51
|
Erland LAE, Yasunaga A, Li ITS, Murch SJ, Saxena PK. Direct visualization of location and uptake of applied melatonin and serotonin in living tissues and their redistribution in plants in response to thermal stress. J Pineal Res 2019; 66:e12527. [PMID: 30267543 DOI: 10.1111/jpi.12527] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/10/2018] [Accepted: 09/21/2018] [Indexed: 12/29/2022]
Abstract
Melatonin and serotonin are important phytochemicals enabling plants to redirect growth in response to environmental stresses. Despite much research on their biosynthetic routes, localization of their biosynthetic enzymes and recent identification of a phytomelatonin receptor, localization of the molecules themselves has to date not been possible. Elucidation of their locations in living tissues can provide an effective tool to facilitate indolamine research across systems including both plants and animals. In this study, we employed a novel technique, quantum dot nanoparticles, to directly visualize melatonin and serotonin in axenic roots. Melatonin was absorbed through epidermal cells, travelled laterally, and accumulated in endodermal and rapidly dividing pericycle cells. Serotonin was absorbed by cells proximal to the crown with rapid polar movement toward the root tip. Thermal stress disrupted localization and dispersed melatonin and serotonin across cells. These data demonstrate the natural movement of melatonin and serotonin in roots directing cell growth and suggest that plants have a mechanism to disperse the indolamines throughout tissues as antioxidants in response to environmental stresses.
Collapse
Affiliation(s)
| | - Adam Yasunaga
- University of British Columbia, Chemistry, Kelowna, British Columbia, Canada
| | - Isaac T S Li
- University of British Columbia, Chemistry, Kelowna, British Columbia, Canada
| | - Susan J Murch
- University of British Columbia, Chemistry, Kelowna, British Columbia, Canada
| | - Praveen K Saxena
- Plant Agriculture, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
52
|
Xiong F, Zhuo F, Reiter RJ, Wang L, Wei Z, Deng K, Song Y, Qanmber G, Feng L, Yang Z, Li F, Ren M. Hypocotyl Elongation Inhibition of Melatonin Is Involved in Repressing Brassinosteroid Biosynthesis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:1082. [PMID: 31616446 PMCID: PMC6775476 DOI: 10.3389/fpls.2019.01082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/08/2019] [Indexed: 05/03/2023]
Abstract
Melatonin functions as a plant hormone/regulator in the regulation of growth and development. However, the underlying mechanisms are still unclear. In this study, we found that a high dose of melatonin inhibited hypocotyl elongation in a dose-dependent manner in Arabidopsis. An expression profile analysis showed that hypocotyl growth inhibition by melatonin was involved in reprograming the expression of cell elongation genes and brassinosteroid (BRs) biosynthetic genes. Furthermore, similar to BR biosynthetic inhibitor brassinazole (BRZ), a high concentration of melatonin upregulated BR-biosynthetic genes and downregulated BR-induced genes involved in cell elongation, while melatonin was inefficient in brassinazole-resistant mutants like the bzr1-1D and bes1-D in hypocotyl inhibition. The comparative expression profile analysis showed an opposite expression mode in the co-regulated genes between melatonin and BZR1 or melatonin and brassinolide (BL). Additionally, exogenous BL rescued the repressive phenotype of BR biosynthesis-deficient mutant like det2-1 even in the presence of high-dose melatonin, but not BR receptor mutant bri1-5 or signal transduction mutant bin2-1. A biochemical analysis further confirmed that melatonin reduced endogenous BR levels in a dose-dependent manner in Arabidopsis. Taken together, these results indicate that melatonin inhibits BR biosynthesis but does not block BR signaling in the inhibition of hypocotyl elongation and extends insights on the role of melatonin in cross-talking with plant hormone signaling.
