51
|
Valga F, Monzón T, Henriquez F, Antón-Pérez G. Índices neutrófilo-linfocito y plaqueta-linfocito como marcadores biológicos de interés en la enfermedad renal. Nefrologia 2019; 39:243-249. [DOI: 10.1016/j.nefro.2018.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 09/10/2018] [Accepted: 11/11/2018] [Indexed: 10/27/2022] Open
|
52
|
Qiu Y, Myers DR, Lam WA. The biophysics and mechanics of blood from a materials perspective. NATURE REVIEWS. MATERIALS 2019; 4:294-311. [PMID: 32435512 PMCID: PMC7238390 DOI: 10.1038/s41578-019-0099-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cells actively interact with their microenvironment, constantly sensing and modulating biochemical and biophysical signals. Blood comprises a variety of non-adherent cells that interact with each other and with endothelial and vascular smooth muscle cells of the blood vessel walls. Blood cells are further experiencing a range of external forces by the hemodynamic environment and they also exert forces to remodel their local environment. Therefore, the biophysics and material properties of blood cells and blood play an important role in determining blood behaviour in health and disease. In this Review, we discuss blood cells and tissues from a materials perspective, considering the mechanical properties and biophysics of individual blood cells and endothelial cells as well as blood cell collectives. We highlight how blood vessels provide a mechanosensitive barrier between blood and tissues and how changes in vessel stiffness and flow shear stress can be correlated to plaque formation and exploited for the design of vascular grafts. We discuss the effect of the properties of fibrin on blood clotting, and investigate how forces exerted by platelets are correlated to disease. Finally, we hypothesize that blood and vascular cells are constantly establishing a mechanical homeostasis, which, when imbalanced, can lead to hematologic and vascular diseases.
Collapse
Affiliation(s)
- Yongzhi Qiu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - David R. Myers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Corresponding author,
| |
Collapse
|
53
|
Dupuy A, Ju LA, Passam FH. Straight Channel Microfluidic Chips for the Study of Platelet Adhesion under Flow. Bio Protoc 2019; 9:e3195. [PMID: 33654994 PMCID: PMC7854274 DOI: 10.21769/bioprotoc.3195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/17/2019] [Accepted: 02/28/2019] [Indexed: 01/01/2023] Open
Abstract
Microfluidic devices have become an integral method of cardiovascular research as they enable the study of shear force in biological processes, such as platelet function and thrombus formation. Furthermore, microfluidic chips offer the benefits of ex vivo testing of platelet adhesion using small amounts of blood or purified platelets. Microfluidic chips comprise flow channels of varying dimensions and geometries which are connected to a syringe pump. The pump draws blood or platelet suspensions through the channel(s) allowing for imaging of platelet adhesion and thrombus formation by fluorescence microscopy. The chips can be fabricated from various blood-compatible materials. The current protocol uses commercial plastic or in-house polydimethylsiloxane (PDMS) chips. Commercial biochips offer the advantage of standardization whereas in-house chips offer the advantage of decreased cost and flexibility in design. Microfluidic devices are a powerful tool to study the biorheology of platelets and other cell types with the potential of a diagnostic and monitoring tool for cardiovascular diseases.
Collapse
Affiliation(s)
- Alexander Dupuy
- Heart Research Institute, Newtown, NSW 2042, Australia.,University of Sydney, Camperdown, NSW 2006, Australia
| | - Lining Arnold Ju
- Heart Research Institute, Newtown, NSW 2042, Australia.,University of Sydney, Camperdown, NSW 2006, Australia
| | - Freda H Passam
- Heart Research Institute, Newtown, NSW 2042, Australia.,University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
54
|
Zhao Z, Ukidve A, Krishnan V, Mitragotri S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv Drug Deliv Rev 2019; 143:3-21. [PMID: 30639257 DOI: 10.1016/j.addr.2019.01.002] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/07/2018] [Accepted: 01/03/2019] [Indexed: 02/06/2023]
Abstract
Over the years, a plethora of materials - natural and synthetic - have been engineered at a nanoscopic level and explored for drug delivery. Nanocarriers based on such materials could improve the payload's pharmacokinetics and achieve the desired pharmacological response at the target tissue. Despite the development of rationally designed drug nanocarriers, only a handful of such formulations have been successfully translated into the clinic. The physicochemical properties (size, shape, surface chemistry, porosity, elasticity, and many others) of these nanocarriers influence its biological identity, which in presence of biological barriers in vivo, could significantly modulate the therapeutic index of its cargo and alter the desired outcome. Further, complexities associated with developing effective drug nanocarriers have led to conflicting views of its safety, permeation of biological barriers and cellular uptake. Here, in this review, we emphasize the effect of physicochemical properties of nanocarriers on their interactions with the biological milieu. The review will discuss in depth, how modulating the physicochemical properties would influence a drug nanocarrier's behavior in vivo and the mechanisms underlying these effects. The goal of this review is to summarize the design considerations based on these properties and to provide a conceptual template for achieving improved therapeutic efficacy with enhanced patient compliance.
Collapse
|
55
|
Zarka R, Horev MB, Volberg T, Neubauer S, Kessler H, Spatz JP, Geiger B. Differential Modulation of Platelet Adhesion and Spreading by Adhesive Ligand Density. NANO LETTERS 2019; 19:1418-1427. [PMID: 30649888 PMCID: PMC6437653 DOI: 10.1021/acs.nanolett.8b03513] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/08/2019] [Indexed: 05/25/2023]
Abstract
Platelets play a major role in hemostasis and thrombosis, by binding to the underlying extracellular matrix around injured blood vessels, via integrin receptors. In this study, we investigated the effects of adhesive ligand spacing on the stability of platelets' adhesion and the mode of their spreading on extracellular surfaces. Toward this end, we have examined the differential adhesion and spreading of human platelets onto nanogold-patterned surfaces, functionalized with the αIIbβ3 integrin ligand, SN528. Combining light- and scanning electron-microscopy, we found that interaction of platelets with surfaces coated with SN528 at spacing of 30-60 nm induces the extension of filopodia through which the platelets stably attach to the nanopatterned surface and spread on it. Increasing the nanopattern-gold spacing to 80-100 nm resulted in a dramatic reduction (>95%) in the number of adhering platelets. Surprisingly, a further increase in ligand spacing to 120 nm resulted in platelet binding to the surface at substantially larger numbers, yet these platelets remained discoid and were essentially devoid of filopodia and lamellipodia. These results indicate that the stimulation of filopodia extension by adhering platelets, and the consequent spreading on these surfaces depend on different ligand densities. Thus, the extension of filopodia occurs on surfaces with a ligand spacing of 100 nm or less, while the sustainability and growth of these initial adhesions and induction of extensive platelet adhesion and spreading requires lower ligand-to-ligand spacing (≤60 nm). The mechanisms underlying this differential ligand-density sensing by platelets, as well as the unexpected retention of discoid platelets on surfaces with even larger spacing (120 nm) are discussed.
Collapse
Affiliation(s)
- Revital Zarka
- Department
of Molecular Cell Biology, The Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Melanie B. Horev
- Department
of Molecular Cell Biology, The Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Tova Volberg
- Department
of Molecular Cell Biology, The Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Stefanie Neubauer
- Institute
for Advanced Study (IAS) and Center of Integrated Protein Science,
Department of Chemistry, Technical University
of Munich, 85747 Garching, Germany
| | - Horst Kessler
- Institute
for Advanced Study (IAS) and Center of Integrated Protein Science,
Department of Chemistry, Technical University
of Munich, 85747 Garching, Germany
| | - Joachim P. Spatz
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | - Benjamin Geiger
- Department
of Molecular Cell Biology, The Weizmann
Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
56
|
Scharf RE. Acquired Disorders of Platelet Function. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
57
|
|
58
|
van Geffen JP, Brouns SLN, Batista J, McKinney H, Kempster C, Nagy M, Sivapalaratnam S, Baaten CCFMJ, Bourry N, Frontini M, Jurk K, Krause M, Pillitteri D, Swieringa F, Verdoold R, Cavill R, Kuijpers MJE, Ouwehand WH, Downes K, Heemskerk JWM. High-throughput elucidation of thrombus formation reveals sources of platelet function variability. Haematologica 2018; 104:1256-1267. [PMID: 30545925 PMCID: PMC6545858 DOI: 10.3324/haematol.2018.198853] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/05/2018] [Indexed: 01/25/2023] Open
Abstract
In combination with microspotting, whole-blood microfluidics can provide high-throughput information on multiple platelet functions in thrombus formation. Based on assessment of the inter- and intra-subject variability in parameters of microspot-based thrombus formation, we aimed to determine the platelet factors contributing to this variation. Blood samples from 94 genotyped healthy subjects were analyzed for conventional platelet phenotyping: i.e. hematologic parameters, platelet glycoprotein (GP) expression levels and activation markers (24 parameters). Furthermore, platelets were activated by ADP, CRP-XL or TRAP. Parallel samples were investigated for whole-blood thrombus formation (6 microspots, providing 48 parameters of adhesion, aggregation and activation). Microspots triggered platelet activation through GP Ib-V-IX, GPVI, CLEC-2 and integrins. For most thrombus parameters, inter-subject variation was 2-4 times higher than the intra-subject variation. Principal component analyses indicated coherence between the majority of parameters for the GPVI-dependent microspots, partly linked to hematologic parameters, and glycoprotein expression levels. Prediction models identified parameters per microspot that were linked to variation in agonist-induced αIIbβ3 activation and secretion. Common sequence variation of GP6 and FCER1G, associated with GPVI-induced αIIbβ3 activation and secretion, affected parameters of GPVI-and CLEC-2-dependent thrombus formation. Subsequent analysis of blood samples from patients with Glanzmann thrombasthenia or storage pool disease revealed thrombus signatures of aggregation-dependent parameters that were subject-dependent, but not linked to GPVI activity. Taken together, this high-throughput elucidation of thrombus formation revealed patterns of inter-subject differences in platelet function, which were partly related to GPVI-induced activation and common genetic variance linked to GPVI, but also included a distinct platelet aggregation component.
