51
|
Rauser V, Weinhold E. Quantitative Formation of Monomeric G-Quadruplex DNA from Multimeric Structures of c-Myc Promoter Sequence. Chembiochem 2020; 21:2445-2448. [PMID: 32267052 PMCID: PMC7496815 DOI: 10.1002/cbic.202000159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/07/2020] [Indexed: 12/02/2022]
Abstract
G‐Quadruplex (G4)‐forming DNA sequences have a tendency to form stable multimeric structures. This can be problematic for studies with synthetic oligodeoxynucleotides. Herein, we describe a method that quantitatively converts multimeric intermolecular structures of the Pu27 sequence from the c‐myc promoter into the desired monomeric G4 by alkaline treatment and refolding.
Collapse
Affiliation(s)
- Valerie Rauser
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Elmar Weinhold
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
52
|
Kumar R, Chand K, Bhowmik S, Das RN, Bhattacharjee S, Hedenström M, Chorell E. Subtle structural alterations in G-quadruplex DNA regulate site specificity of fluorescence light-up probes. Nucleic Acids Res 2020; 48:1108-1119. [PMID: 31912160 PMCID: PMC7026600 DOI: 10.1093/nar/gkz1205] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 12/23/2022] Open
Abstract
G-quadruplex (G4) DNA structures are linked to key biological processes and human diseases. Small molecules that target specific G4 DNA structures and signal their presence would therefore be of great value as chemical research tools with potential to further advance towards diagnostic and therapeutic developments. However, the development of these types of specific compounds remain as a great challenge. In here, we have developed a compound with ability to specifically signal a certain c-MYC G4 DNA structure through a fluorescence light-up mechanism. Despite the compound's two binding sites on the G4 DNA structure, only one of them result in the fluorescence light-up effect. This G-tetrad selectivity proved to originate from a difference in flexibility that affected the binding affinity and tilt the compound out of the planar conformation required for the fluorescence light-up mechanism. The intertwined relation between the presented factors is likely the reason for the lack of examples using rational design to develop compounds with turn-on emission that specifically target certain G4 DNA structures. However, this study shows that it is indeed possible to develop such compounds and present insights into the molecular details of specific G4 DNA recognition and signaling to advance future studies of G4 biology.
Collapse
Affiliation(s)
- Rajendra Kumar
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Karam Chand
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Sudipta Bhowmik
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden.,Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, 92, APC Road, Kolkata 700009, India
| | | | - Snehasish Bhattacharjee
- Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, 92, APC Road, Kolkata 700009, India
| | | | - Erik Chorell
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
53
|
Marzano M, Falanga AP, Marasco D, Borbone N, D’Errico S, Piccialli G, Roviello GN, Oliviero G. Evaluation of an Analogue of the Marine ε-PLL Peptide as a Ligand of G-quadruplex DNA Structures. Mar Drugs 2020; 18:md18010049. [PMID: 31940851 PMCID: PMC7024349 DOI: 10.3390/md18010049] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/04/2020] [Accepted: 01/09/2020] [Indexed: 12/17/2022] Open
Abstract
ε-poly-l-Lysine (ε-PLL) peptide is a product of the marine bacterium Bacillus subtilis with antibacterial and anticancer activity largely used worldwide as a food preservative. ε-PLL and its synthetic analogue α,ε-poly-l-lysine (α,ε-PLL) are also employed in the biomedical field as enhancers of anticancer drugs and for drug and gene delivery applications. Recently, several studies reported the interaction between these non-canonical peptides and DNA targets. Among the most important DNA targets are the DNA secondary structures known as G-quadruplexes (G4s) which play relevant roles in many biological processes and disease-related mechanisms. The search for novel ligands capable of interfering with G4-driven biological processes elicits growing attention in the screening of new classes of G4 binders. In this context, we have here investigated the potential of α,ε-PLL as a G4 ligand. In particular, the effects of the incubation of two different models of G4 DNA, i.e., the parallel G4 formed by the Pu22 (d[TGAGGGTGGGTAGGGTGGGTAA]) sequence, a mutated and shorter analogue of the G4-forming sequence known as Pu27 located in the promoter of the c-myc oncogene, and the hybrid parallel/antiparallel G4 formed by the human Tel22 (d[AGGGTTAGGGTTAGGGTTAGGG]) telomeric sequence, with α,ε-PLL are discussed in the light of circular dichroism (CD), UV, fluorescence, size exclusion chromatography (SEC), and surface plasmon resonance (SPR) evidence. Even though the SPR results indicated that α,ε-PLL is capable of binding with µM affinity to both the G4 models, spectroscopic and SEC investigations disclosed significant differences in the structural properties of the resulting α,ε-PLL/G4 complexes which support the use of α,ε-PLL as a G4 ligand capable of discriminating among different G4 topologies.
Collapse
Affiliation(s)
- Maria Marzano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Andrea Patrizia Falanga
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
- Institute of Biostructures and Bioimaging—CNR 1, Via Mezzocannone 16, 80134 Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Stefano D’Errico
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Giovanni Nicola Roviello
- Institute of Biostructures and Bioimaging—CNR 1, Via Mezzocannone 16, 80134 Naples, Italy
- Correspondence:
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
54
|
The Influence of Quadruplex Structure in Proximity to P53 Target Sequences on the Transactivation Potential of P53 Alpha Isoforms. Int J Mol Sci 2019; 21:ijms21010127. [PMID: 31878115 PMCID: PMC6982142 DOI: 10.3390/ijms21010127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022] Open
Abstract
p53 is one of the most studied tumor suppressor proteins that plays an important role in basic biological processes including cell cycle, DNA damage response, apoptosis, and senescence. The human TP53 gene contains alternative promoters that produce N-terminally truncated proteins and can produce several isoforms due to alternative splicing. p53 function is realized by binding to a specific DNA response element (RE), resulting in the transactivation of target genes. Here, we evaluated the influence of quadruplex DNA structure on the transactivation potential of full-length and N-terminal truncated p53α isoforms in a panel of S. cerevisiae luciferase reporter strains. Our results show that a G-quadruplex prone sequence is not sufficient for transcription activation by p53α isoforms, but the presence of this feature in proximity to a p53 RE leads to a significant reduction of transcriptional activity and changes the dynamics between co-expressed p53α isoforms.
Collapse
|
55
|
Kim N. The Interplay between G-quadruplex and Transcription. Curr Med Chem 2019; 26:2898-2917. [PMID: 29284393 PMCID: PMC6026074 DOI: 10.2174/0929867325666171229132619] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/22/2017] [Accepted: 12/21/2017] [Indexed: 12/25/2022]
Abstract
G4 DNA is a non-canonical DNA structure consisting of a stacked array of Gquartets held together by base pairing between guanine bases. The formation of G4 DNA requires a cluster of guanine-runs within a strand of DNA. Even though the chemistry of this remarkable DNA structure has been under investigation for decades, evidence supporting the biological relevance of G4 DNA has only begun to emerge and point to very important and conserved biological functions. This review will specifically focus on the interplay between transcription and G4 DNA and discuss two alternative but interconnected perspectives. The first part of the review will describe the evidence substantiating the intriguing idea that a shift in DNA structural conformation could be another layer of non-genetic or epigenetic regulator of gene expression and thereby an important determinant of cell fate. The second part will describe the recent genetic studies showing that those genomic loci containing G4 DNA-forming guanine-rich sequences are potential hotspots of genome instability and that the level and orientation of transcription is critical in the materialization of genome instability associated with these sequences.
Collapse
Affiliation(s)
- Nayun Kim
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
56
|
Kosman J, Juskowiak B. Bioanalytical Application of Peroxidase-Mimicking DNAzymes: Status and Challenges. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 170:59-84. [PMID: 28474157 DOI: 10.1007/10_2017_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNAzymes with peroxidase-mimicking activity are a new class of catalytically active DNA molecules. This system is formed as a complex of hemin and a G-quadruplex structure created by oligonucleotides rich in guanine. Considering catalytic activity, this DNAzyme mimics horseradish peroxidase, the enzyme most commonly used for signal generation in bioassays. Because DNAzymes exhibit many advantages over protein enzymes (thermal stability, easy and cheap synthesis and purification) they can successfully replace HRP in bioanalytical applications. HRP-like DNAzymes have been applied in the detection of several DNA sequences. Many amplification techniques have been conjugated with DNAzyme systems, resulting in ultrasensitive bioassays. On the other hand, the combination of aptamers and DNAzymes has led to the development of aptazymes for specific targets. An up-to-date summary of the most interesting DNAzyme-based assays is presented here. The elaborated systems can be used in medical diagnosis or chemical and biological studies.
