51
|
Shah P, Zhao B, Qiang L, He YY. Phosphorylation of xeroderma pigmentosum group C regulates ultraviolet-induced DNA damage repair. Nucleic Acids Res 2019; 46:5050-5060. [PMID: 29660033 PMCID: PMC6007576 DOI: 10.1093/nar/gky239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/21/2018] [Indexed: 12/18/2022] Open
Abstract
Nucleotide excision repair (NER) is the most versatile DNA repair system that removes bulky DNA damage induced by various endogenous and exogenous factors, including UV radiation. Defects in NER can lead to the xeroderma pigmentosum (XP) syndrome, mainly characterized by increased carcinogenesis in the skin. The function of NER factors, including xeroderma pigmentosum group C (XPC), can be regulated by post-translational modifications such as ubiquitination. However, the role of phosphorylation in XPC function remains unknown. Here, we show that phosphorylation of XPC acts as a novel post-translational regulatory mechanism of the NER pathway. We show that XPC is phosphorylated at serine 94. Moreover, after UVB irradiation, XPC phosphorylation regulates recruitment of ubiquitinated XPC and its downstream NER factors to the chromatin. In addition, upon evaluating the predicted kinases for XPC phosphorylation, we found that casein kinase II (CK2) promotes NER. Furthermore, CK2 kinase mediates XPC phosphorylation at serine 94, and also promotes recruitment of ubiquitinated XPC to the chromatin after UVB irradiation. Our findings have identified XPC phosphorylation as a new mechanism for regulating NER following UV-induced DNA damage.
Collapse
Affiliation(s)
- Palak Shah
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL 60637, USA.,Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Baozhong Zhao
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL 60637, USA
| | - Lei Qiang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL 60637, USA.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210008, China
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL 60637, USA.,Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
52
|
Eckhart L, Tschachler E, Gruber F. Autophagic Control of Skin Aging. Front Cell Dev Biol 2019; 7:143. [PMID: 31417903 PMCID: PMC6682604 DOI: 10.3389/fcell.2019.00143] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
The skin forms the barrier to the environment. Maintenance of this barrier during aging requires orchestrated responses to variable types of stress, the continuous renewal of the epithelial compartment, and the homeostasis of long-lived cell types. Recent experimental evidence suggests that autophagy is critically involved in skin homeostasis and skin aging is associated with and partially caused by defects of autophagy. In the outer skin epithelium, autophagy is constitutively active during cornification of keratinocytes and increases the resistance to environmental stress. Experimental suppression of autophagy in the absence of stress is tolerated by the rapidly renewing epidermal epithelium, whereas long-lived skin cells such as melanocytes, Merkel cells and secretory cells of sweat glands depend on autophagy for cellular homeostasis and normal execution of their functions during aging. Yet other important roles of autophagy have been identified in the dermis where senescence of mesenchymal cells and alterations of the extracellular matrix (ECM) are hallmarks of aging. Here, we review the evidence for cell type-specific roles of autophagy in the skin and their differential contributions to aging.
Collapse
Affiliation(s)
- Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Florian Gruber
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| |
Collapse
|
53
|
Joyce S, Nour AM. Blocking transmembrane219 protein signaling inhibits autophagy and restores normal cell death. PLoS One 2019; 14:e0218091. [PMID: 31220095 PMCID: PMC6586287 DOI: 10.1371/journal.pone.0218091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/24/2019] [Indexed: 02/04/2023] Open
Abstract
Autophagy plays a vital role in tumor therapy and survival of dormant tumor cells. Here we describe a novel function of a protein known as Transmembrane 219 (TM219) as an autophagy activator. TM219 is a small membrane protein expressed in all known human tissues except the thymus. We used biochemical approaches to identify calmodulin and calmodulin dependent protein kinase II as a part of TM219 protein complex. Then, we employed in vitro reconstitution system and fluorescence anisotropy to study the requirements of TM219 to bind calmodulin in vitro. We also used this system to study the effects of a synthetic peptide derived from the sequence of the short cytoplasmic tail of TM219 (SCTT) on calmodulin-TM219 receptor interactions. We conjugated SCTT peptide with a pH Low Insertion peptide (pHLIP) for optimal cellular delivery. We finally tested the effects of SCTT-pHLIP on triple negative human breast cancer cells in three dimension culture. Our data defined a novel function of TM219 protein and an efficient approach to inhibit it.
Collapse
Affiliation(s)
- Sean Joyce
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Adel M. Nour
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
54
|
Abstract
Resistance to therapy is one of the prime causes for treatment failure in cancer and recurrent disease. In recent years, autophagy has emerged as an important cell survival mechanism in response to different stress conditions that are associated with cancer treatment and aging. Autophagy is an evolutionary conserved catabolic process through which damaged cellular contents are degraded after uptake into autophagosomes that subsequently fuse with lysosomes for cargo degradation, thereby alleviating stress. In addition, autophagy serves to maintain cellular homeostasis by enriching nutrient pools. Although autophagy can act as a double-edged sword at the interface of cell survival and cell death, increasing evidence suggest that in the context of cancer therapy-induced stress responses, it predominantly functions as a cell survival mechanism. Here, we provide an up-to-date overview on our current knowledge of the role of pro-survival autophagy in cancer therapy at the preclinical and clinical stages and delineate the molecular mechanisms of autophagy regulation in response to therapy-related stress conditions. A better understanding of the interplay of cancer therapy and autophagy may allow to unveil new targets and avenues for an improved treatment of therapy-resistant tumors in the foreseeable future.
Collapse
|
55
|
Akgül B, Kirschberg M, Storey A, Hufbauer M. Human papillomavirus type 8 oncoproteins E6 and E7 cooperate in downregulation of the cellular checkpoint kinase-1. Int J Cancer 2019; 145:797-806. [PMID: 30786016 DOI: 10.1002/ijc.32223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022]
Abstract
Human papillomavirus 8 (HPV8) is associated with the development of squamous cell carcinoma (SCC) of the skin. HPV-infected keratinocytes are able to override normal checkpoint control mechanisms and sustain cell cycle activity, allowing for synthesis of cellular proteins necessary for viral genome amplification. To study how HPV8 may disrupt cell cycle control, we analyzed the impact of HPV8 early gene expression on one of the key regulators of cell cycle and DNA damage response, checkpoint kinase-1 (CHK1). We found that expression of E1, E1̂E4, E2, E6 or E7 individually did not affect CHK1; however, keratinocytes expressing the complete early genome region (CER) of HPV8 showed a profound loss of CHK1 protein levels, that proved to be mediated by E6E7 co-expression. Neither CHK1 promoter regulation nor the ubiquitin-proteasome pathway are involved in HPV8-mediated CHK1 repression. However, CHK1 protein repression in organotypic skin cultures was paralleled by downregulation of the autophagy marker LC3B. Treatment of HPV8-CER expressing cells with the autophagy inhibitor Bafilomycin A1 rescued CHK1 expression and led to LC3B accumulation. Taken together, our data implicate that CHK1 autophagic degradation is enhanced by HPV8, which may contribute to the oncogenic potential of the virus.