Collapse
Affiliation(s)
- Johanna P van Geffen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Sanne L N Brouns
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Joana Batista
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, UK
| | - Harriet McKinney
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, UK
| | - Carly Kempster
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, UK
| | - Magdolna Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Suthesh Sivapalaratnam
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK.,The Royal London Haemophilia Centre, London, UK
| | - Constance C F M J Baaten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Nikki Bourry
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Mattia Frontini
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, UK.,BHF Centre of Excellence, Division of Cardiovascular Medicine, Cambridge University Hospitals, Cambridge Biomedical Campus, UK
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | | | | | - Frauke Swieringa
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Remco Verdoold
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Rachel Cavill
- Department of Data Science & Knowledge Engineering, Faculty of Humanities and Sciences, Maastricht University, the Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Willem H Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, UK.,BHF Centre of Excellence, Division of Cardiovascular Medicine, Cambridge University Hospitals, Cambridge Biomedical Campus, UK.,NIHR BioResource, University of Cambridge, Cambridge Biomedical Campus, UK.,Department of Human Genetics, The Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Kate Downes
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK .,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, UK.,NIHR BioResource, University of Cambridge, Cambridge Biomedical Campus, UK
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| |
Collapse
|
59
|
A shear-dependent NO-cGMP-cGKI cascade in platelets acts as an auto-regulatory brake of thrombosis. Nat Commun 2018; 9:4301. [PMID: 30327468 PMCID: PMC6191445 DOI: 10.1038/s41467-018-06638-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 09/18/2018] [Indexed: 12/31/2022] Open
Abstract
Mechanisms that limit thrombosis are poorly defined. One of the few known endogenous platelet inhibitors is nitric oxide (NO). NO activates NO sensitive guanylyl cyclase (NO-GC) in platelets, resulting in an increase of cyclic guanosine monophosphate (cGMP). Here we show, using cGMP sensor mice to study spatiotemporal dynamics of platelet cGMP, that NO-induced cGMP production in pre-activated platelets is strongly shear-dependent. We delineate a new mode of platelet-inhibitory mechanotransduction via shear-activated NO-GC followed by cGMP synthesis, activation of cGMP-dependent protein kinase I (cGKI), and suppression of Ca2+ signaling. Correlative profiling of cGMP dynamics and thrombus formation in vivo indicates that high cGMP concentrations in shear-exposed platelets at the thrombus periphery limit thrombosis, primarily through facilitation of thrombus dissolution. We propose that an increase in shear stress during thrombus growth activates the NO-cGMP-cGKI pathway, which acts as an auto-regulatory brake to prevent vessel occlusion, while preserving wound closure under low shear. Nitric oxide (NO) inhibits thrombosis in part by stimulating cyclic guanosine monophosphate (cGMP) production and cGMP-dependent protein kinase I (cGKI) activity in platelets. Here, Wen et al. develop a cGMP sensor mouse to follow cGMP dynamics in platelets, and find that shear stress activates NO-cGMP-cGKI signaling during platelet aggregation to limit thrombosis.
Collapse
|
60
|
Moskalensky AE, Litvinenko AL. The platelet shape change: biophysical basis and physiological consequences. Platelets 2018; 30:543-548. [DOI: 10.1080/09537104.2018.1514109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Alexander E. Moskalensky
- Laboratory of Optics and Dynamics of Biological Systems, Novosibirsk State University, Novosibirsk, Russia
- Laboratory of Cytometry and Biokinetics, Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk, Russia
| | - Alena L. Litvinenko
- Laboratory of Optics and Dynamics of Biological Systems, Novosibirsk State University, Novosibirsk, Russia
- Laboratory of Cytometry and Biokinetics, Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk, Russia
| |
Collapse
|
61
|
Arjmand S, Pardakhty A, Forootanfar H, Khazaeli P. A road to bring Brij52 back to attention: Shear stress sensitive Brij52 niosomal carriers for targeted drug delivery to obstructed blood vessels. Med Hypotheses 2018; 121:137-141. [PMID: 30396467 DOI: 10.1016/j.mehy.2018.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/05/2018] [Accepted: 09/09/2018] [Indexed: 10/28/2022]
Abstract
Thrombosis is a shared perpetrating event in the pathophysiology of several cardiovascular disorders such as ischemic stroke, venous thromboembolism, atherosclerosis, and myocardial infarction. Despite holding a wide range of ammunition in our arsenal to ameliorate such conditions, we are still facing with many stumbling blocks in the satisfactory pharmacotherapy of cardiovascular diseases among which the risk of hemorrhage and life threatening drug interactions can be highlighted. Our hypothesis focuses on mimicking the nature of platelet activation, to design a novel targeted delivery system based on the alterations of a physical parameter, the hemodynamic shear stress, to aim at the offending thrombi in an attempt to offer a noninvasive, rapid, and monitoring-free method that not only can prolong the circulation time of the cargo, but also deliver it locally and reduce both the undesirable adverse effects and drug interactions. Brij52 is our chosen candidate due to its unique non-spherical morphology after forming a niosomal vesicle. We surmised that thanks to its non-spherical shape, diverse shear rates may generate different shear stresses to its equators and axes which might result in the breakdown or at least distortion of niosomal structure under elevated shear stress. The vesicles have to be synthesized in the size of platelets or in the nano-sized scale. In order to prolong the time vesicles are circulating in the blood, PEGylation may help and to make such carriers highly selective to be only activated during pathophysiological clot formation, attachment of domain A1 von Willebrand factor can be of benefit to lead this proposed delivery system to the site of thrombus formation where shear rate exceeds those of 1000 s-1. There is now an emerging fast growing universal research on shear activated carriers, and the present theory is an endeavor to reach a successful treatment strategy to combat cardiovascular diseases based on the hypothesis that a non-spherical nano-carrier such as Brij 52 niosomal vesicle can be of paramount benefit to deliver current antithrombotic agents in a targeted and controlled manner in the presence of elevated shear stress of the obstructed blood vessels. With more radical advanced drug delivery systems being developed and new strategies being pursued, there will be more options in our arsenal to represent a promising avenue for achieving preventive, well-tolerated, and intelligent drug carriers to circumvent the drawbacks of antithrombotic pharmacotherapy.
Collapse
Affiliation(s)
- Shokouh Arjmand
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; School of Pharmacy and Pharmaceutical Sciences, Kerman University of Medical Sciences, Kerman, Iran; Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; School of Pharmacy and Pharmaceutical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- School of Pharmacy and Pharmaceutical Sciences, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Payam Khazaeli
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; School of Pharmacy and Pharmaceutical Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
62
|
Laurent PA, Hechler B, Solinhac R, Ragab A, Cabou C, Anquetil T, Severin S, Denis CV, Mangin PH, Vanhaesebroeck B, Payrastre B, Gratacap MP. Impact of PI3Kα (Phosphoinositide 3-Kinase Alpha) Inhibition on Hemostasis and Thrombosis. Arterioscler Thromb Vasc Biol 2018; 38:2041-2053. [PMID: 30354258 DOI: 10.1161/atvbaha.118.311410] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- PI3Kα (phosphoinositide 3-kinase alpha) is a therapeutic target in oncology, but its role in platelets and thrombosis remains ill characterized. In this study, we have analyzed the role of PI3Kα in vitro, ex vivo, and in vivo in 2 models of arterial thrombosis. Approach and Results- Using mice selectively deficient in p110α in the megakaryocyte lineage and isoform-selective inhibitors, we confirm that PI3Kα is not mandatory but participates to thrombus growth over a collagen matrix at arterial shear rate. Our data uncover a role for PI3Kα in low-level activation of the GP (glycoprotein) VI-collagen receptor by contributing to ADP secretion and in turn full activation of PI3Kβ and Akt/PKB (protein kinase B). This effect was no longer observed at high level of GP VI agonist concentration. Our study also reveals that over a vWF (von Willebrand factor) matrix, PI3Kα regulates platelet stationary adhesion contacts under arterial flow through its involvement in the outside-in signaling of vWF-engaged αIIbβ3 integrin. In vivo, absence or inhibition of PI3Kα resulted in a modest but significant decrease in thrombus size after superficial injuries of mouse mesenteric arteries and an increased time to arterial occlusion after carotid lesion, without modification in the tail bleeding time. Considering the more discrete and nonredundant role of PI3Kα compared with PI3Kβ, selective PI3Kα inhibitors are unlikely to increase the bleeding risk at least in the absence of combination with antiplatelet drugs or thrombopenia. Conclusions- This study provides mechanistic insight into the role of PI3Kα in platelet activation and arterial thrombosis.
Collapse
Affiliation(s)
- Pierre-Alexandre Laurent
- From the INSERM, UMR-S1048, Université Toulouse III, France (P.-A.L., R.S., A.R., C.C., T.A., S.S., B.P., M.-P.G.)
| | - Béatrice Hechler
- INSERM, EFS Grand Est, BPPS UMR-S 949, FMTS, Université de Strasbourg, France (B.H., P.H.M.)
| | - Romain Solinhac
- From the INSERM, UMR-S1048, Université Toulouse III, France (P.-A.L., R.S., A.R., C.C., T.A., S.S., B.P., M.-P.G.)
| | - Ashraf Ragab
- From the INSERM, UMR-S1048, Université Toulouse III, France (P.-A.L., R.S., A.R., C.C., T.A., S.S., B.P., M.-P.G.)
| | - Cendrine Cabou
- From the INSERM, UMR-S1048, Université Toulouse III, France (P.-A.L., R.S., A.R., C.C., T.A., S.S., B.P., M.-P.G.)
| | - Typhaine Anquetil
- From the INSERM, UMR-S1048, Université Toulouse III, France (P.-A.L., R.S., A.R., C.C., T.A., S.S., B.P., M.-P.G.)
| | - Sonia Severin
- From the INSERM, UMR-S1048, Université Toulouse III, France (P.-A.L., R.S., A.R., C.C., T.A., S.S., B.P., M.-P.G.)
| | - Cécile V Denis
- INSERM, UMR-S 1176, University of Paris-Sud, Université Paris-Saclay, France (C.V.D.)
| | - Pierre H Mangin
- INSERM, EFS Grand Est, BPPS UMR-S 949, FMTS, Université de Strasbourg, France (B.H., P.H.M.)
| | - Bart Vanhaesebroeck
- Cell Signaling, UCL Cancer Institute, University College London, United Kingdom (B.V.)
| | - Bernard Payrastre
- From the INSERM, UMR-S1048, Université Toulouse III, France (P.-A.L., R.S., A.R., C.C., T.A., S.S., B.P., M.-P.G.)
