R.B.); (M.E.M.-D.); (R.H.); (E.M.)
| | - Enrique Monte
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Campus Villamayor, 37185 Salamanca, Spain; (R.B.); (M.E.M.-D.); (R.H.); (E.M.)
| | - Giovanni Vannacci
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (R.B.); (G.P.); (G.V.); (S.S.)
| | - Sabrina Sarrocco
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (R.B.); (G.P.); (G.V.); (S.S.)
| |
Collapse
|
83
|
Abstract
Elevated cholesterol is a major risk factor in the development of cardiovascular disease. Statins have proven to be effective in lowering low-density lipoprotein cholesterol as well as the incidence of cardiovascular events. As a result, statins are widely prescribed in the United States, with an estimated 35 million patients on statins. Many of these patients are older than age 65 and suffer from various comorbidities, including mild to severe cognitive impairment. Early studies looking at the effects of statins on cognition have shown that statin use may lead to mild reversible cognitive decline, although long-term studies have shown inconclusive findings. In recent years, studies have shown that the use of statins in certain groups of patients may lead to a reduction in the rate of cognitive decline. One hypothesis for this finding is that statin use can reduce the risk of cerebrovascular disease which may, in turn, reduce the risk of mild cognitive decline and dementia. With numerous patients currently prescribed statins and the likelihood that more patients will be prescribed the medication in the coming years, it is important to review the current literature to determine the association between statin use and cognitive decline, as well as determine how statins may be beneficial in preventing cognitive decline.
Collapse
Affiliation(s)
- Bhawneet Chadha
- From the Department of Medicine, Tufts Medical Center, Boston, MA
| | - William H Frishman
- Department of Medicine, New York Medical College/Westchester Medical Center, Valhalla, NY
| |
Collapse
|
84
|
Panagiotakou A, Yavropoulou M, Nasiri-Ansari N, Makras P, Basdra EK, Papavassiliou AG, Kassi EN. Extra-skeletal effects of bisphosphonates. Metabolism 2020; 110:154264. [PMID: 32445641 DOI: 10.1016/j.metabol.2020.154264] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/20/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022]
Abstract
Bisphosphonates (BPs) are pyrophosphate analogues widely used in diseases related to bone loss and increased bone turnover. Their high affinity for bone hydroxyapatite makes them ideal agents for bone diseases, while preventing them from reaching other cells and tissues. Data of the last decade, however, have demonstrated extra-skeletal tissue deposition and a variety of non-skeletal effects have been recently recognized. As such, BPs have been shown to exert anti-tumor, immunomodulatory, anti-inflammatory and anti-diabetic effects. In addition, new delivery systems (liposomes, nanoparticles, hydrogels) are being developed in an effort to expand BPs clinical application to extra-skeletal tissues and enhance their overall therapeutic spectrum and effectiveness. In the present review, we outline current data on extra-skeletal actions of bisphosphonates and attempt to unravel the underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Argyro Panagiotakou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Greece
| | - Maria Yavropoulou
- 1st Department of Propaedeutic Internal Medicine, Endocrinology Unit, "Laiko" General Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | - Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Greece.
| | - Polyzois Makras
- Department of Medical Research, 251 Hellenic Air Force General Hospital, Athens, Greece
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Greece.