Collapse
Affiliation(s)
- Baki Akgül
- Institute of Virology, University of Cologne, Faculty of Medicine, University Hospital of Cologne, Cologne, Germany
| | - Matthias Kirschberg
- Institute of Virology, University of Cologne, Faculty of Medicine, University Hospital of Cologne, Cologne, Germany
| | - Alan Storey
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Martin Hufbauer
- Institute of Virology, University of Cologne, Faculty of Medicine, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
56
|
Das LM, Binko AM, Traylor ZP, Peng H, Lu KQ. Vitamin D improves sunburns by increasing autophagy in M2 macrophages. Autophagy 2019; 15:813-826. [PMID: 30661440 PMCID: PMC6526871 DOI: 10.1080/15548627.2019.1569298] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cutaneous inflammation from UV radiation exposure causes epidermal damage, cellular infiltration, and secretion of pro-inflammatory mediators that exacerbate tissue destruction. Recovery is mediated chiefly by anti-inflammatory M2 macrophages that suppress inflammation and augment epidermal regeneration. Vitamin D enables anti-inflammation to promote tissue repair in response to injury. Since vitamin D enhances cellular macroautophagy/autophagy, we investigated the role of autophagy in vitamin D protection of UV-mediated sunburn and inflammation. Using a UV-mediated acute skin injury mouse model, we demonstrate that a single dose of vitamin D resolves injury with sustained inhibition of inflammatory cytokines associated with enhanced autophagy in myeloid anti-inflammatory M2 macs. Increased MAP1LC3B/LC3 expression corroborated with complete autolysosome formation detected by electron microscopy and correlated with degradation of SQSTM1/p62 in the skin following vitamin D treatment. Specifically, pharmacological inhibition of autophagy increased UV-induced apoptosis, suppressed M2 macs recruitment, and prevented vitamin D downregulation of Tnf and Mmp9 in the skin. Furthermore, selective deletion of autophagy in myeloid cells of atg7 cKO mice abrogated vitamin D-mediated protection and recapitulated UV-induced inflammation. Mechanistically, vitamin D signaling activated M2-autophagy regulators Klf4, Pparg, and Arg1. Lastly, analysis of UV-exposed human skin biopsies detected a similar increase in macrophage autophagy following vitamin D intervention, identifying an essential role for autophagy in vitamin D-mediated protection of skin from UV damage. Abbreviations: ARG1: arginase 1; ATG7 cKO: autophagy related 7 conditional knockout; HPF: high powered field; KLF4: Kruppel like factor 4; MAP1LC3B/LC3: microtubule-associated protein 1 light chain 3 beta; macs: macrophage; 3-MA: 3-methyladenine; MMP9: matrix metallopeptidase 9; NOS2: nitric oxide synthase 2, inducible; PPARG: peroxisome proliferator activated receptor gamma; SQSTM1/p62: sequestosome 1; TNF: tumor necrosis factor; UV: ultraviolet; VD: vitamin D, 25-hydroxy vitamin D3; 1,25-VD: 1, 25-dihydroxy vitamin D3
Collapse
Affiliation(s)
- Lopa M Das
- a Department of Dermatology , Case Western Reserve University School of Medicine , Cleveland , OH , USA
| | - Amy M Binko
- a Department of Dermatology , Case Western Reserve University School of Medicine , Cleveland , OH , USA
| | - Zachary P Traylor
- a Department of Dermatology , Case Western Reserve University School of Medicine , Cleveland , OH , USA
| | - Han Peng
- b Department of Dermatology , Northwestern University , Chicago , IL , USA
| | - Kurt Q Lu
- a Department of Dermatology , Case Western Reserve University School of Medicine , Cleveland , OH , USA.,b Department of Dermatology , Northwestern University , Chicago , IL , USA.,c Department of Dermatology , University Hospitals Cleveland Medical Center , Cleveland , OH , USA
| |
Collapse
|
57
|
Zhao H, Wu S. The Effect of Endothelial Cells on UVB-induced DNA Damage and Transformation of Keratinocytes In 3D Polycaprolactone Scaffold Co-culture System. Photochem Photobiol 2019; 95:338-344. [PMID: 30160308 PMCID: PMC6347483 DOI: 10.1111/php.13006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/16/2018] [Indexed: 12/31/2022]
Abstract
Nitric oxide ( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup><mml:mrow><mml:mi>NO</mml:mi></mml:mrow> <mml:mo>·</mml:mo></mml:msup> </mml:math> ) plays an important role in the regulation of redox balance in keratinocytes post-UVB exposure. Since endothelial cells releases <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup><mml:mrow><mml:mi>NO</mml:mi></mml:mrow> <mml:mo>·</mml:mo></mml:msup> </mml:math> for a prolonged time post-UVB, we determined whether human umbilical vein endothelial cells (HUVEC) could have an effect on UVB-induced DNA damage and transformation of their adjacent keratinocytes (HaCaT) using a 3D cell co-culturing system. Our data show that the levels of DNA breaks and/or cyclobutane pyrimidine dimer (CPD) along with γH2AX are higher in the co-cultured than in the mono-cultured keratinocytes post-UVB. The <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup><mml:mrow><mml:mi>NO</mml:mi></mml:mrow> <mml:mo>·</mml:mo></mml:msup> </mml:math> level in the co-cultured cells is increased approximately 3-fold more than in mono-cultured HaCaT cells within 1-hour post-UVB but then is reduced quickly in co-cultured HaCaT cells comparing to mono-cultured cells from 6 to 24 h post-UVB. However, the peroxynitrite (ONOO- ) level is higher in the co-cultured than in the mono-cultured HaCaT cells in whole period post-UVB. Furthermore, while expression level of inducible nitric oxide synthase (iNOS) is increased, the ratio of coupled/uncoupled eNOS is reduced in co-cultured HaCaT cells compared to mono-cultured HaCaT cells. Finally, the co-cultured cells have a significantly increased transformation efficiency after repeating UVB exposure compared to mono-culture HaCaT cells. Our results suggest that endothelial cells could enhance <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup><mml:mrow><mml:mi>NO</mml:mi></mml:mrow> <mml:mo>·</mml:mo></mml:msup> </mml:math> /ONOO- imbalance and promote transformation of adjacent keratinocytes.