Collapse
Affiliation(s)
- Fangjie Xiong
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Fengping Zhuo
- School of Life Sciences, Chongqing University, Chongqing, China
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX, United States
| | - Lingling Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhenzhen Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Kexuan Deng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Yun Song
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ghulam Qanmber
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Li Feng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Fuguang Li, ; Maozhi Ren,
| | - Maozhi Ren
- School of Life Sciences, Chongqing University, Chongqing, China
- *Correspondence: Fuguang Li, ; Maozhi Ren,
| |
Collapse
|
53
|
Determination of serotonin in nuts and nut containing products by liquid chromatography tandem mass spectrometry. Food Chem 2019; 272:347-353. [DOI: 10.1016/j.foodchem.2018.08.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/01/2018] [Accepted: 08/15/2018] [Indexed: 01/22/2023]
|
54
|
Cardinali DP. Melatonin: Clinical Perspectives in Neurodegeneration. Front Endocrinol (Lausanne) 2019; 10:480. [PMID: 31379746 PMCID: PMC6646522 DOI: 10.3389/fendo.2019.00480] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/03/2019] [Indexed: 12/20/2022] Open
Abstract
Prevention of neurodegenerative diseases is presently a major goal for our Society and melatonin, an unusual phylogenetically conserved molecule present in all aerobic organisms, merits consideration in this respect. Melatonin combines both chronobiotic and cytoprotective properties. As a chronobiotic, melatonin can modify phase and amplitude of biological rhythms. As a cytoprotective molecule, melatonin reverses the low degree inflammatory damage seen in neurodegenerative disorders and aging. Low levels of melatonin in blood characterizes advancing age. In experimental models of Alzheimer's disease (AD) and Parkinson's disease (PD) the neurodegeneration observed is prevented by melatonin. Melatonin also increased removal of toxic proteins by the brain glymphatic system. A limited number of clinical trials endorse melatonin's potentiality in AD and PD, particularly at an early stage of disease. Calculations derived from animal studies indicate cytoprotective melatonin doses in the 40-100 mg/day range. Hence, controlled studies employing melatonin doses in this range are urgently needed. The off-label use of melatonin is discussed.
Collapse
|
55
|
Valdiani A, Hansen OK, Nielsen UB, Johannsen VK, Shariat M, Georgiev MI, Omidvar V, Ebrahimi M, Tavakoli Dinanai E, Abiri R. Bioreactor-based advances in plant tissue and cell culture: challenges and prospects. Crit Rev Biotechnol 2018; 39:20-34. [PMID: 30431379 DOI: 10.1080/07388551.2018.1489778] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
Bioreactors are engineered systems capable of supporting a biologically active situation for conducting aerobic or anaerobic biochemical processes. Stability, operational ease, improved nutrient uptake capacity, time- and cost-effectiveness, and large quantities of biomass production, make bioreactors suitable alternatives to conventional plant tissue and cell culture (PTCC) methods. Bioreactors are employed in a wide range of plant research, and have evolved over time. Such technological progress, has led to remarkable achievements in the field of PTCC. Since the classification of bioreactors has been extensively reviewed in numerous reviews, the current article avoids repeating the same material. Alternatively, it aims to highlight the principal advances in the bioreactor hardware s used in PTCC rather than classical categorization. Furthermore, our review summarizes the most significant steps as well as current state-of-the-art of PTCC carried out in various types of bioreactor.