Collapse
Affiliation(s)
- J Kosman
- Laboratory of Bioanalytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland.
| | - B Juskowiak
- Laboratory of Bioanalytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
57
|
Paul A, Musetti C, Nanjunda R, Wilson WD. Biosensor-Surface Plasmon Resonance: Label-Free Method for Investigation of Small Molecule-Quadruplex Nucleic Acid Interactions. Methods Mol Biol 2019; 2035:63-85. [PMID: 31444744 DOI: 10.1007/978-1-4939-9666-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
Abstract
Biosensor-surface plasmon resonance (SPR) technology is now well established as a quantitative approach for the study of nucleic acid interactions in real time, without the need for labeling any components of the interaction. The method provides real-time equilibrium and kinetic characterization for quadruplex DNA interactions and requires small amounts of materials and no external probe. A detailed protocol for quadruplex-DNA interaction analyses with a variety of binding molecules using biosensor-SPR methods is presented. Explanations of the SPR method with basic fundamentals for use and analysis of results are described with recommendations on the preparation of the SPR instrument, sensor chips, and samples. Details of experimental design, quantitative and qualitative data analyses, and presentation are described. Some specific examples of small molecule-DNA quadruplex interactions are presented with results evaluated by both kinetic and steady-state SPR methods.
Collapse
Affiliation(s)
- Ananya Paul
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Caterina Musetti
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.,Department of Screening, Profiling and Mechanistic Biology, Platform Technology and Science, Glaxo Smith Kline, Collegeville, PA, USA
| | - Rupesh Nanjunda
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.,Janssen Research and Development, Spring House, PA, USA
| | - W David Wilson
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
58
|
Zyner KG, Mulhearn DS, Adhikari S, Martínez Cuesta S, Di Antonio M, Erard N, Hannon GJ, Tannahill D, Balasubramanian S. Genetic interactions of G-quadruplexes in humans. eLife 2019; 8:e46793. [PMID: 31287417 PMCID: PMC6615864 DOI: 10.7554/elife.46793] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/17/2019] [Indexed: 01/20/2023] Open
Abstract
G-quadruplexes (G4) are alternative nucleic acid structures involved in transcription, translation and replication. Aberrant G4 formation and stabilisation is linked to genome instability and cancer. G4 ligand treatment disrupts key biological processes leading to cell death. To discover genes and pathways involved with G4s and gain mechanistic insights into G4 biology, we present the first unbiased genome-wide study to systematically identify human genes that promote cell death when silenced by shRNA in the presence of G4-stabilising small molecules. Many novel genetic vulnerabilities were revealed opening up new therapeutic possibilities in cancer, which we exemplified by an orthogonal pharmacological inhibition approach that phenocopies gene silencing. We find that targeting the WEE1 cell cycle kinase or USP1 deubiquitinase in combination with G4 ligand treatment enhances cell killing. We also identify new genes and pathways regulating or interacting with G4s and demonstrate that the DDX42 DEAD-box helicase is a newly discovered G4-binding protein.
Collapse
Affiliation(s)
- Katherine G Zyner
- Cancer Research United Kingdom Cambridge InstituteCambridgeUnited Kingdom
| | - Darcie S Mulhearn
- Cancer Research United Kingdom Cambridge InstituteCambridgeUnited Kingdom
| | - Santosh Adhikari
- Department of ChemistryUniversity of CambridgeCambridgeUnited Kingdom
| | | | - Marco Di Antonio
- Department of ChemistryUniversity of CambridgeCambridgeUnited Kingdom
| | - Nicolas Erard
- Cancer Research United Kingdom Cambridge InstituteCambridgeUnited Kingdom
| | - Gregory J Hannon
- Cancer Research United Kingdom Cambridge InstituteCambridgeUnited Kingdom
| | - David Tannahill
- Cancer Research United Kingdom Cambridge InstituteCambridgeUnited Kingdom
| | - Shankar Balasubramanian
- Cancer Research United Kingdom Cambridge InstituteCambridgeUnited Kingdom
- Department of ChemistryUniversity of CambridgeCambridgeUnited Kingdom
- School of Clinical MedicineUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
59
|
Verma S, Ghuge SA, Ravichandiran V, Ranjan N. Spectroscopic studies of Thioflavin-T binding to c-Myc G-quadruplex DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 212:388-395. [PMID: 30703662 DOI: 10.1016/j.saa.2018.12.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/16/2018] [Accepted: 12/22/2018] [Indexed: 05/29/2023]
Abstract
G-quadruplexes are well-known DNA secondary structures which can be formed both within the DNA and the RNA sequences of the human genome. While many functions of G-quadruplex during cell regulatory events are still unknown, a number of reports have established their role in finding new cancer therapies. In this report, we provide a detailed account of Thioflavin T (ThT) interacting with a promoter gene (c-Myc) which has relevance in several types of human cancers. Using a variety of spectroscopic techniques, we have shown that the binding of ThT is selective to c-Myc G-quadruplex only, having poor interactions with the duplex DNA sequences. UV-Visible titration experiments show that binding involves stacking interactions which were further corroborated by CD experiments. Fluorescence studies showed that the binding of ThT to c-Myc G-quadruplex results in a large increase in the fluorescence emission spectrum of c-Myc G-quadruplex while the same to duplex DNAs was much poor. Binding of ThT to c-Myc G-quadruplex results in thermal stabilization of the quadruplex DNA by up to 7.4 °C and Job plot experiments demonstrated the presence of 1:1 and 2:1 ligand to quadruplex complexes. Finally, the docking study suggested that ThT stacks with the guanine bases in one of the grooves which is in agreement with the CD studies. These results are expected to provide leads into the design of new ThT analogs and derivatives for enhancing the stability and selectivity of new G-quadruplex targeting ligands.
Collapse
Affiliation(s)
- Smita Verma
- National Institute of Pharmaceutical Education and Research, ITI Compound, Raebareli 229010, India; National Institute of Pharmaceutical Education and Research, Kolkata, Maniktala Main Road, Kolkata 700054, India
| | - Sandip A Ghuge
- TERI-Deakin Nanobiotechnology Research Center, Sustainable Agriculture Division, The Energy and Resources Institute, New Delhi 110003, India
| | - V Ravichandiran
- National Institute of Pharmaceutical Education and Research, Kolkata, Maniktala Main Road, Kolkata 700054, India
| | - Nihar Ranjan
- National Institute of Pharmaceutical Education and Research, ITI Compound, Raebareli 229010, India.
| |
Collapse
|
60
|
Abstract
Circular dichroism and stopped-flow UV spectroscopies were used to investigate the thermodynamic stability and the folding pathway of d[TGAG3TG3TAG3TG3TA2] at 25 °C in solutions containing 25 mM KCl. Under these conditions the oligonucleotide adopts a thermally stable, all-parallel G-quadruplex topography containing three stacked quartets. K+-induced folding shows three resolved relaxation times, each with distinctive spectral changes. Folding is complete within 200 s. These data indicate a folding pathway that involves at least two populated intermediates, one of which seems to be an antiparallel structure that rearranges to the final all-parallel conformation. Molecular dynamics reveals a stereochemically plausible folding pathway that does not involve complete unfolding of the intermediate. The rate of unfolding was determined using complementary DNA to trap transiently unfolded states to form a stable duplex. As assessed by 1D-1H NMR and fluorescence spectroscopy, unfolding is extremely slow with only one observable rate-limiting relaxation time.
Collapse
|
61
|
Carabet LA, Rennie PS, Cherkasov A. Therapeutic Inhibition of Myc in Cancer. Structural Bases and Computer-Aided Drug Discovery Approaches. Int J Mol Sci 2018; 20:E120. [PMID: 30597997 PMCID: PMC6337544 DOI: 10.3390/ijms20010120] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/08/2018] [Accepted: 12/21/2018] [Indexed: 12/23/2022] Open
Abstract
Myc (avian myelocytomatosis viral oncogene homolog) represents one of the most sought after drug targets in cancer. Myc transcription factor is an essential regulator of cell growth, but in most cancers it is overexpressed and associated with treatment-resistance and lethal outcomes. Over 40 years of research and drug development efforts did not yield a clinically useful Myc inhibitor. Drugging the "undruggable" is problematic, as Myc inactivation may negatively impact its physiological functions. Moreover, Myc is a disordered protein that lacks effective binding pockets on its surface. It is well established that the Myc function is dependent on dimerization with its obligate partner, Max (Myc associated factor X), which together form a functional DNA-binding domain to activate genomic targets. Herein, we provide an overview of the knowledge accumulated to date on Myc regulation and function, its critical role in cancer, and summarize various strategies that are employed to tackle Myc-driven malignant transformation. We focus on important structure-function relationships of Myc with its interactome, elaborating structural determinants of Myc-Max dimer formation and DNA recognition exploited for therapeutic inhibition. Chronological development of small-molecule Myc-Max prototype inhibitors and corresponding binding sites are comprehensively reviewed and particular emphasis is placed on modern computational drug design methods. On the outlook, technological advancements may soon provide the so long-awaited Myc-Max clinical candidate.