Collapse
|
58
|
Chung Y, Jeong S, Choi HS, Ro S, Lee JS, Park JK. Upregulation of autophagy by Ginsenoside Rg2 in MCF-7 cells. Anim Cells Syst (Seoul) 2018; 22:382-389. [PMID: 30533260 PMCID: PMC6282429 DOI: 10.1080/19768354.2018.1545696] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a major intracellular degradation process that plays an important role in cell survival, stress responses, nutrient sensing and development. Our previous studies have shown that Rg2, a triterpenoid saponin contained in ginseng, protects cells against UVB-induced genotoxicity by increasing DNA repair, in possible association with modulation of protein levels involved in p53 pathway. In this study, we determined an upregulation of autophagy by Rg2. Rg2 treatment for 24 h in MCF-7, a breast cancer cell, did not show cytotoxicity up to 200 μM. Rg2 also upregulated the level of p-p53, p-AMPK, p-ACC, Atg-7 and LC3-II and decreased the level of p62 in concentration-dependent manners. We also determined the level of p53, AMPK, p62, Atg-7 and LC3 after UVB exposure and subsequent incubation in growth medium for 24 h. UVB increased the level of p-p53, p-AMPK, p-ACC and decreased the levels of p62, Atg-7 and LC3-II. Interestingly, Rg2 treatment for 24 h after UVB exposure increased the levels of p-p53, p-AMPK, p-ACC, Atg-7 and LC3-II and decreased the level of cyclobutane pyrimidine dimer, a UVB-induced DNA damage in concentration-dependent manners. All these results suggest that Rg2 increased autophagy and decreased UVB-induced DNA damage, in possible association with the modulation of protein levels in p53- and autophagic pathways.
Collapse
Affiliation(s)
- Yuheon Chung
- Division of Biological Sciences, Wonkwang University, Iksan, Republic of Korea
| | - Seula Jeong
- Division of Biological Sciences, Wonkwang University, Iksan, Republic of Korea
| | - Hyun Seok Choi
- Division of Biological Sciences, Wonkwang University, Iksan, Republic of Korea
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Jung Sup Lee
- Department of Life Science, Chosun University, Gwangju, Republic of Korea
| | - Jong Kun Park
- Division of Biological Sciences, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
59
|
Aden K, Tran F, Ito G, Sheibani-Tezerji R, Lipinski S, Kuiper JW, Tschurtschenthaler M, Saveljeva S, Bhattacharyya J, Häsler R, Bartsch K, Luzius A, Jentzsch M, Falk-Paulsen M, Stengel ST, Welz L, Schwarzer R, Rabe B, Barchet W, Krautwald S, Hartmann G, Pasparakis M, Blumberg RS, Schreiber S, Kaser A, Rosenstiel P. ATG16L1 orchestrates interleukin-22 signaling in the intestinal epithelium via cGAS-STING. J Exp Med 2018; 215:2868-2886. [PMID: 30254094 PMCID: PMC6219748 DOI: 10.1084/jem.20171029] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 01/11/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022] Open
Abstract
A coding variant of the inflammatory bowel disease (IBD) risk gene ATG16L1 has been associated with defective autophagy and deregulation of endoplasmic reticulum (ER) function. IL-22 is a barrier protective cytokine by inducing regeneration and antimicrobial responses in the intestinal mucosa. We show that ATG16L1 critically orchestrates IL-22 signaling in the intestinal epithelium. IL-22 stimulation physiologically leads to transient ER stress and subsequent activation of STING-dependent type I interferon (IFN-I) signaling, which is augmented in Atg16l1 ΔIEC intestinal organoids. IFN-I signals amplify epithelial TNF production downstream of IL-22 and contribute to necroptotic cell death. In vivo, IL-22 treatment in Atg16l1 ΔIEC and Atg16l1 ΔIEC/Xbp1 ΔIEC mice potentiates endogenous ileal inflammation and causes widespread necroptotic epithelial cell death. Therapeutic blockade of IFN-I signaling ameliorates IL-22-induced ileal inflammation in Atg16l1 ΔIEC mice. Our data demonstrate an unexpected role of ATG16L1 in coordinating the outcome of IL-22 signaling in the intestinal epithelium.
Collapse
Affiliation(s)
- Konrad Aden
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Department of Internal Medicine I., Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Department of Internal Medicine I., Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Go Ito
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Raheleh Sheibani-Tezerji
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Simone Lipinski
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jan W Kuiper
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Markus Tschurtschenthaler
- Department of Medicine II, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, England, UK
| | - Svetlana Saveljeva
- Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, England, UK
| | - Joya Bhattacharyya
- Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, England, UK
| | - Robert Häsler
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Kareen Bartsch
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Anne Luzius
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Marlene Jentzsch
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stephanie T Stengel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Lina Welz
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Robin Schwarzer
- Institute for Genetics, CECAD, University of Cologne, Cologne, Germany
| | - Björn Rabe
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Winfried Barchet
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Stefan Krautwald
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | | | - Richard S Blumberg
- Gastroenterology Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Department of Internal Medicine I., Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, England, UK
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
60
|
Schott CR, Ludwig L, Mutsaers AJ, Foster RA, Wood GA. The autophagy inhibitor spautin-1, either alone or combined with doxorubicin, decreases cell survival and colony formation in canine appendicular osteosarcoma cells. PLoS One 2018; 13:e0206427. [PMID: 30372478 PMCID: PMC6205606 DOI: 10.1371/journal.pone.0206427] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022] Open
Abstract
Dogs diagnosed with appendicular osteosarcoma typically succumb to metastatic disease within a year of diagnosis. The current standard of care for curative intent, amputation followed by adjuvant chemotherapy, increases survival time but chemoresistance is a major contributor to mortality. Unfortunately, the mechanisms driving the progression of metastatic disease and the development of chemoresistance are unknown. One theory is that autophagy may contribute to chemoresistance by providing neoplastic cells with a mechanism to survive chemotherapy treatment. Our objective was to evaluate the effect of combining an autophagy inhibitor with a standard chemotherapeutic drug on response to chemotherapy in canine appendicular osteosarcoma cells. We hypothesized that combining the autophagy inhibitor spautin-1 with doxorubicin treatment would enhance chemoresponsiveness. Using commercial (D17) and primary cell lines derived from 1° and 2° sites of osteosarcoma, we showed that this combination treatment enhances cell killing and inhibits colony formation. Our findings support the theory that autophagy contributes to chemoresistance in canine appendicular osteosarcoma and indicate that adding an autophagy inhibitor to the standard of care has the potential to improve outcome.