- CHU de Toulouse, Laboratoire d'Hématologie, France (B.P.)
| | - Marie-Pierre Gratacap
- From the INSERM, UMR-S1048, Université Toulouse III, France (P.-A.L., R.S., A.R., C.C., T.A., S.S., B.P., M.-P.G.)
| |
Collapse
|
63
|
Kröger N, Kopp A, Staudt M, Rusu M, Schuh A, Liehn EA. Hemocompatibility of plasma electrolytic oxidation (PEO) coated Mg-RE and Mg-Zn-Ca alloys for vascular scaffold applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:819-826. [PMID: 30184811 DOI: 10.1016/j.msec.2018.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 06/15/2018] [Accepted: 07/12/2018] [Indexed: 11/25/2022]
Abstract
Percutaneous transluminal coronary angioplasty and subsequent vascular scaffold implantation remains the prevalent invasive treatment of coronary heart disease. In-stent restenosis remained a problem with bare metal stents, until drug-eluting stents were introduced. The inhibition of the healing process by the antimitotic drug coating and the permanent metallic remnant can promote sub-acute and delayed stent thrombosis. Thus, the development of biodegradable stents emerged as a subject of research. Magnesium-based bioabsorbable devices can provide sufficient radial force in the acute phase of vessel-treatment and degrade thoroughly in aqueous environment, making them potential new candidates for vascular scaffold applications. Magnesium alloys tend to degrade very quickly due to their high electrochemical corrosion potential. Plasma Electrolytic Oxidation modification of magnesium alloys improves interface and degradadation properties and may therefore enhance the performance and suitability for vascular scaffold applications of these materials. Assuring the hemocompatibility and foremost assessing the thrombogenicity of new biomaterials prior to their use is essential in order to avoid adverse effects. The goal was to assess thrombocyte adhesion on coated Mg-RE and Mg-Zn-Ca alloys. Static experiments with human blood were carried out on the plasma-electrolytically treated or corresponding untreated Mg alloy in order to assess quantity and quality of thrombocyte adhesion via standardized SEM imaging. In a second step, a parallel plate flow chamber was designed in order to examine thrombocyte adhesion under dynamic flow conditions. During flow chamber experiments the test-materials were exposed to human thrombocyte concentrate and the number of adherent thrombocytes was assessed. The flow chamber was additionally perfused with human blood and thrombocyte adhesion was semiquantitatively and qualitatively assessed via SEM imaging and subsequent scoring. In conclusion, a new parallel plate flow chamber design simulating blood-circulation was successfully established, enabling the further assessment of platelet adhesion on bioabsorbable materials under dynamic flow conditions. Static and dynamic experiments showed, that plasma-electrolytically treated specimens showed low thrombocyte adhesion on both alloys, proposing their potential use in vascular scaffolds. The uncoated magnesium alloys showed rapid degradation along with gas formation due to the chemically active surface and therefore give concern regarding their safety and suitability for vascular applications.
Collapse
Affiliation(s)
- Nadja Kröger
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Germany
| | | | - Mareike Staudt
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Germany
| | - Mihaela Rusu
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Germany
| | - Alexander Schuh
- Department of Cardiology, Pulmonology, Angiology and Intensive Care, University Hospital, RWTH Aachen University, Germany
| | - Elisa A Liehn
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Germany; Department of Cardiology, Pulmonology, Angiology and Intensive Care, University Hospital, RWTH Aachen University, Germany; Human Genetic Laboratory, University for Medicine and Pharmacy, Craiova, Romania.
| |
Collapse
|
64
|
Leu33Pro (PlA) polymorphism of integrin beta3 modulates platelet Src pY418 and focal adhesion kinase pY397 phosphorylation in response to abnormally high shear stress. Blood Coagul Fibrinolysis 2018; 29:488-495. [PMID: 29965811 DOI: 10.1097/mbc.0000000000000744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Shear stress can activate platelet integrin-mediated signaling that leads to shear-induced platelet aggregation (SIPA) and eventually contribute to acute myocardial infarction. The major platelet integrin αIIbβ3 is polymorphic at residue 33 [Leu33Pro (PlA) polymorphism]. The Pro33 isoform has been shown to have a prothrombotic phenotype. In this work, we studied the impact of Leu33/Pro33 polymorphism on the shear-induced integrin-mediated Src and FAK activation in platelets. METHODS Platelets of both genotypes were placed on immobilized fibrinogen or heat activated BSA and were exposed to physiological (500/s) or abnormally high (5000/s) shear rates for 2-10 min. Platelets after exposure to shear were analysed for Src pY418 and FAK pY397 activities. RESULTS Whereas physiological shear stress does not affect platelet signaling, abnormally high-shear stress considerably elevates Src and FAK phosphorylation in both Pro33 and Leu33 platelets. Both under static and flow conditions, Pro33 platelets exhibited a significantly higher Src and FAK activities than Leu33 platelets. Interestingly, even in the absence of the αIIbβ3-fibrinogen interaction, we could detect a shear-induced integrin-mediated signaling of Src and FAK in platelets. In parallel experiments in which platelets were pretreated with abciximab, an integrin αIIbβ3 antagonist, activation of both kinases by shear was inhibited. CONCLUSION Taken together, our data indicates an important role of αIIbβ3 and shows that Leu33Pro polymorphism modulates the integrin-mediated Src and FAK signaling in platelets in response to shear stress.
Collapse
|
65
|
Zilberman-Rudenko J, McCarty OJT. Utility and development of microfluidic platforms for platelet research. Platelets 2018; 28:425-426. [PMID: 28700317 DOI: 10.1080/09537104.2017.1325187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Owen J T McCarty
- a Biomedical Engineering, School of Medicine, Oregon Health & Science University , Portland , OR , USA.,b Division of Hematology /Medical Oncology , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| |
Collapse
|
66
|
Ornelas A, Zacharias-Millward N, Menter DG, Davis JS, Lichtenberger L, Hawke D, Hawk E, Vilar E, Bhattacharya P, Millward S. Beyond COX-1: the effects of aspirin on platelet biology and potential mechanisms of chemoprevention. Cancer Metastasis Rev 2018; 36:289-303. [PMID: 28762014 PMCID: PMC5557878 DOI: 10.1007/s10555-017-9675-z] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
After more than a century, aspirin remains one of the most commonly used drugs in western medicine. Although mainly used for its anti-thrombotic, anti-pyretic, and analgesic properties, a multitude of clinical studies have provided convincing evidence that regular, low-dose aspirin use dramatically lowers the risk of cancer. These observations coincide with recent studies showing a functional relationship between platelets and tumors, suggesting that aspirin's chemopreventive properties may result, in part, from direct modulation of platelet biology and biochemistry. Here, we present a review of the biochemistry and pharmacology of aspirin with particular emphasis on its cyclooxygenase-dependent and cyclooxygenase-independent effects in platelets. We also correlate the results of proteomic-based studies of aspirin acetylation in eukaryotic cells with recent developments in platelet proteomics to identify non-cyclooxygenase targets of aspirin-mediated acetylation in platelets that may play a role in its chemopreventive mechanism.
Collapse
Affiliation(s)
- Argentina Ornelas
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Niki Zacharias-Millward
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David G Menter
- Department of Gastrointestinal (GI) Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer S Davis
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lenard Lichtenberger
- McGovern Medical School, Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David Hawke
- Department of Systems Biology, Proteomics and Metabolomics Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ernest Hawk
- Department of Clinical Cancer Prevention, Division of OVP, Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, Division of OVP, Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pratip Bhattacharya
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven Millward
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
67
|
Abstract
We present a simple physically based quantitative model of blood platelet shape and its evolution during agonist-induced activation. The model is based on the consideration of two major cytoskeletal elements: the marginal band of microtubules and the submembrane cortex. Mathematically, we consider the problem of minimization of surface area constrained to confine the marginal band and a certain cellular volume. For resting platelets, the marginal band appears as a peripheral ring, allowing for the analytical solution of the minimization problem. Upon activation, the marginal band coils out of plane and forms 3D convoluted structure. We show that its shape is well approximated by an overcurved circle, a mathematical concept of closed curve with constant excessive curvature. Possible mechanisms leading to such marginal band coiling are discussed, resulting in simple parametric expression for the marginal band shape during platelet activation. The excessive curvature of marginal band is a convenient state variable which tracks the progress of activation. The cell surface is determined using numerical optimization. The shapes are strictly mathematically defined by only three parameters and show good agreement with literature data. They can be utilized in simulation of platelets interaction with different physical fields, e.g. for the description of hydrodynamic and mechanical properties of platelets, leading to better understanding of platelets margination and adhesion and thrombus formation in blood flow. It would also facilitate precise characterization of platelets in clinical diagnosis, where a novel optical model is needed for the correct solution of inverse light-scattering problem.