Collapse
Affiliation(s)
- Alireza Valdiani
- a Department of Geosciences and Natural Resource Management, Section for Forest, Nature and Biomass, Faculty of Science , University of Copenhagen , Frederiksberg C 1958 , Denmark
| | - Ole Kim Hansen
- a Department of Geosciences and Natural Resource Management, Section for Forest, Nature and Biomass, Faculty of Science , University of Copenhagen , Frederiksberg C 1958 , Denmark
| | - Ulrik Braüner Nielsen
- a Department of Geosciences and Natural Resource Management, Section for Forest, Nature and Biomass, Faculty of Science , University of Copenhagen , Frederiksberg C 1958 , Denmark
| | - Vivian Kvist Johannsen
- a Department of Geosciences and Natural Resource Management, Section for Forest, Nature and Biomass, Faculty of Science , University of Copenhagen , Frederiksberg C 1958 , Denmark
| | - Maryam Shariat
- b Department of Food Science, Faculty of Food Science and Technology , Universiti Putra Malaysia , Serdang , Selangor 43400 UPM , Malaysia
| | - Milen I Georgiev
- c Institute of Microbiology , Bulgarian Academy of Sciences , Plovdiv 4000 , Bulgaria
| | - Vahid Omidvar
- d Department of Plant Pathology , University of Minnesota , St Paul , MN 55108 , USA
| | - Mortaza Ebrahimi
- e Department of Plant Tissue Culture , Agriculture Biotechnology Research Institute of Iran - Central Region Branch , Isfahan , Iran
| | | | - Rambod Abiri
- g Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences , Universiti Putra Malaysia , Serdang , Selangor DE 43400 UPM , Malaysia
| |
Collapse
|
56
|
Kanwar MK, Yu J, Zhou J. Phytomelatonin: Recent advances and future prospects. J Pineal Res 2018; 65:e12526. [PMID: 30256447 DOI: 10.1111/jpi.12526] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
Abstract
Melatonin (MEL) has been revealed as a phylogenetically conserved molecule with a ubiquitous distribution from primitive photosynthetic bacteria to higher plants, including algae and fungi. Since MEL is implicated in numerous plant developmental processes and stress responses, the exploration of its functions in plant has become a rapidly progressing field with the new paradigm of involvement in plants growth and development. The pleiotropic involvement of MEL in regulating the transcripts of numerous genes confirms its vital involvement as a multi-regulatory molecule that architects many aspects of plant development. However, the cumulative research in plants is still preliminary and fragmentary in terms of its established functions compared to what is known about MEL physiology in animals. This supports the need for a comprehensive review that summarizes the new aspects pertaining to its functional role in photosynthesis, phytohormonal interactions under stress, cellular redox signaling, along with other regulatory roles in plant immunity, phytoremediation, and plant microbial interactions. The present review covers the latest advances on the mechanistic roles of phytomelatonin. While phytomelatonin is a sovereign plant growth regulator that can interact with the functions of other plant growth regulators or hormones, its qualifications as a complete phytohormone are still to be established. This review also showcases the yet to be identified potentials of phytomelatonin that will surely encourage the plant scientists to uncover new functional aspects of phytomelatonin in plant growth and development, subsequently improving its status as a potential new phytohormone.
Collapse
Affiliation(s)
- Mukesh Kumar Kanwar
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| |
Collapse
|
57
|
Li T, Yang Z, Jiang S, Di W, Ma Z, Hu W, Chen F, Reiter RJ, Yang Y. Melatonin: does it have utility in the treatment of haematological neoplasms? Br J Pharmacol 2018; 175:3251-3262. [PMID: 28880375 PMCID: PMC6057911 DOI: 10.1111/bph.13966] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/02/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
Melatonin, discovered in 1958 in the bovine pineal tissue, is an indoleamine that modulates circadian rhythms and has a wide variety of other functions. Haematological neoplasms are the leading cause of death in children and adolescents throughout the world. Research has demonstrated that melatonin is a low-toxicity protective molecule against experimental haematological neoplasms, but the mechanisms remain poorly defined. Here, we provide an introduction to haematological neoplasms and melatonin, especially as they relate to the actions of melatonin on haematological carcinogenesis. Secondly, we summarize what is known about the mechanisms of action of melatonin in the haematological system, including its pro-apoptotic, pro-oxidative, anti-proliferative and immunomodulatory actions. Thirdly, we discuss the advantages of melatonin in combination with other drugs against haematological malignancy, as well as its other benefits on the haematological system. Finally, we summarize the findings that are contrary to the suppressive effects of melatonin on cancers of haematological origin. We hope that this information will be helpful in the design of studies related to the therapeutic efficacy of melatonin in haematological neoplasms. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.
