51
|
Suarez-Jimenez B, Zhu X, Lazarov A, Mann JJ, Schneier F, Gerber A, Barber JP, Chambless DL, Neria Y, Milrod B, Markowitz JC. Anterior hippocampal volume predicts affect-focused psychotherapy outcome. Psychol Med 2020; 50:396-402. [PMID: 30773148 PMCID: PMC6698431 DOI: 10.1017/s0033291719000187] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND The hippocampus plays an important role in psychopathology and treatment outcome. While posterior hippocampus (PH) may be crucial for the learning process that exposure-based treatments require, affect-focused treatments might preferentially engage anterior hippocampus (AH). Previous studies have distinguished the different functions of these hippocampal sub-regions in memory, learning, and emotional processes, but not in treatment outcome. Examining two independent clinical trials, we hypothesized that anterior hippocampal volume would predict outcome of affect-focused treatment outcome [Interpersonal Psychotherapy (IPT); Panic-Focused Psychodynamic Psychotherapy (PFPP)], whereas posterior hippocampal volume would predict exposure-based treatment outcome [Prolonged Exposure (PE); Cognitive Behavioral Therapy (CBT); Applied Relaxation Training (ART)]. METHODS Thirty-five patients with posttraumatic stress disorder (PTSD) and 24 with panic disorder (PD) underwent structural magnetic resonance imaging (MRI) before randomization to affect-focused (IPT for PTSD; PFPP for PD) or exposure-based treatments (PE for PTSD; CBT or ART for PD). AH and PH volume were regressed with clinical outcome changes. RESULTS Baseline whole hippocampal volume did not predict post-treatment clinical severity scores in any treatment. For affect-focused treatments, but not exposure-based treatments, anterior hippocampal volume predicted clinical improvement. Smaller AH correlated with greater affect-focused treatment improvement. Posterior hippocampal volume did not predict treatment outcome. CONCLUSIONS This is the first study to explore associations between hippocampal volume sub-regions and treatment outcome in PTSD and PD. Convergent results suggest that affect-focused treatment may influence the clinical outcome through the 'limbic' AH, whereas exposure-based treatments do not. These preliminary, theory-congruent, therapeutic findings require replication in a larger clinical trial.
Collapse
Affiliation(s)
| | - Xi Zhu
- Columbia University College of Physicians & Surgeons, New York, NY, USA
| | - Amit Lazarov
- Columbia University College of Physicians & Surgeons, New York, NY, USA
- School of Psychological Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - J. John Mann
- Columbia University College of Physicians & Surgeons, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Franklin Schneier
- Columbia University College of Physicians & Surgeons, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Andrew Gerber
- Columbia University College of Physicians & Surgeons, New York, NY, USA
- Silver Hill Hospital, New Canaan, CT, USA
| | - Jacques P. Barber
- Adelphi University, Garden City, NY, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | | | - Yuval Neria
- Columbia University College of Physicians & Surgeons, New York, NY, USA
- School of Psychological Sciences, Tel-Aviv University, Tel Aviv, Israel
| | | | - John C. Markowitz
- Columbia University College of Physicians & Surgeons, New York, NY, USA
- School of Psychological Sciences, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
52
|
Abstract
MicroRNAs as critical regulators of gene expression important for functions including neuronal development, synapse formation, and synaptic plasticity have been linked with the regulation of neurobiological systems that underlie anxiety processing in the brain. In this chapter, we give an update on associative evidence linking regulation of microRNAs with anxiety- and trauma-related disorders. Moving beyond correlative research, functional studies have emerged recently that explore causal relationships between microRNA expression and anxiety-like behavior. It has been demonstrated that experimental up- or downregulation of the candidate microRNAs in important nodes of the anxiety neurocircuitry can indeed modulate anxiety-related behavior in animal models. Improved methodologies for assessing microRNA-mediated modulation have aided such functional studies, revealing a number of anxiety-regulating microRNAs including miR-15a, miR-17-92, miR-34, miR-101, miR-124, miR-135, and miR-155. Important functional target genes of these identified microRNAs are associated with specific neurotransmitter/neuromodulator signaling, neurotrophin (e.g., BDNF) expression and other aspects of synaptic plasticity, as well as with stress-regulatory/hypothalamic-pituitary-axis function. Furthermore, microRNAs have been revealed that are regulated in distinct brain regions following various anxiety-attenuating strategies. These include pharmacological treatments such as antidepressants and other drugs, as well as non-pharmacological interventions such as fear extinction/exposure therapy or positive stimuli such as exposure to environmental enrichment. These are first indications for a role for microRNAs in the mechanism of action of anxiolytic treatments. As research continues, there is much hope that a deeper understanding of the microRNA-mediated mechanisms underlying anxiety-related disorders could open up possibilities for future novel biomarker and treatment strategies.