Collapse
Affiliation(s)
- Lavinia A Carabet
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| | - Paul S Rennie
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| |
Collapse
|
62
|
Vinyard WA, Fleming AM, Ma J, Burrows CJ. Characterization of G-Quadruplexes in Chlamydomonas reinhardtii and the Effects of Polyamine and Magnesium Cations on Structure and Stability. Biochemistry 2018; 57:6551-6561. [PMID: 30411886 DOI: 10.1021/acs.biochem.8b00749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chlamydomonas reinhardtii is a green alga with a very GC-rich genome (67%) and a high density of potential G-quadruplex-forming sequences (PQSs). Using the Ensembl Plants DNA database, 19 PQSs were selected, and their ability to fold in vitro was examined using four experimental methods. Our results support in vitro folding of 18 of the 19 PQSs selected for study. The high physiological polyamine concentrations in C. reinhardtii create unique conditions for studying G4 folding. We investigated whether high polyamine concentrations affect the stability and structural fold of two polymorphic G4s selected from the cohort of PQSs. The two polymorphic G4s selected were found to be greatly stabilized when studied at the physiologically high polyamine concentrations. Lastly, the effects of physiologically relevant Mg2+ concentrations were tested on both of the polymorphic G4s, and one of the G4s shifted from a dynamic mixture of folds to favor a parallel fold in the presence of Mg2+. Our work supports the concept of folding of G4s under the unique conditions observed in C. reinhardtii, and these structures, being located in promoter regions of DNA repair and photosynthetic genes, might be relevant structures in the physiology of C. reinhardtii.
Collapse
Affiliation(s)
- W Andrew Vinyard
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Aaron M Fleming
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Jingwei Ma
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Cynthia J Burrows
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| |
Collapse
|
63
|
Stump S, Mou TC, Sprang SR, Natale NR, Beall HD. Crystal structure of the major quadruplex formed in the promoter region of the human c-MYC oncogene. PLoS One 2018; 13:e0205584. [PMID: 30312328 PMCID: PMC6185859 DOI: 10.1371/journal.pone.0205584] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022] Open
Abstract
The c-MYC oncogene mediates multiple tumor cell survival pathways and is dysregulated or overexpressed in the majority of human cancers. The NHE III1 region of the c-MYC promoter forms a DNA quadruplex. Stabilization of this structure with small molecules has been shown to reduce expression of c-MYC, and targeting the c-MYC quadruplex has become an emerging strategy for development of antitumor compounds. Previous solution NMR studies of the c-MYC quadruplex have assigned the major conformer and topology of this important target, however, regions outside the G-quartet core were not as well-defined. Here, we report a high-resolution crystal structure (2.35 Å) of the major quadruplex formed in the NHE III1 region of the c-MYC promoter. The crystal structure is in general agreement with the solution NMR structure, however, key differences are observed in the position of nucleotides outside the G-quartet core. The crystal structure provides an alternative model that, along with comparisons to other reported quadruplex crystal structures, will be important to the rational design of selective compounds. This work will aid in development of ligands to target the c-MYC promoter quadruplex with the goal of creating novel anticancer therapies.
Collapse
Affiliation(s)
- Sascha Stump
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, United States of America
| | - Tung-Chung Mou
- Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Stephen R. Sprang
- Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Nicholas R. Natale
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, United States of America
| | - Howard D. Beall
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, United States of America
- * E-mail:
| |
Collapse
|
64
|
Huang MC, Chu IT, Wang ZF, Lin S, Chang TC, Chen CT. A G-Quadruplex Structure in the Promoter Region of CLIC4 Functions as a Regulatory Element for Gene Expression. Int J Mol Sci 2018; 19:ijms19092678. [PMID: 30201851 PMCID: PMC6165315 DOI: 10.3390/ijms19092678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/25/2022] Open
Abstract
The differential transcriptional expression of CLIC4 between tumor cells and the surrounding stroma during cancer progression has been suggested to have a tumor-promoting effect. However, little is known about the transcriptional regulation of CLIC4. To better understand how this gene is regulated, the promoter region of CLIC4 was analyzed. We found that a high GC content near the transcriptional start site (TSS) might form an alternative G-quadruplex (G4) structure. Nuclear magnetic resonance spectroscopy (NMR) confirmed their formation in vitro. The reporter assay showed that one of the G4 structures exerted a regulatory role in gene transcription. When the G4-forming sequence was mutated to disrupt the G4 structure, the transcription activity dropped. To examine whether this G4 structure actually has an influence on gene transcription in the chromosome, we utilized the CRISPR/Cas9 system to edit the G4-forming sequence within the CLIC4 promoter in the cell genome. The pop-in/pop-out strategy was adopted to isolate the precisely-edited A375 cell clone. In CRISPR-modified A375 cell clones whose G4 was disrupted, there was a decrease in the endogenous CLIC4 messenger RNA (mRNA) expression level. In conclusion, we found that the G4 structure in the CLIC4 promoter might play an important role in regulating the level of transcription.
Collapse
Affiliation(s)
- Mu-Ching Huang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - I-Te Chu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 115, Taiwan.
| | - Zi-Fu Wang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 115, Taiwan.
| | - Steven Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Ta-Chau Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 115, Taiwan.
| | - Chin-Tin Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
65
|
Rocca R, Moraca F, Costa G, Talarico C, Ortuso F, Da Ros S, Nicoletto G, Sissi C, Alcaro S, Artese A. In Silico Identification of Piperidinyl-amine Derivatives as Novel Dual Binders of Oncogene c-myc/c-Kit G-quadruplexes. ACS Med Chem Lett 2018; 9:848-853. [PMID: 30128079 DOI: 10.1021/acsmedchemlett.8b00275] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/10/2018] [Indexed: 12/15/2022] Open
Abstract
In the last years, it has been shown that the DNA secondary structure known as G-quadruplex is also involved in the regulation of oncogenes transcription, such as c-myc, c-Kit, KRAS, Bcl-2, VEGF, and PDGF. DNA G-quadruplexes, formed in the promoter region of these proto-oncogenes, are considered alternative anticancer targets since their stabilization causes a reduction of the related oncoprotein overexpression. In this study, a structure-based virtual screening toward the experimental DNA G-quadruplex structures of c-myc and c-Kit was performed by using Glide for the docking analysis of a commercial library of approximately 693 000 compounds. The best hits were submitted to thermodynamic and biophysical studies, highlighting the effective stabilization of both G-quadruplex oncogene promoter structures for three N-(4-piperidinylmethyl)amine derivatives, thus proposed as a new class of dual G-quadruplex binders.
Collapse
Affiliation(s)
- Roberta Rocca
- Dipartimento di Scienze della Salute, Università “Magna Graecia” di Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Federica Moraca
- Dipartimento di Scienze della Salute, Università “Magna Graecia” di Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università “Magna Graecia” di Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Carmine Talarico
- Dipartimento di Scienze della Salute, Università “Magna Graecia” di Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università “Magna Graecia” di Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Silvia Da Ros
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Giulia Nicoletto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università “Magna Graecia” di Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Università “Magna Graecia” di Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
66
|
Ethyl-substitutive Thioflavin T as a highly-specific fluorescence probe for detecting G-quadruplex structure. Sci Rep 2018; 8:2666. [PMID: 29422637 PMCID: PMC5805748 DOI: 10.1038/s41598-018-20960-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 01/26/2018] [Indexed: 12/31/2022] Open
Abstract
G-quadruplex has attracted considerable attention due to their prevalent distribution in functional genomic regions and transcripts, which can importantly influence biological processes such as regulation of telomere maintenance, gene transcription and gene translation. Artificial receptor study has been developed for accurate identification of G-quadruplex from DNA species, since it is important for the G-quadruplex related basic research, clinical diagnosis, and therapy. Herein, fluorescent dye ThT-E, a derivative of the known fluorescence probe Thioflavin T (ThT), was designed and synthesized to effectively differentiate various G-quadruplex structures from other nucleic acid forms. Compared with methyl groups in ThT, three ethyl groups were introduced to ThT-E, which leads to strengthened affinity, selectivity and little inducing effect on the G-quadruplex formation. More importantly, ThT-E could be served as a visual tool to directly differentiate G-quadruplex solution even with naked eyes under illumination of ultraviolet light. Thus, this probe reported herein may hold great promise for high-throughput assay to screen G-quadruplex, which may widely apply to G-quadruplex-based potential diagnosis and therapy.
Collapse
|
67
|
Javadekar SM, Yadav R, Raghavan SC. DNA structural basis for fragility at peak III of BCL2 major breakpoint region associated with t(14;18) translocation. Biochim Biophys Acta Gen Subj 2017; 1862:649-659. [PMID: 29246583 DOI: 10.1016/j.bbagen.2017.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/23/2017] [Accepted: 12/07/2017] [Indexed: 12/23/2022]
Abstract
Maintaining genome integrity is crucial for normal cellular functions. DNA double-strand breaks (DSBs), when unrepaired, can potentiate chromosomal translocations. t(14;18) translocation involving BCL2 gene on chromosome 18 and IgH loci at chromosome 14, could lead to follicular lymphoma. Molecular basis for fragility of translocation breakpoint regions is an active area of investigation. Previously, formation of non-B DNA structures like G-quadruplex, triplex, B/A transition were investigated at peak I of BCL2 major breakpoint region (MBR); however, it is less understood at peak III. In vitro gel shift assays show faster mobility for MBR peak III sequences, unlike controls. CD studies of peak III sequences reveal a spectral pattern different from B-DNA. Although complementary C-rich stretches exhibit single-strandedness, corresponding guanine-rich sequences do not show DMS protection, ruling out G-quadruplex and triplex DNA. Extrachromosomal assay indicates that peak III halts transcription, unlike its mutated version. Taken together, multiple lines of evidence suggest formation of potential cruciform DNA structure at MBR peak III, which was also supported by in silico studies. Thus, our study reveals formation of non-B DNA structure which could be a basis for fragility at BCL2 breakpoint regions, eventually leading to chromosomal translocations.