| | - Eva N Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Greece; 1st Department of Propaedeutic Internal Medicine, Endocrinology Unit, "Laiko" General Hospital, Medical School, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
85
|
Ghali MGZ, Marchenko V, Yaşargil MG, Ghali GZ. Structure and function of the perivascular fluid compartment and vertebral venous plexus: Illumining a novel theory on mechanisms underlying the pathogenesis of Alzheimer's, cerebral small vessel, and neurodegenerative diseases. Neurobiol Dis 2020; 144:105022. [PMID: 32687942 DOI: 10.1016/j.nbd.2020.105022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/13/2020] [Accepted: 07/15/2020] [Indexed: 01/14/2023] Open
Abstract
Blood dynamically and richly supplies the cerebral tissue via microvessels invested in pia matter perforating the cerebral substance. Arteries penetrating the cerebral substance derive an investment from one or two successive layers of pia mater, luminally apposed to the pial-glial basal lamina of the microvasculature and abluminally apposed to a series of aquaporin IV-studded astrocytic end feet constituting the soi-disant glia limitans. The full investment of successive layers forms the variably continuous walls of the periarteriolar, pericapillary, and perivenular divisions of the perivascular fluid compartment. The pia matter disappears at the distal periarteriolar division of the perivascular fluid compartment. Plasma from arteriolar blood sequentially transudates into the periarteriolar division of the perivascular fluid compartment and subarachnoid cisterns in precession to trickling into the neural interstitium. Fluid from the neural interstitium successively propagates into the venules through the subarachnoid cisterns and perivenular division of the perivascular fluid compartment. Fluid fluent within the perivascular fluid compartment flows gegen the net direction of arteriovenular flow. Microvessel oscillations at the central tendency of the cerebral vasomotion generate corresponding oscillations of within the surrounding perivascular fluid compartment, interposed betwixt the abluminal surface of the vessels and internal surface of the pia mater. The precise microanatomy of this most fascinating among designable spaces has eluded the efforts of various investigators to interrogate its structure, though most authors non-consensusly concur the investing layers effectively and functionally segregate the perivascular and subarachnoid fluid compartments. Enlargement of the perivascular fluid compartment in a variety of neurological disorders, including senile dementia of the Alzheimer's type and cerebral small vessel disease, may alternately or coordinately constitute a correlative marker of disease severity and a possible cause implicated in the mechanistic pathogenesis of these conditions. Venular pressures modulating oscillatory dynamic flow within the perivascular fluid compartment may similarly contribute to the development of a variety among neurological disorders. An intimate understanding of subtle features typifying microanatomy and microphysiology of the investing structures and spaces of the cerebral microvasculature may powerfully inform mechanistic pathophysiology mediating a variety of neurovascular ischemic, neuroinfectious, neuroautoimmune, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Michael George Zaki Ghali
- Department of Neurological Surgery, University of California San Francisco, 505 Parnassus Street, San Francisco, CA 94143, United States; Department of Neurobiology and Anatomy, 2900 W. Queen Lane, Philadelphia, PA 19129, United States.
| | - Vitaliy Marchenko
- Department of Neurobiology and Anatomy, 2900 W. Queen Lane, Philadelphia, PA 19129, United States; Department of Neurophysiology, Bogomoletz Institute, Kyiv, Ukraine; Department of Neuroscience, Московский государственный университет имени М. В., Ломоносова GSP-1, Leninskie Gory, Moscow 119991, Russian Federation
| | - M Gazi Yaşargil
- Department of Neurosurgery, University Hospital Zurich Rämistrasse 100, 8091 Zurich, Switzerland
| | - George Zaki Ghali
- United States Environmental Protection Agency, Arlington, Virginia, USA; Emeritus Professor of Toxicology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
86
|
Jokar S, Erfani M, Bavi O, Khazaei S, Sharifzadeh M, Hajiramezanali M, Beiki D, Shamloo A. Design of peptide-based inhibitor agent against amyloid-β aggregation: Molecular docking, synthesis and in vitro evaluation. Bioorg Chem 2020; 102:104050. [PMID: 32663672 DOI: 10.1016/j.bioorg.2020.104050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/07/2020] [Accepted: 06/15/2020] [Indexed: 12/30/2022]
Abstract
Formation of the amyloid beta (Aβ) peptide aggregations represents an indispensable role in appearing and progression of Alzheimer disease. β-sheet breaker peptides can be designed and modified with different amino acids in order to improve biological properties and binding affinity to the amyloid beta peptide. In the present study, three peptide sequences were designed based on the hopeful results of LIAIMA peptide and molecular docking studies were carried out onto the monomer and fibril structure of amyloid beta peptide using AutoDock Vina software. According to the obtained interactions and binding energy from docking, the best-designed peptide (d-GABA-FPLIAIMA) was chosen and synthesized in great yield (%96) via the Fmoc solid-phase peptide synthesis. The synthesis and purity of the resulting peptide were estimated and evaluated by Mass spectroscopy and Reversed-phase high-performance liquid chromatography (RP-HPLC) methods, respectively. Stability studies in plasma and Thioflavin T (ThT) assay were performed in order to measure the binding affinity and in vitro aggregation inhibition of Aβ peptide. The d-GABA-FPLIAIMA peptide showed good binding energy and affinity to Aβ fibrils, high stability (more than 90%) in human serum, and a reduction of 20% in inhibition of the Aβ aggregation growth. Finally, the favorable characteristics of our newly designed peptide make it a promising candidate β-sheet breaker agent for further in vivo studies.
