51
|
Double-blind, randomized, multicenter phase 2 study of SC411 in children with sickle cell disease (SCOT trial). Blood Adv 2019; 2:1969-1979. [PMID: 30097463 DOI: 10.1182/bloodadvances.2018021444] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/12/2018] [Indexed: 01/21/2023] Open
Abstract
Blood cell membranes in sickle cell disease (SCD) have low docosahexaenoic acid (DHA). DHA treatment reduces sickle cell crisis (SCC) rate and ameliorates the inflammation, oxidative stress, and hypercoagulable state of SCD. SC411 is a novel DHA ethyl ester formulation with a proprietary delivery platform (Advanced Lipid Technology) that enhances DHA bioavailability. The SCOT trial investigated the effect of 3 different doses of SC411 on clinical and biochemical endpoints in 67 children with SCD (5-17 years old). Seventy-six percent of subjects were also receiving hydroxyurea. After 4 weeks of treatment with SC411 at 20, 36, and 60 mg DHA/kg per day or placebo a statistically significant (P < .001) mean percentage increase of blood cell membrane DHA and eicosapentaenoic acid was seen vs baseline: 109.0% (confidence interval [CI], 46.7-171.3), 163.8% (CI, 108.3-219.2), 170.8% (CI, 90.2-251.4), and 28.6% (CI, 250.1 to 107.3), respectively. After 8 weeks of treatment, statistically significant changes vs placebo were also observed in D-dimer (P = .025) and soluble E-selectin (P = .0219) in subjects exposed to 36 mg/kg. A significant increase in hemoglobin was observed against placebo in subjects receiving 20 mg DHA/kg per day (P = .039). SC411 significantly reduced electronic diary recorded SCC, analgesic use at home, and days absent from school because of sickle cell pain. The lower rate of clinical SCC observed in the pooled active groups vs placebo did not reach statistical significance (rate ratio, 0.47; 95% CI, 0.20-1.11; P = .07). All tested doses were safe and well tolerated. This trial was registered at www.clinicaltrials.gov as #NCT02973360.
Collapse
|
52
|
Toledo SLDO, Guedes JVM, Alpoim PN, Rios DRA, Pinheiro MDB. Sickle cell disease: Hemostatic and inflammatory changes, and their interrelation. Clin Chim Acta 2019; 493:129-137. [PMID: 30825426 DOI: 10.1016/j.cca.2019.02.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 12/23/2022]
Abstract
Sickle cell disease, the most common genetic blood disorder in the world, has high clinical variability, negatively impacts quality of life and contributes to early mortality. Sickled erythrocytes cause blood flow obstruction, hemolysis, and several hemostatic changes that promote coagulation. These events, in turn, induce chronic inflammation, characterized by elevated plasma levels of pro-inflammatory markers, which aggravates the already unfavorable state of the circulatory system. Empirical evidence indicates that the hemostatic and inflammatory systems continuously interact with each other and thereby further propagate the hypercoagulability and inflammatory conditions. In this review article, we discuss the pathophysiological aspects of sickle cell disease and the hemostatic and inflammatory changes that underlie its pathogenesis.
Collapse
Affiliation(s)
- Sílvia L de O Toledo
- Federal University of São João del-Rei (UFSJ), Dona Lindu Center-West Campus, Sebastião Gonçalves Coelho Street, 400, Chanadour, 35501-296 Divinópolis, MG, Brazil
| | - João V M Guedes
- Federal University of São João del-Rei (UFSJ), Dona Lindu Center-West Campus, Sebastião Gonçalves Coelho Street, 400, Chanadour, 35501-296 Divinópolis, MG, Brazil
| | - Patrícia N Alpoim
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais (MG), Brazil
| | - Danyelle R A Rios
- Federal University of São João del-Rei (UFSJ), Dona Lindu Center-West Campus, Sebastião Gonçalves Coelho Street, 400, Chanadour, 35501-296 Divinópolis, MG, Brazil
| | - Melina de B Pinheiro
- Federal University of São João del-Rei (UFSJ), Dona Lindu Center-West Campus, Sebastião Gonçalves Coelho Street, 400, Chanadour, 35501-296 Divinópolis, MG, Brazil.
| |
Collapse
|
53
|
Nugent WH, Jubin R, Buontempo PJ, Kazo F, Song BK. Microvascular and systemic responses to novel PEGylated carboxyhaemoglobin-based oxygen carrier in a rat model of vaso-occlusive crisis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:95-103. [DOI: 10.1080/21691401.2018.1543197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Ronald Jubin
- Prolong Pharmaceuticals, South Plainfield, NJ, USA
| | | | | | | |
Collapse
|
54
|
Double-Blind Clinical Trial of Arginine Supplementation in the Treatment of Adult Patients with Sickle Cell Anaemia. Adv Hematol 2019; 2019:4397150. [PMID: 30853991 PMCID: PMC6378076 DOI: 10.1155/2019/4397150] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/22/2018] [Accepted: 01/15/2019] [Indexed: 12/21/2022] Open
Abstract
Background Sickle cell anaemia (SCA) is the most prevalent monogenic disease in Brazil. In SCA, haemoglobin S (HbS) is formed, which modifies red blood cell morphology. Intravascular haemolysis occurs, in which free Hb and free radicals degrade nitric oxide (NO) and release arginase, which reduces arginine levels. Because arginine is a substrate for NO formation, this decrease leads to reduced NO (vasodilator) synthesis. SCA treatment uses hydroxyurea (HU) to maintain high foetal haemoglobin (HbF) levels and reduces HbS to avoid haemolytic episodes. Objective To analyse the efficacy of L-arginine as an adjuvant in the treatment of SCA patients. Setting The State Blood Centre of Ceará, Brazil. Methods This was a randomized double-blind clinical study of adults with SCA with continuous use of HU at the State Blood Centre of Ceará. The clinical study enrolled 25 patients receiving HU + L-arginine (500 mg) and 25 patients receiving HU + placebo. The treatment was carried out over four months. Laboratory tests were performed to determine the levels of the following: (1) complete blood count; (2) nitrite + nitrate; (3) HbF; and (4) reticulocytes. The clinical experiments were performed by a haematologist. The main outcome measures were nitrite and pain. Results Statistical analysis showed that the levels of NO were increased in the study group, and there was also a reduction in pain frequency using a pain frequency scale by day, week, and month. The levels of nitrite plus nitrate in the group receiving placebo plus HU did not change among the times evaluated (38.27 ± 17.27 mg/L, 39.49 ± 12.84 mg/L, 34.45 ± 11.25 mg/L, p >0.05), but in the patients who received supplementation with L-arginine plus HU, a significant increase in nitrite plus nitrate levels was observed between M0 and M4 (36.55 ± 20.23 mg/L versus 48.64 ± 20.63 mg/L, p =0.001) and M2 and M4 (35.71 ± 15.11 mg/L versus 48.64 ± 20.63 mg/L, p <0.001). It is important to note that the increase in nitrite plus nitrate levels occurred only in the fourth month of follow-up of patients in the treatment group, showing that at least 4 months of supplementation with L-arginine is necessary to show an increase in these metabolites in the serum. Conclusion The use of L-arginine as a coadjuvant in the treatment of sickle cell anaemia may function as a potential tool for pain relief, consequently improving the life of patients.
Collapse
|
55
|
Field JJ, Ballas SK, Campbell CM, Crosby LE, Dampier C, Darbari DS, McClish DK, Smith WR, Zempsky WT. AAAPT Diagnostic Criteria for Acute Sickle Cell Disease Pain. THE JOURNAL OF PAIN 2018; 20:746-759. [PMID: 30578848 DOI: 10.1016/j.jpain.2018.12.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/19/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022]
Abstract
Acute pain episodes are the most common complication in patients with sickle cell disease (SCD). Classically attributed to vaso-occlusion, recent insights suggest that chronic pain may also contribute to the pathogenesis of acute pain episodes, which adds complexity to their diagnosis and management. A taxonomy, or classification system, for acute pain in patients with SCD would aid research efforts and enhance clinical care. To meet this need, the Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks public-private partnership with the U.S. Food and Drug Administration, the American Pain Society, and the American Academy of Pain Medicine formed the Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks-American Pain Society-American Academy of Pain Medicine Pain Taxonomy initiative. One of the goals of this initiative was to develop taxonomies for acute pain disorders, including SCD. To accomplish this, a working group of experts in SCD and pain was convened. Based on available literature and expert opinion, the working group used a 5-dimenional structure (diagnostic criteria, common features, modulating factors, impact/functional consequences, and putative mechanisms) to develop an acute pain taxonomy that is specific to SCD. As part of this, a set of 4 diagnostic criteria, with 2 modifiers to account for the influence of chronic pain, are proposed to define the types of acute pain observed in patients with SCD. PERSPECTIVE: This article presents a taxonomy for acute pain in patients with SCD. This taxonomy could help to standardize definitions of acute pain in clinical studies of patients with SCD.
Collapse
Affiliation(s)
- Joshua J Field
- JJF Medical Sciences Institute, BloodCenter of Wisconsin, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.
| | - Samir K Ballas
- SKB Department of Medicine,Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Claudia M Campbell
- CCM Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Lori E Crosby
- LEC Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Carlton Dampier
- CD Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Deepika S Darbari
- DSD Division of Hematology, Children's National Medical Center, Washington, DC
| | - Donna K McClish
- DKM Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
| | - Wally R Smith
- WRS Department of Medicine, Virginia Commonwealth University Health System, Richmond, Virginia
| | - William T Zempsky
- WTZ Department of Pediatrics, Connecticut Children's Medical Center, Hartford, Connecticut
| |
Collapse
|
56
|
Deng Y, Papageorgiou DP, Chang HY, Abidi SZ, Li X, Dao M, Karniadakis GE. Quantifying Shear-Induced Deformation and Detachment of Individual Adherent Sickle Red Blood Cells. Biophys J 2018; 116:360-371. [PMID: 30612714 DOI: 10.1016/j.bpj.2018.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/26/2018] [Accepted: 12/10/2018] [Indexed: 02/02/2023] Open
Abstract
Vaso-occlusive crisis, a common painful complication of sickle cell disease, is a complex process triggered by intercellular adhesive interactions among blood cells and the endothelium in all human organs (e.g., the oxygen-rich lung as well as hypoxic systems such as liver and kidneys). We present a combined experimental-computational study to quantify the adhesive characteristics of sickle mature erythrocytes (SMEs) and irreversibly sickled cells (ISCs) under flow conditions mimicking those in postcapillary venules. We employed an in vitro microfluidic cell adherence assay, which is coated uniformly with fibronectin. We investigated the adhesion dynamics of SMEs and ISCs in pulsatile flow under well-controlled hypoxic conditions, inferring the cell adhesion strength by increasing the flow rate (or wall shear stress (WSS)) until the onset of cell detachment. In parallel, we performed simulations of individual SMEs and ISCs under shear. We introduced two metrics to quantify the adhesion process, the cell aspect ratio (AR) as a function of WSS and its rate of change (the dynamic deformability index). We found that the AR of SMEs decreases significantly with the increase of WSS, consistent between the experiments and simulations. In contrast, the AR of ISCs remains constant in time and independent of the flow rate. The critical WSS value for detaching a single SME in oxygenated state is in the range of 3.9-5.5 Pa depending on the number of adhesion sites; the critical WSS value for ISCs is lower than that of SMEs. Our simulations show that the critical WSS value for SMEs in deoxygenated state is above 6.2 Pa (multiple adhesion sites), which is greater than their oxygenated counterparts. We investigated the effect of cell shear modulus on the detachment process; we found that for the same cell adhesion spring constant, the higher shear modulus leads to an earlier cell detachment from the functionalized surface. These findings may aid in the understanding of individual roles of sickle cell types in sickle cell disease vaso-occlusion.