Collapse
Affiliation(s)
- Saniya M Javadekar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Rakhee Yadav
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India.
| |
Collapse
|
68
|
Musso L, Mazzini S, Rossini A, Castagnoli L, Scaglioni L, Artali R, Di Nicola M, Zunino F, Dallavalle S. c-MYC G-quadruplex binding by the RNA polymerase I inhibitor BMH-21 and analogues revealed by a combined NMR and biochemical Approach. Biochim Biophys Acta Gen Subj 2017; 1862:615-629. [PMID: 29229300 DOI: 10.1016/j.bbagen.2017.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/03/2017] [Accepted: 12/07/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Pyridoquinazolinecarboxamides have been reported as RNA polymerase I inhibitors and represent a novel class of potential antitumor agents. BMH-21, was reported to intercalate with GC-rich rDNA, resulting in nucleolar stress as a primary mechanism of cytotoxicity. METHODS The interaction of BMH-21 and analogues with DNA G-quadruplex structures was studied by NMR and molecular modelling. The cellular response was investigated in a panel of human tumor cell lines and protein expression was examined by Western Blot analysis. RESULTS AND CONCLUSIONS We explored the ability of BMH-21 and its analogue 2 to bind to G-quadruplex present in the c-MYC promoter, by NMR and molecular modelling studies. We provide evidence that both compounds are not typical DNA intercalators but are effective binders of the tested G-quadruplex. The interaction with c-MYC G-quadruplex was reflected in down-regulation of c-Myc expression in human tumor cells. The inhibitory effect was almost complete in lymphoma cells SUDHL4 characterized by overexpression of c-Myc protein. This downregulation reflected an early and persistent modulation of cMyc mRNA. Given the relevance of c-MYC in regulation of ribosome biogenesis, it is conceivable that the inhibition of c-MYC contributes to the perturbation of nuclear functions and RNA polymerase I activity. Similar experiments with CX-5461, another RNA polymerase I transcription inhibitor, indicate the same behaviour in G-quadruplex stabilization. GENERAL SIGNIFICANCE Our results support the hypothesis that BMH-21 and analogue compounds share the same mechanism, i.e. G-quadruplex binding as a primary event of a cascade leading to inhibition of RNA polymerase I and apoptosis.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Benzothiazoles/pharmacology
- Blotting, Western
- Cell Line, Tumor
- DNA, Neoplasm/drug effects
- DNA, Neoplasm/genetics
- Enzyme Inhibitors/pharmacology
- G-Quadruplexes/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, myc/drug effects
- Heterocyclic Compounds, 4 or More Rings/pharmacology
- Humans
- Models, Molecular
- Molecular Docking Simulation
- Molecular Structure
- Naphthyridines/pharmacology
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Nuclear Magnetic Resonance, Biomolecular
- Organelle Biogenesis
- Promoter Regions, Genetic/drug effects
- RNA Polymerase I/antagonists & inhibitors
- Ribosomes/metabolism
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Loana Musso
- Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, Università degli Studi di Milano, via Celoria 2, I-20133 Milano, Italy
| | - Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, Università degli Studi di Milano, via Celoria 2, I-20133 Milano, Italy.
| | - Anna Rossini
- Fondazione IRCCS, Istituto Nazionale dei Tumori, via Venezian 1, 20133 Milano, Italy
| | - Lorenzo Castagnoli
- Molecular Targeting Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale Tumori, via Venezian 1, 20133 Milano, Italy
| | - Leonardo Scaglioni
- Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, Università degli Studi di Milano, via Celoria 2, I-20133 Milano, Italy
| | - Roberto Artali
- Scientia Advice, di Roberto Artali, 20832 Desio, MB, Italy
| | - Massimo Di Nicola
- Fondazione IRCCS, Istituto Nazionale dei Tumori, via Venezian 1, 20133 Milano, Italy
| | - Franco Zunino
- Fondazione IRCCS, Istituto Nazionale dei Tumori, via Venezian 1, 20133 Milano, Italy
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, Università degli Studi di Milano, via Celoria 2, I-20133 Milano, Italy
| |
Collapse
|
69
|
Transformation of a Thermostable G-Quadruplex Structure into DNA Duplex Driven by Reverse Gyrase. Molecules 2017; 22:molecules22112021. [PMID: 29165328 PMCID: PMC6150213 DOI: 10.3390/molecules22112021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 11/27/2022] Open
Abstract
Reverse gyrase is a topoisomerase that can introduce positive supercoils to its substrate DNA. It is demonstrated in our studies that a highly thermal stable G-quadruplex structure in a mini-plasmid DNA was transformed into its duplex conformation after a treatment with reverse gyrase. The structural difference of the topoisomers were verified and analyzed by gel electrophoresis, atomic force microscopy examination, and endonuclease digestion assays. All evidence suggested that the overwinding structure of positive supercoil could provide a driven force to disintegrate G-quadruplex and reform duplex. The results of our studies could suggest that hyperthermophiles might use reverse gyrase to manipulate the disintegration of non-B DNA structures and safekeep their genomic information.
Collapse
|
70
|
Albanese CM, Suttapitugsakul S, Perati S, McGown LB. A genome-inspired, reverse selection approach to aptamer discovery. Talanta 2017; 177:150-156. [PMID: 29108569 DOI: 10.1016/j.talanta.2017.08.093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/08/2017] [Accepted: 08/29/2017] [Indexed: 11/29/2022]
Abstract
Limitations of Systematic Evolution of Ligands by Exponential Enrichment (SELEX) and related methods that depend upon combinatorial oligonucleotide libraries have hindered progress in this area. Our laboratory has introduced a new approach to aptamer discovery that uses oligonucleotides with sequences drawn from the human genome to capture proteins from biological samples. Specifically, we have focused on capture of proteins in nuclear extracts from human cell lines using G-quadruplex (G4) forming genomic sequences. Previous studies identified capture of several proteins both in vitro and in live cells by the Pu28-mer sequence from the ERBB2 promoter region. Here we provide a more comprehensive study of protein capture from BT474 and MCF7 human breast cancer cells using G4-forming sequences from the CMYC, RB, VEGF and ERBB2 human oncogene promoter regions. Mass spectrometric analysis and Western blot analysis of protein capture at oligonucleotide-modified surfaces revealed capture of nucleolin by all three of the oligonucleotides in BT474 and MCF7 cells, and also of ribosomal protein L19 (RPL19) in BT474 cells. Chromatin immunoprecipitation (ChIP) analysis confirmed the interaction of nucleolin with all three promoter sequences in MCF7 cells and with RB in BT474 cells. ChIP also revealed interactions of RPL19 with CMYC in BT474 cells and of both RPL19 and ribosomal protein L14 (RPL14) with ERBB2 in BT474 cells. These results offer the basis for development of new aptamers based on the G4 sequences from the CMYC, RB, VEGF, and ERBB2 promoters toward proteins including nucleolin, RPL19 and RPL14. These interactions also may have biological and therapeutic significance.
Collapse
Affiliation(s)
- Christina M Albanese
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Suttipong Suttapitugsakul
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Shruthi Perati
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Linda B McGown
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA.
| |
Collapse
|
71
|
Liu HY, Chen AC, Yin QK, Li Z, Huang SM, Du G, He JH, Zan LP, Wang SK, Xu YH, Tan JH, Ou TM, Li D, Gu LQ, Huang ZS. New Disubstituted Quindoline Derivatives Inhibiting Burkitt's Lymphoma Cell Proliferation by Impeding c-MYC Transcription. J Med Chem 2017; 60:5438-5454. [PMID: 28603988 DOI: 10.1021/acs.jmedchem.7b00099] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The c-MYC oncogene is overactivated during Burkitt's lymphoma pathogenesis. Targeting c-MYC to inhibit its transcriptional activity has emerged as an effective anticancer strategy. We synthesized four series of disubstituted quindoline derivatives by introducing the second cationic amino side chain and 5-N-methyl group based on a previous study of SYUIQ-5 (1) as c-MYC promoter G-quadruplex ligands. The in vitro evaluations showed that all new compounds exhibited higher stabilities and binding affinities, and most of them had better selectivity (over duplex DNA) for the c-MYC G-quadruplex compared to 1. Moreover, the new ligands prevented NM23-H2, a transcription factor, from effectively binding to the c-MYC G-quadruplex. Further studies showed that the selected ligand, 7a4, down-regulated c-MYC transcription by targeting promoter G-quadruplex and disrupting the NM23-H2/c-MYC interaction in RAJI cells. 7a4 could inhibit Burkitt's lymphoma cell proliferation through cell cycle arrest and apoptosis and suppress tumor growth in a human Burkitt's lymphoma xenograft.