Collapse
Affiliation(s)
- Safura Jokar
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Erfani
- Radiation Applications Research School, Nuclear Science and Technology Research Institute, Tehran, Iran.
| | - Omid Bavi
- Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, Iran.
| | - Saeedeh Khazaei
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy; Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Malihe Hajiramezanali
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Beiki
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
87
|
Simvastatin Prevents Long-Term Cognitive Deficits in Sepsis Survivor Rats by Reducing Neuroinflammation and Neurodegeneration. Neurotox Res 2020; 38:871-886. [PMID: 32524380 DOI: 10.1007/s12640-020-00222-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/09/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023]
Abstract
Sepsis-associated encephalopathy causes brain dysfunction that can result in cognitive impairments in sepsis survivor patients. In previous work, we showed that simvastatin attenuated oxidative stress in brain structures related to memory in septic rats. However, there is still a need to evaluate the long-term impact of simvastatin administration on brain neurodegenerative processes and cognitive damage in sepsis survivors. Here, we investigated the possible neuroprotective role of simvastatin in neuroinflammation, and neurodegeneration conditions of brain structures related to memory in rats at 10 days after sepsis survival. Male Wistar rats (250-300 g) were submitted to cecal ligation and puncture (CLP, n = 42) or remained as non-manipulated (naïve, n = 30). Both groups were treated (before and after the surgery) by gavage with simvastatin (20 mg/kg) or an equivalent volume of saline and observed for 10 days. Simvastatin-treated rats that survived to sepsis showed a reduction in the levels of nitrate, IL1-β, and IL-6 and an increase in Bcl-2 protein expression in the prefrontal cortex and hippocampus, and synaptophysin only in the hippocampus. Immunofluorescence revealed a reduction of glial activation, neurodegeneration, apoptosis, and amyloid aggregates confirmed by quantification of GFAP, Iba-1, phospho Ser396-tau, total tau, cleaved caspase-3, and thioflavin-S in the prefrontal cortex and hippocampus. In addition, treated animals presented better performance in tasks involving habituation memory, discriminative, and aversive memory. These results suggest that statins exert a neuroprotective role by upregulation of the Bcl-2 and gliosis reduction, which may prevent the cognitive deficit observed in sepsis survivor animals.
Collapse
|
88
|
Cai R, Dong X, Yu K, He X, Liu X, Wang Y. Chemical Proteomic Profiling of the Interacting Proteins of Isoprenoid Pyrophosphates. Anal Chem 2020; 92:8031-8036. [PMID: 32420730 DOI: 10.1021/acs.analchem.0c01676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isoprenoid pyrophosphates are involved in protein prenylation and assume regulatory roles in cells; however, little is known about the cellular proteins that can interact with isoprenoid pyrophosphates. Here, we devised a chemical proteomic strategy, capitalizing on the use of a desthiobiotin-geranyl pyrophosphate (GPP) acyl phosphate probe for the enrichment and subsequent identification of GPP-binding proteins using liquid chromatography-tandem mass spectrometry (LC-MS/MS). By combining stable isotope labeling by amino acids in cell culture (SILAC) and competitive labeling with low vs high concentrations of GPP probe, with ATP vs GPP acyl phosphate probes, or with the GPP probe in the presence of different concentrations of free GPP, we uncovered a number of candidate GPP-binding proteins. We also discovered, for the first time, histone deacetylase 1 (HDAC1) as a GPP-binding protein. Furthermore, we found that the enzymatic activity of HDAC1 could be modulated by isoprenoid pyrophosphates. Together, we developed a novel chemical proteomic method for the proteome-wide discovery of GPP-binding proteins, which sets the stage for a better understanding about the biological functions of isoprenoids.