Collapse
Affiliation(s)
- Yixiang Deng
- Division of Applied Mathematics, Brown University, Providence, Rhode Island; School of Engineering, Brown University, Providence, Rhode Island
| | - Dimitrios P Papageorgiou
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Hung-Yu Chang
- Division of Applied Mathematics, Brown University, Providence, Rhode Island
| | - Sabia Z Abidi
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Bioengineering, Rice University, Houston, Texas
| | - Xuejin Li
- Division of Applied Mathematics, Brown University, Providence, Rhode Island; Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China.
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | |
Collapse
|
57
|
Kapoor S, Little JA, Pecker LH. Advances in the Treatment of Sickle Cell Disease. Mayo Clin Proc 2018; 93:1810-1824. [PMID: 30414734 DOI: 10.1016/j.mayocp.2018.08.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/08/2018] [Accepted: 08/07/2018] [Indexed: 12/26/2022]
Abstract
Sickle cell disease (SCD) is a monogenic disorder that afflicts approximately 100,000 Americans and millions of people worldwide. It is characterized by hemolytic anemia, vaso-occlusive crises, relentless end-organ injury, and premature death. Currently, red blood cell transfusion and hydroxyurea are the major disease-modifying therapies available for SCD. Hematopoetic stem cell transplant is curative, but barriers to treatment are substantial and include a lack of suitable donors, immunologic transplant rejection, long-term adverse effects, prognostic uncertainty, and poor end-organ function, which is especially problematic for older patients. Gene therapy to correct the βs point mutation is under investigation as another curative modality. Deeper insights into the pathophysiology of SCD have led to the development of novel agents that target cellular adhesion, inflammation, oxidant injury, platelets and/or coagulation, vascular tone, and hemoglobin polymerization. These agents are in preclinical and clinical trials. One such agent, L-glutamine, decreases red blood cell oxidant injury and is recently US Food and Drug Administration approved to prevent acute pain episodes of SCD in patients 5 years of age or older. The purpose of this review is to describe the currently established therapies, barriers to curative therapies, and novel therapeutic agents that can target sickle cell hemoglobin polymerization and/or its downstream sequelae. A PubMed search was conducted for articles published up to May 15, 2018, using the search terms sickle cell disease, novel treatments, hematopoietic stem cell transplantation, and gene therapy. Studies cited include case series, retrospective studies, prospective clinical trials, meta-analyses, online abstracts, and original reviews.
Collapse
Affiliation(s)
- Sargam Kapoor
- Division of Hematology/Oncology, Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH; Division of Hematology/Oncology, Case Western Reserve University, Cleveland, OH
| | - Jane A Little
- Division of Hematology/Oncology, Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH; Division of Hematology/Oncology, Case Western Reserve University, Cleveland, OH
| | - Lydia H Pecker
- Division of Pediatric Hematology, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
58
|
Sundd P, Gladwin MT, Novelli EM. Pathophysiology of Sickle Cell Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:263-292. [PMID: 30332562 DOI: 10.1146/annurev-pathmechdis-012418-012838] [Citation(s) in RCA: 396] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since the discovery of sickle cell disease (SCD) in 1910, enormous strides have been made in the elucidation of the pathogenesis of its protean complications, which has inspired recent advances in targeted molecular therapies. In SCD, a single amino acid substitution in the β-globin chain leads to polymerization of mutant hemoglobin S, impairing erythrocyte rheology and survival. Clinically, erythrocyte abnormalities in SCD manifest in hemolytic anemia and cycles of microvascular vaso-occlusion leading to end-organ ischemia-reperfusion injury and infarction. Vaso-occlusive events and intravascular hemolysis promote inflammation and redox instability that lead to progressive small- and large-vessel vasculopathy. Based on current evidence, the pathobiology of SCD is considered to be a vicious cycle of four major processes, all the subject of active study and novel therapeutic targeting: ( a) hemoglobin S polymerization, ( b) impaired biorheology and increased adhesion-mediated vaso-occlusion, ( c) hemolysis-mediated endothelial dysfunction, and ( d) concerted activation of sterile inflammation (Toll-like receptor 4- and inflammasome-dependent innate immune pathways). These molecular, cellular, and biophysical processes synergize to promote acute and chronic pain and end-organ injury and failure in SCD. This review provides an exhaustive overview of the current understanding of the molecular pathophysiology of SCD, how this pathophysiology contributes to complications of the central nervous and cardiopulmonary systems, and how this knowledge is being harnessed to develop current and potential therapies.
Collapse
Affiliation(s)
- Prithu Sundd
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA; .,Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Sickle Cell Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Mark T Gladwin
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA; .,Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Sickle Cell Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Enrico M Novelli
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Sickle Cell Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
59
|
Abstract
Patients with sickle cell disease (SCD) suffer from painful vasoocclusive crises. Polymerization of sickle hemoglobin (HbS) in RBCs is generally considered a major contributor to such crisis events. Here, we present the simultaneous and synergistic coupling of adhesion and HbS polymerization. We show that the age of RBCs in circulation plays an important role in mediating this synergistic effect on blood rheology and clinical symptoms. In particular, the youngest RBCs exhibit unique adhesion dynamics, whereby polymerized HbS fiber bundles grow from cell surfaces to serve as sites of cytoadherence. Our molecular-level simulations show how the attachment and dissociation of molecular bonds influence adhesion dynamics. These results provide a framework that could elucidate the mechanistic basis of SCD vasoocclusive pain crises. Polymerization and adhesion, dynamic processes that are hallmarks of sickle cell disease (SCD), have thus far been studied in vitro only separately. Here, we present quantitative results of the simultaneous and synergistic effects of adhesion and polymerization of deoxygenated sickle hemoglobin (HbS) in the human red blood cell (RBC) on the mechanisms underlying vasoocclusive pain crisis. For this purpose, we employ a specially developed hypoxic microfluidic platform, which is capable of inducing sickling and unsickling of RBCs in vitro, to test blood samples from eight patients with SCD. We supplemented these experimental results with detailed molecular-level computational simulations of cytoadherence and biorheology using dissipative particle dynamics. By recourse to image analysis techniques, we characterize sickle RBC maturation stages in the following order of the degree of adhesion susceptibility under hypoxia: sickle reticulocytes in circulation (SRs) → sickle mature erythrocytes (SMEs) → irreversibly sickled cells (ISCs). We show that (i) hypoxia significantly enhances sickle RBC adherence; (ii) HbS polymerization enhances sickle cell adherence in SRs and SMEs, but not in ISCs; (iii) SRs exhibit unique adhesion dynamics where HbS fiber projections growing outward from the cell surface create multiple sites of adhesion; and (iv) polymerization stimulates adhesion and vice versa, thereby establishing the bidirectional coupling between the two processes. These findings offer insights into possible mechanistic pathways leading to vasoocclusion crisis. They also elucidate the processes underlying the onset of occlusion that may involve circulating reticulocytes, which are more abundant in hemolytic anemias due to robust compensatory erythropoiesis.
Collapse
|
60
|
Özcan O, Erdal H, İlhan G, Demir D, Gürpınar AB, Neşelioğlu S, Erel Ö. Plasma Ischemia-Modified Albumin Levels and Dynamic Thiol/Disulfide Balance in Sickle Cell Disease: A Case-Control Study. Turk J Haematol 2018; 35:265-270. [PMID: 30182924 PMCID: PMC6256817 DOI: 10.4274/tjh.2018.0119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Objective: Sickle cell disease (SCD), described as a group of inherited blood disorders, affects millions of people throughout the world and is particularly common in the southern part of Turkey. We aimed to determine the relationship between ischemia-modified albumin (IMA) and the dynamic thiol/disulfide balance in SCD. Materials and Methods: Fifty-four adult SCD patients and 30 healthy controls were included in the study. The 54 adult patients included 30 (56%) males and 24 (44%) females with a mean age of 28.3±8.4 years (minimum-maximum: 18-46 years). Of the 54 patients, 46 had homozygous sickle cell anemia (HbSS) and 8 had sickle/β-thalassemia (HbS/β+-thalassemia). Fasting blood samples were collected. After centrifugation at 1500×g for 10 min, plasma samples were portioned and stored at -80 °C. IMA levels were determined by albumin cobalt binding test, a colorimetric method. Total and native thiols and disulfide were analyzed with a novel spectrophotometric method. Results: We found significantly lower levels of native thiol (-SH) (284.0±86.3 µmol/L), disulfide levels (14.6±7 µmol/L), and total thiols (-SH + -S-S-) (313.0±89.3 µmol/L) in SCD patients compared to healthy controls (respectively 417.0±54.2, 22.7±11.3, and 462.0±58.7 µmol/L). Plasma albumin levels (34.9±7.9 g/L) were lower and IMA levels (13.6±3.1 g/L) were higher in SCD patients compared to controls (respectively 43.5±3.1 and 8.4±1.6 g/L). Plasma albumin levels were strongly correlated with both plasma native (r=0.853; p=0.0001) and total thiols (r=0.866; p=0.0001). Conclusion: Decreased plasma native and total thiol levels and increased IMA levels are related to increased oxidative stress and provide an indirect and quick reflection of the oxidative damage in SCD patients.
Collapse
Affiliation(s)
- Oğuzhan Özcan
- Mustafa Kemal University Faculty of Medicine, Department of Biochemistry, Hatay, Turkey
| | - Hüseyin Erdal
- Mustafa Kemal University Faculty of Medicine, Department of Molecular Biochemistry and Genetics, Hatay, Turkey
| | - Gül İlhan
- Mustafa Kemal University Faculty of Medicine, Department of Internal Medicine, Hatay, Turkey
| | - Damla Demir
- Mustafa Kemal University Faculty of Medicine, Department of Internal Medicine, Hatay, Turkey
| | | | - Salim Neşelioğlu
- Yıldırım Beyazıt University Faculty of Medicine, Department of Biochemistry, Ankara, Turkey
| | - Özcan Erel
- Yıldırım Beyazıt University Faculty of Medicine, Department of Biochemistry, Ankara, Turkey
| |
Collapse
|
61
|
Kucukal E, Ilich A, Key NS, Little JA, Gurkan UA. Red Blood Cell Adhesion to Heme-Activated Endothelial Cells Reflects Clinical Phenotype in Sickle Cell Disease. Am J Hematol 2018; 93:10.1002/ajh.25159. [PMID: 29905377 PMCID: PMC6295270 DOI: 10.1002/ajh.25159] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/19/2022]
Abstract
In sickle cell disease (SCD), 'disease severity' associates with increased RBC adhesion to quiescent endothelium, but the impact on activated endothelium is not known. Increased concentrations of free heme result from intravascular hemolysis in SCD. Heme is essential for aerobic metabolism, and plays an important role in numerous biological processes. Excess free heme induces reactive oxygen species generation and endothelial activation, which are associated with cardiovascular disorders including atherosclerosis, hypertension, and thrombosis. Here, we utilized an endothelialized microfluidic platform (Endothelium-on-a-chip) to assess adhesion of sickle hemoglobin-containing red blood cells (HbS RBCs), from adults with homozygous SCD, to heme-activated human endothelial cells (EC) in vitro. Confluent EC monolayers in microchannels were treated with pathophysiologically relevant levels of heme in order to simulate the highly hemolytic intravascular milieu seen in SCD. RBC adhesion to heme-activated ECs varied from subject to subject, and was associated with plasma markers of hemolysis (LDH) and reticulocytosis, thereby linking those RBCs that are most likely to adhere with those that are most likely to hemolyze. These results re-emphasize the critical contribution made by heterogeneous adhesive HbS RBCs to the pathophysiology of SCD. We found that adhesion of HbS RBCs to heme-activated ECs varied amongst individuals in the study population, and associated with biomarkers of hemolysis and inflammation, age, and a recent history of transfusion. Importantly, the microfluidic approach described herein holds promise as a clinically feasible Endothelium-on-a-chip platform with which to study complex heterocellular adhesive interactions in SCD. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Erdem Kucukal
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Anton Ilich
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Nigel S. Key
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jane A. Little
- Division of Hematology/Oncology, Case Western Reserve University, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Umut A. Gurkan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
62
|
Perioperative Management of Sickle Cell Disease. Mediterr J Hematol Infect Dis 2018; 10:e2018032. [PMID: 29755709 PMCID: PMC5937979 DOI: 10.4084/mjhid.2018.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/19/2018] [Indexed: 11/22/2022] Open
Abstract
Over 30 million people worldwide have sickle cell disease (SCD). Emergent and non-emergent surgical procedures in SCD have been associated with relatively increased risks of peri-operative mortality, vaso-occlusive (painful) crisis, acute chest syndrome, post-operative infections, congestive heart failure, cerebrovascular accident and acute kidney injury. Pre-operative assessment must include a careful review of the patient’s known crisis triggers, baseline hematologic profile, usual transfusion requirements, pre-existing organ dysfunction and opioid use. Use of preoperative blood transfusions should be selective and decisions individualized based on the baseline hemoglobin, surgical procedure and anticipated volume of blood loss. Intra- and post-operative management should focus on minimizing hypoxia, hypothermia, acidosis, and intravascular volume depletion. Pre- and post-operative incentive spirometry use should be encouraged.