Collapse
Affiliation(s)
- Hui-Yun Liu
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Ai-Chun Chen
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Qi-Kun Yin
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Zeng Li
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Su-Mei Huang
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Gang Du
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Jin-Hui He
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Li-Peng Zan
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Shi-Ke Wang
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Yao-Hao Xu
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Jia-Heng Tan
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Tian-Miao Ou
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Ding Li
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Lian-Quan Gu
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Zhi-Shu Huang
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| |
Collapse
|
72
|
Structural insight for the recognition of G-quadruplex structure at human c-myc promoter sequence by flavonoid Quercetin. Sci Rep 2017; 7:3600. [PMID: 28620169 PMCID: PMC5472631 DOI: 10.1038/s41598-017-03906-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 05/11/2017] [Indexed: 12/21/2022] Open
Abstract
Small molecule ligands that could stabilize G-quadruplex structure formed at the promoter region of human c-myc oncogene will regulate its expression in cancer cells. Flavonoids, a group of naturally available small molecule, have been known for their various promising effects on human health. In present study, we have performed detailed biophysical studies for the interaction of human c-myc G-quadruplex DNA with nine representative flavonoids: Luteolin, Quercetin, Rutin, Genistein, Kaempferol, Puerarin, Hesperidin, Myricetin and Daidzein. We found by using fluorescence titration that Quercetin interacts with c-myc G-quadruplex DNA sequence Pu24T with highest affinity. This interaction was further explored by using NMR spectroscopy and we have derived the first solution structure for the complex formed between Quercetin and biologically significant c-myc promoter DNA sequence forming G-quadruplex structure. In present solution structure, Quercetin stacks at 5' and 3' G-tetrads of Pu24T G-quadruplex structure and stabilize it via π-π stacking interactions. Furthermore, in vitro studies on HeLa cells suggested that Quercetin induces apoptosis-mediated cell death and down-regulated c-myc gene expression. This study emphasizes the potential of flavonoids as a promising candidate for targeting c-myc promoter region and thus, could act as a potential anti-cancer agent.
Collapse
|
73
|
The MYCN Protein in Health and Disease. Genes (Basel) 2017; 8:genes8040113. [PMID: 28358317 PMCID: PMC5406860 DOI: 10.3390/genes8040113] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
MYCN is a member of the MYC family of proto-oncogenes. It encodes a transcription factor, MYCN, involved in the control of fundamental processes during embryonal development. The MYCN protein is situated downstream of several signaling pathways promoting cell growth, proliferation and metabolism of progenitor cells in different developing organs and tissues. Conversely, deregulated MYCN signaling supports the development of several different tumors, mainly with a childhood onset, including neuroblastoma, medulloblastoma, rhabdomyosarcoma and Wilms’ tumor, but it is also associated with some cancers occurring during adulthood such as prostate and lung cancer. In neuroblastoma, MYCN-amplification is the most consistent genetic aberration associated with poor prognosis and treatment failure. Targeting MYCN has been proposed as a therapeutic strategy for the treatment of these tumors and great efforts have allowed the development of direct and indirect MYCN inhibitors with potential clinical use.
Collapse
|
74
|
Small molecule selectively suppresses MYC transcription in cancer cells. Proc Natl Acad Sci U S A 2017; 114:3497-3502. [PMID: 28292893 DOI: 10.1073/pnas.1702663114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Stauprimide is a staurosporine analog that promotes embryonic stem cell (ESC) differentiation by inhibiting nuclear localization of the MYC transcription factor NME2, which in turn results in down-regulation of MYC transcription. Given the critical role the oncogene MYC plays in tumor initiation and maintenance, we explored the potential of stauprimide as an anticancer agent. Here we report that stauprimide suppresses MYC transcription in cancer cell lines derived from distinct tissues. Using renal cancer cells, we confirmed that stauprimide inhibits NME2 nuclear localization. Gene expression analysis also confirmed the selective down-regulation of MYC target genes by stauprimide. Consistent with this activity, administration of stauprimide inhibited tumor growth in rodent xenograft models. Our study provides a unique strategy for selectively targeting MYC transcription by pharmacological means as a potential treatment for MYC-dependent tumors.
Collapse
|
75
|
Allelic Dropout During Polymerase Chain Reaction due to G-Quadruplex Structures and DNA Methylation Is Widespread at Imprinted Human Loci. G3-GENES GENOMES GENETICS 2017; 7:1019-1025. [PMID: 28143949 PMCID: PMC5345703 DOI: 10.1534/g3.116.038687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Loss of one allele during polymerase chain reaction (PCR) amplification of DNA, known as allelic dropout, can be caused by a variety of mechanisms. Allelic dropout during PCR may have profound implications for molecular diagnostic and research procedures that depend on PCR and assume biallelic amplification has occurred. Complete allelic dropout due to the combined effects of cytosine methylation and G-quadruplex formation was previously described for a differentially methylated region of the human imprinted gene, MEST. We now demonstrate that this parent-of-origin specific allelic dropout can potentially occur at several other genomic regions that display genomic imprinting and have propensity for G-quadruplex formation, including AIM1, BLCAP, DNMT1, PLAGL1, KCNQ1, and GRB10. These findings demonstrate that systematic allelic dropout during PCR is a general phenomenon for regions of the genome where differential allelic methylation and G-quadruplex motifs coincide, and suggest that great care must be taken to ensure biallelic amplification is occurring in such situations.
Collapse
|
76
|
Shan C, Yan JW, Wang YQ, Che T, Huang ZL, Chen AC, Yao PF, Tan JH, Li D, Ou TM, Gu LQ, Huang ZS. Design, Synthesis, and Evaluation of Isaindigotone Derivatives To Downregulate c-myc Transcription via Disrupting the Interaction of NM23-H2 with G-Quadruplex. J Med Chem 2017; 60:1292-1308. [DOI: 10.1021/acs.jmedchem.6b01218] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Chan Shan
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
- Institute
for Translation Medicine, Qingdao University, Shandong 266021, People’s Republic of China
| | - Jin-Wu Yan
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
- School
of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, People’s Republic of China
| | - Yu-Qing Wang
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Tong Che
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Zhou-Li Huang
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Ai-Chun Chen
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Pei-Fen Yao
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Jia-Heng Tan
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Ding Li
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Tian-Miao Ou
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Lian-Quan Gu
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Zhi-Shu Huang
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
77
|
Evidences for Piperine inhibiting cancer by targeting human G-quadruplex DNA sequences. Sci Rep 2016; 6:39239. [PMID: 27995955 PMCID: PMC5171706 DOI: 10.1038/srep39239] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/21/2016] [Indexed: 12/22/2022] Open
Abstract
Piperine, a naturally occurring alkaloid, is well known as anti-oxidant, anti-mutagenic, anti-tumor and anti-proliferative agent. Piperine exerts such pharmacological activities by binding or interacting with various cellular targets. Recently, the first report for Piperine interaction with duplex DNA has been published last year but its interaction with G-quadruplex structures has not been studied yet. Herein, we report for the first time the interaction of Piperine with various DNA G-quadruplex structures. Comprehensive biophysical techniques were employed to determine the basis of interaction for the complex formed between Piperine and G-quadruplex DNA sequences. Piperine showed specificity for G-quadruplex DNA over double stranded DNA, with highest affinity for G-quadruplex structure formed at c-myc promoter region. Further, in-vitro studies show that Piperine causes apoptosis-mediated cell death that further emphasizes the potential of this natural product, Piperine, as a promising candidate for targeting G-quadruplex structure and thus, acts as a potent anti-cancer agent.
Collapse
|
78
|
Sutherland C, Cui Y, Mao H, Hurley LH. A Mechanosensor Mechanism Controls the G-Quadruplex/i-Motif Molecular Switch in the MYC Promoter NHE III1. J Am Chem Soc 2016; 138:14138-14151. [DOI: 10.1021/jacs.6b09196] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Caleb Sutherland
- University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, Arizona 85724, United States
| | - Yunxi Cui
- Department
of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, United States
| | - Hanbin Mao
- Department
of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, United States
| | - Laurence H. Hurley
- University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, Arizona 85724, United States
- University of Arizona, College of Pharmacy, 1703 East Mabel Street, Tucson, Arizona 85721, United States
- BIO5 Institute, 1657 East
Helen Street, Tucson, Arizona 85721, United States
| |
Collapse
|
79
|
Stevens AJ, Kennedy HL, Kennedy MA. Fluorescence Methods for Probing G-Quadruplex Structure in Single- and Double-Stranded DNA. Biochemistry 2016; 55:3714-25. [PMID: 27253207 DOI: 10.1021/acs.biochem.6b00327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interest in exploring G-quadruplex (G4) structures in nucleic acids is growing as it becomes more widely recognized that these structures have many interesting biological roles and chemical properties. Probing the G4-forming potential of DNA with dimethyl sulfate, polymerase stop assays, or nuclease digestion are three commonly used techniques that usually employ radio-isotopic labels for visualization. However, as fluorescent labeling methods have grown in popularity and versatility, many laboratories have moved away from the routine use of radio-isotopic methods. We have adapted traditional procedures for structural analysis of G4-forming DNA sequences by using fluorescent labels and capillary electrophoresis and demonstrate their application to well-studied G4 structures, including c-MYC PU27 G4. The three fluorescent assays described here allow interrogation of G4 structures in double- and single-stranded DNA substrates, using either chemical or enzymatic cleavage. When combined, these techniques can provide valuable information for the investigation of G4 topology and structure, as well as visualizing any structural effects caused by interaction of quadruplexes with the complementary C-rich DNA strand.