Collapse
|
53
|
Bandelow B. Current and Novel Psychopharmacological Drugs for Anxiety Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1191:347-365. [PMID: 32002937 DOI: 10.1007/978-981-32-9705-0_19] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Anxiety disorders, including panic disorder/agoraphobia (PDA), generalized anxiety disorder (GAD), social anxiety disorder (SAD), and others, are the most prevalent mental disorders. In this paper, recommendations are given for the psychopharmacological treatment of these disorders which are based on comprehensive treatment guidelines, meta-analyses, and systematic reviews of available randomized controlled studies. Anxiety disorders can effectively be treated with psychotherapy, pharmacotherapy, or a combination of both. First-line drugs are the selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs). Benzodiazepines are not recommended for routine use due to their possible addiction potential. Other treatment options include the calcium modulator pregabalin, tricyclic antidepressants, buspirone, moclobemide, and others. Drug treatment can be combined with psychological treatments. Novel treatment strategies include medications that act on GABA, glutamate, and other neurotransmitter systems. After remission, medications should be continued for 6 to 12 months.
Collapse
Affiliation(s)
- Borwin Bandelow
- Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany.
| |
Collapse
|
54
|
Szechtman H, Harvey BH, Woody EZ, Hoffman KL. The Psychopharmacology of Obsessive-Compulsive Disorder: A Preclinical Roadmap. Pharmacol Rev 2020; 72:80-151. [PMID: 31826934 DOI: 10.1124/pr.119.017772] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review evaluates current knowledge about obsessive-compulsive disorder (OCD), with the goal of providing a roadmap for future directions in research on the psychopharmacology of the disorder. It first addresses issues in the description and diagnosis of OCD, including the structure, measurement, and appropriate description of the disorder and issues of differential diagnosis. Current pharmacotherapies for OCD are then reviewed, including monotherapy with serotonin reuptake inhibitors and augmentation with antipsychotic medication and with psychologic treatment. Neuromodulatory therapies for OCD are also described, including psychosurgery, deep brain stimulation, and noninvasive brain stimulation. Psychotherapies for OCD are then reviewed, focusing on behavior therapy, including exposure and response prevention and cognitive therapy, and the efficacy of these interventions is discussed, touching on issues such as the timing of sessions, the adjunctive role of pharmacotherapy, and the underlying mechanisms. Next, current research on the neurobiology of OCD is examined, including work probing the role of various neurotransmitters and other endogenous processes and etiology as clues to the neurobiological fault that may underlie OCD. A new perspective on preclinical research is advanced, using the Research Domain Criteria to propose an adaptationist viewpoint that regards OCD as the dysfunction of a normal motivational system. A systems-design approach introduces the security motivation system (SMS) theory of OCD as a framework for research. Finally, a new perspective on psychopharmacological research for OCD is advanced, exploring three approaches: boosting infrastructure facilities of the brain, facilitating psychotherapeutic relearning, and targeting specific pathways of the SMS network to fix deficient SMS shut-down processes. SIGNIFICANCE STATEMENT: A significant proportion of patients with obsessive-compulsive disorder (OCD) do not achieve remission with current treatments, indicating the need for innovations in psychopharmacology for the disorder. OCD may be conceptualized as the dysfunction of a normal, special motivation system that evolved to manage the prospect of potential danger. This perspective, together with a wide-ranging review of the literature, suggests novel directions for psychopharmacological research, including boosting support systems of the brain, facilitating relearning that occurs in psychotherapy, and targeting specific pathways in the brain that provide deficient stopping processes in OCD.