Collapse
Affiliation(s)
- Courtney R. Schott
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Latasha Ludwig
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Anthony J. Mutsaers
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Robert A. Foster
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Geoffrey A. Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
61
|
Zheng X, Chen K, Liu X, Jiang G, Liu H. High expression of ERCC5 predicts a poor prognosis in hepatocellular carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3664-3670. [PMID: 31949747 PMCID: PMC6962895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/24/2018] [Indexed: 06/10/2023]
Abstract
Human cells exposed to environmental or endogenous carcinogens can develop DNA damage. This DNA damage may contribute to a susceptibility to cancer; therefore, it is important to repair these defects. The nucleotide excision repair pathway (NER) is a versatile DNA repair pathway that eliminates a wide variety of helix-distorting base lesions induced by environmental or endogenous carcinogenic sources. The excision repair cross-complementation group 5 (ERCC5) gene is a central component of NER. Ectopic expression of ERCC5 has been linked to different types of cancers, including hepatocellular carcinoma (HCC). However, previous reports, mainly based on mRNA level and the role of ERCC5 in cancer, remain conflicting and unclear. In this study, we examined 104 cases of HCC for immunohistochemistry to explore the role of ERCC5 protein in HCC. We found the expression of ERCC5 protein was significantly increased in tumor tissues compared to paracancerous ones (P<0.01). The percentage of positive staining of ERCC5 in tumor tissues was 28.8% (30/104), while only 4.8% (5/104) in paracancerous tissues. Patients with low ERCC5 expression levels had a better overall survival rate and remained disease-free longer (both P<0.01). In addition, univariate and multivariate analysis showed a high expression of ERCC5 protein and large tumor size predict a poor prognosis for patients with HCC (P<0.05).
Collapse
Affiliation(s)
- Xueyong Zheng
- Department of General Surgery, Institute of Minimally Invasive Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityNo. 3, Qingchun Road, Hangzhou 310016, China
| | - Ke Chen
- Department of General Surgery, Institute of Minimally Invasive Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityNo. 3, Qingchun Road, Hangzhou 310016, China
| | - Xiaolong Liu
- Department of General Surgery, Institute of Minimally Invasive Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityNo. 3, Qingchun Road, Hangzhou 310016, China
| | - Guangyi Jiang
- Department of General Surgery, Institute of Minimally Invasive Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityNo. 3, Qingchun Road, Hangzhou 310016, China
| | - Hui Liu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang UniversityHangzhou, Zhejiang, China
| |
Collapse
|
62
|
Lleonart ME, Abad E, Graifer D, Lyakhovich A. Reactive Oxygen Species-Mediated Autophagy Defines the Fate of Cancer Stem Cells. Antioxid Redox Signal 2018; 28:1066-1079. [PMID: 28683561 DOI: 10.1089/ars.2017.7223] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Significance: A fraction of tumorigenic cells, also known as tumor initiating or cancer stem cells (CSCs), is thought to drive tumor growth, metastasis, and chemoresistance. However, little is known regarding mechanisms that convey relevant pathways contributing to their self-renewal, proliferation, and differentiation abilities. Recent Advances: Recent works on CSCs provide evidence on the role of redox disruption and regulation of autophagic flux. This has been linked to increased DNA repair capacity and chemoresistance. Critical Issues: The current review summarizes the most recent studies assessing the role of redox homeostasis, autophagy, and chemoresistance in CSCs, including some novel findings on microRNAs and their role in horizontal transfer within cancer cell populations. Future Directions: Rational anticancer therapy and prevention should rely on the fact that cancer is a redox disease with the CSCs being the apex modulated by redox-mediated autophagy. Antioxid. Redox Signal. 28, 1066-1079.
Collapse
Affiliation(s)
- Matilde E Lleonart
- Biomedical Research in Cancer Stem Cells, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Etna Abad
- Biomedical Research in Cancer Stem Cells, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Dmitry Graifer
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Alex Lyakhovich
- Biomedical Research in Cancer Stem Cells, Vall d'Hebron Research Institute, Barcelona, Spain.,Institute of Molecular Biology and Biophysics, Novosibirsk, Russia.,ICRC-FNUSA, International Clinical Research Center and St. Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
63
|
Nishida K, Tamura A, Yui N. ER stress-mediated autophagic cell death induction through methylated β-cyclodextrins-threaded acid-labile polyrotaxanes. J Control Release 2018; 275:20-31. [PMID: 29428200 DOI: 10.1016/j.jconrel.2018.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/26/2018] [Accepted: 02/06/2018] [Indexed: 12/11/2022]
Abstract
Autophagy plays a pivotal role in the development and prevention of numerous diseases, and the induction of autophagy is regarded as a potential therapeutic approach for intractable diseases. In this study, the induction of autophagy by methylated β-cyclodextrins (Me-β-CDs)-threaded acid-labile polyrotaxane (Me-PRX) that can release the threaded Me-β-CDs in response to acidic pH in lysosomes was investigated. We hypothesized that the Me-β-CDs released from the Me-PRX interact with the membrane of organelles and cause autophagy. The Me-PRX preferentially accumulated in endoplasmic reticulum (ER) and caused ER stress, which was confirmed by gene expression analysis and the expression of an ER stress-marker protein. Accompanying the ER stress, cells treated with Me-PRX showed autophagy, which was not observed in cells treated with non-labile Me-PRX, other chemically modified PRXs, or free Me-β-CD. Furthermore, the Me-PRX treatment induced autophagic cell death and caused cell death even in apoptosis-resistant cells. Overall, this study demonstrates that the acid-labile Me-PRX induces ER stress-mediated autophagic cell death, and the Me-PRX would be a promising candidate to induce effective cell death in apoptosis-resistant malignant tumors.
Collapse
Affiliation(s)
- Kei Nishida
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
64
|
Jiao L, Zhang HL, Li DD, Yang KL, Tang J, Li X, Ji J, Yu Y, Wu RY, Ravichandran S, Liu JJ, Feng GK, Chen MS, Zeng YX, Deng R, Zhu XF. Regulation of glycolytic metabolism by autophagy in liver cancer involves selective autophagic degradation of HK2 (hexokinase 2). Autophagy 2017; 14:671-684. [PMID: 28980855 DOI: 10.1080/15548627.2017.1381804] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Impaired macroautophagy/autophagy and high levels of glycolysis are prevalent in liver cancer. However, it remains unknown whether there is a regulatory relationship between autophagy and glycolytic metabolism. In this study, by utilizing cancer cells with basal or impaired autophagic flux, we demonstrated that glycolytic activity is negatively correlated with autophagy level. The autophagic degradation of HK2 (hexokinase 2), a crucial glycolytic enzyme catalyzing the conversion of glucose to glucose-6-phosphate, was found to be involved in the regulation of glycolysis by autophagy. The Lys63-linked ubiquitination of HK2 catalyzed by the E3 ligase TRAF6 was critical for the subsequent recognition of HK2 by the autophagy receptor protein SQSTM1/p62 for the process of selective autophagic degradation. In a tissue microarray of human liver cancer, the combination of high HK2 expression and high SQSTM1 expression was shown to have biological and prognostic significance. Furthermore, 3-BrPA, a pyruvate analog targeting HK2, significantly decreased the growth of autophagy-impaired tumors in vitro and in vivo (p < 0.05). By demonstrating the regulation of glycolysis by autophagy through the TRAF6- and SQSTM1-mediated ubiquitination system, our study may open an avenue for developing a glycolysis-targeting therapeutic intervention for treatment of autophagy-impaired liver cancer.