Collapse
Affiliation(s)
- Rong Cai
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States.,School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xuejiao Dong
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| | - Kailin Yu
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| | - Xiaomei He
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| | - Xiaochuan Liu
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| |
Collapse
|
89
|
Evaluation of musculoskeletal phenotype of the G608G progeria mouse model with lonafarnib, pravastatin, and zoledronic acid as treatment groups. Proc Natl Acad Sci U S A 2020; 117:12029-12040. [PMID: 32404427 DOI: 10.1073/pnas.1906713117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a uniformly fatal condition that is especially prevalent in skin, cardiovascular, and musculoskeletal systems. A wide gap exists between our knowledge of the disease and a promising treatment or cure. The aim of this study was to first characterize the musculoskeletal phenotype of the homozygous G608G BAC-transgenic progeria mouse model, and to determine the phenotype changes of HGPS mice after a five-arm preclinical trial of different treatment combinations with lonafarnib, pravastatin, and zoledronic acid. Microcomputed tomography and CT-based rigidity analyses were performed to assess cortical and trabecular bone structure, density, and rigidity. Bones were loaded to failure with three-point bending to assess strength. Contrast-enhanced µCT imaging of mouse femurs was performed to measure glycosaminoglycan content, thickness, and volume of the femoral head articular cartilage. Advanced glycation end products were assessed with a fluorometric assay. The changes demonstrated in the cortical bone structure, rigidity, stiffness, and modulus of the HGPS G608G mouse model may increase the risk for bending and deformation, which could result in the skeletal dysplasia characteristic of HGPS. Cartilage abnormalities seen in this HGPS model resemble changes observed in the age-matched WT controls, including early loss of glycosaminoglycans, and decreased cartilage thickness and volume. Such changes might mimic prevalent degenerative joint diseases in the elderly. Lonafarnib monotherapy did not improve bone or cartilage parameters, but treatment combinations with pravastatin and zoledronic acid significantly improved bone structure and mechanical properties and cartilage structural parameters, which ameliorate the musculoskeletal phenotype of the disease.
Collapse
|
90
|
Turpaev KT. Transcription Factor KLF2 and Its Role in the Regulation of Inflammatory Processes. BIOCHEMISTRY (MOSCOW) 2020; 85:54-67. [PMID: 32079517 DOI: 10.1134/s0006297920010058] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
KLF2 is a member of the Krüppel-like transcription factor family of proteins containing highly conserved DNA-binding zinc finger domains. KLF2 participates in the differentiation and regulation of the functional activity of monocytes, T lymphocytes, adipocytes, and vascular endothelial cells. The activity of KLF2 is controlled by several regulatory systems, including the MEKK2,3/MEK5/ERK5/MEF2 MAP kinase cascade, Rho family G-proteins, histone acetyltransferases CBP and p300, and histone deacetylases HDAC4 and HDAC5. Activation of KLF2 in endothelial cells induces eNOS expression and provides vasodilatory effect. Many KLF2-dependent genes participate in the suppression of blood coagulation and aggregation of T cells and macrophages with the vascular endothelium, thereby preventing atherosclerosis progression. KLF2 can have a dual effect on the gene transcription. Thus, it induces expression of multiple genes, but suppresses transcription of NF-κB-dependent genes. Transcription factors KLF2 and NF-κB are reciprocal antagonists. KLF2 inhibits induction of NF-κB-dependent genes, whereas NF-κB downregulates KLF2 expression. KLF2-mediated inhibition of NF-κB signaling leads to the suppression of cell response to the pro-inflammatory cytokines IL-1β and TNFα and results in the attenuation of inflammatory processes.