Collapse
Affiliation(s)
- Henry Szechtman
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada (H.S.); SAMRC Unit on Risk Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University (Potchefstroom Campus), Potchefstroom, South Africa (B.H.H.); Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada (E.Z.W.); and Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico (K.L.H.)
| | - Brian H Harvey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada (H.S.); SAMRC Unit on Risk Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University (Potchefstroom Campus), Potchefstroom, South Africa (B.H.H.); Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada (E.Z.W.); and Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico (K.L.H.)
| | - Erik Z Woody
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada (H.S.); SAMRC Unit on Risk Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University (Potchefstroom Campus), Potchefstroom, South Africa (B.H.H.); Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada (E.Z.W.); and Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico (K.L.H.)
| | - Kurt Leroy Hoffman
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada (H.S.); SAMRC Unit on Risk Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University (Potchefstroom Campus), Potchefstroom, South Africa (B.H.H.); Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada (E.Z.W.); and Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico (K.L.H.)
| |
Collapse
|
55
|
Cosci F, Mansueto G. Biological and Clinical Markers to Differentiate the Type of Anxiety Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1191:197-218. [PMID: 32002931 DOI: 10.1007/978-981-32-9705-0_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The present chapter is an overview of possible biomarkers which distinguish anxiety disorders as classified by the DSM-5. Structural or activity changes in the brain regions; changes in N-acetylaspartate/creatine, dopamine, serotonin, and oxytocin; hearth rate variability; hypothalamic-pituitary-adrenal axis activity; error-related negativity; respiratory regulation; and genetic variants are proposed. However, their clinical utility is questionable due to low specificity and sensitivity: the majority does not distinguish subjects with different anxiety disorders, and they might be influenced by stress, comorbidity, physical activity, and psychotropic medications. In this framework, the staging model, a clinimetric tool which allows to define the degree of progression of a disease at a point in time and where the patient is located on the continuum of the course of the disease, is proposed since several DSM anxiety disorders take place at different stages of the same syndrome according to the staging model. Thus, a stage-specific biomarker model for anxiety disorders is hypothesized and illustrated.
Collapse
Affiliation(s)
- Fiammetta Cosci
- Department of Health Sciences, University of Florence, Florence, Italy. .,Maastricht University Medical Center, Department of Psychiatry & Psychology, School for Mental Health & Neuroscience, Maastricht, The Netherlands.
| | - Giovanni Mansueto
- Department of Health Sciences, University of Florence, Florence, Italy.,Maastricht University Medical Center, Department of Psychiatry & Psychology, School for Mental Health & Neuroscience, Maastricht, The Netherlands
| |
Collapse
|
56
|
Calati R, Nemeroff CB, Lopez-Castroman J, Cohen LJ, Galynker I. Candidate Biomarkers of Suicide Crisis Syndrome: What to Test Next? A Concept Paper. Int J Neuropsychopharmacol 2019; 23:192-205. [PMID: 31781761 PMCID: PMC7171927 DOI: 10.1093/ijnp/pyz063] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND There has been increasing interest in both suicide-specific diagnoses within the psychiatric nomenclature and related biomarkers. Because the Suicide Crisis Syndrome-an emotional crescendo of several interrelated symptoms-seems to be promising for the identification of individuals at risk of suicide, the aim of the present paper is to review the putative biological underpinnings of the Suicide Crisis Syndrome symptoms (entrapment, affective disturbance, loss of cognitive control, hyperarousal, social withdrawal). METHODS A PubMed literature search was performed to identify studies reporting a link between each of the 5 Suicide Crisis Syndrome symptoms and biomarkers previously reported to be associated with suicidal outcomes. RESULTS Disturbances in the hypothalamic-pituitary-adrenal axis, with dysregulated corticotropin-releasing hormone and cortisol levels, may be linked to a sense of entrapment. Affective disturbance is likely mediated by alterations in dopaminergic circuits involved in reward and antireward systems as well as endogenous opioids. Loss of cognitive control is linked to altered neurocognitive function in the areas of executive function, attention, and decision-making. Hyperarousal is linked to autonomic dysregulation, which may be characterized by a reduction in both heart rate variability and electrodermal activity. Social withdrawal has been associated with oxytocin availability. There is also evidence that inflammatory processes may contribute to individual Suicide Crisis Syndrome symptoms. CONCLUSION The Suicide Crisis Syndrome is a complex syndrome that is likely the consequence of distinct changes in interconnected neural, neuroendocrine, and autonomic systems. Available clinical and research data allow for development of empirically testable hypotheses and experimental paradigms to scrutinize the biological substrates of the Suicide Crisis Syndrome.