Collapse
Affiliation(s)
- Tian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life SciencesNorthwest UniversityXi'anChina
- Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi'anChina
| | - Zhi Yang
- Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi'anChina
| | - Shuai Jiang
- Department of Aerospace MedicineThe Fourth Military Medical UniversityXi'anChina
| | - Wencheng Di
- Department of CardiologyAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Zhiqiang Ma
- Department of Thoracic SurgeryTangdu Hospital, The Fourth Military Medical UniversityXi'anChina
| | - Wei Hu
- Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi'anChina
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life SciencesNorthwest UniversityXi'anChina
| | - Russel J Reiter
- Department of Cellular and Structural BiologyUT Health Science CenterSan AntonioTXUSA
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life SciencesNorthwest UniversityXi'anChina
- Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
58
|
Affiliation(s)
- Daniel P. Cardinali
- Departmento de Docencia e Investigación, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| |
Collapse
|
59
|
Erland LAE, Shukla MR, Singh AS, Murch SJ, Saxena PK. Melatonin and serotonin: Mediators in the symphony of plant morphogenesis. J Pineal Res 2018; 64. [PMID: 29149453 DOI: 10.1111/jpi.12452] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/16/2017] [Indexed: 12/30/2022]
Abstract
Melatonin and serotonin are important signaling and stress mitigating molecules that play important roles across growth and development in plants. Despite many well-documented responses, a systematic investigation of the entire metabolic pathway (tryptophan, tryptamine, and N-acetylserotonin) does not exist, leaving many open questions. The objective of this study was to determine the responses of Hypericum perforatum (L.) to melatonin, serotonin, and their metabolic precursors. Two well-characterized germplasm lines (#4 and 112) created by mutation and a haploid breeding program were compared to wild type to identify specific responses. Germplasm line 4 has lower regenerative and photosynthetic capacity than either wild type or line 112, and there are documented significant differences in the chemistry and physiology of lines 4 and 112. Supplementation of the culture media with tryptophan, tryptamine, N-acetylserotonin, serotonin, or melatonin partially reversed the regenerative recalcitrance and growth impairment of the germplasm lines. Quantification of phytohormones revealed crosstalk between the indoleamines and related phytohormones including cytokinin, salicylic acid, and abscisic acid. We hypothesize that melatonin and serotonin function in coordination with their metabolites in a cascade of phytochemical responses including multiple pathways and phytohormone networks to direct morphogenesis and protect photosynthesis in H. perforatum.
Collapse
Affiliation(s)
- Lauren A E Erland
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON, Canada
| | - Mukund R Shukla
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON, Canada
| | - Amritpal S Singh
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada
| | - Susan J Murch
- Department of Chemistry, University of British Columbia, Kelowna, BC, Canada
| | - Praveen K Saxena
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
60
|
Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Zhou XJ, Xu B. Mitochondria: Central Organelles for Melatonin's Antioxidant and Anti-Aging Actions. Molecules 2018; 23:E509. [PMID: 29495303 PMCID: PMC6017324 DOI: 10.3390/molecules23020509] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 02/07/2023] Open
Abstract
Melatonin, along with its metabolites, have long been known to significantly reduce the oxidative stress burden of aging cells or cells exposed to toxins. Oxidative damage is a result of free radicals produced in cells, especially in mitochondria. When measured, melatonin, a potent antioxidant, was found to be in higher concentrations in mitochondria than in other organelles or subcellular locations. Recent evidence indicates that mitochondrial membranes possess transporters that aid in the rapid uptake of melatonin by these organelles against a gradient. Moreover, we predicted several years ago that, because of their origin from melatonin-producing bacteria, mitochondria likely also synthesize melatonin. Data accumulated within the last year supports this prediction. A high content of melatonin in mitochondria would be fortuitous, since these organelles produce an abundance of free radicals. Thus, melatonin is optimally positioned to scavenge the radicals and reduce the degree of oxidative damage. In light of the "free radical theory of aging", including all of its iterations, high melatonin levels in mitochondria would be expected to protect against age-related organismal decline. Also, there are many age-associated diseases that have, as a contributing factor, free radical damage. These multiple diseases may likely be deferred in their onset or progression if mitochondrial levels of melatonin can be maintained into advanced age.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology UT Health San Antonio, San Antonio, SD 78229, USA.
| | - Dun Xian Tan
- Department of Cellular and Structural Biology UT Health San Antonio, San Antonio, SD 78229, USA.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituo Mexicana del Seguro Social, Guadalajara 44346, Mexico.
| | - Annia Galano
- Departamento de Quimica, Universidad Autonoma Metropolitana-Iztapatapa, Mexico D.F. 09340, Mexico.
| | - Xin Jia Zhou
- Department of Cellular and Structural Biology UT Health San Antonio, San Antonio, SD 78229, USA.