Collapse
Affiliation(s)
- Lin Jiao
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University , Guangzhou , China.,b Department of Respiratory Disease , Daping Hospital, Army Medical University , Chongqing , China
| | - Hai-Liang Zhang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University , Guangzhou , China
| | - Dan-Dan Li
- c Department of Biotherapy , Cancer Center, Sun Yat-sen University , Guangzhou , China
| | - Ke-Li Yang
- d Department of Hepatobiliary Surgery , Cancer Center, Sun Yat-sen University , Guangzhou , China
| | - Jun Tang
- e Department of Breast Oncology , Cancer Center, Sun Yat-sen University , Guangzhou , China
| | - Xuan Li
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University , Guangzhou , China
| | - Jiao Ji
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University , Guangzhou , China
| | - Yan Yu
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University , Guangzhou , China
| | - Rui-Yan Wu
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University , Guangzhou , China
| | - Senthilkumar Ravichandran
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University , Guangzhou , China
| | - Jian-Jun Liu
- f Department of Head-neck and Breast Surgery , Anhui Provincial Cancer Hospital, West branch of Anhui Provincial Hospital , Hefei , China
| | - Gong-Kan Feng
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University , Guangzhou , China
| | - Min-Shan Chen
- d Department of Hepatobiliary Surgery , Cancer Center, Sun Yat-sen University , Guangzhou , China
| | - Yi-Xin Zeng
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University , Guangzhou , China
| | - Rong Deng
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University , Guangzhou , China
| | - Xiao-Feng Zhu
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University , Guangzhou , China
| |
Collapse
|
65
|
Li R, Luo X, Zhu Y, Zhao L, Li L, Peng Q, Ma M, Gao Y. ATM signals to AMPK to promote autophagy and positively regulate DNA damage in response to cadmium-induced ROS in mouse spermatocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1560-1568. [PMID: 28964605 DOI: 10.1016/j.envpol.2017.09.044] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/28/2017] [Accepted: 09/13/2017] [Indexed: 05/27/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal and harmful to human health due to its ability to accumulate in organs. Previous studies have shown that Cd can induce DNA damage and autophagy. Autophagy can stabilize genetic material and DNA integrity. The aim of the present study was to determine the exact mechanism and role of autophagy induced by Cd in spermatozoa cells. Mouse spermatocyte-derived cells (GC-2) were treated with 20 μM Cd chloride for 24 h. The level of reactive oxygen species (ROS), DNA damage, autophagy and the expression of the molecular signaling pathway ATM/AMP-activated protein kinase (AMPK)/mTOR were determined. The results showed that Cd induced autophagy and DNA damage in GC-2 cells via ROS generation, and the autophagy signal pathway AMPK/mTOR was activated by ATM which is a DNA damage sensor. Melatonin, a well-known antioxidant, ameliorated DNA damage, and inhibited autophagy via the AMPK/mTOR signal pathway. Furthermore, after inhibition of autophagy by knockdown of AMPKα, increased DNA damage by Cd treatment was observed in GC-2 cells. These findings demonstrated the protective role of autophagy in DNA damage and suggested that the mechanism of autophagy induced by Cd was through the ATM/AMPK/mTOR signal pathway in spermatozoa cells.
Collapse
Affiliation(s)
- Renyan Li
- Chongqing Institute of Population and Family Planning, Key Laboratory of Birth Defects and Reproductive Health, Chongqing, China
| | - Xue Luo
- Institute of Tropical Medicine, Third Military Medical University, Chongqing, China
| | - Yijian Zhu
- Chongqing Institute of Population and Family Planning, Key Laboratory of Birth Defects and Reproductive Health, Chongqing, China
| | - Letian Zhao
- Chongqing Institute of Population and Family Planning, Key Laboratory of Birth Defects and Reproductive Health, Chongqing, China
| | - Lianbing Li
- Chongqing Institute of Population and Family Planning, Key Laboratory of Birth Defects and Reproductive Health, Chongqing, China
| | - Qiang Peng
- Beibei District of Chongqing Municipal Public Security Bureau of Interpol Detachment, Chongqing, 400700, China
| | - Mingfu Ma
- Chongqing Institute of Population and Family Planning, Key Laboratory of Birth Defects and Reproductive Health, Chongqing, China.
| | - Yanfei Gao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
66
|
Shah P, Qiang L, Yang S, Soltani K, He YY. Regulation of XPC deubiquitination by USP11 in repair of UV-induced DNA damage. Oncotarget 2017; 8:96522-96535. [PMID: 29228550 PMCID: PMC5722502 DOI: 10.18632/oncotarget.22105] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/13/2017] [Indexed: 12/31/2022] Open
Abstract
Nucleotide excision repair (NER) is the most versatile DNA repair pathway for removing DNA damage caused by UV radiation and many environmental carcinogens. NER is essential for suppressing tumorigenesis in the skin, lungs and brain. Although the core NER proteins have been identified and characterized, molecular regulation of NER remains poorly understood. Here we show that ubiquitin-specific peptidase 11 (USP11) positively regulates NER by deubiquitinating xeroderma pigmentosum complementation group C (XPC) and promoting its retention at the DNA damage sites. In addition, UV irradiation induces both USP11 recruitment to the chromatin and USP11 interaction with XPC in an XPC-ubiquitination-dependent manner. Furthermore, we found that USP11 is down-regulated in chronically UV-exposed mouse skin and in skin tumors from mice and humans. Our findings indicate that USP11 plays an important role in maintaining NER capacity, and suggest that USP11 acts as a tumor suppressor via its role in DNA repair.
Collapse
Affiliation(s)
- Palak Shah
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
- Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, Chicago, IL, USA
| | - Lei Qiang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Seungwon Yang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Keyoumars Soltani
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
- Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
67
|
Autophagy Roles in the Modulation of DNA Repair Pathways. Int J Mol Sci 2017; 18:ijms18112351. [PMID: 29112132 PMCID: PMC5713320 DOI: 10.3390/ijms18112351] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/27/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023] Open
Abstract
Autophagy and DNA repair are biological processes vital for cellular homeostasis maintenance and when dysfunctional, they lead to several human disorders including premature aging, neurodegenerative diseases, and cancer. The interchange between these pathways is complex and it may occur in both directions. Autophagy is activated in response to several DNA lesions types and it can regulate different mechanisms and molecules involved in DNA damage response (DDR), such as cell cycle checkpoints, cell death, and DNA repair. Thus, autophagy may modulate DNA repair pathways, the main focus of this review. In addition to the already well-documented autophagy positive effects on homologous recombination (HR), autophagy has also been implicated with other DNA repair mechanisms, such as base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). Given the relevance of these cellular processes, the clinical applications of drugs targeting this autophagy-DNA repair interface emerge as potential therapeutic strategies for many diseases, especially cancer.