Collapse
Affiliation(s)
- K T Turpaev
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
91
|
AISA can control the inflammatory facet of SASP. Mech Ageing Dev 2020; 186:111206. [DOI: 10.1016/j.mad.2019.111206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 12/29/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022]
|
92
|
Armando RG, Gómez DLM, Gomez DE. New drugs are not enough‑drug repositioning in oncology: An update. Int J Oncol 2020; 56:651-684. [PMID: 32124955 PMCID: PMC7010222 DOI: 10.3892/ijo.2020.4966] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/16/2019] [Indexed: 11/24/2022] Open
Abstract
Drug repositioning refers to the concept of discovering novel clinical benefits of drugs that are already known for use treating other diseases. The advantages of this are that several important drug characteristics are already established (including efficacy, pharmacokinetics, pharmacodynamics and toxicity), making the process of research for a putative drug quicker and less costly. Drug repositioning in oncology has received extensive focus. The present review summarizes the most prominent examples of drug repositioning for the treatment of cancer, taking into consideration their primary use, proposed anticancer mechanisms and current development status.
Collapse
Affiliation(s)
- Romina Gabriela Armando
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Diego Luis Mengual Gómez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Daniel Eduardo Gomez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| |
Collapse
|
93
|
Regulation of FKBP51 and FKBP52 functions by post-translational modifications. Biochem Soc Trans 2020; 47:1815-1831. [PMID: 31754722 DOI: 10.1042/bst20190334] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 12/17/2022]
Abstract
FKBP51 and FKBP52 are two iconic members of the family of peptidyl-prolyl-(cis/trans)-isomerases (EC: 5.2.1.8), which comprises proteins that catalyze the cis/trans isomerization of peptidyl-prolyl peptide bonds in unfolded and partially folded polypeptide chains and native state proteins. Originally, both proteins have been studied as molecular chaperones belonging to the steroid receptor heterocomplex, where they were first discovered. In addition to their expected role in receptor folding and chaperoning, FKBP51 and FKBP52 are also involved in many biological processes, such as signal transduction, transcriptional regulation, protein transport, cancer development, and cell differentiation, just to mention a few examples. Recent studies have revealed that both proteins are subject of post-translational modifications such as phosphorylation, SUMOlyation, and acetylation. In this work, we summarize recent advances in the study of these immunophilins portraying them as scaffolding proteins capable to organize protein heterocomplexes, describing some of their antagonistic properties in the physiology of the cell, and the putative regulation of their properties by those post-translational modifications.
Collapse
|
94
|
Ramesh M, Gopinath P, Govindaraju T. Role of Post-translational Modifications in Alzheimer's Disease. Chembiochem 2020; 21:1052-1079. [PMID: 31863723 DOI: 10.1002/cbic.201900573] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/19/2019] [Indexed: 12/22/2022]
Abstract
The global burden of Alzheimer's disease (AD) is growing. Valiant efforts to develop clinical candidates for treatment have continuously met with failure. Currently available palliative treatments are temporary and there is a constant need to search for reliable disease pathways, biomarkers and drug targets for developing diagnostic and therapeutic tools to address the unmet medical needs of AD. Challenges in drug-discovery efforts raise further questions about the strategies of current conventional diagnosis; drug design; and understanding of disease pathways, biomarkers and targets. In this context, post-translational modifications (PTMs) regulate protein trafficking, function and degradation, and their in-depth study plays a significant role in the identification of novel biomarkers and drug targets. Aberrant PTMs of disease-relevant proteins could trigger pathological pathways, leading to disease progression. Advancements in proteomics enable the generation of patterns or signatures of such modifications, and thus, provide a versatile platform to develop biomarkers based on PTMs. In addition, understanding and targeting the aberrant PTMs of various proteins provide viable avenues for addressing AD drug-discovery challenges. This review highlights numerous PTMs of proteins relevant to AD and provides an overview of their adverse effects on the protein structure, function and aggregation propensity that contribute to the disease pathology. A critical discussion offers suggestions of methods to develop PTM signatures and interfere with aberrant PTMs to develop viable diagnostic and therapeutic interventions in AD.