Collapse
Affiliation(s)
- Raffaella Calati
- Department of Psychiatry, Mount Sinai Beth Israel, New York, New York,Icahn School of Medicine at Mount Sinai, New York, New York,Department of Psychology, University of Milan-Bicocca, Milan, Italy,Department of Adult Psychiatry, Nîmes University Hospital, Nîmes, France,Correspondence: Raffaella Calati, PsyD, PhD, Department of Psychology, University of Milan-Bicocca, Piazza dell’Ateneo Nuovo 1, 20126, Milan, Italy ()
| | - Charles B Nemeroff
- Department of Psychiatry, University of Texas Dell Medical School, Austin, Texas
| | - Jorge Lopez-Castroman
- Department of Adult Psychiatry, Nîmes University Hospital, Nîmes, France,INSERM, University of Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France
| | - Lisa J Cohen
- Department of Psychiatry, Mount Sinai Beth Israel, New York, New York,Icahn School of Medicine at Mount Sinai, New York, New York
| | - Igor Galynker
- Department of Psychiatry, Mount Sinai Beth Israel, New York, New York,Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
57
|
Zhang R, Chen Z, Liu P, Feng T. The neural substrates responsible for how trait anxiety affects delay discounting: Right hippocampal and cerebellar connectivity with bistable right inferior parietal lobule. Psychophysiology 2019; 57:e13495. [PMID: 31642530 DOI: 10.1111/psyp.13495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 01/12/2023]
Abstract
Delay discounting, an indicator of impulsivity, refers to the extent of devaluing future rewards. Studies have found that individuals with trait anxiety generally depreciate the later larger rewards, showing steeper delay discounting rates. However, little is known about the neural substrates responsible for how trait anxiety affects individuals' delay discounting. To address this question, we employed the voxel-based morphometry (VBM) and resting-state functional connectivity (RSFC) methods to explore the neural substrates of trait anxiety responsible for delay discounting. Behavioral results showed that trait anxiety was significantly positively correlated with delay discounting rates. The VBM analysis revealed that gray matter volumes of the right hippocampus (RHPC) and right cerebellum (RCere) were significantly positively correlated with trait anxiety. Moreover, the RSFC results showed that bistable right inferior parietal lobule (RIPL) connectivity with the RHPC and RCere were all inversely associated with trait anxiety. More importantly, mediation analysis indicated that trait anxiety played a completely mediating role in the relation between functional connectivity of RHPC-RIPL and RCere-RIPL and delay discounting. These results suggested that bistable RIPL connectivity with RHPC and RCere could be neural substrates underlying the effect of trait anxiety on delay discounting. On the whole, the current study yields insights into how trait anxiety affects delay discounting and provides a novel account from a neural basis perspective.
Collapse
Affiliation(s)
- Rong Zhang
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Zhiyi Chen
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Peiwei Liu
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Tingyong Feng
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
| |
Collapse
|
58
|
|
59
|
Ströhle A, Gensichen J, Domschke K. The Diagnosis and Treatment of Anxiety Disorders. DEUTSCHES ARZTEBLATT INTERNATIONAL 2019; 155:611-620. [PMID: 30282583 DOI: 10.3238/arztebl.2018.0611] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 04/30/2018] [Accepted: 07/31/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Anxiety disorders are the most common type of mental illness in Europe, with a 12-month prevalence of 14% among persons aged 14 to 65. Their onset is usually in adolescence or early adulthood. The affected patients often develop further mental or somatic illnesses (sequential comorbidity). METHODS This review is based on pertinent publications retrieved by a selective search in PubMed. RESULTS The group of anxiety disorders includes generalized anxiety disorder (GAD), phobic disorders, panic disorders, and two disorders that are often restricted to childhood-separation anxiety and selective mutism. A comprehensive differential diag- nostic evaluation is essential, because anxiety can be a principal manifestation of other types of mental or somatic illness as well. Psychotherapy and treatment with psychoactive drugs are the therapeutic strategies of first choice. Of all types of psycho- therapy, cognitive behavioral therapy has the best documented efficacy. Modern antidepressants are the drugs of first choice for the treatment of panic disorders, agoraphobia, social phobia, and GAS; pregabalin is a further drug of first choice for GAS. CONCLUSION In general, anxiety disorders can now be effectively treated. Patients should be informed of the therapeutic options and should be involved in treatment planning. Current research efforts are centered on individualized and therefore, it is hoped, even more effective treatment approaches than are available at present.