Collapse
|
68
|
Qiang L, Sample A, Liu H, Wu X, He YY. Epidermal SIRT1 regulates inflammation, cell migration, and wound healing. Sci Rep 2017; 7:14110. [PMID: 29074993 PMCID: PMC5658409 DOI: 10.1038/s41598-017-14371-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/09/2017] [Indexed: 01/12/2023] Open
Abstract
Sirtuins (SIRT1-7) are NAD-dependent proteins with the enzymatic activity of deacetylases and ADP ribosyltransferases. SIRT1 is the proto member of the proteins in the mammalian sirtuin family and plays multiple roles in aging and disease. Using mice with epidermis-specific SIRT1 deletion, we show that SIRT1 is required for efficient wound healing. SIRT1 deficiency in the epidermis inhibited the regeneration of both the epidermis and the dermal stroma. SIRT1 loss altered the production of many cytokines, inhibited the recruitment of macrophages, neutrophils, and mast cells, the recruitment and activation of fibroblasts, and angiogenesis in the granulation tissue. In keratinocytes, SIRT1 knockdown inhibited EMT, cell migration, and TGF-β signaling. For the first time, using skin-specific mouse model, we demonstrate that epidermal SIRT1 plays a crucial role in wound repair. These findings are novel in understanding how wound healing is regulated. Our findings provide in vivo and in vitro evidence that SIRT1 in the epidermis regulates cell migration, redox response, inflammation, epidermis re-epithelialization, granulation formation, and proper wound healing in mice.
Collapse
Affiliation(s)
- Lei Qiang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA. .,State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Ashley Sample
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA.,Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Han Liu
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL, 60637, USA
| | - Xiaoyang Wu
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA.,Ben May Department of Cancer Research, University of Chicago, Chicago, IL, 60637, USA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA. .,Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
69
|
Li Z, Xin J, Chen W, Liu J, Zhu M, Zhao C, Yuan J, Jin G, Ma H, Du J, Hu Z, Wu T, Shen H, Dai J, Yu H. Genetic variants in autophagy associated genes are associated with DNA damage levels in Chinese population. Gene 2017; 626:414-419. [PMID: 28512061 DOI: 10.1016/j.gene.2017.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/03/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022]
Abstract
Autophagy associated genes (ATGs) played an important role in the repair process of DNA damage and decreased autophagy may weaken the repair process and aggravate DNA damage. Based on this, we hypothesized that DNA damage levels might be modified by genetic variants in autophagy associated genes. In order to validate our hypothesis, 307 subjects were recruited from three different cities (Zhuhai, Wuhan and Tianjin) in China. Demographic data, individual 24-h PM2.5 exposure and peripheral blood DNA damage levels were also detected. Seven potentially functional polymorphisms in four essential autophagy associated genes (ATG5, ATG7, ATG8 and ATG13) were screened to evaluate the relationship between the polymorphisms of autophagy associated genes and DNA damage levels. This association was assessed by using multivariable linear regression model, age, sex, smoke and PM2.5 exposure levels were adjusted in each city. We found that rs12599322 in ATG8 (A>G, β=0.263, 95% CI: 0.108-0.419, P=8.98×10-4) and rs7484002 in ATG13 (A>G, β=0.396, 95% CI: 0.085-0.708, P=0.013) were significantly associated with higher DNA damage levels. Furthermore, functional annotations showed that both rs12599322 and rs7484002 located at transcription factor binding sites (TFBS), indicating that they could regulate the expression of related genes through TF regulation. Following allelic trend analysis revealed that the DNA damage levels were significantly aggravated with the increasing number of risk variants in autophagy associated genes (P for trend: 8.09×10-5). Our findings suggested that the polymorphisms in ATGs may influence DNA damage levels in one of the Chinese population.
Collapse
Affiliation(s)
- Zhihua Li
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junyi Xin
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weihong Chen
- Ministry of Education Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jia Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meng Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Congwen Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Yuan
- Ministry of Education Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiangbo Du
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tangchun Wu
- Ministry of Education Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
70
|
Sample A, Zhao B, Qiang L, He YY. Adaptor protein p62 promotes skin tumor growth and metastasis and is induced by UVA radiation. J Biol Chem 2017; 292:14786-14795. [PMID: 28724634 DOI: 10.1074/jbc.m117.786160] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/17/2017] [Indexed: 11/06/2022] Open
Abstract
Skin cancer is the most common cancer, and exposure to ultraviolet (UV) radiation, namely UVA and UVB, is the major risk factor for skin cancer development. UVA is significantly less effective in causing direct DNA damage than UVB, but UVA has been shown to increase skin cancer risk. The mechanism by which UVA contributes to skin cancer remains unclear. Here, using RNA-Seq, we show that UVA induces autophagy and lysosomal gene expression, including the autophagy receptor and substrate p62. We found that UVA activates transcription factor EB (TFEB), a known regulator of autophagy and lysosomal gene expression, which, in turn, induces p62 transcription. Next, we identified a novel relationship between p62 and cyclooxygenase-2 (COX-2), a prostaglandin synthase critical for skin cancer development. COX-2 expression was up-regulated by UVA-induced p62, suggesting that p62 plays a role in UVA-induced skin cancer. Moreover, we found that p62 stabilizes COX-2 protein through the p62 ubiquitin-associated domain and that p62 regulates prostaglandin E2 production in vitro In a syngeneic squamous cell carcinoma mouse model, p62 knockdown inhibited tumor growth and metastasis. Furthermore, p62-deficient tumors exhibited reduced immune cell infiltration and increased cell differentiation. Because prostaglandin E2 is known to promote pro-tumorigenic immune cell infiltration, increase proliferation, and inhibit keratinocyte differentiation in vivo, this work suggests that UVA-induced p62 acts through COX-2 to promote skin tumor growth and progression. These findings expand our understanding of UVA-induced skin tumorigenesis and tumor progression and suggest that targeting p62 can help prevent or treat UVA-associated skin cancer.
Collapse
Affiliation(s)
- Ashley Sample
- From the Department of Medicine, Section of Dermatology, and.,the Committee on Cancer Biology, University of Chicago, Chicago, Illinois 60637 and
| | - Baozhong Zhao
- From the Department of Medicine, Section of Dermatology, and
| | - Lei Qiang
- From the Department of Medicine, Section of Dermatology, and.,the School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210008, China
| | - Yu-Ying He
- From the Department of Medicine, Section of Dermatology, and .,the Committee on Cancer Biology, University of Chicago, Chicago, Illinois 60637 and
| |
Collapse
|
71
|
Sample A, He YY. Autophagy in UV Damage Response. Photochem Photobiol 2017; 93:943-955. [PMID: 27935061 PMCID: PMC5466513 DOI: 10.1111/php.12691] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/22/2016] [Indexed: 12/14/2022]
Abstract
UV radiation exposure from sunlight and artificial tanning beds is the major risk factor for the development of skin cancer and skin photoaging. UV-induced skin damage can trigger a cascade of DNA damage response signaling pathways, including cell cycle arrest, DNA repair and, if damage is irreparable, apoptosis. Compensatory proliferation replaces the apoptotic cells to maintain skin barrier integrity. Disruption of these processes can be exploited to promote carcinogenesis by allowing the survival and proliferation of damaged cells. UV radiation also induces autophagy, a catabolic process that clears unwanted or damaged proteins, lipids and organelles. The mechanisms by which autophagy is activated following UV exposure, and the functions of autophagy in UV response, are only now being clarified. Here, we summarize the current understanding of the mechanisms governing autophagy regulation by UV, the roles of autophagy in regulating cellular response to UV-induced photodamage and the implications of autophagy modulation in the treatment and prevention of photoaging and skin cancer.