| | - Bing Xu
- Department of Cellular and Structural Biology UT Health San Antonio, San Antonio, SD 78229, USA.
| |
Collapse
|
61
|
Wang Y, Reiter RJ, Chan Z. Phytomelatonin: a universal abiotic stress regulator. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:963-974. [PMID: 29281056 DOI: 10.1093/jxb/erx473] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/11/2017] [Indexed: 05/20/2023]
Abstract
Melatonin, a derivative of tryptophan, was first detected in plant species in 1995 and it has been shown to be a diverse regulator during plant growth and development, and in stress responses. Recently, great progress has been made towards determining the detailed functions of melatonin in plant responses to abiotic stress. Melatonin priming improves plant tolerance to cold, heat, salt, and drought stresses through regulation of genes involved in the DREB/CBF, HSF, SOS, and ABA pathways, respectively. As a scavenger of free radicals, melatonin also directly detoxifies reactive oxygen species, thus alleviating membrane oxidation. Abiotic stress-inhibited photosynthesis is partially recovered and metabolites accumulate in the presence of melatonin, leading to improved plant growth, delayed leaf senescence, and increased stress tolerance. In this review, we summarize the interactions of melatonin with phytohormones to regulate downstream gene expression, protein stabilization, and epigenetic modification in plants. Finally, we consider the need for, and approaches to, the identification of melatonin receptors and components during signaling transduction pathways.
Collapse
Affiliation(s)
- Yanping Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, USA
| | - Zhulong Chan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
62
|
Erland LAE, Saxena PK, Murch SJ. Melatonin in plant signalling and behaviour. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:58-69. [PMID: 32291021 DOI: 10.1071/fp16384] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/29/2017] [Indexed: 05/23/2023]
Abstract
Melatonin is an indoleamine neurotransmitter that has recently become well established as an important multi-functional signalling molecule in plants. These signals have been found to induce several important physiological responses that may be interpreted as behaviours. The diverse processes in which melatonin has been implicated in plants have expanded far beyond the traditional roles for which it has been implicated in mammals, which include sleep, tropisms and reproduction. These functions, however, appear to also be important melatonin mediated processes in plants, though the mechanisms underlying these functions have yet to be fully elucidated. Mediation or redirection of plant physiological processes induced by melatonin can be summarised as a series of behaviours including, among others: herbivore defence, avoidance of undesirable circumstances or attraction to opportune conditions, problem solving and response to environmental stimulus. As the mechanisms of melatonin action are elucidated, its involvement in plant growth, development and behaviour is likely to expand beyond the aspects discussed in this review and hold promise for applications in diverse fundamental and applied plant sciences including conservation, cryopreservation, morphogenesis, industrial agriculture and natural health products.
Collapse
Affiliation(s)
- Lauren A E Erland
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G 2W1, Canada
| | - Praveen K Saxena
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G 2W1, Canada
| | - Susan J Murch
- Chemistry, University of British Columbia, Okanagan, Kelowna, British Columbia, V1V 1V7, Canada
| |
Collapse
|
63
|
Szeitz A, Bandiera SM. Analysis and measurement of serotonin. Biomed Chromatogr 2017; 32. [DOI: 10.1002/bmc.4135] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 12/26/2022]
Affiliation(s)
- András Szeitz
- Faculty of Pharmaceutical Sciences; The University of British Columbia; Vancouver British Columbia Canada
| | - Stelvio M. Bandiera
- Faculty of Pharmaceutical Sciences; The University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|
64
|
Saremba BM, Tymm FJM, Baethke K, Rheault MR, Sherif SM, Saxena PK, Murch SJ. Plant signals during beetle (Scolytus multistriatus) feeding in American elm (Ulmus americana Planch). PLANT SIGNALING & BEHAVIOR 2017; 12:e1296997. [PMID: 28448744 PMCID: PMC5501226 DOI: 10.1080/15592324.2017.1296997] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/11/2017] [Accepted: 02/13/2017] [Indexed: 05/23/2023]
Abstract
American Elms were devastated by an outbreak of Dutch Elm Disease is caused by the fungus Ophiostoma novo-ulmi Brasier that originated in Asia and arrived in the early 1900s. In spite of decades of study, the specific mechanisms and disease resistance in some trees is not well understood. the fungus is spread by several species of bark beetles in the genus Scolytus, during their dispersal and feeding. Our objective was to understand elm responses to beetle feeding in the absence of the fungus to identify potential resistance mechanisms. A colony of Scolytus multistriatus was established from wild-caught beetles and beetles were co-incubated with susceptible or resistant American elm varieties in a controlled environment chamber. Beetles burrowed into the auxillary meristems of the young elm shoots. The trees responded to the beetle damage by a series of spikes in the concentration of plant growth regulating compounds, melatonin, serotonin, and jasmonic acid. Spikes in melatonin and serotonin represented a 7,000-fold increase over resting levels. Spikes in jasmonic acid were about 10-fold higher than resting levels with one very large spike observed. Differences were noted between susceptible and resistant elms that provide new understanding of plant defenses.