Collapse
|
63
|
Study of platelet activation markers and plasma cytokines in sickle cell disease patients during vaso-occlusive pain crises. J Hematop 2018. [DOI: 10.1007/s12308-018-0322-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
64
|
Lu X, Galarneau MM, Higgins JM, Wood DK. A microfluidic platform to study the effects of vascular architecture and oxygen gradients on sickle blood flow. Microcirculation 2018; 24. [PMID: 28129479 DOI: 10.1111/micc.12357] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/23/2017] [Indexed: 01/22/2023]
Abstract
Our goal was to develop a model of the microvasculature that would allow us to quantify changes in the rheology of sickle blood as it traverses the varying vessel sizes and oxygen tensions in the microcirculation. We designed and implemented a microfluidic model of the microcirculation that comprises a branching microvascular network and physiologic oxygen gradients. We used computational modeling to determine the parameters necessary to generate stable, linear gradients in our devices. Sickle blood from six unique patients was perfused through the microvascular network and subjected to varying oxygen gradients while we observed and quantified blood flow. We found that all sickle blood samples fully occluded the microvascular network when deoxygenated, and we observed that sickle blood could cause vaso-occlusions under physiologic oxygen gradients during the microvascular transit time. The number of occlusions observed under five unique oxygen gradients varied among the patient samples, but we generally observed that the number of occlusions decreased with increasing inlet oxygen tension. The model system we have developed is a valuable tool to address fundamental questions about where in the circulation sickle-cell vaso-occlusions are most likely to occur and to test new therapies.
Collapse
Affiliation(s)
- Xinran Lu
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Michelle M Galarneau
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - John M Higgins
- Department of Pathology, Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - David K Wood
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
65
|
De A, Manwani D, Rastogi D. Airway inflammation in sickle cell disease-A translational perspective. Pediatr Pulmonol 2018; 53:400-411. [PMID: 29314737 DOI: 10.1002/ppul.23932] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/29/2017] [Indexed: 12/14/2022]
Abstract
Asthma and sickle cell disease (SCD) are common chronic conditions in children of African ancestry that are characterized by cough, wheeze, and obstructive patterns on pulmonary function. Pulmonary function testing in children with SCD has estimated a prevalence of obstructive lung disease ranging from 13% to 57%, and airway hyper-responsiveness of up to 77%, independent of a diagnosis of asthma. Asthma co-existing with SCD is associated with increased risk of acute chest syndrome (ACS), respiratory symptoms, pain episodes, and death. However, there are inherent differences in the pathophysiology of SCD and asthma. While classic allergic asthma in the general population is associated with a T-helper 2 cell (Th-2 cells) pattern of cell inflammation, increased IgE levels and often positive allergy testing, inflammation in SCD is associated with different inflammatory pathways, involving neutrophilic and monocytic pathways, which have been explored to a limited extent in mouse models and with a dearth of human studies. The current review summarizes the existent literature on sickle cell related airway inflammation and its cross roads with allergic asthma-related inflammation, and discusses the importance of further elucidating and understanding these common and divergent inflammatory pathways in human studies to facilitate development of targeted therapy for children with SCD and pulmonary morbidity.
Collapse
Affiliation(s)
- Aliva De
- Division of Respiratory and Sleep Medicine, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| | - Deepa Manwani
- Division of Hematology/Oncology, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| | - Deepa Rastogi
- Division of Respiratory and Sleep Medicine, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
66
|
Abstract
Acute vaso-occlusive crisis (VOC) is a hallmark of sickle cell disease (SCD). Multiple complex pathophysiological processes can result in pain during a VOC. Despite significant improvements in the understanding and management of SCD, little progress has been made in the management of pain in SCD, although new treatments are being explored. Opioids and non-steroidal anti-inflammatory drugs (NSAIDs) remain the mainstay of treatment of VOC pain, but new classes of drugs are being tested to prevent and treat acute pain. Advancements in the understanding of the pathophysiology of SCD and pain and the pharmacogenomics of opioids have yet to be effectively utilized in the management of VOC. Opioid tolerance and opioid-induced hyperalgesia are significant problems associated with the long-term use of opioids, and better strategies for chronic pain therapy are needed. This report reviews the mechanisms of pain associated with acute VOC, describes the current management of VOC, and describes some of the new therapies under evaluation for the management of acute VOC in SCD.
Collapse
|
67
|
|
68
|
Abstract
BACKGROUND Sickle cell disease causes significant morbidity and mortality and affects the economic and healthcare status of many countries. Yet historically, the disease has not had commensurate outlays of funds that have been aimed at research and development of drugs and treatment procedures for other diseases. METHODS This review examines several treatment modalities and new drugs developed since the late 1990s that have been used to improve outcomes for patients with sickle cell disease. RESULTS Targeted therapies based upon the pathophysiologic mechanisms of sickle cell disease that result in organ dysfunction and painful episodes include hydroxyurea, L-glutamine, crizanlizumab, and other drugs that are currently on the market or are on the verge of becoming available. These agents have the potential to improve survival and quality of life for individuals with sickle cell disease. Also discussed is stem cell transplantation that, to date, is the only curative approach for this disease, as well as the current status of gene therapy. CONCLUSION These examples demonstrate how the current knowledge of sickle cell disease pathophysiology and treatment approaches intersect. Although interest in sickle cell research has blossomed, many more clinical trials need to be initiated and subjected to more strenuous examination and analysis than have been used in the past.
Collapse
Affiliation(s)
- Renée V. Gardner
- Department of Pediatrics, Louisiana State University Health Sciences Center, Children’s Hospital of New Orleans, New Orleans, LA
| |
Collapse
|
69
|
Purvis SH, Keefer JR, Fortenberry YM, Barron-Casella EA, Casella JF. Identification of Aptamers That Bind to Sickle Hemoglobin and Inhibit Its Polymerization. Nucleic Acid Ther 2017; 27:354-364. [PMID: 29039727 DOI: 10.1089/nat.2016.0646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The pathophysiology of sickle cell disease (SCD) is dependent on the polymerization of deoxygenated sickle hemoglobin (HbS), leading to erythrocyte deformation (sickling) and vaso-occlusion within the microvasculature. Following deoxygenation, there is a delay time before polymerization is initiated, during which nucleation of HbS monomers occurs. An agent with the ability to extend this delay time or slow polymerization would therefore hold a therapeutic, possibly curative, potential. We used the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) method to screen for HbS-binding RNA aptamers modified with nuclease-resistant 2'-fluoropyrimidines. Polymerization assays were employed to identify aptamers with polymerization-inhibitory properties. Two noncompeting aptamers, DE3A and OX3B, were found to bind hemoglobin, significantly increase the delay time, and reduce the rate of polymerization of HbS. These modifiable, nuclease-resistant aptamers are potential new therapeutic agents for SCD.
Collapse
Affiliation(s)
- Shirley H Purvis
- Division of Hematology, Department of Pediatrics, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Jeffrey R Keefer
- Division of Hematology, Department of Pediatrics, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Yolanda M Fortenberry
- Division of Hematology, Department of Pediatrics, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Emily A Barron-Casella
- Division of Hematology, Department of Pediatrics, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - James F Casella
- Division of Hematology, Department of Pediatrics, Johns Hopkins University School of Medicine , Baltimore, Maryland
| |
Collapse
|
70
|
Hansen CE, Lam WA. Clinical Implications of Single-Cell Microfluidic Devices for Hematological Disorders. Anal Chem 2017; 89:11881-11892. [PMID: 28942646 DOI: 10.1021/acs.analchem.7b01013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Single-cell microfluidic devices are poised to substantially impact the hematology field by providing a high-throughput and rapid device to analyze disease-mediated biophysical cellular changes in the clinical setting in order to diagnose patients and monitor disease prognosis. In this Feature, we cover recent advances of single-cell microfluidic devices for studying and diagnosing hematological dysfunctions and the clinical impact made possible by these advances.
Collapse
Affiliation(s)
- Caroline E Hansen
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta/Emory University School of Medicine , Atlanta, Georgia 30322, United States.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia 30332, United States.,School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Wilbur A Lam
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta/Emory University School of Medicine , Atlanta, Georgia 30322, United States.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia 30332, United States.,School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
71
|
Kolliopoulou A, Stratopoulos A, Siamoglou S, Sgourou A, Ali BR, Papachatzopoulou A, Katsila T, Patrinos GP. Key Pharmacogenomic Considerations for Sickle Cell Disease Patients. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:314-322. [PMID: 28486096 DOI: 10.1089/omi.2017.0058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sickle cell disease (SCD), although a monogenic disease, exhibits a complex clinical phenotype that hampers optimum patient stratification and disease management, especially on hydroxyurea treatment. Moreover, theranostics, the combination of diagnostics to individualize and optimize therapeutic interventions, has not been firmly on the forefront of SCD research and clinical management to date. We suggest that if tailor-made theranostics in SCD is envisaged, pharmacogenomics is anticipated to be the way forward. Herein, we present the current key pharmacogenomic opportunities and challenges in SCD, considering population variation, ethics, and socioeconomic aspects. We focus on pharmacogenomics and pain management, genethics, and cost-effectiveness in SCD. We searched for and synthesized data from PubMed and Google Scholar, and the references from relevant articles, using the keywords "pharmacogenomics," "sickle cell disease," "hydroxyurea," "ethics," "pain management," "morphine metabolism," "opioids," "pharmacogenomics and chronic pain," "cost-effectiveness," and "economic evaluation." Only articles published in English were included. So far, when pharmacogenomics in SCD has been considered, interindividual variability in hydroxyurea response/toxicity has been of primary interest. We underscore the need to extend pharmacogenomic considerations on other therapeutic interventions currently present using a holistic patient-centric approach, and taking disease complications into account as well. Furthermore, we raise awareness toward socioeconomic, ethical, and population differences in the way sickle cell pharmacogenomics might unfold in the future. If pharmacogenomics in SCD is to be used in the clinic in an evidence-based manner, cost-effectiveness and population-specific empirical ethics data are urgently needed.