Collapse
|
68
|
Yu K, Andruschak P, Yeh HH, Grecov D, Kizhakkedathu JN. Influence of dynamic flow conditions on adsorbed plasma protein corona and surface-induced thrombus generation on antifouling brushes. Biomaterials 2018; 166:79-95. [PMID: 29549767 DOI: 10.1016/j.biomaterials.2018.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/27/2018] [Accepted: 03/05/2018] [Indexed: 12/28/2022]
Abstract
The information regarding the nature of protein corona (and its changes) and cell binding on biomaterial surface under dynamic conditions is critical to dissect the mechanism of surface-induced thrombosis. In this manuscript, we investigated the nature of protein corona and blood cell binding in heparinized recalcified human plasma, platelet rich plasma and whole blood on three highly hydrophilic antifouling polymer brushes, (poly(N, N-dimethylacrylamide) (PDMA), poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) and poly[N-(2-hydroxypropyl) methacrylamide] (PHPMA) using an in vitro blood loop model at comparable arterial and venous flow, and static conditions. A fluid dynamics model was used initially to better understand the resulting flow patterns in a vertical channel containing the substrates to arrive at the placement of the substrates within the blood loop. The protein binding on the brush modified substrates was determined using ellipsometry, fluorescence microscopy and the nature of the protein corona was investigated using mass spectrometry based proteomics. The flow elevated fouling on brush coated surface from blood. The extent of plasma protein adsorption and platelet adhesion onto PDMA brush was lower than other surfaces in both static and flow conditions. The profiles of adsorbed protein corona showed strong dependence on the test conditions (static vs. flow), and the chemistry of the polymer brushes. Specially, the PDMA brush under flow conditions was more enriched with coagulation proteins, complement proteins, vitronectin and fibronectin but was less enriched with serum albumin. Apolipoprotein B-100 and complement proteins were the most abundant proteins seen on PMPC and PHPMA surfaces under both flow and static conditions, respectively. Unlike PDMA brush, the flow conditions did not affect the composition of protein corona on PMPC and PHPMA brushes. The nature of the protein corona formed in flow conditions influenced the platelet and red blood cell binding. The dependence of shear stress on platelet adhesion from platelet rich plasma and whole blood highlights the contribution of red blood cells in enhancing platelet adhesion on the surface under high shear condition.
Collapse
Affiliation(s)
- Kai Yu
- Centre for Blood Research and Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Paula Andruschak
- Centre for Blood Research and Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Han Hung Yeh
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Mechanical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Dana Grecov
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Mechanical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research and Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
69
|
New methodologies to accurately assess circulating active transforming growth factor-β1 levels: implications for evaluating heart failure and the impact of left ventricular assist devices. Transl Res 2018; 192:15-29. [PMID: 29175264 PMCID: PMC5811316 DOI: 10.1016/j.trsl.2017.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/13/2017] [Accepted: 10/18/2017] [Indexed: 02/08/2023]
Abstract
Transforming growth factor-β1 (TGF-β1) has been used as a biomarker in disorders associated with pathologic fibrosis. However, plasma TGF-β1 assessment is confounded by the significant variation in reported normal values, likely reflecting variable release of the large pool of platelet TGF-β1 after blood drawing. Moreover, current assays measure only total TGF-β1, which is dominated by the latent form of TGF-β1 rather than the biologically active form. To address these challenges, we developed methodologies to prevent ex vivo release of TGF-β1 and to quantify active TGF-β1. We then used these techniques to measure TGF-β1 in healthy controls and patients with heart failure (HF) before and after insertion of left ventricular assist devices (LVAD). Total plasma TGF-β1 was 1.0 ± 0.60 ng/mL in controls and 3.76 ± 1.55 ng/mL in subjects with HF (P < 0.001), rising to 5.2 ± 2.3 ng/mL following LVAD placement (P = 0.006). These results were paralleled by the active TGF-β1 values; controls had 3-16 pg/mL active TGF-β1, whereas levels were 2.7-fold higher in patients with HF before, and 4.2-fold higher after, LVAD implantation. Total TGF-β1 correlated with levels of the platelet-derived protein thrombospondin-1 (r = 0.87; P < 0.001), suggesting that plasma TGF-β1 may serve as a surrogate indicator of in vivo platelet activation. von Willebrand factor high molecular weight multimers correlated inversely with TGF-β1 levels (r = -0.63; P = 0.023), suggesting a role for shear forces in loss of these multimers and platelet activation. In conclusion, accurate assessment of circulating TGF-β1 may provide a valuable biomarker for in vivo platelet activation and thrombotic disorders.
Collapse
|
70
|
Stefanini L, Bergmeier W. Negative regulators of platelet activation and adhesion. J Thromb Haemost 2018; 16:220-230. [PMID: 29193689 PMCID: PMC5809258 DOI: 10.1111/jth.13910] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Indexed: 12/29/2022]
Abstract
Platelets are small anucleated cells that constantly patrol the cardiovascular system to preserve its integrity and prevent excessive blood loss where the vessel lining is breached. Their key challenge is to form a hemostatic plug under conditions of high shear forces. To do so, platelets have evolved a molecular machinery that enables them to sense trace amounts of signals at the site of damage and to rapidly shift from a non-adhesive to a pro-adhesive state. However, this highly efficient molecular machinery can also lead to unintended platelet activation and cause clinical complications such as thrombocytopenia and thrombosis. Thus, several checkpoints are in place to tightly control platelet activation and adhesiveness in space and time. In this review, we will discuss select negative regulators of platelet activation, which are critical to maintain patrolling platelets in a quiescent, non-adhesive state and/or to limit platelet adhesion to sites of injury.
Collapse
Affiliation(s)
- L Stefanini
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - W Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
71
|
Abstract
Antiplatelet drugs, such as aspirin, P2Y12 antagonists, and glycoprotein (GP) IIb/IIIa inhibitors, have proved to be successful in reducing the morbidity and mortality associated with arterial thrombosis. These agents are, therefore, the cornerstone of therapy for patients with acute coronary syndromes. However, these drugs all carry an inherent risk of bleeding, which is associated with adverse cardiovascular outcomes and mortality. Thus, the potential benefits of more potent, conventional antiplatelet drugs are likely be offset by the increased risk of bleeding. Data from experiments in vivo have highlighted potentially important differences between haemostasis and thrombosis, raising the prospect of developing new antiplatelet drugs that are not associated with bleeding. Indeed, in preclinical studies, several novel antiplatelet therapies that seem to inhibit thrombosis while maintaining haemostasis have been identified. These agents include inhibitors of phosphatidylinositol 3-kinase-β (PI3Kβ), protein disulfide-isomerase, activated GPIIb/IIIa, GPIIb/IIIa outside-in signalling, protease-activated receptors, and platelet GPVI-mediated adhesion pathways. In this Review, we discuss how a therapeutic ceiling has been reached with existing antiplatelet drugs, whereby increased potency is offset by elevated bleeding risk. The latest advances in our understanding of thrombus formation have informed the development of new antiplatelet drugs that are potentially safer than currently available therapies.
Collapse
|
72
|
Bergmeier W, Stefanini L. Platelets at the Vascular Interface. Res Pract Thromb Haemost 2018; 2:27-33. [PMID: 29457148 PMCID: PMC5810953 DOI: 10.1002/rth2.12061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/19/2017] [Indexed: 02/01/2023] Open
Abstract
In this brief review paper, we will summarize the State-of-the-Art on how platelet reactivity is regulated in circulation and at sites of vascular injury. Our review discusses recent and ongoing work, presented at this year's International Society on Thrombosis and Haemostasis (ISTH) meeting, on the role of platelets in (1) classical hemostasis at sites of mechanical injury, and (2) the maintenance of vascular integrity at sites of inflammation.
Collapse
Affiliation(s)
- Wolfgang Bergmeier
- Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNCUSA
- McAllister Heart InstituteUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Lucia Stefanini
- Department of Internal Medicine and Medical SpecialtiesSapienza University of RomeRomeItaly
| |
Collapse
|
73
|
|
74
|
Rayner SG, Zheng Y. Engineered Microvessels for the Study of Human Disease. J Biomech Eng 2017; 138:2545529. [PMID: 27537085 DOI: 10.1115/1.4034428] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Indexed: 12/22/2022]
Abstract
The microvasculature is an extensive, heterogeneous, and complex system that plays a critical role in human physiology and disease. It nourishes almost all living human cells and maintains a local microenvironment that is vital for tissue and organ function. Operating under a state of continuous flow, with an intricate architecture despite its small caliber, and subject to a multitude of biophysical and biochemical stimuli, the microvasculature can be a complex subject to study in the laboratory setting. Engineered microvessels provide an ideal platform that recapitulates essential elements of in vivo physiology and allows study of the microvasculature in a precise and reproducible way. Here, we review relevant structural and functional vascular biology, discuss different methods to engineer microvessels, and explore the applications of this exciting tool for the study of human disease.