Collapse
Affiliation(s)
- Brett M. Saremba
- Biology, University of British Columbia, Kelowna, British Columbia, Canada
| | - Fiona J. M. Tymm
- Chemistry, University of British Columbia, Kelowna, British Columbia, Canada
| | - Kathy Baethke
- Chemistry, University of British Columbia, Kelowna, British Columbia, Canada
| | - Mark R. Rheault
- Biology, University of British Columbia, Kelowna, British Columbia, Canada
| | - Sherif M. Sherif
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada
- Alson H. Smith Jr. Agricultural Research and Extension Center, Virginia Tech, Winchester, Virginia, USA
| | - Praveen K. Saxena
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada
| | - Susan J. Murch
- Chemistry, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
65
|
Pshenichnyuk SA, Modelli A, Jones D, Lazneva EF, Komolov AS. Low-Energy Electron Interaction with Melatonin and Related Compounds. J Phys Chem B 2017; 121:3965-3974. [PMID: 28394598 DOI: 10.1021/acs.jpcb.7b01408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The electron attaching properties and fragmentation of temporary negative ions of melatonin and its biosynthetic precursor tryptophan are studied in vacuo using dissociative electron attachment (DEA) spectroscopy. The experimental findings are interpreted in silico with the support of Hartree-Fock and density functional theory calculations of empty orbital energies and symmetries, and evaluation of the electron affinities of the indolic molecules under investigation. The only fragment anions formed by DEA to melatonin at incident electron energies below 2 eV are associated with the elimination of a hydrogen atom (energetically favored from the NH site of the pyrrole ring, leaving the ring intact) or a CH3· radical from the temporary molecular negative ion. Opening of the pyrrole ring of melatonin is not detected over the whole electron energy range of 0-14 eV. The DEA spectra of l- and d-tryptophan are almost identical under the present experimental conditions. The adiabatic electron affinity of melatonin is predicted to be -0.49 eV at the B3LYP/6-31+G(d) level, indicating that the DEA mechanism in melatonin is likely to be present in most life forms given the availability of low energy electrons in living systems in both plant and animal kingdoms. In particular, H atom donation usually associated with free-radical scavenging activity can be stimulated by electron attachment and N-H bond cleavage at electron energies around 1 eV.