Collapse
Affiliation(s)
- Alexandra Kolliopoulou
- 1 Department of Pharmacy, School of Health Sciences, University of Patras , Patras, Greece
| | - Apostolos Stratopoulos
- 1 Department of Pharmacy, School of Health Sciences, University of Patras , Patras, Greece
| | - Stavroula Siamoglou
- 1 Department of Pharmacy, School of Health Sciences, University of Patras , Patras, Greece
| | | | - Bassam R Ali
- 3 Department of Pathology, College of Medicine & Health Sciences, United Arab Emirates University , Al-Ain, United Arab Emirates
| | | | - Theodora Katsila
- 1 Department of Pharmacy, School of Health Sciences, University of Patras , Patras, Greece
| | - George P Patrinos
- 1 Department of Pharmacy, School of Health Sciences, University of Patras , Patras, Greece
- 3 Department of Pathology, College of Medicine & Health Sciences, United Arab Emirates University , Al-Ain, United Arab Emirates
| |
Collapse
|
72
|
Erukainure OL, Ajiboye JA, Abbah UA, Asieba GO, Mamuru S, Zaruwa MZ, Manhas N, Singh P, Islam MS. Monodora myristica (African nutmeg) modulates redox homeostasis and alters functional chemistry in sickled erythrocytes. Hum Exp Toxicol 2017; 37:458-467. [DOI: 10.1177/0960327117712385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The antioxidative effect of Monodora myristica seed acetone extract and its effect on chemical functional groups were investigated in sickled erythrocytes as well as molecular modeling of the antisickling potentials of its secondary metabolites. The extract was subjected to gas chromatography–mass spectrometry to identify the compounds present, which were then docked into the allosteric-binding site of deoxy-hemoglobin. The extract was incubated with sickled erythrocytes at 37°C for 6, 12, and 24 h and were subjected to antioxidative analysis for reduced glutathione (GSH), superoxide dismutase (SOD), catalase, and lipid peroxidation (LPO). Chemical functional group of the treated cells was analyzed via Fourier transform infrared spectroscopy (FTIR). The predominant compounds identified were 17-octadecynoic acid; oleic acid, androstan-3-one, 17-hydroxy-2-methyl- (2.beta.,5.beta.,17.beta.)-; estran-3-one, 17-(acetyloxy)-2-methyl-, (2.alpha., 5.alpha., 17.beta.), and (+)-3-carene, 10-(acetylmethyl)-. They all fitted well within the active site of Hb with good binding affinity, as evidenced by the negative CDocker interaction energies of their complexes ranging between −54.4 and −26.7 kcal/mol. Treatment with the extract exacerbated SOD and catalase activities as well as GSH level, while LPO was suppressed. This antioxidative activity was time and/or dose dependent, with 6 and 12 h incubation showing the optimum activity. FTIR analysis of the treated cells showed the presence of hydrophobic functional groups. The synergetic molecular interaction of the major compounds of the extract with the α-dimer of Hb depicts an antisickling effect of M. myristica acetone extract. This is accompanied by exacerbation of endogenous antioxidant enzymes activity and modification of the functional chemistry of the cells.
Collapse
Affiliation(s)
- OL Erukainure
- Nutrition and Toxicology Division, Federal Institute of Industrial Research, Lagos, Nigeria
- Department of Biochemistry, School of Life Sciences, University of KwaZulu–Natal, Westville Campus, Durban, South Africa
| | - JA Ajiboye
- Department of Biochemistry, Bells University of Technology, Ota, Nigeria
| | - UA Abbah
- Department of Biochemistry, Bells University of Technology, Ota, Nigeria
| | - GO Asieba
- Analytical Division, Federal Institute of Industrial Research, Lagos, Nigeria
| | - S Mamuru
- Department of Chemistry, Adamawa State University, Mubi, Nigeria
| | - MZ Zaruwa
- Department of Chemistry, Adamawa State University, Mubi, Nigeria
| | - N Manhas
- School of Chemistry and Physics, University of KwaZulu–Natal, Westville Campus, Durban, South Africa
| | - P Singh
- School of Chemistry and Physics, University of KwaZulu–Natal, Westville Campus, Durban, South Africa
| | - MS Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu–Natal, Westville Campus, Durban, South Africa
| |
Collapse
|
73
|
Kiser ZM, McGee MDM, Wright RJ, Quarshie A, Newman GW, Randall KR, Stiles JK, Driss A, Hibbert JM. Quercetin reduces hydroxyurea induced cytotoxicity in immortalized mouse aortic endothelial cells. PeerJ 2017; 5:e3376. [PMID: 28584711 PMCID: PMC5455336 DOI: 10.7717/peerj.3376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/04/2017] [Indexed: 01/23/2023] Open
Abstract
Background Chronic inflammation is a characteristic of sickle cell disease (SCD), and is invariably associated with vascular endothelial injury. Hydroxyurea (HU), a naturally cytotoxic chemotherapeutic agent, is the only FDA drug approved for SCD, and is therefore naturally cytotoxic. Quercetin (QCT) is a dietary flavonoid found ubiquitously in plants and foods that have anti-oxidative and anti-inflammatory characteristics. Our hypothesis is that dietary QCT will decrease cytotoxic effects of lipopolysaccharide (LPS) and HU induced vascular cell damage. Methods Lipopolysaccharide (LPS) was used to induce inflammation in immortalized mouse aortic endothelial cells (iMAECs), providing an in vitro model of inflamed endothelial cells. The cells were exposed to LPS throughout the entire experiment. Interventions included treating the LPS exposed cells with QCT, HU, or QCT + HU over 50 hours. The 50-hour period included 24 hours of varying treatments, followed by two hours of hypoxic exposure and then 24 hours under normal aerobic exposure. Results LDH level was significantly higher for LPS treated versus untreated cells (P = 0.0004). LPS plus 30 micromole QCT reduced the LDH (p = 0.1, trend), whereas LPS plus 100 micromoles HU, significantly increased LDH (p = 0.0004). However, LPS plus treatment with 30 micromoles QCT/100 micromoles HU, significantly reduced LDH, compared with HU alone (p = 0.0002). Discussion These results suggest that quercetin may be effective against vascular endothelial cell damage for iMAECs in vitro. In particular, it shows promise in preventing HU-induced cytotoxicity, surprisingly found from these results. This latter finding is important, and should be given more consideration, since HU is the only FDA-approved drug for treating sickle cell patients, and its use is rapidly increasing.
Collapse
Affiliation(s)
- Zachary M Kiser
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States of America
| | | | - Racquel J Wright
- Biotechnology Centre, University of the West Indies, Mona, Jamaica
| | - Alexander Quarshie
- Community Health & Preventive Medicine, Morehouse School of Medicine, Atlanta, GA, United States of America
| | - Gale W Newman
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States of America
| | - Karen R Randall
- Department of Pharmacology & Toxicology, Morehouse School of Medicine, Atlanta, GA, United States of America
| | - Jonathan K Stiles
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States of America
| | - Adel Driss
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, United States of America
| | - Jacqueline M Hibbert
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States of America
| |
Collapse
|
74
|
Foell J, Pfirstinger B, Rehe K, Wolff D, Holler E, Corbacioglu S. Haploidentical stem cell transplantation with CD3+-/CD19+- depleted peripheral stem cells for patients with advanced stage sickle cell disease and no alternative donor: results of a pilot study. Bone Marrow Transplant 2017; 52:938-940. [DOI: 10.1038/bmt.2017.49] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
75
|
Koehl B, Nivoit P, El Nemer W, Lenoir O, Hermand P, Pereira C, Brousse V, Guyonnet L, Ghinatti G, Benkerrou M, Colin Y, Le Van Kim C, Tharaux PL. The endothelin B receptor plays a crucial role in the adhesion of neutrophils to the endothelium in sickle cell disease. Haematologica 2017; 102:1161-1172. [PMID: 28385784 PMCID: PMC5566019 DOI: 10.3324/haematol.2016.156869] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/30/2017] [Indexed: 11/09/2022] Open
Abstract
Although the primary origin of sickle cell disease is a hemoglobin disorder, many types of cells contribute considerably to the pathophysiology of the disease. The adhesion of neutrophils to activated endothelium is critical in the pathophysiology of sickle cell disease and targeting neutrophils and their interactions with endothelium represents an important opportunity for the development of new therapeutics. We focused on endothelin-1, a mediator involved in neutrophil activation and recruitment in tissues, and investigated the involvement of the endothelin receptors in the interaction of neutrophils with endothelial cells. We used fluorescence intravital microscopy analyses of the microcirculation in sickle mice and quantitative microfluidic fluorescence microscopy of human blood. Both experiments on the mouse model and patients indicate that blocking endothelin receptors, particularly ETB receptor, strongly influences neutrophil recruitment under inflammatory conditions in sickle cell disease. We show that human neutrophils have functional ETB receptors with calcium signaling capability, leading to increased adhesion to the endothelium through effects on both endothelial cells and neutrophils. Intact ETB function was found to be required for tumor necrosis factor α-dependent upregulation of CD11b on neutrophils. Furthermore, we confirmed that human neutrophils synthesize endothelin-1, which may be involved in autocrine and paracrine pathophysiological actions. Thus, the endothelin-ETB axis should be considered as a cytokine-like potent pro-inflammatory pathway in sickle cell disease. Blockade of endothelin receptors, including ETB, may provide major benefits for preventing or treating vaso-occlusive crises in sickle cell patients.
Collapse
Affiliation(s)
- Bérengère Koehl
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, France; Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Reference Centre of Sickle Cell Disease, France
| | - Pierre Nivoit
- Inserm Paris Cardiovascular Centre (PARCC), Université Sorbonne Paris Cité, Université Paris Descartes & Laboratoire d'Excellence GR-Ex, France
| | - Wassim El Nemer
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, France
| | - Olivia Lenoir
- Inserm Paris Cardiovascular Centre (PARCC), Université Sorbonne Paris Cité, Université Paris Descartes & Laboratoire d'Excellence GR-Ex, France
| | - Patricia Hermand
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, France
| | - Catia Pereira
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, France; Assistance Publique-Hôpitaux de Paris, Necker Hospital, Reference Centre of Sickle Cell Disease, France
| | | | - Léa Guyonnet
- Inserm Paris Cardiovascular Centre (PARCC), Université Sorbonne Paris Cité, Université Paris Descartes & Laboratoire d'Excellence GR-Ex, France; Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg
| | - Giulia Ghinatti
- Inserm Paris Cardiovascular Centre (PARCC), Université Sorbonne Paris Cité, Université Paris Descartes & Laboratoire d'Excellence GR-Ex, France
| | - Malika Benkerrou
- Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Reference Centre of Sickle Cell Disease, France
| | - Yves Colin
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, France
| | - Caroline Le Van Kim
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, France
| | - Pierre-Louis Tharaux
- Inserm Paris Cardiovascular Centre (PARCC), Université Sorbonne Paris Cité, Université Paris Descartes & Laboratoire d'Excellence GR-Ex, France
| |
Collapse
|
76
|
Silva M, Vargas S, Coelho A, Dias A, Ferreira T, Morais A, Maia R, Kjöllerström P, Lavinha J, Faustino P. Hemorheological alterations in sickle cell anemia and their clinical consequences - The role of genetic modulators. Clin Hemorheol Microcirc 2017; 64:859-866. [PMID: 27814292 DOI: 10.3233/ch-168048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Sickle cell anemia (SCA) is an autosomal recessive disease caused by the HBB:c.20A>T mutation that leads to hemoglobin S synthesis. The disease presents with high clinical heterogeneity characterized by chronic hemolysis, recurrent episodes of vaso-oclusion and infection. This work aimed to characterize by in silico studies some genetic modulators of severe hemolysis and stroke risk in children with SCA, and understand their consequences at the hemorheological level.Association studies were performed between hemolysis biomarkers as well as the degree of cerebral vasculopathy and the inheritance of several polymorphic regions in genes related with vascular cell adhesion and vascular tonus in pediatric SCA patients. In silico tools (e.g. MatInspector) were applied to investigate the main variant consequences.Variants in vascular adhesion molecule-1 (VCAM1) gene promoter and endothelial nitric oxide synthase (NOS3) gene were significantly associated with higher degree of hemolysis and stroke events. They potentially modify transcription factor binding sites (e.g. VCAM1 rs1409419_T allele may lead to an EVI1 gain) or disturb the corresponding protein structure/function. Our findings emphasize the relevance of genetic variation in modulating the disease severity due to their effect on gene expression or modification of protein biological activities related with sickled erythrocyte/endothelial interactions and consequent hemorheological abnormalities.