Collapse
Affiliation(s)
- Aaron J Stevens
- Department of Pathology, University of Otago , Christchurch, New Zealand
| | - Hannah L Kennedy
- Department of Pathology, University of Otago , Christchurch, New Zealand.,Molecular Pathology Laboratory, Canterbury Health Laboratories, Canterbury District Health Board , Christchurch, New Zealand
| | - Martin A Kennedy
- Department of Pathology, University of Otago , Christchurch, New Zealand
| |
Collapse
|
80
|
Hároníková L, Coufal J, Kejnovská I, Jagelská EB, Fojta M, Dvořáková P, Muller P, Vojtesek B, Brázda V. IFI16 Preferentially Binds to DNA with Quadruplex Structure and Enhances DNA Quadruplex Formation. PLoS One 2016; 11:e0157156. [PMID: 27280708 PMCID: PMC4900677 DOI: 10.1371/journal.pone.0157156] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 05/25/2016] [Indexed: 02/03/2023] Open
Abstract
Interferon-inducible protein 16 (IFI16) is a member of the HIN-200 protein family, containing two HIN domains and one PYRIN domain. IFI16 acts as a sensor of viral and bacterial DNA and is important for innate immune responses. IFI16 binds DNA and binding has been described to be DNA length-dependent, but a preference for supercoiled DNA has also been demonstrated. Here we report a specific preference of IFI16 for binding to quadruplex DNA compared to other DNA structures. IFI16 binds to quadruplex DNA with significantly higher affinity than to the same sequence in double stranded DNA. By circular dichroism (CD) spectroscopy we also demonstrated the ability of IFI16 to stabilize quadruplex structures with quadruplex-forming oligonucleotides derived from human telomere (HTEL) sequences and the MYC promotor. A novel H/D exchange mass spectrometry approach was developed to assess protein interactions with quadruplex DNA. Quadruplex DNA changed the IFI16 deuteration profile in parts of the PYRIN domain (aa 0–80) and in structurally identical parts of both HIN domains (aa 271–302 and aa 586–617) compared to single stranded or double stranded DNAs, supporting the preferential affinity of IFI16 for structured DNA. Our results reveal the importance of quadruplex DNA structure in IFI16 binding and improve our understanding of how IFI16 senses DNA. IFI16 selectivity for quadruplex structure provides a mechanistic framework for IFI16 in immunity and cellular processes including DNA damage responses and cell proliferation.
Collapse
Affiliation(s)
- Lucia Hároníková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65, Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
| | - Jan Coufal
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65, Brno, Czech Republic
| | - Iva Kejnovská
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65, Brno, Czech Republic
| | - Eva B. Jagelská
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65, Brno, Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65, Brno, Czech Republic
| | - Petra Dvořáková
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Petr Muller
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Václav Brázda
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
81
|
Harkness RW, Mittermaier AK. G-register exchange dynamics in guanine quadruplexes. Nucleic Acids Res 2016; 44:3481-94. [PMID: 27060139 PMCID: PMC4856995 DOI: 10.1093/nar/gkw190] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/09/2016] [Indexed: 11/23/2022] Open
Abstract
G-quadruplexes (GQs) are 4-stranded DNA structures formed by tracts of stacked, Hoogsteen-hydrogen bonded guanosines. GQs are found in gene promoters and telomeres where they regulate gene transcription and telomere elongation. Though GQ structures are well-characterized, many aspects of their conformational dynamics are poorly understood. For example, when there are surplus guanosines in some of the tracts, they can slide with respect to one another, a process we term G-register (GR) exchange. These motions could in principle entropically stabilize the folded state, crucially benefitting GQs as their stabilities are closely tied to biological function. We have developed a method for characterizing GR exchange where each isomer in the wild-type conformational ensemble is trapped by mutation and thermal denaturation data for the set of trapped mutants and wild-type are analyzed simultaneously. This yields GR isomer populations as a function of temperature, quantifies conformational entropy and sheds light on correlated sliding motions of the G-tracts. We measured entropic stabilizations from GR exchange up to 14.3 ± 1.6 J mol−1 K−1, with melting temperature increases up to 7.3 ± 1.6°C. Furthermore, bioinformatic analysis suggests a majority of putative human GQ sequences are capable of GR exchange, pointing to the generality of this phenomenon.
Collapse
Affiliation(s)
- Robert W Harkness
- McGill University, Department of Chemistry, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| | - Anthony K Mittermaier
- McGill University, Department of Chemistry, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
82
|
Abstract
Quadruplex-forming sequences are widely prevalent in human and other genomes, including bacterial ones. These sequences are over-represented in eukaryotic telomeres, promoters, and 5' untranslated regions. They can form quadruplex structures, which may be transient in many situations in normal cells since they can be effectively resolved by helicase action. Mutated helicases in cancer cells are unable to unwind quadruplexes, which are impediments to transcription, translation, or replication, depending on their location within a particular gene. Small molecules that can stabilize quadruplex structures augment these effects and produce cell and proliferation growth inhibition. This article surveys the chemical biology of quadruplexes. It critically examines the major classes of quadruplex-binding small molecules that have been developed to date and the various approaches to discovering selective agents. The challenges of requiring (and achieving) small-molecule targeted selectivity for a particular quadruplex are discussed in relation to the potential of these small molecules as clinically useful therapeutic agents.
Collapse
Affiliation(s)
- Stephen Neidle
- UCL School of Pharmacy, University College London , 29-39 Brunswick Square, London WC1N 1AX, U.K
| |
Collapse
|
83
|
Wu T, Zhang C, Wang Z, Ren H, Kang Y, Du Y. Tuning the sensing range of potassium ions by changing the loop size of G-quadruplex sensors. NEW J CHEM 2016. [DOI: 10.1039/c6nj02136k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescence spectroscopy and thermodynamics were combined for the study of the loop size effect of G-quadruplex sensors in the K+ sensing range.
Collapse
Affiliation(s)
- Ting Wu
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Chuanjing Zhang
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zhenping Wang
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Hongxin Ren
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yan Kang
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yiping Du
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
84
|
Sharma T, Bansal R, Haokip DT, Goel I, Muthuswami R. SMARCAL1 Negatively Regulates C-Myc Transcription By Altering The Conformation Of The Promoter Region. Sci Rep 2015; 5:17910. [PMID: 26648259 PMCID: PMC4673416 DOI: 10.1038/srep17910] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022] Open
Abstract
SMARCAL1, a member of the SWI2/SNF2 protein family, stabilizes replication forks during DNA damage. In this manuscript, we provide the first evidence that SMARCAL1 is also a transcriptional co-regulator modulating the expression of c-Myc, a transcription factor that regulates 10-15% genes in the human genome. BRG1, SMARCAL1 and RNAPII were found localized onto the c-myc promoter. When HeLa cells were serum starved, the occupancy of SMARCAL1 on the c-myc promoter increased while that of BRG1 and RNAPII decreased correlating with repression of c-myc transcription. Using Active DNA-dependent ATPase A Domain (ADAAD), the bovine homolog of SMARCAL1, we show that the protein can hydrolyze ATP using a specific region upstream of the CT element of the c-myc promoter as a DNA effector. The energy, thereby, released is harnessed to alter the conformation of the promoter DNA. We propose that SMARCAL1 negatively regulates c-myc transcription by altering the conformation of its promoter region during differentiation.
Collapse
Affiliation(s)
| | - Ritu Bansal
- School of Life Sciences, JNU, New Delhi 110067
| | | | - Isha Goel
- School of Life Sciences, JNU, New Delhi 110067
| | | |
Collapse
|
85
|
Siters KE, Sander SA, Devlin JR, Morrow JR. Bifunctional Zn(II) complexes for recognition of non-canonical thymines in DNA bulges and G-quadruplexes. Dalton Trans 2015; 44:3708-16. [PMID: 25521076 DOI: 10.1039/c4dt03004d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Six Zn(II) complexes of derivatives of 1,4,7,10-tetraazacyclododecane (cyclen) were studied for binding to DNA sequences containing non-canonical thymines, including a hairpin with a single thymine bulge (T-bulge) and a G-quadruplex (H-telo) containing thymine loops. The cyclen-based macrocycles contained pendents with either two fused rings to give planar groups including quinolinone (QMC), coumarin (MCC) and quinoline (CQC) derivatives or a non-planar dansyl group (DSC). Macrocyclic complexes with three fused rings including an anthraquinone pendent (ATQ) were also studied. All Zn(II) complexes were stable in solution at micromolar concentrations and neutral pH with the Zn(L)(OH2) species prevailing for L = QMC and CQC at pH 7.5 and 100 mM NaCl. Immobilized T-bulge or H-telo G-quadruplex was used to study binding of the complexes by surface plasmon resonance (SPR) for several of the complexes. For the most part, data matched well with that obtained by isothermal calorimetry (ITC) and, for fluorescent complexes, by fluorescence titrations. Data showed that Zn(II) complexes containing planar aromatic pendents with two fused rings bound to T-bulge more tightly than complexes with non-planar pendents such as DSC. The H-telo DNA exhibited multiple binding sites for all complexes containing aromatic pendents. The complexes with two fused rings bound with low micromolar dissociation constants and two binding sites whereas a complex with three fused rings (ATQ) bound to three sites. This study shows that different pendent groups on Zn(II) cyclen complexes impart selectivity for recognition of non-canonical DNA structures.