Collapse
Affiliation(s)
- Ashley Sample
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL
- Committee on Cancer Biology, University of Chicago, Chicago, IL
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL
- Committee on Cancer Biology, University of Chicago, Chicago, IL
| |
Collapse
|
72
|
Jarrett SG, Carter KM, D'Orazio JA. Paracrine regulation of melanocyte genomic stability: a focus on nucleotide excision repair. Pigment Cell Melanoma Res 2017; 30:284-293. [PMID: 28192636 PMCID: PMC5411317 DOI: 10.1111/pcmr.12582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023]
Abstract
UV radiation is a major environmental risk factor for the development of melanoma by causing DNA damage and mutations. Resistance to UV damage is largely determined by the capacity of melanocytes to respond to UV injury by repairing mutagenic photolesions. The nucleotide excision repair (NER) pathway is the major mechanism by which cells correct UV photodamage. This multistep process involves the basic steps of damage recognition, isolation, localized strand unwinding, assembly of a repair complex, excision of the damage-containing strand 3' and 5' to the photolesion, synthesis of a sequence-appropriate replacement strand, and finally ligation to restore continuity of genomic DNA. In melanocytes, the efficiency of NER is regulated by several hormonal pathways including the melanocortin and endothelin signaling pathways. Elucidating molecular mechanisms by which melanocyte DNA repair is regulated offers the possibility of developing novel melanoma-preventive strategies to reduce UV mutagenesis, especially in UV-sensitive melanoma-prone individuals.
Collapse
Affiliation(s)
- Stuart Gordon Jarrett
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, USA
| | | | - John August D'Orazio
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, USA
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
73
|
Song X, Narzt MS, Nagelreiter IM, Hohensinner P, Terlecki-Zaniewicz L, Tschachler E, Grillari J, Gruber F. Autophagy deficient keratinocytes display increased DNA damage, senescence and aberrant lipid composition after oxidative stress in vitro and in vivo. Redox Biol 2017; 11:219-230. [PMID: 28012437 PMCID: PMC5192251 DOI: 10.1016/j.redox.2016.12.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 01/05/2023] Open
Abstract
Autophagy allows cells fundamental adaptations to metabolic needs and to stress. Using autophagic bulk degradation cells can clear crosslinked macromolecules and damaged organelles that arise under redox stress. Accumulation of such debris results in cellular dysfunction and is observed in aged tissue and senescent cells. Conversely, promising anti-aging strategies aim at inhibiting the mTOR pathway and thereby activating autophagy, to counteract aging associated damage. We have inactivated autophagy related 7 (Atg7), an essential autophagy gene, in murine keratinocytes (KC) and have found in an earlier study that this resulted in increased baseline oxidative stress and reduced capacity to degrade crosslinked proteins after oxidative ultraviolet stress. To investigate whether autophagy deficiency would promote cellular aging, we studied how Atg7 deficient (KO) and Atg7 bearing cells (WT) would respond to stress induced by paraquat (PQ), an oxidant drug commonly used to induce cellular senescence. Atg7 deficient KC displayed increased prostanoid signaling and a pro- mitotic gene expression signature as compared to the WT. After exposure to PQ, both WT and KO cells showed an inflammatory and stress-related transcriptomic response. However, the Atg7 deficient cells additionally showed drastic DNA damage- and cell cycle arrest signaling. Indeed, DNA fragmentation and -oxidation were strongly increased in the stressed Atg7 deficient cells upon PQ stress but also after oxidizing ultraviolet A irradiation. Damage associated phosphorylated histone H2AX (γH2AX) foci were increased in the nuclei, whereas expression of the nuclear lamina protein lamin B1 was strongly decreased. Similarly, in both, PQ treated mouse tail skin explants and in UVA irradiated mouse tail skin, we found a strong increase in γH2AX positive nuclei within the basal layer of Atg7 deficient epidermis. Atg7 deficiency significantly affected expression of lipid metabolic genes. Therefore we performed lipid profiling of keratinocytes which demonstrated a major dysregulation of cellular lipid metabolism. We found accumulation of autophagy agonisitic free fatty acids, whereas triglyceride levels were strongly decreased. Together, our data show that in absence of Atg7/autophagy the resistance of keratinocytes to intrinsic and environmental oxidative stress was severely impaired and resulted in DNA damage, cell cycle arrest and a disturbed lipid phenotype, all typical for premature cell aging.
Collapse
Affiliation(s)
- Xiuzu Song
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, Leitstelle 7J, A-1090 Vienna, Austria; Department of Dermatology, The Third Hospital of Hangzhou, 38 Xihu Road, Hangzhou, Zhejiang, 310009, PR China
| | - Marie Sophie Narzt
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, Leitstelle 7J, A-1090 Vienna, Austria
| | - Ionela Mariana Nagelreiter
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, Leitstelle 7J, A-1090 Vienna, Austria
| | - Philipp Hohensinner
- Department of Internal Medicine II - Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Lucia Terlecki-Zaniewicz
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, Leitstelle 7J, A-1090 Vienna, Austria
| | - Johannes Grillari
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Muthgasse 18, 1190 Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, Leitstelle 7J, A-1090 Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Austria.
| |
Collapse
|
74
|
Impact on Autophagy and Ultraviolet B Induced Responses of Treatment with the MTOR Inhibitors Rapamycin, Everolimus, Torin 1, and pp242 in Human Keratinocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5930639. [PMID: 28400912 PMCID: PMC5376460 DOI: 10.1155/2017/5930639] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/15/2017] [Accepted: 02/13/2017] [Indexed: 12/21/2022]
Abstract
The mechanistic target of Rapamycin (MTOR) protein is a crucial signaling regulator in mammalian cells that is extensively involved in cellular biology. The function of MTOR signaling in keratinocytes remains unclear. In this study, we detected the MTOR signaling and autophagy response in the human keratinocyte cell line HaCaT and human epidermal keratinocytes treated with MTOR inhibitors. Moreover, we detected the impact of MTOR inhibitors on keratinocytes exposed to the common carcinogenic stressors ultraviolet B (UVB) and UVA radiation. As a result, keratinocytes were sensitive to the MTOR inhibitors Rapamycin, everolimus, Torin 1, and pp242, but the regulation of MTOR downstream signaling was distinct. Next, autophagy induction only was observed in HaCaT cells treated with Rapamycin. Furthermore, we found that MTOR signaling was insensitive to UVB but sensitive to UVA radiation. UVB treatment also had no impact on the inhibition of MTOR signaling by MTOR inhibitors. Finally, MTOR inhibition by Rapamycin, everolimus, or pp242 did not affect the series of biological events in keratinocytes exposed to UVB, including the downregulation of BiP and PERK, activation of Histone H2A and JNK, and cleavage of caspase-3 and PARP. Our study demonstrated that MTOR inhibition in keratinocytes cannot always induce autophagy, and the MTOR pathway does not play a central role in the UVB triggered cellular response.