Collapse
Affiliation(s)
- Marisa Silva
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal
| | - Sofia Vargas
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal
| | - Andreia Coelho
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal
| | - Alexandra Dias
- Departamento de Pediatria, Núcleo de Hematologia, Hospital Prof. Doutor Fernando Fonseca, Amadora, Portugal
| | - Teresa Ferreira
- Departamento de Pediatria, Núcleo de Hematologia, Hospital Prof. Doutor Fernando Fonseca, Amadora, Portugal
| | - Anabela Morais
- Departamento de Pediatria, Hospital de Santa Maria, CHLN, Lisboa, Portugal
| | - Raquel Maia
- Unidade de Hematologia, Hospital de Dona Estefânia, CHLC, Lisboa, Portugal
| | - Paula Kjöllerström
- Unidade de Hematologia, Hospital de Dona Estefânia, CHLC, Lisboa, Portugal
| | - João Lavinha
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal.,BioISI, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Paula Faustino
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal.,Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
77
|
Litvinov RI, Weisel JW. Role of red blood cells in haemostasis and thrombosis. ISBT SCIENCE SERIES 2017; 12:176-183. [PMID: 28458720 PMCID: PMC5404239 DOI: 10.1111/voxs.12331] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In contrast to an obsolete notion that erythrocytes, or red blood cells (RBCs), play a passive and minor role in hemostasis and thrombosis, over the past decades there has been increasing evidence that RBCs have biologically and clinically important functions in blood clotting and its disorders. This review summarizes the main mechanisms that underlie the involvement of RBCs in hemostasis and thrombosis in vivo, such as rheological effects on blood viscosity and platelet margination, aggregation and deformability of RBCs; direct adhesion and indirect biochemical interactions with endothelial cells and platelets, etc. The ability of stored and pathologically altered RBCs to generate thrombin through exposure of phosphatidylserine has been emphasized. The procoagulant and prothrombotic potential of RBC-derived microparticles transfused with stored RBCs or formed in various pathological conditions associated with hemolysis has been described along with prothrombotic effects of free hemoglobin and heme. Binding of fibrinogen or fibrin to RBCs may influence their effects on fibrin network structure, clot mechanical properties, and fibrinolytic resistance. Recent data on platelet-driven clot contraction show that RBCs compressed by platelets pulling on fibrin form a tightly packed array of polyhedral erythrocytes, or polyhedrocytes, which comprises a nearly impermeable barrier important for hemostasis and wound healing. RBCs may perform dual roles, both helping to stem bleeding but at the same time contributing to thrombosis in a variety of ways.
Collapse
Affiliation(s)
- Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
78
|
Jung F, Rampling M. Role of blood viscosity in the microcirculation. Clin Hemorheol Microcirc 2017; 64:251-254. [DOI: 10.3233/ch-168108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- F. Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - M. Rampling
- Department of Bioengineering, Imperial College, London, UK
| |
Collapse
|
79
|
Alapan Y, Fraiwan A, Kucukal E, Hasan MN, Ung R, Kim M, Odame I, Little JA, Gurkan UA. Emerging point-of-care technologies for sickle cell disease screening and monitoring. Expert Rev Med Devices 2016; 13:1073-1093. [PMID: 27785945 PMCID: PMC5166583 DOI: 10.1080/17434440.2016.1254038] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Sickle Cell Disease (SCD) affects 100,000 Americans and more than 14 million people globally, mostly in economically disadvantaged populations, and requires early diagnosis after birth and constant monitoring throughout the life-span of the patient. Areas covered: Early diagnosis of SCD still remains a challenge in preventing childhood mortality in the developing world due to requirements of skilled personnel and high-cost of currently available modalities. On the other hand, SCD monitoring presents insurmountable challenges due to heterogeneities among patient populations, as well as in the same individual longitudinally. Here, we describe emerging point-of-care micro/nano platform technologies for SCD screening and monitoring, and critically discuss current state of the art, potential challenges associated with these technologies, and future directions. Expert commentary: Recently developed microtechnologies offer simple, rapid, and affordable screening of SCD and have the potential to facilitate universal screening in resource-limited settings and developing countries. On the other hand, monitoring of SCD is more complicated compared to diagnosis and requires comprehensive validation of efficacy. Early use of novel microdevices for patient monitoring might come in especially handy in new clinical trial designs of emerging therapies.
Collapse
Affiliation(s)
- Yunus Alapan
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - Arwa Fraiwan
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - Erdem Kucukal
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - M. Noman Hasan
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - Ryan Ung
- Biomedical Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - Myeongseop Kim
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - Isaac Odame
- Division of Haematology/Oncology, The Hospital for Sick Children; Toronto, Canada
- Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Jane A. Little
- Department of Hematology and Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Seidman Cancer Center at University Hospitals, Case Medical Center, Cleveland, OH, USA
| | - Umut A. Gurkan
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
- Biomedical Engineering Department, Case Western Reserve University, Cleveland, OH, USA
- Department of Orthopedics, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
80
|
Kalai M, Dridi M, Chaouch L, Moumni I, Ouragini H, Darragi I, Boudrigua I, Chaouachi D, Mellouli F, Bejaoui M, Abbes S. The role of rs1984112_G at CD36 gene in increasing reticulocyte level among sickle cell disease patients. ACTA ACUST UNITED AC 2016; 22:178-182. [PMID: 27869039 DOI: 10.1080/10245332.2016.1253253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIMS AND BACKGROUND Mediators of adhesion become a potential new target for pharmacological therapy to struggle the complications of sickle cell disease (SCD). Several mechanisms for increased adherence have been postulated and the well-studied are CD36 and VLA4 which encoded by ITGA4. Herein, we sought to determine whether one polymorphism of CD36 namely: rs1984112 and three exons of ITGA4 (4, 5, and 6) are implicated in hemolytic status and clinical events among SCD Tunisian patients. MATERIAL AND METHODS This study enrolled 99 unrelated Tunisian subjects (63SS and 36Sβ). All SCD patients are children (less than 16 years old). The rs1984112 and the ITGA4's exons 4, 5, and 6 were analyzed for all subjects by PCR/sequencing. The association of each genotype found with both clinical complications and hemolytic status was performed using t-test. Clinical events studied included vaso-occlusive crisis (VOC), osteonecrosis, stroke, frequent infection, priapism, and acute syndrome. RESULTS The results show that rs1984112_G allele at CD36 gene revealed to be associated with higher levels of reticulocyte count (p < 0.01). The statistical result show a near significance of homozygous mutant GG genotype with VOC (p = 0.051). No association between rs1984112_G allele and the clinical severity of SCD were found. Mutational screening of exon 4, 5, and 6 of ITGA4 gene revealed absence of mutated variant. CONCLUSION Our results are similar to those found in Portuguese population which reported the role of rs1984112_G in increasing reticulocyte level among SCD patients. Consequently, the rs1984112_G of CD36 could be considered as a reliable biomarker for predicting patients at high risk for vascular occlusions and thus, allows earlier and more effective therapeutic management.
Collapse
Affiliation(s)
- Miniar Kalai
- a Université de Tunis El Manar, Institut Pasteur de Tunis , Laboratoire d'Hématologie Moléculaire et Cellulaire , Tunis , Tunisia
| | - Marwa Dridi
- a Université de Tunis El Manar, Institut Pasteur de Tunis , Laboratoire d'Hématologie Moléculaire et Cellulaire , Tunis , Tunisia
| | - Leila Chaouch
- a Université de Tunis El Manar, Institut Pasteur de Tunis , Laboratoire d'Hématologie Moléculaire et Cellulaire , Tunis , Tunisia
| | - Imen Moumni
- a Université de Tunis El Manar, Institut Pasteur de Tunis , Laboratoire d'Hématologie Moléculaire et Cellulaire , Tunis , Tunisia
| | - Houyem Ouragini
- a Université de Tunis El Manar, Institut Pasteur de Tunis , Laboratoire d'Hématologie Moléculaire et Cellulaire , Tunis , Tunisia
| | - Imen Darragi
- a Université de Tunis El Manar, Institut Pasteur de Tunis , Laboratoire d'Hématologie Moléculaire et Cellulaire , Tunis , Tunisia
| | - Imen Boudrigua
- a Université de Tunis El Manar, Institut Pasteur de Tunis , Laboratoire d'Hématologie Moléculaire et Cellulaire , Tunis , Tunisia
| | - Dorra Chaouachi
- a Université de Tunis El Manar, Institut Pasteur de Tunis , Laboratoire d'Hématologie Moléculaire et Cellulaire , Tunis , Tunisia
| | - Fethi Mellouli
- a Université de Tunis El Manar, Institut Pasteur de Tunis , Laboratoire d'Hématologie Moléculaire et Cellulaire , Tunis , Tunisia
| | - Mohamed Bejaoui
- a Université de Tunis El Manar, Institut Pasteur de Tunis , Laboratoire d'Hématologie Moléculaire et Cellulaire , Tunis , Tunisia
| | - Salem Abbes
- a Université de Tunis El Manar, Institut Pasteur de Tunis , Laboratoire d'Hématologie Moléculaire et Cellulaire , Tunis , Tunisia
| |
Collapse
|
81
|
Li X, Dao M, Lykotrafitis G, Karniadakis GE. Biomechanics and biorheology of red blood cells in sickle cell anemia. J Biomech 2016; 50:34-41. [PMID: 27876368 DOI: 10.1016/j.jbiomech.2016.11.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 01/12/2023]
Abstract
Sickle cell anemia (SCA) is an inherited blood disorder that causes painful crises due to vaso-occlusion of small blood vessels. The primary cause of the clinical phenotype of SCA is the intracellular polymerization of sickle hemoglobin resulting in sickling of red blood cells (RBCs) in deoxygenated conditions. In this review, we discuss the biomechanical and biorheological characteristics of sickle RBCs and sickle blood as well as their implications toward a better understanding of the pathophysiology and pathogenesis of SCA. Additionally, we highlight the adhesive heterogeneity of RBCs in SCA and their specific contribution to vaso-occlusive crisis.
Collapse
Affiliation(s)
- Xuejin Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - George Lykotrafitis
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
82
|
Al Najjar S, Adam S, Ahmed N, Qari M. Markers of endothelial dysfunction and leucocyte activation in Saudi and non-Saudi haplotypes of sickle cell disease. Ann Hematol 2016; 96:141-146. [PMID: 27686084 DOI: 10.1007/s00277-016-2823-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022]
Abstract
Sickle cell disease (SCD) is an autosomal recessive inherited hemoglobinopathy, characterized by chronic hemolysis and recurrent vaso-occlusive crisis (VOC). This study investigates changes in leucocyte subsets and the relationship between cell adhesion molecule expression and disease manifestations in patients during steady state and acute VOC. We compared soluble E-selectin and P-selectin levels in 84 SCD patients, in steady state and during VOC to 84 healthy controls. Using immunophenotyping, we also compared lymphocyte subsets in these three groups. Further, we compared E-selectin and P-selectin levels in patients of Saudi ethnicity to non-Saudi patients, in all three groups. Lymphocyte subsets showed high percentages of total T lymphocytes, T helper and suppressor lymphocytes, B lymphocytes as well as NK cells in patients with SCD during steady state, while B lymphocytes and NK cells were significantly higher during acute VOC crisis. High levels of both soluble E-selectin (sE-selectin) and soluble P-selectin (sP-selectin) markers were demonstrated in the serum of patients with SCD during both steady state and acute VOC. Levels of selectins were significantly higher in acute VOC. The immunophenotypic expression of L-selectin, on leucocytes, was high in SCD both during steady state and during acute VOC in comparison to normal control subjects. There was no significant difference in all three study groups between Saudi and non-Saudi patients. These findings suggest that patients with SCD have increased expression of adhesion molecules: E-selectin and P-selectin, which play an important role in the pathogenesis of VOC. Despite the distinct phenotype of Saudi patients with SCD, there was no significant difference in levels of soluble E-selectin and soluble P-selectin between Saudi and non-Saudi patients in all three groups. While sickle cell disease is a well-recognized state of chronic inflammation, the role of specific adhesion molecules is steadily unraveling. Studies are underway to investigate the potential role of selectin antagonists, for prevention and reversal of acute vascular occlusions in SCD patients.