Collapse
Affiliation(s)
- Samuel G Rayner
- Department of Pulmonary and Critical Care Medicine, University of Washington School of Medicine, Campus Box 356522, Seattle, WA 98195 e-mail:
| | - Ying Zheng
- Department of Bioengineering, University of Washington, 3720 15th Avenue NE, Seattle, WA 98105;Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109 e-mail:
| |
Collapse
|
75
|
Sen Gupta A. Bio-inspired nanomedicine strategies for artificial blood components. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9:10.1002/wnan.1464. [PMID: 28296287 PMCID: PMC5599317 DOI: 10.1002/wnan.1464] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/23/2017] [Accepted: 01/29/2017] [Indexed: 11/12/2022]
Abstract
Blood is a fluid connective tissue where living cells are suspended in noncellular liquid matrix. The cellular components of blood render gas exchange (RBCs), immune surveillance (WBCs) and hemostatic responses (platelets), and the noncellular components (salts, proteins, etc.) provide nutrition to various tissues in the body. Dysfunction and deficiencies in these blood components can lead to significant tissue morbidity and mortality. Consequently, transfusion of whole blood or its components is a clinical mainstay in the management of trauma, surgery, myelosuppression, and congenital blood disorders. However, donor-derived blood products suffer from issues of shortage in supply, need for type matching, high risks of pathogenic contamination, limited portability and shelf-life, and a variety of side-effects. While robust research is being directed to resolve these issues, a parallel clinical interest has developed toward bioengineering of synthetic blood substitutes that can provide blood's functions while circumventing the above problems. Nanotechnology has provided exciting approaches to achieve this, using materials engineering strategies to create synthetic and semi-synthetic RBC substitutes for enabling oxygen transport, platelet substitutes for enabling hemostasis, and WBC substitutes for enabling cell-specific immune response. Some of these approaches have further extended the application of blood cell-inspired synthetic and semi-synthetic constructs for targeted drug delivery and nanomedicine. The current study provides a comprehensive review of the various nanotechnology approaches to design synthetic blood cells, along with a critical discussion of successes and challenges of the current state-of-art in this field. WIREs Nanomed Nanobiotechnol 2017, 9:e1464. doi: 10.1002/wnan.1464 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
76
|
Perumal G, Ayyagari A, Chakrabarti A, Kannan D, Pati S, Grewal HS, Mukherjee S, Singh S, Arora HS. Friction Stir Processing of Stainless Steel for Ascertaining Its Superlative Performance in Bioimplant Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36615-36631. [PMID: 28972737 DOI: 10.1021/acsami.7b11064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Substrate-cell interactions for a bioimplant are driven by substrate's surface characteristics. In addition, the performance of an implant and resistance to degradation are primarily governed by its surface properties. A bioimplant typically degrades by wear and corrosion in the physiological environment, resulting in metallosis. Surface engineering strategies for limiting degradation of implants and enhancing their performance may reduce or eliminate the need for implant removal surgeries and the associated cost. In the current study, we tailored the surface properties of stainless steel using submerged friction stir processing (FSP), a severe plastic deformation technique. FSP resulted in significant microstructural refinement from 22 μm grain size for the as-received alloy to 0.8 μm grain size for the processed sample with increase in hardness by nearly 1.5 times. The wear and corrosion behavior of the processed alloy was evaluated in simulated body fluid. The processed sample demonstrated remarkable improvement in both wear and corrosion resistance, which is explained by surface strengthening and formation of a highly stable passive layer. The methylthiazol tetrazolium assay demonstrated that the processed sample is better in supporting cell attachment, proliferation with minimal toxicity, and hemolysis. The athrombogenic characteristic of the as-received and processed samples was evaluated by fibrinogen adsorption and platelet adhesion via the enzyme-linked immunosorbent assay and lactate dehydrogenase assay, respectively. The processed sample showed less platelet and fibrinogen adhesion compared with the as-received alloy, signifying its high thromboresistance. The current study suggests friction stir processing to be a versatile toolbox for enhancing the performance and reliability of currently used bioimplant materials.
Collapse
Affiliation(s)
| | - A Ayyagari
- Department of Materials Science and Engineering, University of North Texas , Denton, Texas 76203, United States
| | | | | | | | | | - S Mukherjee
- Department of Materials Science and Engineering, University of North Texas , Denton, Texas 76203, United States
| | - S Singh
- Special Center for Molecular Medicine, Jawaharlal Nehru University , New Delhi 110067, India
| | | |
Collapse
|
77
|
Periayah MH, Halim AS, Mat Saad AZ. Mechanism Action of Platelets and Crucial Blood Coagulation Pathways in Hemostasis. Int J Hematol Oncol Stem Cell Res 2017; 11:319-327. [PMID: 29340130 PMCID: PMC5767294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Blood is considered to be precious because it is the basic necessity for health; our body needs a steady provision of oxygen, supplied via blood, to reach billions of tissues and cells. Hematopoiesis is the process that generates blood cells of all lineages. However, platelets are the smallest blood component produced from the very large bone marrow cells called megakaryocytes and they play a fundamental role in thrombosis and hemostasis. Platelets contribute their hemostatic capacity via adhesion, activation and aggregation, which are triggered upon tissue injury, and these actions stimulate the coagulation factors and other mediators to achieve hemostasis. In addition, these coordinated series of events are the vital biological processes for wound healing phases. The aim of this review is to summarize and highlight the important pathways involved in achieving hemostasis that are ruled by platelets. In addition, this review also describes the mechanism action of platelets, including adhesion, activation, aggregation, and coagulation, as well as the factors that aid in hemostasis and wound healing.
Collapse
|
78
|
Dimasi A, Rasponi M, Consolo F, Fiore GB, Bluestein D, Slepian MJ, Redaelli A. Microfludic platforms for the evaluation of anti-platelet agent efficacy under hyper-shear conditions associated with ventricular assist devices. Med Eng Phys 2017; 48:31-38. [PMID: 28869117 PMCID: PMC5610105 DOI: 10.1016/j.medengphy.2017.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 07/31/2017] [Accepted: 08/09/2017] [Indexed: 01/06/2023]
Abstract
Thrombus formation is a major adverse event affecting patients implanted with ventricular assist devices (VADs). Despite anti-thrombotic drug administration, thrombotic events remain frequent within the first year post-implantation. Platelet activation (PA) is an essential process underling thrombotic adverse events in VAD systems. Indeed, abnormal shear forces, correlating with specific flow trajectories of VADs, are strong agonists mediating PA. To date, the ability to determine efficacy of anti-platelet (AP) agents under shear stress conditions is limited. Here, we present a novel microfluidic platform designed to replicate shear stress patterns of a clinical VAD, and use it to compare the efficacy of two AP agents in vitro. Gel-filtered platelets were incubated with i) acetylsalicylic acid (ASA) and ii) ticagrelor, at two different concentrations (ASA: 125 and 250 µM; ticagrelor: 250 and 500 nM) and were circulated in the VAD-emulating microfluidic platform using a peristaltic pump. GFP was collected after 4 and 52 repetitions of exposure to the VAD shear pattern and tested for shear-mediated PA. ASA significantly inhibited PA only at 2-fold higher concentration (250 µM) than therapeutic dose (125 µM). The effect of ticagrelor was not dependent on drug concentration, and did not show significant inhibition with respect to untreated control. This study demonstrates the potential use of microfluidic platforms as means of testing platelet responsiveness and AP drug efficacy under complex and realistic VAD-like shear stress conditions.
Collapse
Affiliation(s)
- Annalisa Dimasi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Golgi 39, 20133, Milano, Italy.
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Golgi 39, 20133, Milano, Italy
| | - Filippo Consolo
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Golgi 39, 20133, Milano, Italy; Anesthesia and Cardiothoracic Intensive Care Unit. Università Vita Salute, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy
| | - Gianfranco B Fiore
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Golgi 39, 20133, Milano, Italy
| | - Danny Bluestein
- Department of Biomedical Engineering, StonyBrook University, Stony Brook, NY, USA
| | - Marvin J Slepian
- Department of Biomedical Engineering, StonyBrook University, Stony Brook, NY, USA; Department of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, 1501 N Campbell Ave, 85724, Tucson, AZ, USA
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Golgi 39, 20133, Milano, Italy
| |
Collapse
|
79
|
Platelet Integrins in Tumor Metastasis: Do They Represent a Therapeutic Target? Cancers (Basel) 2017; 9:cancers9100133. [PMID: 28956830 PMCID: PMC5664072 DOI: 10.3390/cancers9100133] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
Platelets are small anucleated cell fragments that ensure the arrest of bleeding after a vessel wall injury. They are also involved in non-hemostatic function such as development, immunity, inflammation, and in the hematogeneous phase of metastasis. While the role of platelets in tumor metastasis has been recognized for 60 years, the molecular mechanism underlying this process remains largely unclear. Platelets physically and functionally interact with various tumor cells through surface receptors including integrins. Platelets express five integrins at their surface, namely α2β1, α5β1, α6β1, αvβ3, and αIIbβ3, which bind preferentially to collagen, fibronectin, laminin, vitronectin, and fibrinogen, respectively. The main role of platelet integrins is to ensure platelet adhesion and aggregation at sites of vascular injury. Two of these, α6β1 and αIIbβ3, were proposed to participate in platelet–tumor cell interaction and in tumor metastasis. It has also been reported that pharmacological agents targeting both integrins efficiently reduce experimental metastasis, suggesting that platelet integrins may represent new anti-metastatic targets. This review focuses on the role of platelet integrins in tumor metastasis and discusses whether these receptors may represent new potential targets for novel anti-metastatic approaches.
Collapse
|
80
|
Identification of extant vertebrate Myxine glutinosa VWF: evolutionary conservation of primary hemostasis. Blood 2017; 130:2548-2558. [PMID: 28899852 DOI: 10.1182/blood-2017-02-770792] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 08/23/2017] [Indexed: 11/20/2022] Open
Abstract
Hemostasis in vertebrates involves both a cellular and a protein component. Previous studies in jawless vertebrates (cyclostomes) suggest that the protein response, which involves thrombin-catalyzed conversion of a soluble plasma protein, fibrinogen, into a polymeric fibrin clot, is conserved in all vertebrates. However, similar data are lacking for the cellular response, which in gnathostomes is regulated by von Willebrand factor (VWF), a glycoprotein that mediates the adhesion of platelets to the subendothelial matrix of injured blood vessels. To gain evolutionary insights into the cellular phase of coagulation, we asked whether a functional vwf gene is present in the Atlantic hagfish, Myxine glutinosa We found a single vwf transcript that encodes a simpler protein compared with higher vertebrates, the most striking difference being the absence of an A3 domain, which otherwise binds collagen under high-flow conditions. Immunohistochemical analyses of hagfish tissues and blood revealed Vwf expression in endothelial cells and thrombocytes. Electron microscopic studies of hagfish tissues demonstrated the presence of Weibel-Palade bodies in the endothelium. Hagfish Vwf formed high-molecular-weight multimers in hagfish plasma and in stably transfected CHO cells. In functional assays, botrocetin promoted VWF-dependent thrombocyte aggregation. A search for vwf sequences in the genome of sea squirts, the closest invertebrate relatives of hagfish, failed to reveal evidence of an intact vwf gene. Together, our findings suggest that VWF evolved in the ancestral vertebrate following the divergence of the urochordates some 500 million years ago and that it acquired increasing complexity though sequential insertion of functional modules.