Collapse
Affiliation(s)
- Kevin E Siters
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, USA.
| | | | | | | |
Collapse
|
86
|
Kim BG, Evans HM, Dubins DN, Chalikian TV. Effects of Salt on the Stability of a G-Quadruplex from the Human c-MYC Promoter. Biochemistry 2015; 54:3420-30. [DOI: 10.1021/acs.biochem.5b00097] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Byul G. Kim
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Heather M. Evans
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - David N. Dubins
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tigran V. Chalikian
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
87
|
You H, Wu J, Shao F, Yan J. Stability and kinetics of c-MYC promoter G-quadruplexes studied by single-molecule manipulation. J Am Chem Soc 2015; 137:2424-7. [PMID: 25654467 DOI: 10.1021/ja511680u] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A DNA G-quadruplex (G4) formed at the oncogene c-MYC promoter region functions as a gene silencer. Due to its high stability at physiological K(+) concentrations, its thermodynamics and kinetic properties have not been characterized in physiological solution conditions. In this work, we investigated the unfolding and folding transitions of single c-MYC G4 and several of its truncated or point mutants at 100 mM KCl concentration under mechanical force. We found that the wild type could fold into multiple species, and the major specie has a slow unfolding rate of (1.4 ± 1.0) × 10(-6) s(-1). The force-dependent thermodynamics and kinetic properties of the major specie were obtained by studying a truncated mutant, Myc2345, that contains the G-tracts 2, 3, 4, and 5. As the c-MYC G4 is a prototype of many other intermolecular parallel-stranded G4's, our results provide important insights into the stability of a broad class of promoter G4's which also play a role in transcription regulation and are potential anticancer targets.
Collapse
Affiliation(s)
- Huijuan You
- Mechanobiology Institute, National University of Singapore , 117411, Singapore
| | | | | | | |
Collapse
|
88
|
Structure-based virtual screening of novel natural alkaloid derivatives as potential binders of h-telo and c-myc DNA G-quadruplex conformations. Molecules 2014; 20:206-23. [PMID: 25547724 PMCID: PMC6272608 DOI: 10.3390/molecules20010206] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/15/2014] [Indexed: 01/08/2023] Open
Abstract
Several ligands can bind to the non-canonical G-quadruplex DNA structures thereby stabilizing them. These molecules can act as effective anticancer agents by stabilizing the telomeric regions of DNA or by regulating oncogene expression. In order to better interact with the quartets of G-quadruplex structures, G-binders are generally characterized by a large aromatic core involved in π-π stacking. Some natural flexible cyclic molecules from Traditional Chinese Medicine have shown high binding affinity with G-quadruplex, such as berbamine and many other alkaloids. Using the structural information available on G-quadruplex structures, we performed a high throughput in silico screening of commercially available alkaloid derivative databases by means of a structure-based approach based on docking and molecular dynamics simulations against the human telomeric sequence d[AG3(T2AG3)3] and the c-myc promoter structure. We identified 69 best hits reporting an improved theoretical binding affinity with respect to the active set. Among them, a berberine derivative, already known to remarkably inhibit telomerase activity, was related to a better theoretical affinity versusc-myc.
Collapse
|
89
|
Wang Q, Han G, Ye J, Gao X, Niu H, Zhao J, Chai Y, Li N, Yin H. Characterization of the polycystic kidney disease 2 gene promoter. Genomics 2014; 104:512-9. [DOI: 10.1016/j.ygeno.2014.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/13/2014] [Accepted: 08/15/2014] [Indexed: 12/25/2022]
|
90
|
A highly sensitive label-free sensor for Mercury ion (Hg²⁺) by inhibiting thioflavin T as DNA G-quadruplexes fluorescent inducer. Talanta 2014; 122:85-90. [PMID: 24720966 DOI: 10.1016/j.talanta.2014.01.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 11/20/2022]
Abstract
DNA sequences with guanine repeats can be induced to form G-quartets that adopt G-quadruplex structures in the presence of thioflavin T (ThT). ThT plays a dual role of inducing DNA sequences to fold into quadruplex structures and of sensing the change by its remarkable fluorescence enhancement. ThT binding to the DNA sequences with guanine repeats showed highly specific fluorescence enhancement compared with single/double-stranded DNA. In this work, we have utilized the conformational switch from G-quadruplex complex induced by fluorogenic dye ThT to Hg(2+) mediated T-Hg-T double-stranded DNA formation, thereby pioneering a facile approach to detect Hg(2+) with fluorescence spectrometry. Through this approach, Hg(2+) in aqueous solutions can be detected at 5 nM with fluorescence spectrometry in a facile way, with high selectivity against other metal ions. These results indicate the introduced label-free method for fluorescence spectrometric Hg(2+) detection is simple, quantitative, sensitive, and highly selective.
Collapse
|
91
|
Li H, Wu Z, Qiu L, Liu J, Wang C, Shen G, Yu R. Ultrasensitive label-free amplified colorimetric detection of p53 based on G-quadruplex MBzymes. Biosens Bioelectron 2013; 50:180-5. [DOI: 10.1016/j.bios.2013.06.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/19/2013] [Accepted: 06/19/2013] [Indexed: 11/27/2022]
|
92
|
Shalaby T, Fiaschetti G, Nagasawa K, Shin-ya K, Baumgartner M, Grotzer M. G-quadruplexes as potential therapeutic targets for embryonal tumors. Molecules 2013; 18:12500-37. [PMID: 24152672 PMCID: PMC6269990 DOI: 10.3390/molecules181012500] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/18/2013] [Accepted: 09/25/2013] [Indexed: 12/27/2022] Open
Abstract
Embryonal tumors include a heterogeneous group of highly malignant neoplasms that primarily affect infants and children and are characterized by a high rate of mortality and treatment-related morbidity, hence improved therapies are clearly needed. G-quadruplexes are special secondary structures adopted in guanine (G)-rich DNA sequences that are often present in biologically important regions, e.g. at the end of telomeres and in the regulatory regions of oncogenes such as MYC. Owing to the significant roles that both telomeres and MYC play in cancer cell biology, G-quadruplexes have been viewed as emerging therapeutic targets in oncology and as tools for novel anticancer drug design. Several compounds that target these structures have shown promising anticancer activity in tumor xenograft models and some of them have entered Phase II clinical trials. In this review we examine approaches to DNA targeted cancer therapy, summarize the recent developments of G-quadruplex ligands as anticancer drugs and speculate on the future direction of such structures as a potential novel therapeutic strategy for embryonal tumors of the nervous system.
Collapse
Affiliation(s)
- Tarek Shalaby
- Division of Oncology, University Children's Hospital of Zurich, Zurich 8032, Switzerland.
| | | | | | | | | | | |
Collapse
|
93
|
Liu ZQ, Zhuo ST, Tan JH, Ou TM, Li D, Gu LQ, Huang ZS. Facile syntheses of disubstituted bis(vinylquinolinium)benzene derivatives as G-quadruplex DNA binders. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.04.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
94
|
Moreno PMD, Geny S, Pabon YV, Bergquist H, Zaghloul EM, Rocha CSJ, Oprea II, Bestas B, Andaloussi SE, Jørgensen PT, Pedersen EB, Lundin KE, Zain R, Wengel J, Smith CIE. Development of bis-locked nucleic acid (bisLNA) oligonucleotides for efficient invasion of supercoiled duplex DNA. Nucleic Acids Res 2013; 41:3257-73. [PMID: 23345620 PMCID: PMC3597675 DOI: 10.1093/nar/gkt007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In spite of the many developments in synthetic oligonucleotide (ON) chemistry and design, invasion into double-stranded DNA (DSI) under physiological salt and pH conditions remains a challenge. In this work, we provide a new ON tool based on locked nucleic acids (LNAs), designed for strand invasion into duplex DNA (DSI). We thus report on the development of a clamp type of LNA ON—bisLNA—with capacity to bind and invade into supercoiled double-stranded DNA. The bisLNA links a triplex-forming, Hoogsteen-binding, targeting arm with a strand-invading Watson–Crick binding arm. Optimization was carried out by varying the number and location of LNA nucleotides and the length of the triplex-forming versus strand-invading arms. Single-strand regions in target duplex DNA were mapped using chemical probing. By combining design and increase in LNA content, it was possible to achieve a 100-fold increase in potency with 30% DSI at 450 nM using a bisLNA to plasmid ratio of only 21:1. Although this first conceptual report does not address the utility of bisLNA for the targeting of DNA in a chromosomal context, it shows bisLNA as a promising candidate for interfering also with cellular genes.