Collapse
Affiliation(s)
- Salwa Al Najjar
- Department of Hematology, King Abdulaziz University, Jeddah, SA, Saudi Arabia
| | - Soheir Adam
- Department of Hematology, King Abdulaziz University, Jeddah, SA, Saudi Arabia. .,Duke University Medical Center, Durham, NC, USA.
| | - Nessar Ahmed
- Manchester Metropolitan University, Manchester, UK
| | - Mohamed Qari
- Department of Hematology, King Abdulaziz University, Jeddah, SA, Saudi Arabia
| |
Collapse
|
83
|
Sun CW, Willmon C, Wu LC, Knopick P, Thoerner J, Vile R, Townes TM, Terman DS. Sickle Cells Abolish Melanoma Tumorigenesis in Hemoglobin SS Knockin Mice and Augment the Tumoricidal Effect of Oncolytic Virus In Vivo. Front Oncol 2016; 6:166. [PMID: 27458571 PMCID: PMC4937018 DOI: 10.3389/fonc.2016.00166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/20/2016] [Indexed: 01/19/2023] Open
Abstract
Insights from the study of cancer resistance in animals have led to the discovery of novel anticancer pathways and opened new venues for cancer prevention and treatment. Sickle cells (SSRBCs) from subjects with homozygous sickle cell anemia (SCA) have been shown to target hypoxic tumor niches, induce diffuse vaso-occlusion, and potentiate a tumoricidal response in a heme- and oxidant-dependent manner. These findings spawned the hypothesis that SSRBCs and the vasculopathic microenvironment of subjects with SCA might be inimical to tumor outgrowth and thereby constitute a natural antitumor defense. We therefore implanted the B16F10 melanoma into humanized hemoglobin SS knockin mice which exhibit the hematologic and vasculopathic sequelae of human SCA. Over the 31-day observation period, hemoglobin SS mice showed no significant melanoma outgrowth. By contrast, 68-100% of melanomas implanted in background and hemoglobin AA knockin control mice reached the tumor growth end point (p < 0.0001). SS knockin mice also exhibited established markers of underlying vasculopathy, e.g., chronic hemolysis (anemia, reticulocytosis) and vascular inflammation (leukocytosis) that differed significantly from all control groups. Genetic differences or normal AA gene knockin do not explain the impaired tumor outgrowth in SS knockin mice. These data point instead to the chronic pro-oxidative vasculopathic network in these mice as the predominant cause. In related studies, we demonstrate the ability of the sickle cell component of this system to function as a therapeutic vehicle in potentiating the oncolytic/vasculopathic effect of RNA reovirus. Sickle cells were shown to efficiently adsorb and transfer the virus to melanoma cells where it induced apoptosis even in the presence of anti-reovirus neutralizing antibodies. In vivo, SSRBCs along with their viral cargo rapidly targeted the tumor and initiated a tumoricidal response exceeding that of free virus and similarly loaded normal RBCs without toxicity. Collectively, these data unveil two hitherto unrecognized findings: hemoglobin SS knockin mice appear to present a natural barrier to melanoma tumorigenesis while SSRBCs demonstrate therapeutic function as a vehicle for enhancing the oncolytic effect of free reovirus against established melanoma.
Collapse
Affiliation(s)
- Chiang Wang Sun
- Department of Biochemistry and Molecular Genetics, University of Alabama Medical School at Birmingham, Birmingham, AL, USA
| | - Candice Willmon
- Department of Molecular Medicine, Mayo Clinic Foundation, Rochester, MN, USA
| | - Li-Chen Wu
- Department of Biochemistry and Molecular Genetics, University of Alabama Medical School at Birmingham, Birmingham, AL, USA
| | - Peter Knopick
- Department of Immunology, University of North Dakota Medical School, Grand Forks, ND, USA
| | - Jutta Thoerner
- Hisotpathology Section, Hospital of the Monterey Peninsula, Monterey, CA, USA
| | - Richard Vile
- Department of Molecular Medicine, Mayo Clinic Foundation, Rochester, MN, USA
| | - Tim M. Townes
- Department of Biochemistry and Molecular Genetics, University of Alabama Medical School at Birmingham, Birmingham, AL, USA
| | - David S. Terman
- Department of Biochemistry and Molecular Genetics, University of Alabama Medical School at Birmingham, Birmingham, AL, USA
| |
Collapse
|
84
|
Sickle cell disease biochip: a functional red blood cell adhesion assay for monitoring sickle cell disease. Transl Res 2016; 173:74-91.e8. [PMID: 27063958 PMCID: PMC4959913 DOI: 10.1016/j.trsl.2016.03.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 03/08/2016] [Accepted: 03/12/2016] [Indexed: 01/10/2023]
Abstract
Sickle cell disease (SCD) afflicts millions of people worldwide and is associated with considerable morbidity and mortality. Chronic and acute vaso-occlusion are the clinical hallmarks of SCD and can result in pain crisis, widespread organ damage, and early movtality. Even though the molecular underpinnings of SCD were identified more than 60 years ago, there are no molecular or biophysical markers of disease severity that are feasibly measured in the clinic. Abnormal cellular adhesion to vascular endothelium is at the root of vaso-occlusion. However, cellular adhesion is not currently evaluated clinically. Here, we present a clinically applicable microfluidic device (SCD biochip) that allows serial quantitative evaluation of red blood cell (RBC) adhesion to endothelium-associated protein-immobilized microchannels, in a closed and preprocessing-free system. With the SCD biochip, we have analyzed blood samples from more than 100 subjects and have shown associations between the measured RBC adhesion to endothelium-associated proteins (fibronectin and laminin) and individual RBC characteristics, including hemoglobin content, fetal hemoglobin concentration, plasma lactate dehydrogenase level, and reticulocyte count. The SCD biochip is a functional adhesion assay, reflecting quantitative evaluation of RBC adhesion, which could be used at baseline, during crises, relative to various long-term complications, and before and after therapeutic interventions.
Collapse
|
85
|
Chen M, Qiu H, Lin X, Nam D, Ogbu-Nwobodo L, Archibald H, Joslin A, Wun T, Sawamura T, Green R. Lectin-like oxidized low-density lipoprotein receptor (LOX-1) in sickle cell disease vasculopathy. Blood Cells Mol Dis 2016; 60:44-8. [PMID: 27519944 DOI: 10.1016/j.bcmd.2016.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 12/31/2022]
Abstract
Lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1) is an endothelial receptor for oxidized LDL. Increased expression of LOX-1 has been demonstrated in atherosclerotic lesions and diabetic vasculopathy. In this study, we investigate the expression of LOX-1 receptor in sickle cell disease (SCD) vasculopathy. Expression of LOX-1 in brain vascular endothelium is markedly increased and LOX-1 gene expression is upregulated in cultured human brain microvascular endothelial cells by incubation with SCD erythrocytes. Also, the level of circulating soluble LOX-1 concentration is elevated in the plasma of SCD patients. Increased LOX-1 expression in endothelial cells is potentially involved in the pathogenesis of SCD vasculopathy. Soluble LOX-1 concentration in SCD may provide a novel biomarker for risk stratification of sickle cell vascular complications.
Collapse
Affiliation(s)
- Mingyi Chen
- Department of Pathology and Laboratory Medicine, UC Davis Medical Center, Sacramento, CA, USA.
| | - Hong Qiu
- Department of Pathology and Laboratory Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - Xin Lin
- Department of Pathology and Laboratory Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - David Nam
- Department of Pathology and Laboratory Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - Lucy Ogbu-Nwobodo
- Department of Pathology and Laboratory Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - Hannah Archibald
- Department of Pathology and Laboratory Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - Amelia Joslin
- Department of Pathology and Laboratory Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - Ted Wun
- Department of Pathology and Laboratory Medicine, UC Davis Medical Center, Sacramento, CA, USA; Division of Hematology Oncology, UC Davis Medical Center, Sacramento, CA, USA
| | - Tatsuya Sawamura
- Department of Physiology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ralph Green
- Department of Pathology and Laboratory Medicine, UC Davis Medical Center, Sacramento, CA, USA.
| |
Collapse
|
86
|
Alapan Y, Matsuyama Y, Little JA, Gurkan UA. Dynamic deformability of sickle red blood cells in microphysiological flow. TECHNOLOGY 2016; 4:71-79. [PMID: 27437432 PMCID: PMC4947547 DOI: 10.1142/s2339547816400045] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In sickle cell disease (SCD), hemoglobin molecules polymerize intracellularly and lead to a cascade of events resulting in decreased deformability and increased adhesion of red blood cells (RBCs). Decreased deformability and increased adhesion of sickle RBCs lead to blood vessel occlusion (vaso-occlusion) in SCD patients. Here, we present a microfluidic approach integrated with a cell dimensioning algorithm to analyze dynamic deformability of adhered RBC at the single-cell level in controlled microphysiological flow. We measured and compared dynamic deformability and adhesion of healthy hemoglobin A (HbA) and homozygous sickle hemoglobin (HbS) containing RBCs in blood samples obtained from 24 subjects. We introduce a new parameter to assess deformability of RBCs: the dynamic deformability index (DDI), which is defined as the time-dependent change of the cell's aspect ratio in response to fluid flow shear stress. Our results show that DDI of HbS-containing RBCs were significantly lower compared to that of HbA-containing RBCs. Moreover, we observed subpopulations of HbS containing RBCs in terms of their dynamic deformability characteristics: deformable and non-deformable RBCs. Then, we tested blood samples from SCD patients and analyzed RBC adhesion and deformability at physiological and above physiological flow shear stresses. We observed significantly greater number of adhered non-deformable sickle RBCs than deformable sickle RBCs at flow shear stresses well above the physiological range, suggesting an interplay between dynamic deformability and increased adhesion of RBCs in vaso-occlusive events.
Collapse
Affiliation(s)
- Y Alapan
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Y Matsuyama
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH 44106, USA
| | - J A Little
- Department of Hematology and Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Seidman Cancer Center at University Hospitals, Case Medical Center, Cleveland, OH, 44106, USA
| | - U A Gurkan
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH 44106, USA; Biomedical Engineering Department, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Orthopaedics, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
87
|
Castilhos LG, Doleski PH, Adefegha SA, Becker LV, Ruchel JB, Leal DBR. Altered E-NTPDase/E-ADA activities and CD39 expression in platelets of sickle cell anemia patients. Biomed Pharmacother 2016; 79:241-6. [PMID: 27044834 DOI: 10.1016/j.biopha.2016.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/10/2016] [Indexed: 11/15/2022] Open
Abstract
Sickle cell anemia (SCA) is a hemoglobinopathy characterized by hemolysis and vaso-occlusions caused by rigidly distorted red blood cells. Sickle cell crisis is associated with extracellular release of nucleotides and platelets, which are critical mediators of hemostasis participating actively in purinergic thromboregulatory enzymes system.This study aimed to investigate the activities of purinergic system ecto-enzymes present on the platelet surface as well as CD39 and CD73 expressions on platelets of SCA treated patients. Fifteen SCA treated patients and 30 health subjects (control group) were selected. Ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), ecto-5'-nucleotidase (E-5'-NT) and ecto-adenosine deaminase (E-ADA) activities were measured in platelets isolated from these individuals. Results demonstrated an increase of 41 % in the E-NTPDase for ATP hydrolysis, 52% for ADP hydrolysis and 60 % in the E-ADA activity in SCA patients (P<0.05); however, a two folds decrease in the CD39 expression in platelets was observed in the same group (P<0.01). The increased E-NTPDase activity could be a compensatory mechanism associated with the low expression of CD39 in platelets. Besides, alteration of these enzymes activities suggests that the purinergic system could be involved in the thromboregulatory process in SCA patients.