Collapse
Affiliation(s)
- Stanislav A Pshenichnyuk
- Institute of Molecule and Crystal Physics, Ufa Research Centre, Russian Academy of Sciences , Prospeκt Oktyabrya 151, 450075 Ufa, Russia.,St. Petersburg State University , Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Alberto Modelli
- Dipartimento di Chimica "G. Ciamician″, Università di Bologna , via Selmi 2, 40126 Bologna, Italy.,Centro Interdipartimentale di Ricerca in Scienze Ambientali , via S. Alberto 163, 48123 Ravenna, Italy
| | - Derek Jones
- ISOF, Istituto per la Sintesi Organica e la Fotoreattività , C.N.R., via Gobetti 101, 40129 Bologna, Italy
| | - Eleonora F Lazneva
- St. Petersburg State University , Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Alexei S Komolov
- St. Petersburg State University , Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| |
Collapse
|
66
|
Erland LA, Saxena PK. Melatonin Natural Health Products and Supplements: Presence of Serotonin and Significant Variability of Melatonin Content. J Clin Sleep Med 2017; 13:275-281. [PMID: 27855744 PMCID: PMC5263083 DOI: 10.5664/jcsm.6462] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/18/2016] [Indexed: 12/18/2022]
Abstract
STUDY OBJECTIVES Melatonin is an important neurohormone, which mediates circadian rhythms and the sleep cycle. As such, it is a popular and readily available supplement for the treatment and prevention of sleep-related disorders including insomnia and jet lag. This study quantified melatonin in 30 commercial supplements, comprising different brands and forms and screened supplements for the presence of serotonin. METHODS A total of 31 supplements were analyzed by ultraperformance liquid chromatography with electrochemical detection for quantification of melatonin and serotonin. Presence of serotonin was confirmed through analysis by ultraperformance liquid chromatography with mass spectrometry detection. RESULTS Melatonin content was found to range from -83% to +478% of the labelled content. Additionally, lot-to-lot variable within a particular product varied by as much as 465%. This variability did not appear to be correlated with manufacturer or product type. Furthermore, serotonin (5-hydroxytryptamine), a related indoleamine and controlled substance used in the treatment of several neurological disorders, was identified in eight of the supplements at levels of 1 to 75 μg. CONCLUSIONS Melatonin content did not meet label within a 10% margin of the label claim in more than 71% of supplements and an additional 26% were found to contain serotonin. It is important that clinicians and patients have confidence in the quality of supplements used in the treatment of sleep disorders. To address this, manufacturers require increased controls to ensure melatonin supplements meet both their label claim, and also are free from contaminants, such as serotonin. COMMENTARY A commentary on this article appears in this issue on page 163.
Collapse
Affiliation(s)
- Lauren A.E. Erland
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada
| | - Praveen K. Saxena
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
67
|
Erland LAE, Chattopadhyay A, Jones AMP, Saxena PK. Melatonin in Plants and Plant Culture Systems: Variability, Stability and Efficient Quantification. FRONTIERS IN PLANT SCIENCE 2016; 7:1721. [PMID: 27899931 PMCID: PMC5110574 DOI: 10.3389/fpls.2016.01721] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/02/2016] [Indexed: 05/04/2023]
Abstract
Despite growing evidence of the importance of melatonin and serotonin in the plant life, there is still much debate over the stability of melatonin, with extraction and analysis methods varying greatly from lab to lab with respect to time, temperature, light levels, extraction solvents, and mechanical disruption. The variability in methodology has created conflicting results that confound the comparison of studies to determine the role of melatonin in plant physiology. We here describe a fully validated method for the quantification of melatonin, serotonin and their biosynthetic precursors: tryptophan, tryptamine and N-acetylserotonin by liquid chromatography single quadrupole mass spectrometry (LC-MS) in diverse plant species and tissues. This method can be performed on a simple and inexpensive platform, and is both rapid and simple to implement. The method has excellent reproducibility and acceptable sensitivity with percent relative standard deviation (%RSD) in all matrices between 1 and 10% and recovery values of 82-113% for all analytes. Instrument detection limits were 24.4 ng/mL, 6.10 ng/mL, 1.52 ng/mL, 6.10 ng/mL, and 95.3 pg/mL, for serotonin, tryptophan, tryptamine, N-acetylserotonin and melatonin respectively. Method detection limits were 1.62 μg/g, 0.407 μg/g, 0.101 μg/g, 0.407 μg/g, and 6.17 ng/g respectively. The optimized method was then utilized to examine the issue of variable stability of melatonin in plant tissue culture systems. Media composition (Murashige and Skoog, Driver and Kuniyuki walnut or Lloyd and McCown's woody plant medium) and light (16 h photoperiod or dark) were found to have no effect on melatonin or serotonin content. A Youden trial suggested temperature as a major factor leading to degradation of melatonin. Both melatonin and serotonin appeared to be stable across the first 10 days in media, melatonin losses reached a mean minimum degradation at 28 days of approximately 90%; serotonin reached a mean minimum value of approximately 60% at 28 days. These results suggest that melatonin and serotonin show considerable stability in plant systems and these indoleamines and related compounds can be used for investigations that span over 3 weeks.