Collapse
|
81
|
Platelet Aggregometry Testing: Molecular Mechanisms, Techniques and Clinical Implications. Int J Mol Sci 2017; 18:ijms18081803. [PMID: 28820484 PMCID: PMC5578190 DOI: 10.3390/ijms18081803] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 12/18/2022] Open
Abstract
Platelets play a fundamental role in normal hemostasis, while their inherited or acquired dysfunctions are involved in a variety of bleeding disorders or thrombotic events. Several laboratory methodologies or point-of-care testing methods are currently available for clinical and experimental settings. These methods describe different aspects of platelet function based on platelet aggregation, platelet adhesion, the viscoelastic properties during clot formation, the evaluation of thromboxane metabolism or certain flow cytometry techniques. Platelet aggregometry is applied in different clinical settings as monitoring response to antiplatelet therapies, the assessment of perioperative bleeding risk, the diagnosis of inherited bleeding disorders or in transfusion medicine. The rationale for platelet function-driven antiplatelet therapy was based on the result of several studies on patients undergoing percutaneous coronary intervention (PCI), where an association between high platelet reactivity despite P2Y12 inhibition and ischemic events as stent thrombosis or cardiovascular death was found. However, recent large scale randomized, controlled trials have consistently failed to demonstrate a benefit of personalised antiplatelet therapy based on platelet function testing.
Collapse
|
82
|
Nygaard G, Herfindal L, Asrud KS, Bjørnstad R, Kopperud RK, Oveland E, Berven FS, Myhren L, Hoivik EA, Lunde THF, Bakke M, Døskeland SO, Selheim F. Epac1-deficient mice have bleeding phenotype and thrombocytes with decreased GPIbβ expression. Sci Rep 2017; 7:8725. [PMID: 28821815 PMCID: PMC5562764 DOI: 10.1038/s41598-017-08975-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/17/2017] [Indexed: 11/16/2022] Open
Abstract
Epac1 (Exchange protein directly activated by cAMP 1) limits fluid loss from the circulation by tightening the endothelial barrier. We show here that Epac1-/- mice, but not Epac2-/- mice, have prolonged bleeding time, suggesting that Epac1 may limit fluid loss also by restraining bleeding. The Epac1-/- mice had deficient in vitro secondary hemostasis. Quantitative comprehensive proteomics analysis revealed that Epac1-/- mouse platelets (thrombocytes) had unbalanced expression of key components of the glycoprotein Ib-IX-V (GPIb-IX-V) complex, with decrease of GP1bβ and no change of GP1bα. This complex is critical for platelet adhesion under arterial shear conditions. Furthermore, Epac1-/- mice have reduced levels of plasma coagulation factors and fibrinogen, increased size of circulating platelets, increased megakaryocytes (the GP1bβ level was decreased also in Epac1-/- bone marrow) and higher abundance of reticulated platelets. Viscoelastic measurement of clotting function revealed Epac1-/- mice with a dysfunction in the clotting process, which corresponds to reduced plasma levels of coagulation factors like factor XIII and fibrinogen. We propose that the observed platelet phenotype is due to deficient Epac1 activity during megakaryopoiesis and thrombopoiesis, and that the defects in blood clotting for Epac1-/- is connected to secondary hemostasis.
Collapse
Affiliation(s)
- Gyrid Nygaard
- Department of Biomedicine, University of Bergen, Bergen, Norway
- The Proteomics Unit at the University of Bergen, Bergen, Norway
| | - Lars Herfindal
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Ronja Bjørnstad
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Hospital Pharmacies Enterprise, Western Norway, Bergen, Norway
| | | | - Eystein Oveland
- The Proteomics Unit at the University of Bergen, Bergen, Norway
| | - Frode S Berven
- Department of Biomedicine, University of Bergen, Bergen, Norway
- The Proteomics Unit at the University of Bergen, Bergen, Norway
| | - Lene Myhren
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Erling A Hoivik
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Turid Helen Felli Lunde
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Marit Bakke
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Frode Selheim
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- The Proteomics Unit at the University of Bergen, Bergen, Norway.
| |
Collapse
|
83
|
Wissing TB, Bonito V, Bouten CVC, Smits AIPM. Biomaterial-driven in situ cardiovascular tissue engineering-a multi-disciplinary perspective. NPJ Regen Med 2017; 2:18. [PMID: 29302354 PMCID: PMC5677971 DOI: 10.1038/s41536-017-0023-2] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/11/2017] [Accepted: 05/19/2017] [Indexed: 12/13/2022] Open
Abstract
There is a persistent and growing clinical need for readily-available substitutes for heart valves and small-diameter blood vessels. In situ tissue engineering is emerging as a disruptive new technology, providing ready-to-use biodegradable, cell-free constructs which are designed to induce regeneration upon implantation, directly in the functional site. The induced regenerative process hinges around the host response to the implanted biomaterial and the interplay between immune cells, stem/progenitor cell and tissue cells in the microenvironment provided by the scaffold in the hemodynamic environment. Recapitulating the complex tissue microstructure and function of cardiovascular tissues is a highly challenging target. Therein the scaffold plays an instructive role, providing the microenvironment that attracts and harbors host cells, modulating the inflammatory response, and acting as a temporal roadmap for new tissue to be formed. Moreover, the biomechanical loads imposed by the hemodynamic environment play a pivotal role. Here, we provide a multidisciplinary view on in situ cardiovascular tissue engineering using synthetic scaffolds; starting from the state-of-the art, the principles of the biomaterial-driven host response and wound healing and the cellular players involved, toward the impact of the biomechanical, physical, and biochemical microenvironmental cues that are given by the scaffold design. To conclude, we pinpoint and further address the main current challenges for in situ cardiovascular regeneration, namely the achievement of tissue homeostasis, the development of predictive models for long-term performances of the implanted grafts, and the necessity for stratification for successful clinical translation.
Collapse
Affiliation(s)
- Tamar B Wissing
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Valentina Bonito
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anthal I P M Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
84
|
Pulsatile Flow Leads to Intimal Flap Motion and Flow Reversal in an In Vitro Model of Type B Aortic Dissection. Cardiovasc Eng Technol 2017; 8:378-389. [DOI: 10.1007/s13239-017-0312-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 05/24/2017] [Indexed: 02/04/2023]
|
85
|
Sundaran PS, Bhaskaran A, Alex ST, Prasad T, Haritha VH, Anie Y, Kumary TV, Anil Kumar PR. Drug loaded microbeads entrapped electrospun mat for wound dressing application. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:88. [PMID: 28470446 DOI: 10.1007/s10856-017-5893-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/17/2017] [Indexed: 06/07/2023]
Abstract
A new design of antibiotic loaded wound dressing and its initial in vitro evaluation is described. Chitosan microbeads loaded with ampicillin were sandwiched within polycaprolactone electrospun mat (MbAPPCL). The morphology was analyzed by scanning electron microscopy and surface chemistry was characterized by Fourier Transform Infrared Spectroscopy. In vitro cytotoxicity using L-929 fibroblast cells by direct contact test and elution assay revealed non-cytotoxic nature of MbAPPCL. The cell adhesion and viability analysis further confirmed the cytocompatibility of MbAPPCL as a wound dressing material. Percentage hemolysis and platelet adhesion on the mat exposed to blood substantiated the hemocompatibility. The antibiotic susceptibility test analyzed on Staphylococcus aureus by agar plate method confirmed the drug release and antimicrobial property. The proposed wound dressing model explained with ampicillin as a candidate drug has the potential to include microbeads with different antibiotics for multi drug treatment.
Collapse
Affiliation(s)
- P Sneha Sundaran
- Division of Tissue Culture, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695 012, India
| | - Aswathy Bhaskaran
- Division of Tissue Culture, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695 012, India
| | - Sherrin T Alex
- Division of Tissue Culture, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695 012, India
| | - Tilak Prasad
- Division of Tissue Culture, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695 012, India
| | - V H Haritha
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala, 686560, India
| | - Y Anie
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala, 686560, India
| | - T V Kumary
- Division of Tissue Culture, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695 012, India
| | - P R Anil Kumar
- Division of Tissue Culture, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695 012, India.
| |
Collapse
|
86
|
Impact of shear stress on Src and focal adhesion kinase phosphorylation in fibrinogen-adherent platelets. Blood Coagul Fibrinolysis 2017; 28:279-285. [DOI: 10.1097/mbc.0000000000000593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
87
|
Zhang L, Casey B, Galanakis DK, Marmorat C, Skoog S, Vorvolakos K, Simon M, Rafailovich MH. The influence of surface chemistry on adsorbed fibrinogen conformation, orientation, fiber formation and platelet adhesion. Acta Biomater 2017; 54:164-174. [PMID: 28263863 DOI: 10.1016/j.actbio.2017.03.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/15/2017] [Accepted: 03/01/2017] [Indexed: 10/20/2022]
Abstract
Thrombosis is a clear risk when any foreign material is in contact with the bloodstream. Here we propose an immunohistological stain-based model for non-enzymatic clot formation that enables a facile screen for the thrombogenicity of blood-contacting materials. We exposed polymers with different surface chemistries to protease-free human fibrinogen. We observed that on hydrophilic surfaces, fibrinogen is adsorbed via αC regions, while the γ400-411 platelet-binding dodecapeptide on the D region becomes exposed, and fibrinogen fibers do not form. In contrast, fibrinogen is adsorbed on hydrophobic surfaces via the relatively hydrophobic D and E regions, exposing the αC regions while rendering the γ400-411 inaccessible. Fibrinogen adsorbed on hydrophobic surfaces is thus able to recruit other fibrinogen molecules through αC regions and polymerize into large fibrinogen fibers, similar to those formed in vivo in the presence of thrombin. Moreover, the γ400-411 is available only on the large fibers not elsewhere throughout the hydrophobic surface after fibrinogen fiber formation. When these surfaces were exposed to gel-sieved platelets or platelet rich plasma, a uniform monolayer of platelets, which appeared to be activated, was observed on the hydrophilic surfaces. In contrast, large agglomerates of platelets were clustered on fibers on the hydrophobic surfaces, resembling small nucleating thrombi. Endothelial cells were also able to adhere to the monomeric coating of fibrinogen on hydrophobic surfaces. These observations reveal that the extent and type of fibrinogen adsorption, as well as the propensity of adsorbed fibrinogen to bind platelets, may be modulated by careful selection of surface chemistry. STATEMENTS OF SIGNIFICANCE Thrombosis is a well-known side effect of the introduction of foreign materials into the bloodstream, as might exist in medical devices including but not limited to stents, valves, and intravascular catheters. Despite many reported studies, the body's response to foreign materials in contact with the blood remains poorly understood. Current preventive methods consist of drug eluting coatings on the devices or the systemic administration of standard anticoagulants. Here we present a potential mechanism by which surface chemistry can affects fibrinogen conformation and thus affects platelet adhesion and consequently thrombus formation. Our findings suggest a possible coating which enables endothelial cell adhesion while preventing platelet adhesion.