Collapse
Affiliation(s)
- Pedro M D Moreno
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, 141 86 Huddinge, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Smestad J, Maher LJ. Ion-dependent conformational switching by a DNA aptamer that induces remyelination in a mouse model of multiple sclerosis. Nucleic Acids Res 2013; 41:1329-42. [PMID: 23175609 PMCID: PMC3553947 DOI: 10.1093/nar/gks1093] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We recently reported that a guanosine-rich 40-mer DNA aptamer (LJM-3064) mediates remyelination in the Theiler's murine encephalomyelitis virus mouse model of multiple sclerosis. Here, we characterize the G-quadruplex forms of this aptamer in vitro, and demonstrate using circular dichroism spectroscopy that LJM-3064 undergoes a monovalent ion-dependent conformational switch. In the presence of sodium ions and no potassium ions, LJM-3064 adopts an antiparallel-stranded G-quadruplex structure. When presented with low concentrations of potassium ions in a buffer that mimics the composition of interstitial fluid and blood plasma, LJM-3064 rapidly switches to a parallel-stranded G-quadruplex conformation, which is presumably the physiologically active folded form. We characterize these conformational states using dimethyl sulfate reactivity studies and Bal 31 nuclease probing. Our analysis indicates that only the 5'-terminal 26 nucleotides are involved in G-quadruplex formation. Thermodynamic characterization of LJM-3064 at physiologically relevant ion concentrations reveals the G-quadruplex to be metastable at human body temperature. These data provide important structural and thermodynamic insights that may be valuable in optimizing LJM-3064 as a therapeutic remyelinating agent.
Collapse
Affiliation(s)
- John Smestad
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
96
|
Sung CK, Yim H, Gu H, Li D, Andrews E, Duraisamy S, Li C, Drapkin R, Benjamin T. The polyoma virus large T binding protein p150 is a transcriptional repressor of c-MYC. PLoS One 2012; 7:e46486. [PMID: 23029531 PMCID: PMC3460914 DOI: 10.1371/journal.pone.0046486] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 09/02/2012] [Indexed: 11/18/2022] Open
Abstract
p150, product of the SALL2 gene, is a binding partner of the polyoma virus large T antigen and a putative tumor suppressor. p150 binds to the nuclease hypersensitive element of the c-MYC promoter and represses c-MYC transcription. Overexpression of p150 in human ovarian surface epithelial cells leads to decreased expression, and downregulation to increased expression, of c-MYC. c-MYC is repressed upon restoration of p150 to ovarian carcinoma cells. Induction of apoptosis by etoposide results in recruitment of p150 to the c-MYC promoter and to repression of c-MYC. Analysis of data in The Cancer Genome Atlas shows negative correlations between SALL2 and c-MYC expression in four common solid tumor types.
Collapse
Affiliation(s)
- Chang Kyoo Sung
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hyungshin Yim
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hongcang Gu
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dawei Li
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Erik Andrews
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sekhar Duraisamy
- Dana Farber Cancer Institute, Department of Medical Oncology, Center for Molecular Oncologic Pathology, Boston, Massachusetts, United States of America
| | - Cheng Li
- Dana Farber Cancer Institute, Department of Biostatistics and Computational Biology, Boston, Massachusetts, United States of America
| | - Ronny Drapkin
- Dana Farber Cancer Institute, Department of Medical Oncology, Center for Molecular Oncologic Pathology, Boston, Massachusetts, United States of America
- Brigham and Women's Hospital, Department of Pathology, Boston, Massachusetts, United States of America
| | - Thomas Benjamin
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
97
|
Liao SR, Zhou CX, Wu WB, Ou TM, Tan JH, Li D, Gu LQ, Huang ZS. 12-N-Methylated 5,6-dihydrobenzo[c]acridine derivatives: a new class of highly selective ligands for c-myc G-quadruplex DNA. Eur J Med Chem 2012; 53:52-63. [PMID: 22513122 DOI: 10.1016/j.ejmech.2012.03.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 03/16/2012] [Accepted: 03/17/2012] [Indexed: 11/19/2022]
Abstract
12-N-Methylated and non-methylated 5,6-dihydrobenzo[c]acridine derivatives were designed and synthesized as new series of c-myc G-quadruplex binding ligands. Their interactions with c-myc G-quadruplex were evaluated using fluorescence resonance energy transfer (FRET) melting assay, circular dichroism (CD) spectroscopy, surface plasmon resonance (SPR), polymerase chain reaction (PCR) stop assay, and molecular modeling. Compared with the non-methylated derivatives, 12-N-methylated derivatives had stronger binding affinity and stabilizing ability to c-myc G-quadruplex structure, and could more effectively stack on the G-quartet surface. All these derivatives had high selectivity for c-myc G-quadruplex DNA over duplex DNA. The reverse transcription (RT) PCR assay showed that compound 21c could down-regulate transcription of c-myc gene in Ramos cell line containing NHE III(1) element, but had no effect in CA46 cell line with NHE III(1) element removed.
Collapse
Affiliation(s)
- Sheng-Rong Liao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou University City, Waihuan East Road 132, Guangzhou 510006, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Lin S, Gu H, Xu M, Cui X, Zhang Y, Gao W, Yuan G. The formation and stabilization of a novel G-quadruplex in the 5'-flanking region of the relaxin gene. PLoS One 2012; 7:e31201. [PMID: 22363579 PMCID: PMC3283602 DOI: 10.1371/journal.pone.0031201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 01/04/2012] [Indexed: 01/02/2023] Open
Abstract
It has been reported that binding of STAT3 protein to the 5'-flanking region of the relaxin gene may result in downregulation of the relaxin expression. There is a Guanine(G)-rich segment located in about 3.8 Kb upstream of the relaxin gene and very close to the STAT3's binding site. In our study, NMR spectroscopy revealed the formation of G-quadruplex by this G-rich strand, and the result was confirmed by ESI mass spectrometry and CD spectroscopy. The theoretical structure of RLX G-quadruplex was constructed and refined by molecular modeling. When this relaxin G-quadruplex was stabilized by berberine(ΔTm = 10°C), a natural alkaloid from a Chinese herb, the gene expression could be up-regulated in a dose-dependent manner which was proved by luciferase assay. This result is different from the general G-quadruplex function that inhibiting the telomere replication or down-regulating many oncogenes expression. Therefore, our study reported a novel G-quadruplex in the relaxin gene and complemented the regulation mechanism about gene expression by G-quadruplexes.
Collapse
Affiliation(s)
- Sen Lin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Huiping Gu
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Institute of Vascular Medicine, Third Hospital, Peking University, Beijing, China
| | - Ming Xu
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Institute of Vascular Medicine, Third Hospital, Peking University, Beijing, China
- * E-mail: (MX); (GY)
| | - Xiaojie Cui
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Youyi Zhang
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Institute of Vascular Medicine, Third Hospital, Peking University, Beijing, China
| | - Wei Gao
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Institute of Vascular Medicine, Third Hospital, Peking University, Beijing, China
| | - Gu Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- * E-mail: (MX); (GY)
| |
Collapse
|
99
|
Zhang Z, He X, Yuan G. Formation and recognition of G-quadruplex relevant for pilin antigenic variation in Neisseria gonorrhoeae. CAN J CHEM 2012. [DOI: 10.1139/v11-092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this research, NMR, ESI-MS, and circular dichroism (CD) spectroscopies were used to investigate the formation and recognition of G-quadruplex by a G-rich sequence that has been demonstrated to be relevant for pilin variation in Neisseria gonorrhoeae . The NMR spectra provided strong evidence that the G-quadruplex structure was formed from this G-rich sequence, and this result was confirmed by CD spectroscopy. In addition, two small-molecule natural products (jatrorrhizine hydrochloride (J) and dehydrocorydaline (D)) were found to bind to this G-quadruplex over the corresponding duplex DNA with high selectivity by ESI-MS.
Collapse
Affiliation(s)
- Zhenjiang Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Xiangwei He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Gu Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| |
Collapse
|
100
|
Sedoris KC, Thomas SD, Clarkson CR, Muench D, Islam A, Singh R, Miller DM. Genomic c-Myc quadruplex DNA selectively kills leukemia. Mol Cancer Ther 2011; 11:66-76. [PMID: 22084162 DOI: 10.1158/1535-7163.mct-11-0515] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
c-Myc, a key regulator of cell cycle and proliferation, is commonly overexpressed in leukemia and associated with poor prognosis. Conventional antisense oligonucleotides targeting c-myc may attenuate leukemic cell growth, however, are poorly taken into cells, rapidly degraded, and have unwanted effects on normal cells. The c-myc promoter contains a guanine-rich sequence (PU27) capable of forming quadruplex (four-stranded) DNA, which may negatively regulate c-myc transcription. However, its biological significance is unknown. We show that treatment of leukemia with an oligonucleotide encoding the genomic PU27 sequence induces cell-cycle arrest and death by oncotic necrosis due to PU27-mediated suppression of c-myc mRNA/protein expression. Furthermore, PU27 is abundantly taken into cells, localized in the cytoplasm/nucleus, inherently stable in serum and intracellularly, and has no effect on normal cells. Suppression of c-myc expression by PU27 caused significant DNA damage, cell and mitochondrial swelling, and membrane permeability characteristic of oncotic necrosis. Induction of oncosis caused mitochondrial dysfunction, depletion of cellular ATP levels, and enhanced oxidative stress. This novel antileukemic strategy addresses current concerns of oligonucleotide therapeutics including problems with uptake, stability, and unintentional effects on normal cells and is the first report of selective cancer cell killing by a genomic DNA sequence.
Collapse
Affiliation(s)
- Kara C Sedoris
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | |
Collapse
|