Collapse
Affiliation(s)
| | | | | | - Praveen K. Saxena
- Department of Plant Agriculture, Gosling Institute for Plant Preservation, University of GuelphGuelph, ON, Canada
| |
Collapse
|
68
|
Erland LAE, Turi CE, Saxena PK. Serotonin: An ancient molecule and an important regulator of plant processes. Biotechnol Adv 2016; 34:1347-1361. [PMID: 27742596 DOI: 10.1016/j.biotechadv.2016.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/07/2016] [Accepted: 10/09/2016] [Indexed: 02/07/2023]
Abstract
Serotonin is an ancient indoleamine that was presumably part of the life cycle of the first prokaryotic life forms on Earth millions of years ago where it functioned as a powerful antioxidant to combat the increasingly oxygen rich atmosphere. First identified as a neurotransmitter signaling molecule in mammals, it is ubiquitous across all forms of life. Serotonin was discovered in plants many years after its discovery in mammals; however, it has now been confirmed in almost all plant families, where it plays important roles in plant growth and development, including functions in energy acquisition, seasonal cycles, modulation of reproductive development, control of root and shoot organogenesis, maintenance of plant tissues, delay of senescence, and responses to biotic and abiotic stresses. Despite its widespread presence and activity, there are many questions which remain unanswered about the role of serotonin in plants including the mode of signaling and receptor identity as well as the mechanisms of action of this important molecule. This review provides an overview of the role of serotonin in plant life and their ability to adapt.
Collapse
Affiliation(s)
- Lauren A E Erland
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, 50 Stone Road E, Guelph, Ontario N1G 2W1, Canada
| | - Christina E Turi
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, 50 Stone Road E, Guelph, Ontario N1G 2W1, Canada
| | - Praveen K Saxena
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, 50 Stone Road E, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
69
|
Sanchez-Barcelo EJ, Mediavilla MD, Vriend J, Reiter RJ. Constitutive photomorphogenesis protein 1 (COP1) and COP9 signalosome, evolutionarily conserved photomorphogenic proteins as possible targets of melatonin. J Pineal Res 2016; 61:41-51. [PMID: 27121162 DOI: 10.1111/jpi.12340] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/26/2016] [Indexed: 12/18/2022]
Abstract
The ubiquitin proteasome system has been proposed as a possible mechanism involved in the multiple actions of melatonin. COP1 (constitutive photomorphogenesis protein 1), a RING finger-type ubiquitin E3 ligase formerly identified in Arabidopsis, is a central switch for the transition from plant growth underground in darkness (etiolation) to growth under light exposure (photomorphogenesis). In darkness, COP1 binds to photomorphogenic transcription factors driving its degradation via the 26S proteasome; blue light, detected by cryptochromes, and red and far-red light detected by phytochromes, negatively regulate COP1. Homologues of plant COP1 containing all the structural features present in Arabidopsis as well as E3 ubiquitin ligase activity have been identified in mice and humans. Substrates for mammalian (m) COP1 include p53, AP-1 and c-Jun, p27(Kip1) , ETV1, MVP, 14-3-3σ, C/EBPα, MTA1, PEA3, ACC, TORC2 and FOXO1. This mCOP1 target suggests functions related to tumorigenesis, gluconeogenesis, and lipid metabolism. The role of mCOP1 in tumorigenesis (either as a tumor promoter or tumor suppressor), as well as in glucose metabolism (inhibition of gluconeogenesis) and lipid metabolism (inhibition of fatty acid synthesis), has been previously demonstrated. COP1, along with numerous other ubiquitin ligases, is regulated by the COP9 signalosome; this protein complex is associated with the oxidative stress sensor Keap1 and the deubiquitinase USP15. The objective of this review was to provide new information on the possible role of COP1 and COP9 as melatonin targets. The hypothesis is based on common functional aspects of melatonin and COP1 and COP9, including their dependence on light, regulation of the metabolism, and their control of tumor growth.
Collapse
Affiliation(s)
| | - Maria D Mediavilla
- Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | - Jerry Vriend
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| |
Collapse
|