Collapse
Affiliation(s)
- Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064, Karnataka, India
| | - Pushparathinam Gopinath
- Department of Chemistry, SRM-Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamilnadu, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064, Karnataka, India
| |
Collapse
|
95
|
Cholesterol and beyond - The role of the mevalonate pathway in cancer biology. Biochim Biophys Acta Rev Cancer 2020; 1873:188351. [PMID: 32007596 DOI: 10.1016/j.bbcan.2020.188351] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Cancer is a multifaceted global disease. Transformation of a normal to a malignant cell takes several steps, including somatic mutations, epigenetic alterations, metabolic reprogramming and loss of cell growth control. Recently, the mevalonate pathway has emerged as a crucial regulator of tumor biology and a potential therapeutic target. This pathway controls cholesterol production and posttranslational modifications of Rho-GTPases, both of which are linked to several key steps of tumor progression. Inhibitors of the mevalonate pathway induce pleiotropic antitumor-effects in several human malignancies, identifying the pathway as an attractive candidate for novel therapies. In this review, we will provide an overview about the role and regulation of the mevalonate pathway in certain aspects of cancer initiation and progression and its potential for therapeutic intervention in oncology.
Collapse
|
96
|
Reddy JM, Raut NGR, Seifert JL, Hynds DL. Regulation of Small GTPase Prenylation in the Nervous System. Mol Neurobiol 2020; 57:2220-2231. [PMID: 31989383 DOI: 10.1007/s12035-020-01870-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/06/2020] [Indexed: 11/26/2022]
Abstract
Mevalonate pathway inhibitors have been extensively studied for their roles in cholesterol depletion and for inhibiting the prenylation and activation of various proteins. Inhibition of protein prenylation has potential therapeutic uses against neurological disorders, like neural cancers, neurodegeneration, and neurotramatic lesions. Protection against neurodegeneration and promotion of neuronal regeneration is regulated in large part by Ras superfamily small guanosine triphosphatases (GTPases), particularly the Ras, Rho, and Rab subfamilies. These proteins are prenylated to target them to cellular membranes. Prenylation can be specifically inhibited through altering the function of enzymes of the mevalonate pathway necessary for isoprenoid production and attachment to target proteins to elicit a variety of effects on neural cells. However, this approach does not address how prenylation affects a specific protein. This review focuses on the regulation of small GTPase prenylation, the different techniques to inhibit prenylation, and how this inhibition has affected neural cell processes.
Collapse
Affiliation(s)
| | | | | | - DiAnna L Hynds
- Texas Woman's University, Denton, TX, USA.
- Woodcock Institute for the Advancement of Neurocognitive Research and Applied Practice, Texas Woman's University, PO Box 4525799, Denton, TX, 76204-5799, USA.