Collapse
|
88
|
Integrin signaling in atherosclerosis. Cell Mol Life Sci 2017; 74:2263-2282. [PMID: 28246700 DOI: 10.1007/s00018-017-2490-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/24/2017] [Accepted: 02/15/2017] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, a chronic lipid-driven inflammatory disease affecting large arteries, represents the primary cause of cardiovascular disease in the world. The local remodeling of the vessel intima during atherosclerosis involves the modulation of vascular cell phenotype, alteration of cell migration and proliferation, and propagation of local extracellular matrix remodeling. All of these responses represent targets of the integrin family of cell adhesion receptors. As such, alterations in integrin signaling affect multiple aspects of atherosclerosis, from the earliest induction of inflammation to the development of advanced fibrotic plaques. Integrin signaling has been shown to regulate endothelial phenotype, facilitate leukocyte homing, affect leukocyte function, and drive smooth muscle fibroproliferative remodeling. In addition, integrin signaling in platelets contributes to the thrombotic complications that typically drive the clinical manifestation of cardiovascular disease. In this review, we examine the current literature on integrin regulation of atherosclerotic plaque development and the suitability of integrins as potential therapeutic targets to limit cardiovascular disease and its complications.
Collapse
|
89
|
A Two-phase mixture model of platelet aggregation. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2017; 35:225-256. [DOI: 10.1093/imammb/dqx001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 01/04/2017] [Indexed: 01/07/2023]
|
90
|
Singh Chandel AK, Kannan D, Nutan B, Singh S, Jewrajka SK. Dually crosslinked injectable hydrogels of poly(ethylene glycol) and poly[(2-dimethylamino)ethyl methacrylate]-b-poly(N-isopropyl acrylamide) as a wound healing promoter. J Mater Chem B 2017; 5:4955-4965. [DOI: 10.1039/c7tb00848a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PEG-based dually crosslinked injectable hydrogels have been developed through extremely simple chemistry which avoids use of small molecular weight crosslinker, formation of by-products and involved low heat change. The hydrogels are useful for wound healing and soft tissue regeneration.
Collapse
Affiliation(s)
- Arvind K. Singh Chandel
- Reverse Osmosis Membrane Division
- academy of Scientific and Innovative Research
- CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg
- Bhavnagar
- India
| | - Deepika Kannan
- Department of Life Science
- Shiv Nadar University
- India
- Special Centre for Molecular Medicine
- Jawaharlal Nehru University
| | - Bhingaradiya Nutan
- Reverse Osmosis Membrane Division
- academy of Scientific and Innovative Research
- CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg
- Bhavnagar
- India
| | - Shailja Singh
- Department of Life Science
- Shiv Nadar University
- India
- Special Centre for Molecular Medicine
- Jawaharlal Nehru University
| | - Suresh K. Jewrajka
- Reverse Osmosis Membrane Division
- academy of Scientific and Innovative Research
- CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg
- Bhavnagar
- India
| |
Collapse
|
91
|
Torres Filho IP, Torres LN, Valdez C, Salgado C, Cap AP, Dubick MA. Refrigerated platelets stored in whole blood up to 5 days adhere to thrombi formed during hemorrhagic hypotension in rats. J Thromb Haemost 2017; 15:163-175. [PMID: 27797452 DOI: 10.1111/jth.13556] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/14/2016] [Indexed: 12/21/2022]
Abstract
Essentials In vivo function of platelets stored at various conditions was studied in normo- and hypotension. Refrigerated platelets stored up to 5 days performed as well as those stored at room temperature. Platelet adhesion and thrombus formation were higher in ruptured vessels of hemorrhaged animals. In vivo data suggest that refrigerated platelets are hemostatically effective during hypotension. SUMMARY Background There is renewed interest in the therapeutic use of cold-stored platelets for bleeding patients. However, critical information is absent or partially available in vitro. Therefore, thrombus formation and platelet adhesion were studied in vivo, in situ, using bleeding and thrombosis models in instrumented rats, and confocal intravital videomicroscopy. Objectives We tested the hypothesis that refrigerated (4 °C) platelets (stored for 24 h or 5 days) participated in thrombus formation as well as platelets stored at room temperature (RT, 22 °C). This hypothesis was tested in normovolemia and hemorrhagic hypotension. Methods & Results After fluorescently-labeled platelet infusion, endothelial injury and vessel rupture were laser-induced in cremaster microvessels and platelet adhesion in > 230 developing thrombi was evaluated. Blood samples were collected for biochemistry and coagulation assays while multiple systemic physiologic parameters were recorded. Hemorrhagic hypotension study animals were subjected to 40% hemorrhage, leading to hypotension and hemodilution, during in vivo platelet adhesion assessments. The fluorescence intensity associated with labeled platelet adherence provided a quantitative index of adhesion. Cold-stored platelets performed as well as those stored at RT in normovolemic animals. During hypotension, cold-stored platelets still performed as well as RT-stored platelets, whereas platelet adhesion and thrombus formation were increased relative to normovolemic animals, in bleeding model experiments. Conclusions We found the methodology suitable for evaluating platelet function in vivo after different storage conditions in fully monitored animals. Refrigerated platelets (stored up to 5 days) participated as well as RT-stored platelets in thrombi formed after hemorrhage, suggesting that refrigerated platelets are effective during hypotensive situations.
Collapse
Affiliation(s)
- I P Torres Filho
- Damage Control Resuscitation, US Army Institute of Surgical Research, Fort Sam Houston, TX, USA
| | - L N Torres
- Damage Control Resuscitation, US Army Institute of Surgical Research, Fort Sam Houston, TX, USA
| | - C Valdez
- Damage Control Resuscitation, US Army Institute of Surgical Research, Fort Sam Houston, TX, USA
| | - C Salgado
- Damage Control Resuscitation, US Army Institute of Surgical Research, Fort Sam Houston, TX, USA
| | - A P Cap
- Coagulation and Blood Research Program, US Army Institute of Surgical Research, Fort Sam Houston, TX, USA
| | - M A Dubick
- Damage Control Resuscitation, US Army Institute of Surgical Research, Fort Sam Houston, TX, USA
| |
Collapse
|
92
|
|
93
|
Platelet-mediated modulation of adaptive immunity. Semin Immunol 2016; 28:555-560. [PMID: 27802906 DOI: 10.1016/j.smim.2016.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/23/2016] [Accepted: 10/24/2016] [Indexed: 11/23/2022]
Abstract
Besides being the main cellular effectors of hemostasis, platelets possess a plethora of intracellular mediators (e.g. cytokines, chemokines and antimicrobial molecules) as well as surface receptors (e.g. P-selectin, integrins, CD40L, intercellular adhesion molecule [ICAM]-2, junctional adhesion molecule [JAM]-A, CD44, Toll-like receptors, chemokine receptors) known for their involvement in inflammatory and immune responses. These aspects of platelet biology, which suggest an evolutionary link to a more primitive multifunctional innate defensive cell, position platelets at the interface between coagulation and immunity. Whereas platelet functions in direct antimicrobial defense and in the enhancement of innate immunity are being increasingly recognized, platelet-mediated modulation of adaptive immunity is often underappreciated by the immunological community. By using mouse models of viral hepatitis as a paradigmatic example, we will review here how platelets coordinate adaptive immune responses and suggest possible clinical implications.
Collapse
|
94
|
Schoeman RM, Rana K, Danes N, Lehmann M, Di Paola JA, Fogelson AL, Leiderman K, Neeves KB. A microfluidic model of hemostasis sensitive to platelet function and coagulation. Cell Mol Bioeng 2016; 10:3-15. [PMID: 28529666 DOI: 10.1007/s12195-016-0469-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Hemostasis is the process of sealing a vascular injury with a thrombus to arrest bleeding. The type of thrombus that forms depends on the nature of the injury and hemodynamics. There are many models of intravascular thrombus formation whereby blood is exposed to prothrombotic molecules on a solid substrate. However, there are few models of extravascular thrombus formation whereby blood escapes into the extravascular space through a hole in the vessel wall. Here, we describe a microfluidic model of hemostasis that includes vascular, vessel wall, and extravascular compartments. Type I collagen and tissue factor, which support platelet adhesion and initiate coagulation, respectively, were adsorbed to the wall of the injury channel and act synergistically to yield a stable thrombus that stops blood loss into the extravascular compartment in ~7.5 min. Inhibiting factor VIII to mimic hemophilia A results in an unstable thrombus that was unable to close the injury. Treatment with a P2Y12 antagonist to reduce platelet activation prolonged the closure time two-fold compared to controls. Taken together, these data demonstrate a hemostatic model that is sensitive to both coagulation and platelet function and can be used to study coagulopathies and platelet dysfunction that result in excessive blood loss.