Collapse
Affiliation(s)
- Andreas Ströhle
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte (CCM), Charité-Universitätsmedizin Berlin; Institute of General Practice, Faculty of Medicine, Ludwig-Maximilians-Universität München; Department of Psychiatry and Psychotherapy, University Hospital of Freiburg
| | | | | |
Collapse
|
60
|
Neufang S, Geiger MJ, Homola GA, Mahr M, Schiele MA, Gehrmann A, Schmidt B, Gajewska A, Nowak J, Meisenzahl-Lechner E, Pham M, Romanos M, Akhrif A, Domschke K. Cognitive-behavioral therapy effects on alerting network activity and effective connectivity in panic disorder. Eur Arch Psychiatry Clin Neurosci 2019; 269:587-598. [PMID: 30288559 DOI: 10.1007/s00406-018-0945-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/28/2018] [Indexed: 12/19/2022]
Abstract
Given the particular relevance of arousal and alerting in panic disorder (PD), here the alerting network was investigated (1) contrasting patients with PD and healthy controls, (2) as a function of anxiety sensitivity constituting a dimensional measure of panic-related anxiety, and (3) as a possible correlate of treatment response. Using functional magnetic resonance imaging (fMRI), 45 out-patients with PD (f = 34) and 51 matched healthy controls were investigated for brain activation patterns and effective connectivity (Dynamic Causal Modeling, DCM) while performing the Attention Network Task (ANT). Anxiety sensitivity was ascertained by the Anxiety Sensitivity Index (ASI). Forty patients and 48 controls were re-scanned after a 6 weeks cognitive-behavioral treatment (CBT) or an equivalent waiting time, respectively. In the alerting condition, patients showed decreased activation in fronto-parietal pathways including the middle frontal gyrus and the superior parietal lobule (MFG, SPL). In addition, ASI scores were negatively correlated with connectivity emerging from the SPL, the SFB and the LC and going to the MFG in patients but not in healthy controls. CBT resulted in an increase in middle frontal and parietal activation along with increased connectivity going from the MFG to the SPL. This change in connectivity was positively correlated with reduction in ASI scores. There were no changes in controls. The present findings point to a pathological disintegration of the MFG in a fronto-parietal pathway in the alerting network in PD which was observed to be reversible by a successful CBT intervention.
Collapse
Affiliation(s)
- Susanne Neufang
- Center of Mental Health, Department of Child and Adolescent Psychiatry, University of Wuerzburg, 97080, Wuerzburg, Germany.
- Department of Psychiatry and Psychotherapy, Medical Faculty Heinrich-Heine University, 40204, Duesseldorf, Germany.
| | - Maximilian J Geiger
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, 97080, Wuerzburg, Germany
- Epilepsy Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - György A Homola
- Institute for Diagnostical and Interventional Neuroradiology, University of Wuerzburg, 97080, Wuerzburg, Germany
| | - Marina Mahr
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, 97080, Wuerzburg, Germany
| | - Miriam A Schiele
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, 97080, Wuerzburg, Germany
- Department of Psychiatry and Psychotherapy, Medical Centre, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Andrea Gehrmann
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, 97080, Wuerzburg, Germany
| | - Brigitte Schmidt
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, 97080, Wuerzburg, Germany
| | - Agnieszka Gajewska
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, 97080, Wuerzburg, Germany
| | - Johannes Nowak
- Institute for Diagnostical and Interventional Radiology, University of Wuerzburg, 97080, Wuerzburg, Germany
| | - Eva Meisenzahl-Lechner
- Department of Psychiatry and Psychotherapy, Medical Faculty Heinrich-Heine University, 40204, Duesseldorf, Germany
| | - Mirko Pham
- Institute for Diagnostical and Interventional Neuroradiology, University of Wuerzburg, 97080, Wuerzburg, Germany
| | - Marcel Romanos
- Center of Mental Health, Department of Child and Adolescent Psychiatry, University of Wuerzburg, 97080, Wuerzburg, Germany
| | - Atae Akhrif
- Center of Mental Health, Department of Child and Adolescent Psychiatry, University of Wuerzburg, 97080, Wuerzburg, Germany
| | - Katharina Domschke
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, 97080, Wuerzburg, Germany
- Department of Psychiatry and Psychotherapy, Medical Centre, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
61
|