| |
Collapse
|
97
|
Gao J, Shao K, Chen X, Li Z, Liu Z, Yu Z, Aung LHH, Wang Y, Li P. The involvement of post-translational modifications in cardiovascular pathologies: Focus on SUMOylation, neddylation, succinylation, and prenylation. J Mol Cell Cardiol 2020; 138:49-58. [DOI: 10.1016/j.yjmcc.2019.11.146] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022]
|
98
|
Liu Q, Miao Y, Wang X, Lv G, Peng Y, Li K, Li M, Qiu L, Lin J. Structure-based virtual screening and biological evaluation of novel non-bisphosphonate farnesyl pyrophosphate synthase inhibitors. Eur J Med Chem 2020; 186:111905. [DOI: 10.1016/j.ejmech.2019.111905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 02/09/2023]
|
99
|
Regulation of the Notch-ATM-abl axis by geranylgeranyl diphosphate synthase inhibition. Cell Death Dis 2019; 10:733. [PMID: 31570763 PMCID: PMC6768865 DOI: 10.1038/s41419-019-1973-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/21/2022]
Abstract
Notch proteins drive oncogenesis of many cancers, most prominently T-cell acute lymphoblastic leukemia (T-ALL). Because geranylgeranylated Rab proteins regulate Notch processing, we hypothesized that inhibition of geranylgeranyl diphosphate synthase (GGDPS) would impair Notch processing and reduce viability of T-ALL cells that express Notch. Here, we show that GGDPS inhibition reduces Notch1 expression and impairs the proliferation of T-ALL cells. GGDPS inhibition also reduces Rab7 membrane association and depletes Notch1 mRNA. GGDPS inhibition increases phosphorylation of histone H2A.X, and inhibitors of ataxia telangiectasia-mutated kinase (ATM) mitigate GGDPS inhibitor-induced apoptosis. GGDPS inhibition also influences c-abl activity downstream of caspases, and inhibitors of these enzymes prevent GGDPS inhibitor-induced apoptosis. Surprisingly, induction of apoptosis by GGDPS inhibition is reduced by co-treatment with γ-secretase inhibitors. While inhibitors of γ-secretase deplete one specific form of the Notch1 intracellular domain (NICD), they also increase Notch1 mRNA expression and increase alternate forms of Notch1 protein expression in cells treated with a GGDPS inhibitor. Furthermore, inhibitors of γ-secretase and ATM increase Notch1 mRNA stability independent of GGDPS inhibition. These results provide a model by which T-ALL cells use Notch1 to avoid DNA-damage-induced apoptosis, and can be overcome by inhibition of GGDPS through effects on Notch1 expression and its subsequent response.
Collapse
|
100
|
De Loof A, Schoofs L. Flip-Flopping Retinal in Microbial Rhodopsins as a Template for a Farnesyl/Prenyl Flip-Flop Model in Eukaryote GPCRs. Front Neurosci 2019; 13:465. [PMID: 31133794 PMCID: PMC6515946 DOI: 10.3389/fnins.2019.00465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/24/2019] [Indexed: 01/01/2023] Open
Abstract
Thirty years after the first description and modeling of G protein coupled receptors (GPCRs), information about their mode of action is still limited. One of the questions that is hard to answer is: how do the allosteric changes in the GPCR induced by, e.g., ligand binding in the end activate a G protein-dependent intracellular pathway (e.g., via the cAMP or the phosphatidylinositol signal pathways). Another question relates to the role of prenylation of G proteins. Today's "consensus model" states that protein prenylation is required for the assembly of GPCR-G protein complexes. Although it is well-known that protein prenylation is the covalent addition of a farnesyl- or geranylgeranyl moiety to the C terminus of specific proteins, e.g., α or γ G protein, the reason for this strong covalent binding remains enigmatic. The arguments for a fundamental role for prenylation of G proteins other than just being a hydrophobic linker, are gradually accumulating. We uncovered a dilemma that at first glance may be considered physiologically irrelevant, however, it may cause a true change in paradigm. The consensus model suggests that the only functional role of prenylation is to link the G protein to the receptor. Does the isoprenoid nature of the prenyl group and its exact site of attachment somehow matter? Or, are there valid arguments favoring the alternative possibility that a key role of the G protein is to guide the covalently attached prenyl group to - and it hold it in - a very specific location in between specific helices of the receptor? Our model says that the farnesyl/prenyl group - aided by its covalent attachment to a G protein -might function in GPCRs as a horseshoe-shaped flexible (and perhaps flip-flopping) hydrophobic valve for restricting (though not fully inhibiting) the untimely passage of Ca2+, like retinal does for the passage of H+ in microbial rhodopsins that are ancestral to many GPCRs.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, Zoological Institute, KU Leuven, Leuven, Belgium
| | | |
Collapse
|