Collapse
Affiliation(s)
- Lívia G Castilhos
- Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria-RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria-RS, Brazil.
| | - Pedro H Doleski
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria-RS, Brazil
| | - Stephen A Adefegha
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria-RS, Brazil; Department of Biochemistry, Federal University of Technology, P. M. B. 704, Akure, Nigeria
| | - Lara V Becker
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria-RS, Brazil
| | - Jader B Ruchel
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria-RS, Brazil
| | - Daniela B R Leal
- Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria-RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria-RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria-RS, Brazil.
| |
Collapse
|
88
|
Calibrating Sickle Cell Disease. J Mol Biol 2016; 428:1506-14. [PMID: 26975885 DOI: 10.1016/j.jmb.2016.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/27/2016] [Accepted: 03/02/2016] [Indexed: 11/20/2022]
Abstract
Sickle cell disease is fundamentally a kinetic disorder, in which cells containing the mutated hemoglobin (hemoglobin S; HbS) will cause occlusion if they sickle in the microvasculature, but have minimal (or no) consequences if they sickle in the venous return. Physiologically, sickling always occurs when some ligands are present; nonetheless, the kinetics in the presence of ligands are virtually unstudied. Sickling arises from nucleation-controlled polymer formation, triggered when the HbS loses ligands (e.g., oxygen). Thus, understanding how nucleation responds to the presence of oxygen is the key to understanding how sickling proceeds in a physiological context. We have measured the rate of nucleus formation in HbS partially liganded with NO or CO, which we find have equivalent effects in reducing the nucleation rates. We find that hemoglobin must be in the T (tense) quaternary structure for nucleation, but the presence of ligands inhibits nucleus formation even when the correct quaternary structure is present. From these results, we can predict the fraction of cells that will sickle at any given partial ligand saturations. The ability to make such predictions may prove especially useful in designing future therapies, particularly those where the oxygen affinity is perturbed.
Collapse
|
89
|
Meier ER, Fasano RM, Estrada M, He J, Luban NLC, McCarter R. Early Reticulocytosis and Anemia Are Associated with Abnormal and Conditional Transcranial Doppler Velocities in Children with Sickle Cell Anemia. J Pediatr 2016; 169:227-31.e1. [PMID: 26593107 DOI: 10.1016/j.jpeds.2015.10.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 08/28/2015] [Accepted: 10/08/2015] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To improve prediction of sickle cell anemia severity at an early age, we evaluated whether absolute reticulocyte count (ARC) or hemoglobin (Hb) levels during early infancy (2-6 months of age) in patients with sickle cell anemia predict the risk of later developing an abnormal (abTCD) or conditional (cdTCD) Transcranial Doppler (TCD). STUDY DESIGN We used chart review to identify 121 consecutive patients who underwent TCD screening and had steady state ARC and Hb levels recorded between 2 and 6 months of age. Cox regression analysis was used to determine the relationship between ARC, Hb levels, and risk of developing cdTCD/abTCD over time. RESULTS Mean ARC in early infancy was highest and mean Hb lowest in those children with abTCDs and cdTCDs. Cox regression analysis revealed that those subjects with an ARC ≥200 K/μL in early infancy had nearly 3 times the risk of having an abTCD/cdTCD than the group with an ARC <200 K/μL, and patients with a Hb <8.5 g/dL had 2.7 times the risk of having an abTCD/cdTCD. CONCLUSIONS These data suggest that both elevated ARC and low baseline Hb during early infancy are associated with an increased risk of developing a cdTCD or abTCD later in childhood.
Collapse
Affiliation(s)
- Emily Riehm Meier
- Center for Cancer and Blood Disorders, Children's National Medical Center, Washington, DC; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC.
| | - Ross M Fasano
- Center for Cancer and Blood Disorders, Children's National Medical Center, Washington, DC; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Monica Estrada
- Center for Cancer and Blood Disorders, Children's National Medical Center, Washington, DC
| | - Jianping He
- Division of Biostatistics and Study Methodology, Children's National Medical Center, Washington, DC
| | - Naomi L C Luban
- Center for Cancer and Blood Disorders, Children's National Medical Center, Washington, DC; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Robert McCarter
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC; Division of Biostatistics and Study Methodology, Children's National Medical Center, Washington, DC
| |
Collapse
|
90
|
Neutrophils, platelets, and inflammatory pathways at the nexus of sickle cell disease pathophysiology. Blood 2016; 127:801-9. [PMID: 26758915 DOI: 10.1182/blood-2015-09-618538] [Citation(s) in RCA: 292] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/28/2015] [Indexed: 02/07/2023] Open
Abstract
Sickle cell disease (SCD) is a severe genetic blood disorder characterized by hemolytic anemia, episodic vaso-occlusion, and progressive organ damage. Current management of the disease remains symptomatic or preventative. Specific treatment targeting major complications such as vaso-occlusion is still lacking. Recent studies have identified various cellular and molecular factors that contribute to the pathophysiology of SCD. Here, we review the role of these elements and discuss the opportunities for therapeutic intervention.
Collapse
|
91
|
Martin C, Pialoux V, Faes C, Charrin E, Skinner S, Connes P. Does physical activity increase or decrease the risk of sickle cell disease complications? Br J Sports Med 2015; 52:214-218. [PMID: 26701924 DOI: 10.1136/bjsports-2015-095317] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2015] [Indexed: 12/11/2022]
Abstract
Sickle cell disease (SCD) is the most common inherited disease in the world. Red blood cell sickling, blood cell-endothelium adhesion, blood rheology abnormalities, intravascular haemolysis, and increased oxidative stress and inflammation contribute to the pathophysiology of SCD. Because acute intense exercise may alter these pathophysiological mechanisms, physical activity is usually contra-indicated in patients with SCD. However, recent studies in sickle-cell trait carriers and in a SCD mice model show that regular physical activity could decrease oxidative stress and inflammation, limit blood rheology alterations and increase nitric oxide metabolism. Therefore, supervised habitual physical activity may benefit patients with SCD. This article reviews the literature on the effects of acute and chronic exercise on the biological responses and clinical outcomes of patients with SCD.
Collapse
Affiliation(s)
- Cyril Martin
- Center of Research and Innovation on Sports (CRIS EA647), Team 'Vascular Biology and Red Blood Cell', University of Lyon 1, University of Lyon, Lyon, France.,Laboratory of Excellence in Red Blood Cell (LABEX GR-Ex), PRES Sorbonne, Paris, France
| | - Vincent Pialoux
- Center of Research and Innovation on Sports (CRIS EA647), Team 'Vascular Biology and Red Blood Cell', University of Lyon 1, University of Lyon, Lyon, France.,Laboratory of Excellence in Red Blood Cell (LABEX GR-Ex), PRES Sorbonne, Paris, France.,Institut Universitaire de France, Paris, France
| | - Camille Faes
- Center of Research and Innovation on Sports (CRIS EA647), Team 'Vascular Biology and Red Blood Cell', University of Lyon 1, University of Lyon, Lyon, France.,Laboratory of Excellence in Red Blood Cell (LABEX GR-Ex), PRES Sorbonne, Paris, France
| | - Emmanuelle Charrin
- Center of Research and Innovation on Sports (CRIS EA647), Team 'Vascular Biology and Red Blood Cell', University of Lyon 1, University of Lyon, Lyon, France.,Laboratory of Excellence in Red Blood Cell (LABEX GR-Ex), PRES Sorbonne, Paris, France
| | - Sarah Skinner
- Center of Research and Innovation on Sports (CRIS EA647), Team 'Vascular Biology and Red Blood Cell', University of Lyon 1, University of Lyon, Lyon, France.,Laboratory of Excellence in Red Blood Cell (LABEX GR-Ex), PRES Sorbonne, Paris, France
| | - Philippe Connes
- Center of Research and Innovation on Sports (CRIS EA647), Team 'Vascular Biology and Red Blood Cell', University of Lyon 1, University of Lyon, Lyon, France.,Laboratory of Excellence in Red Blood Cell (LABEX GR-Ex), PRES Sorbonne, Paris, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
92
|
Niesor EJ, Benghozi R, Amouyel P, Ferdinand KC, Schwartz GG. Adenylyl Cyclase 9 Polymorphisms Reveal Potential Link to HDL Function and Cardiovascular Events in Multiple Pathologies: Potential Implications in Sickle Cell Disease. Cardiovasc Drugs Ther 2015; 29:563-572. [PMID: 26619842 DOI: 10.1007/s10557-015-6626-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adenylyl cyclase 9 (ADCY9) mediates β2-adrenoceptor (β2-AR) signalling. Both proteins are associated with caveolae, specialized cholesterol-rich membrane substructures. Apolipoprotein A1 (ApoA1), the major protein component of high-density lipoprotein (HDL), removes cholesterol from cell membrane and caveolae and may thereby influence β2-AR signalling, shown in vitro to be modulated by cholesterol. Patients with Sickle Cell Disease (SCD) typically have low HDL and ApoA1 levels. In patients, mainly of African origin, with SCD, β2-AR activation may trigger adhesion of red blood cells to endothelial cells, leading to vascular occlusive events. Moreover, ADCY9 polymorphism is associated with risk of stroke in SCD. In recent clinical trials, ADCY9 polymorphism was found to be a discriminant factor associated with the risk of cardiovascular (CV) events in Caucasian patients treated with the HDL-raising compound dalcetrapib. We hypothesize that these seemingly disparate observations share a common mechanism related to interaction of HDL/ApoA1 and ADCY9 on β2-AR signalling. This review also raises the importance of characterizing polymorphisms that determine the response to HDL-raising and -mimicking agents in the non-Caucasian population at high risk of CV diseases and suffering from SCD. This may facilitate personalized CV treatments.
Collapse
Affiliation(s)
- Eric J Niesor
- F.Hoffmann-La Roche Ltd, Basel, Switzerland. .,Pre-β1 Consulting, 13c Chemin de Bonmont, 1260, Nyon, Switzerland.
| | - Renée Benghozi
- F.Hoffmann-La Roche Ltd, Basel, Switzerland.,Cerenis Therapeutics Holding, Labège, France
| | | | | | | |
Collapse
|
93
|
Omega 3 (n−3) fatty acids down-regulate nuclear factor-kappa B (NF-κB) gene and blood cell adhesion molecule expression in patients with homozygous sickle cell disease. Blood Cells Mol Dis 2015; 55:48-55. [DOI: 10.1016/j.bcmd.2015.03.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/29/2015] [Accepted: 03/29/2015] [Indexed: 12/31/2022]
|
94
|
Ferrone FA. The delay time in sickle cell disease after 40 years: A paradigm assessed. Am J Hematol 2015; 90:438-45. [PMID: 25645011 DOI: 10.1002/ajh.23958] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/13/2015] [Accepted: 01/20/2015] [Indexed: 11/08/2022]
Abstract
Sickle hemoglobin polymerization commences with a striking latency period, called a "delay time" followed by abrupt polymer formation. The delay time is exceedingly concentration dependent. This discovery (40 years ago) led to the "kinetic hypothesis," that is, that the pathophysiology was related to the relationship between the delay time and the capillary transit. The delay time is well described by a double-nucleation mechanism of polymer formation. In macroscopic volumes, the delay time is highly reproducible, but in small volumes such as erythrocytes, under certain conditions, the intrinsic delay time can be augmented by a stochastic delay owing to random waiting times for the first nucleus to form. This lengthens the average delay and adds further protection from vaso-occlusion. When oxygen removal is not sudden, the growth of polymers after the delay time is limited by the rate of oxygen removal, further lengthening the time before occlusion may occur. This is important if some polymers have remained in the cell after pulmonary transit as their presence otherwise would obliterate any delay. The difficulty of deforming a cell once polymerized rationalizes the "two-step" model of vaso-occlusion in which a postcapillary adhesion event is followed by a sickling logjam. The delay time that is required is therefore generalized to be the delay time for an erythrocyte to move beyond regions in the venuoles where adherent cells have reduced the available lumen. The measurements of delay times correlate well with the severity of sickling syndromes. They also correlate with the improvements owing to the administration of hydroxyurea.