Collapse
Affiliation(s)
- R M Schoeman
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO
| | - K Rana
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO
| | - N Danes
- Applied Mathematics and Statistics Department, Colorado School of Mines, Golden, CO
| | - M Lehmann
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO
| | - J A Di Paola
- Department of Pediatrics, University of Colorado Denver, Aurora, CO
| | - A L Fogelson
- Departments of Mathematics and Bioengineering, University of Utah, Salt Lake City, Utah
| | - K Leiderman
- Department of Pediatrics, University of Colorado Denver, Aurora, CO
| | - K B Neeves
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO.,Department of Pediatrics, University of Colorado Denver, Aurora, CO
| |
Collapse
|
95
|
Akyol O, Akyol S, Chen CH. Update on ADAMTS13 and VWF in cardiovascular and hematological disorders. Clin Chim Acta 2016; 463:109-118. [PMID: 27746209 DOI: 10.1016/j.cca.2016.10.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 02/07/2023]
Abstract
Endothelial cells (EC) respond to injury by releasing numerous factors, including von Willebrand factor (VWF). High circulating levels of unusually large VWF multimers (UL-VWFM) have strong procoagulant activity and facilitate platelet adhesion and aggregation by interacting with platelets after an acute event superimposed on peripheral arterial disease and coronary artery disease. ADAMTS13-a disintegrin-like metalloproteinase with thrombospondin motif type 1 member 13-regulates a key physiological process of coagulation in the circulation by cleaving VWF multimers into small, inactive fragments. Low levels of ADAMTS13 in the blood may play a role in cardiovascular and hematological disorders, and clarifying its role may help improve disease management. The genetic, pharmacological, physiological, and pathological aspects related to ADAMTS13/VWF have been extensively investigated. Here, we provide an update on recent findings of the relationship between ADAMTS13 and hematological/cardiovascular disorders, including thrombotic thrombocytopenic purpura, arterial thrombosis, thrombotic microangiopathy, myocardial infarction, ischemic stroke, heart failure, and hypertension.
Collapse
Affiliation(s)
- Omer Akyol
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX, USA; Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| | - Sumeyya Akyol
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX, USA; Medical Biochemist, TUBITAK/BIDEB Scholar, Ankara, Turkey
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX, USA; Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
96
|
Abstract
Arterial thrombosis (blood clot) is a common complication of many systemic diseases associated with chronic inflammation, including atherosclerosis, diabetes, obesity, cancer and chronic autoimmune rheumatologic disorders. Thrombi are the cause of most heart attacks, strokes and extremity loss, making thrombosis an extremely important public health problem. Since these thrombi stem from inappropriate platelet activation and subsequent coagulation, targeting these systems therapeutically has important clinical significance for developing safer treatments. Due to the complexities of the hemostatic system, in vitro experiments cannot replicate the blood-to-vessel wall interactions; therefore, in vivo studies are critical to understand pathological mechanisms of thrombus formation. To this end, various thrombosis models have been developed in mice. Among them, ferric chloride (FeCl3) induced vascular injury is a widely used model of occlusive thrombosis that reports platelet activation and aggregation in the context of an aseptic closed vascular system. This model is based on redox-induced endothelial cell injury, which is simple and sensitive to both anticoagulant and anti-platelets drugs. The time required for the development of a thrombus that occludes blood flow gives a quantitative measure of vascular injury, platelet activation and aggregation that is relevant to thrombotic diseases. We have significantly refined this FeCl3-induced vascular thrombosis model, which makes the data highly reproducible with minimal variation. Here we describe the model and present representative data from several experimental set-ups that demonstrate the utility of this model in thrombosis research.
Collapse
Affiliation(s)
- Wei Li
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University;
| | - Marvin Nieman
- Department of Pharmacology, Case Western Reserve University
| | - Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University
| |
Collapse
|
97
|
Ferraro F, Mafalda Lopes da S, Grimes W, Lee HK, Ketteler R, Kriston-Vizi J, Cutler DF. Weibel-Palade body size modulates the adhesive activity of its von Willebrand Factor cargo in cultured endothelial cells. Sci Rep 2016; 6:32473. [PMID: 27576551 PMCID: PMC5006059 DOI: 10.1038/srep32473] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/09/2016] [Indexed: 01/14/2023] Open
Abstract
Changes in the size of cellular organelles are often linked to modifications in their function. Endothelial cells store von Willebrand Factor (vWF), a glycoprotein essential to haemostasis in Weibel-Palade bodies (WPBs), cigar-shaped secretory granules that are generated in a wide range of sizes. We recently showed that forcing changes in the size of WPBs modifies the activity of this cargo. We now find that endothelial cells treated with statins produce shorter WPBs and that the vWF they release at exocytosis displays a reduced capability to recruit platelets to the endothelial cell surface. Investigating other functional consequences of size changes of WPBs, we also report that the endothelial surface-associated vWF formed at exocytosis recruits soluble plasma vWF and that this process is reduced by treatments that shorten WPBs, statins included. These results indicate that the post-exocytic adhesive activity of vWF towards platelets and plasma vWF at the endothelial surface reflects the size of their storage organelle. Our findings therefore show that changes in WPB size, by influencing the adhesive activity of its vWF cargo, may represent a novel mode of regulation of platelet aggregation at the vascular wall.
Collapse
Affiliation(s)
- Francesco Ferraro
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London, WC1E 6BT, United Kingdom
| | - Silva Mafalda Lopes da
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London, WC1E 6BT, United Kingdom
| | - William Grimes
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London, WC1E 6BT, United Kingdom
- Imaging Informatics Division, Bioinformatics Institute, A*STAR 30 Biopolis Street #07-01, Matrix, Singapore 138671
| | - Hwee Kuan Lee
- Imaging Informatics Division, Bioinformatics Institute, A*STAR 30 Biopolis Street #07-01, Matrix, Singapore 138671
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London, WC1E 6BT, United Kingdom
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London, WC1E 6BT, United Kingdom
| | - Daniel F. Cutler
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
98
|
Zlobina KE, Guria GT. Platelet activation risk index as a prognostic thrombosis indicator. Sci Rep 2016; 6:30508. [PMID: 27461235 PMCID: PMC4962318 DOI: 10.1038/srep30508] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/04/2016] [Indexed: 01/28/2023] Open
Abstract
Platelet activation in blood flow under high, overcritical shear rates is initiated by Von Willebrand factor. Despite the large amount of experimental data that have been obtained, the value of the critical shear rate, above which von Willebrand factor starts to activate platelets, is still controversial. Here, we recommend a theoretical approach to elucidate how the critical blood shear rate is dependent on von Willebrand factor size. We derived a diagram of platelet activation according to the shear rate and von Willebrand factor multimer size. We succeeded in deriving an explicit formula for the dependence of the critical shear rate on von Willebrand factor molecule size. The platelet activation risk index was introduced. This index is dependent on the flow conditions, number of monomers in von Willebrand factor, and platelet sensitivity. Probable medical applications of the platelet activation risk index as a universal prognostic index are discussed.
Collapse
Affiliation(s)
- K E Zlobina
- National Research Center for Hematology, 125167, Novy Zykovsky pr. 4, Moscow, Russia
| | - G Th Guria
- National Research Center for Hematology, 125167, Novy Zykovsky pr. 4, Moscow, Russia.,Moscow Institute of Physics and Technology, 141700, Institututski per. 9, Dolgoprudny, Russia
| |
Collapse
|
99
|
Kinstlinger IS, Miller JS. 3D-printed fluidic networks as vasculature for engineered tissue. LAB ON A CHIP 2016; 16:2025-43. [PMID: 27173478 DOI: 10.1039/c6lc00193a] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Fabrication of vascular networks within engineered tissue remains one of the greatest challenges facing the fields of biomaterials and tissue engineering. Historically, the structural complexity of vascular networks has limited their fabrication in tissues engineered in vitro. Recently, however, key advances have been made in constructing fluidic networks within biomaterials, suggesting a strategy for fabricating the architecture of the vasculature. These techniques build on emerging technologies within the microfluidics community as well as on 3D printing. The freeform fabrication capabilities of 3D printing are allowing investigators to fabricate fluidic networks with complex architecture inside biomaterial matrices. In this review, we examine the most exciting 3D printing-based techniques in this area. We also discuss opportunities for using these techniques to address open questions in vascular biology and biophysics, as well as for engineering therapeutic tissue substitutes in vitro.
Collapse
Affiliation(s)
| | - Jordan S Miller
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
100
|
Rana K, Neeves KB. Blood flow and mass transfer regulation of coagulation. Blood Rev 2016; 30:357-68. [PMID: 27133256 DOI: 10.1016/j.blre.2016.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/17/2016] [Accepted: 04/12/2016] [Indexed: 12/12/2022]
Abstract
Blood flow regulates coagulation and fibrin formation by controlling the transport, or mass transfer, of zymogens, co-factors, enzymes, and inhibitors to, from, and within a growing thrombus. The rate of mass transfer of these solutes relative to their consumption or production by coagulation reactions determines, in part, the rate of thrombin generation, fibrin deposition, and thrombi growth. Experimental studies on the influence of blood flow on specific coagulation reactions are reviewed here, along with a theoretical framework that predicts how flow influences surface-bound coagulation binding and enzymatic reactions. These flow-mediated transport mechanisms are also used to interpret the role of binding site densities and injury size on initiating coagulation and fibrin deposition. The importance of transport of coagulation proteins within the interstitial spaces of thrombi is shown to influence thrombi architecture, growth, and arrest.
Collapse
Affiliation(s)
- Kuldeepsinh Rana
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | - Keith B Neeves
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA; Pediatrics, University of Colorado-Denver, Aurora, CO, USA.
| |
Collapse
|