Collapse
|
75
|
Yang S, Qiang L, Sample A, Shah P, He YY. NF-κB Signaling Activation Induced by Chloroquine Requires Autophagosome, p62 Protein, and c-Jun N-terminal Kinase (JNK) Signaling and Promotes Tumor Cell Resistance. J Biol Chem 2017; 292:3379-3388. [PMID: 28082672 DOI: 10.1074/jbc.m116.756536] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/10/2017] [Indexed: 12/30/2022] Open
Abstract
Macroautophagy (hereafter autophagy) is a catabolic cellular self-eating process by which unwanted organelles or proteins are delivered to lysosomes for degradation through autophagosomes. Although the role of autophagy in cancer has been shown to be context-dependent, the role of autophagy in tumor cell survival has attracted great interest in targeting autophagy for cancer therapy. One family of potential autophagy blockers is the quinoline-derived antimalarial family, including chloroquine (CQ). However, the molecular basis for tumor cell response to CQ remains poorly understood. We show here that in both squamous cell carcinoma cells and melanoma tumor cells, CQ induced NF-κB activation and the expression of its target genes HIF-1α, IL-8, BCL-2, and BCL-XL through the accumulation of autophagosomes, p62, and JNK signaling. The activation of NF-κB further increased p62 gene expression. Either genetic knockdown of p62 or inhibition of NF-κB sensitized tumor cells to CQ, resulting in increased apoptotic cell death following treatment. Our findings provide new molecular insights into the CQ response in tumor cells and CQ resistance in cancer therapy. These findings may facilitate development of improved therapeutic strategies by targeting the p62/NF-κB pathway.
Collapse
Affiliation(s)
| | - Lei Qiang
- Department of Medicine, Section of Dermatology
| | - Ashley Sample
- Department of Medicine, Section of Dermatology; Committee on Cancer Biology, University of Chicago, Chicago, Illinois 60637
| | - Palak Shah
- Department of Medicine, Section of Dermatology
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology; Committee on Cancer Biology, University of Chicago, Chicago, Illinois 60637.
| |
Collapse
|
76
|
Nucleotide Excision Repair: From Neurodegeneration to Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:17-39. [PMID: 28840550 DOI: 10.1007/978-3-319-60733-7_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA damage poses a constant threat to genome integrity taking a variety of shapes and arising by normal cellular metabolism or environmental insults. Human syndromes, characterized by increased cancer pre-disposition or early onset of age-related pathology and developmental abnormalities, often result from defective DNA damage responses and compromised genome integrity. Over the last decades intensive research worldwide has made important contributions to our understanding of the molecular mechanisms underlying genomic instability and has substantiated the importance of DNA repair in cancer prevention in the general population. In this chapter, we discuss Nucleotide Excision Repair pathway, the causative role of its components in disease-related pathology and recent technological achievements that decipher mutational landscapes and may facilitate pathological classification and personalized therapy.
Collapse
|
77
|
Eliopoulos AG, Havaki S, Gorgoulis VG. DNA Damage Response and Autophagy: A Meaningful Partnership. Front Genet 2016; 7:204. [PMID: 27917193 PMCID: PMC5116470 DOI: 10.3389/fgene.2016.00204] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/02/2016] [Indexed: 01/07/2023] Open
Abstract
Autophagy and the DNA damage response (DDR) are biological processes essential for cellular and organismal homeostasis. Herein, we summarize and discuss emerging evidence linking DDR to autophagy. We highlight published data suggesting that autophagy is activated by DNA damage and is required for several functional outcomes of DDR signaling, including repair of DNA lesions, senescence, cell death, and cytokine secretion. Uncovering the mechanisms by which autophagy and DDR are intertwined provides novel insight into the pathobiology of conditions associated with accumulation of DNA damage, including cancer and aging, and novel concepts for the development of improved therapeutic strategies against these pathologies.
Collapse
Affiliation(s)
- Aristides G Eliopoulos
- Molecular and Cellular Biology Laboratory, Division of Basic Sciences, Medical School, University of CreteHeraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology HellasHeraklion, Greece
| | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of AthensAthens, Greece; Faculty Institute of Cancer Sciences, Manchester Academic Health Sciences Centre, University of ManchesterManchester, UK; Biomedical Research Foundation of the Academy of AthensAthens, Greece
| |
Collapse
|
78
|
Zhao B, Shah P, Qiang L, He TC, Budanov A, He YY. Distinct Role of Sesn2 in Response to UVB-Induced DNA Damage and UVA-Induced Oxidative Stress in Melanocytes. Photochem Photobiol 2016; 93:375-381. [PMID: 27463837 DOI: 10.1111/php.12624] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/12/2016] [Indexed: 02/06/2023]
Abstract
Ultraviolet (UV) radiation, including both UVB and UVA irradiation, is the major risk factor for causing skin cancer including melanoma. Recently, we have shown that Sesn2, a member of the evolutionarily conserved stress-inducible protein family Sestrins (Sesn), is upregulated in human melanomas as compared to melanocytes in normal human skin, suggesting an oncogenic role of Sesn2. However, the role of Sesn2 in UVB and UVA response is unknown. Here, we demonstrated that both UVB and UVA induce Sesn2 upregulation in melanocytes and melanoma cells. UVB induces Sesn2 expression through the p53 and AKT3 pathways. Sesn2 negatively regulates UVB-induced DNA damage repair. In comparison, UVA induces Sesn2 upregulation through mitochondria but not Nrf2. Sesn2 ablation increased UVA-induced Nrf2 induction and inhibits UVA-induced ROS production, indicating that Sesn2 acts as an upstream regulator of Nrf2. These findings suggest previously unrecognized mechanisms in melanocyte response to UVB and UVA irradiation and potentially in melanoma formation.
Collapse
Affiliation(s)
- Baozhong Zhao
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL
| | - Palak Shah
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL
| | - Lei Qiang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL
| | - Tong-Chuan He
- Department of Orthopaedic Surgery & Rehabilitation Medicine, University of Chicago, Chicago, IL
| | - Andrey Budanov
- Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, VA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL
| |
Collapse
|