Collapse
Affiliation(s)
- Frank A. Ferrone
- Department of Physics; Drexel University; Philadelphia Pennsylvania
| |
Collapse
|
95
|
Green M, Akinsami I, Lin A, Banton S, Ghosh S, Chen B, Platt M, Osunkwo I, Ofori-Acquah S, Guldberg R, Barabino G. Microarchitectural and mechanical characterization of the sickle bone. J Mech Behav Biomed Mater 2015; 48:220-228. [PMID: 25957113 DOI: 10.1016/j.jmbbm.2015.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/12/2015] [Accepted: 04/17/2015] [Indexed: 01/09/2023]
Abstract
Individuals with sickle cell disease often experience acute and chronic bone pain due to occlusive events within the tissue vasculature that result in ischemia, necrosis, and organ degeneration. Macroscopically, sickle bone is identified in clinical radiographs by its reduced mineral density, widening of the marrow cavity, and thinning of the cortical bone due to the elevated erythroid hyperplasia accompanying the disease. However, the microstructural architecture of sickle bone and its role in mechanical functionality is largely unknown. This study utilized micro-CT and biomechanical testing to determine the relationship between the bone morphology, tissue mineral density, and trabecular and cortical microarchitecture of 10- and 21-week-old femurs from transgenic sickle male mice and littermates with sickle trait, as well as a wild-type control. While bone tissue mineral density did not vary among the genotypes at either age, variation in bone microstructure were observed. At 10 weeks, healthy and trait mice exhibited similar morphology within the cortical and trabecular bone, while sickle mice exhibited highly connected trabeculae. Within older femurs, sickle and trait specimens displayed significantly fewer trabeculae, and the remaining trabeculae had a more deteriorated geometry based on the structure model index. Thinning of the cortical region in sickle femurs contributed to the displayed flexibility with a significantly lower elastic modulus than the controls at both 10- and 21-weeks old. Wild-type and trait femurs generally demonstrated similar mechanical properties; however, trait femurs had a significantly higher modulus than sickle and wild-type control at 21-weeks. Overall, these data indicate that the progressive damage to the microvasculature caused by sickle cell disease, results in deleterious structural changes in the bone tissue׳s microarchitecture and mechanics.
Collapse
Affiliation(s)
- Mykel Green
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031, USA
| | - Idowu Akinsami
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Angela Lin
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Shereka Banton
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Samit Ghosh
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Binbin Chen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Manu Platt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ifeyinwa Osunkwo
- Levine Cancer Institute, Carolinas HealthCare System, Charlotte, NC 28204, USA
| | - Solomon Ofori-Acquah
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Robert Guldberg
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gilda Barabino
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
96
|
Celik T, Unal S, Ekinci O, Ozer C, Ilhan G, Oktay G, Arica V. Mean Platelet Volume can Predict Cerebrovascular Events in Patients with Sickle Cell Anemia. Pak J Med Sci 2015; 31:203-8. [PMID: 25878644 PMCID: PMC4386187 DOI: 10.12669/pjms.311.4104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/15/2014] [Accepted: 09/25/2014] [Indexed: 11/18/2022] Open
Abstract
Objective: The purpose of this study was to determine the impact of mean platelet volume (MPV) on the frequency and severity of vaso-occlusive and cerebrovascular events in patients with sickle cell anemia (SCA). Methods: The 238 cases diagnosed with SCA were evaluated retrospectively with respect to the occurrence of painful crisis for the previous year. The incidence, severity and type of the vaso-occlusive crises of the patients with SCA between March 2010 and March 2011 were recorded. The last MPV values in patients who were free of erythrocyte transfusion for the last three months and who had no current vaso-occlusive crises were evaluated. All the patients were grouped according to the frequency of the crises for the previous year preceding the data collection. Group 1: 1 to 3 crises, Group 2: 4 to 5 and Group 3: 6 or more crises annually. Results: In accordance with the results obtained during the evaluation of the cases diagnosed with sickle-cell anemia, MPV value was found to be significantly higher in patients with cerebrovascular events. Also MPV values increased with increasing incidence of the crises (r=0.297) (p=0.001). Conclusion: One of the contributing factors for this clinical heterogeneity may be related to the MPV values in patients with sickle cell anemia. The higher MPV values may be an early predictor of future cerebrovascular events in patients with sickle cell anemia and may require close follow-up and additional measures.
Collapse
Affiliation(s)
- Tanju Celik
- Tanju Celik, Department of Pediatrics, Mustafa Kemal University, School of Medicine, Hatay, Turkey
| | - Sule Unal
- Sule Unal, Pediatric Hematology Clinic, Antakya State Hospital, Hatay, Turkey
| | - Ozalp Ekinci
- Ozalp Ekinci, Ozalp Ekinci Child and Adolescent Psychiatry Clinic, Hatay, Turkey
| | - Cahit Ozer
- Cahit Ozer, Department of Family Medicine, Mustafa Kemal University, School of Medicine, Hatay, Turkey
| | - Gul Ilhan
- Gul Ilhan, Division of Internal Medicine Hematology Oncology, Antakya State Hospital, Hatay, Turkey
| | - Gonul Oktay
- Gonul Oktay, Department of Blood Disease Center, Antakya State Hospital, Hatay, Turkey
| | - Vefik Arica
- Vefik Arica, Department of Pediatrics, Mustafa Kemal University, School of Medicine, Hatay, Turkey
| |
Collapse
|
97
|
Opene M, Kurantsin-Mills J, Husain S, Ibe BO. Sickle erythrocytes and platelets augment lung leukotriene synthesis with downregulation of anti-inflammatory proteins: relevance in the pathology of the acute chest syndrome. Pulm Circ 2015; 4:482-95. [PMID: 25621162 DOI: 10.1086/677363] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/16/2014] [Indexed: 02/02/2023] Open
Abstract
Initiation, progression, and resolution of vaso-occlusive pain episodes in sickle cell disease (SCD) have been recognized as reperfusion injury, which provokes an inflammatory response in the pulmonary circulation. Some 5-lipoxygenase (5-lox) metabolites are potent vasoconstrictors in the pulmonary circulation. We studied stimulation of production of the inflammatory eicosanoids leukotrienes (LTs) and prostaglandin E2 (PGE2) by isolated rat lungs perfused with sickle (HbSS) erythrocytes. Our hypothesis is that HbSS erythrocytes produce more LTs than normal (HbAA) erythrocytes, which can induce vaso-occlusive episodes in SCD patients. Lung perfusates were collected at specific time points and purified by high-pressure liquid chromatography, and LTC4 and PGE2 contents were measured by enzyme-linked immunosorbent assay (ELISA). Rat lung explants were also cultured with purified HbAA and HbSS peptides, and 5-lox, cyclooxygenase 1/2, and platelet-activating factor receptor (PAFR) proteins were measured by Western blotting, while prostacyclin and LTs produced by cultured lung explants were measured by ELISA. Lung weight gain and blood gas data were not different among the groups. HbSS-perfused lungs produced more LTC4 and PGE2 than HbAA-perfused lungs: 10.40 ± 0.62 versus 0.92 ± 0.2 ng/g dry lung weight (mean ± SEM; P = 0.0001) for LTC4. Inclusion of autologous platelets (platelet-rich plasma) elevated LTC4 production to 12.6 ± 0.96 and 7 ± 0.60 ng/g dry lung weight in HbSS and HbAA perfusates, respectively. HbSS lungs also expressed more 5-lox and PAFR. The data suggest that HbSS erythrocytes and activated platelets in patient's pulmonary microcirculation will enhance the synthesis and release of the proinflammatory mediators LTC4 and PGE2, both of which may contribute to onset of the acute chest syndrome in SCD.
Collapse
Affiliation(s)
- Michael Opene
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Joseph Kurantsin-Mills
- Department of Medicine and Department of Physiology and Experimental Medicine, George Washington University, Medical Center, Washington, DC, USA ; Present address: Center for Sickle Cell Disease, Department of Physiology and Biophysics, Howard University College of Medicine, 2121 Georgia Avenue NW, Washington, DC 20059, USA
| | - Sumair Husain
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Basil O Ibe
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| |
Collapse
|
98
|
Kinetics of sickle cell biorheology and implications for painful vasoocclusive crisis. Proc Natl Acad Sci U S A 2015; 112:1422-7. [PMID: 25605910 DOI: 10.1073/pnas.1424111112] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We developed a microfluidics-based model to quantify cell-level processes modulating the pathophysiology of sickle cell disease (SCD). This in vitro model enabled quantitative investigations of the kinetics of cell sickling, unsickling, and cell rheology. We created short-term and long-term hypoxic conditions to simulate normal and retarded transit scenarios in microvasculature. Using blood samples from 25 SCD patients with sickle hemoglobin (HbS) levels varying from 64 to 90.1%, we investigated how cell biophysical alterations during blood flow correlated with hematological parameters, HbS level, and hydroxyurea (HU) therapy. From these measurements, we identified two severe cases of SCD that were also independently validated as severe from a genotype-based disease severity classification. These results point to the potential of this method as a diagnostic indicator of disease severity. In addition, we investigated the role of cell density in the kinetics of cell sickling. We observed an effect of HU therapy mainly in relatively dense cell populations, and that the sickled fraction increased with cell density. These results lend support to the possibility that the microfluidic platform developed here offers a unique and quantitative approach to assess the kinetic, rheological, and hematological factors involved in vasoocclusive events associated with SCD and to develop alternative diagnostic tools for disease severity to supplement other methods. Such insights may also lead to a better understanding of the pathogenic basis and mechanism of drug response in SCD.
Collapse
|
99
|
Abstract
PURPOSE OF REVIEW This review discusses the unexpected role of red blood cell (RBC) adhesiveness in the pathophysiology of two red cell diseases, hereditary spherocytosis and polycythemia vera, and two 'nonerythroid' disorders, central retinal vein occlusion and Gaucher disease. These pathologies share common clinical manifestations, that is vaso-occlusion and/or thrombotic events. RECENT FINDINGS Recently, the direct involvement of RBC adhesion to the vascular endothelium has been demonstrated in the occurrence of vaso-occlusive events, in particular in sickle cell disease (SCD). Several erythroid adhesion molecules and their ligands have been identified that belong to different molecular classes (integrins, Ig-like molecules, lipids...) and are activated by a variety of signaling pathways. Among these, the laminin receptor, Lutheran/basal cell adhesion molecule, which is activated by phosphorylation, appears to play a central role in several pathologies. SUMMARY RBC adhesiveness might be involved in complications such as the vaso-occlusive crisis in SCD, thrombosis in polycythemia vera, splenic sequestration in hereditary spherocytosis, occlusions in central retinal vein occlusion and bone infarcts in Gaucher disease. Characterization of this pathological process at the cellular and molecular levels should prove useful to develop new therapeutic approaches based on the blockade of RBC abnormal interactions with vascular endothelium and/or circulating blood cells.
Collapse
|
100
|
Abstract
INTRODUCTION The search for effective therapeutic interventions for sickle cell disease (SCD) has been an ongoing endeavor for over 50 years. During this period, only hydroxyurea (HU), which received US FDA approval in February 1998, was identified as an effective therapeutic agent in preventing or ameliorating the frequency of vaso-occlusive crises, acute chest syndrome and the need for blood transfusion. Approximately 25% of patients with sickle cell anemia (SCA), however, do not respond to HU and some patients experiencing serious side effects of this chemotherapeutic agent. Nevertheless, the success of HU opened the sluice gates to identify other effective drug therapies. The objective of this review is to describe the emerging drug therapies for SCA. AREAS COVERED In this review, we describe the pathophysiology of SCD and provide an in-depth analysis of the current and new pharmacologic therapies in the field. Literature searches involved multiple databases including Medline In-Process & Other Non-Indexed Citations, MEDLINE, Embase, Cochrane Database of Systematic Reviews, and Scopus. EXPERT OPINION SCA is a heterogeneous disease that has caused tremendous global morbidity and early mortality. More effective, individualized and inexpensive therapies are needed. New therapies targeting multiple pathways in its complex pathophysiology are under investigation.
Collapse
Affiliation(s)
- Priya C Singh
- Bayhealth Cancer Institute, Hematology/Oncology , Dover, DE , USA
| | | |
Collapse
|