Bas-Hoogendam JM, van Steenbergen H, Tissier RLM, van der Wee NJA, Westenberg PM. Altered Neurobiological Processing of Unintentional Social Norm Violations: A Multiplex, Multigenerational Functional Magnetic Resonance Imaging Study on Social Anxiety Endophenotypes. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 5:981-990. [PMID: 31031203 DOI: 10.1016/j.bpsc.2019.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/21/2019] [Accepted: 03/04/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Patients with social anxiety disorder (SAD) fear negative evaluation in social situations. Specifically, previous work indicated that social anxiety is associated with increased medial prefrontal cortex activation in response to unintentional social norm (SN) transgressions, accompanied by increased embarrassment ratings for such SN violations. Here, we used data from the multiplex, multigenerational LFLSAD (Leiden Family Lab study on Social Anxiety Disorder), which involved two generations of families genetically enriched for SAD, and investigated whether these neurobiological and behavioral correlates of unintentional SN processing are SAD endophenotypes. Of four endophenotype criteria, we examined two: first, the cosegregation of these characteristics with social anxiety (SA) within families of SAD probands (criterion 4), and second, the heritability of the candidate endophenotypes (criterion 3). METHODS Participants (n = 110, age range 9.0-61.5 years, eight families) performed the revised Social Norm Processing Task; functional magnetic resonance imaging data and behavioral ratings related to this paradigm were used to examine whether brain activation in response to processing unintentional SN violations and ratings of embarrassment were associated with SA levels. Next, heritability of these measurements was estimated. RESULTS As expected, voxelwise functional magnetic resonance imaging analyses revealed positive associations between SA levels and brain activation in the medial prefrontal cortex and medial temporal gyrus, superior temporal gyrus, and superior temporal sulcus, and these brain activation levels displayed moderate to moderately high heritability. Furthermore, although SA levels correlated positively with behavioral ratings of embarrassment for SN transgressions, these behavioral characteristics were not heritable. CONCLUSIONS These results show, for the first time, that brain responses in the medial prefrontal cortex and medial temporal gyrus, superior temporal gyrus, and superior temporal sulcus, related to processing unintentional SN violations, provide a neurobiological candidate endophenotype of SAD.
Collapse
Affiliation(s)
- Janna Marie Bas-Hoogendam
- Institute of Psychology, Leiden University, Leiden, The Netherlands; Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Henk van Steenbergen
- Institute of Psychology, Leiden University, Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | | | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - P Michiel Westenberg
- Institute of Psychology, Leiden University, Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| |
Collapse
|
62
|
Modelling posttraumatic stress disorders in animals. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:117-133. [PMID: 30468906 DOI: 10.1016/j.pnpbp.2018.11.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 01/07/2023]
Abstract
Animal models of posttraumatic stress disorder are useful tools to reveal the neurobiological basis of the vulnerability to traumatic events, and to develop new treatment strategies, as well as predicting treatment response contributing to personalized medicine approach. Different models have different construct, face and predictive validity and they model different symptoms of the disease. The most prevalent models are the single prolonged stress, electric foot-shock and predator odor. Freezing as 're-experiencing' in cluster B and startle as 'arousal' in cluster E according to DSM-5 are the most frequently studied parameters; however, several other symptoms related to mood, cognitive and social skills are part of the examinations. Beside behavioral characteristics, symptoms of exaggerated sympathetic activity and hypothalamic-pituitary-adrenocortical axis as well as signs of sleep disturbances are also warranted. Test battery rather than a single test is required to describe a model properly and the results should be interpreted in a comprehensive way, e.g. creating a z-score. Research is shifting to study larger populations and identifying the features of the resilient and vulnerable individuals, which cannot be easily done in humans. Incorporation of the "three hit theory" in animal models may lead to a better animal model of vulnerability and resilience. As women are twice as vulnerable as men, more emphasize should be taken to include female animals. Moreover, hypothesis free testing and big data analysis may help to identify an array of biomarkers instead of a single variable for identification of vulnerability and for the purpose of personalized medicine.
Collapse
|
63
|
de Vries FE, de Wit SJ, van den Heuvel OA, Veltman DJ, Cath DC, van Balkom AJLM, van der Werf YD. Cognitive control networks in OCD: A resting-state connectivity study in unmedicated patients with obsessive-compulsive disorder and their unaffected relatives. World J Biol Psychiatry 2019; 20:230-242. [PMID: 28918693 DOI: 10.1080/15622975.2017.1353132] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Executive network deficits are putative neurocognitive endophenotypes for obsessive-compulsive disorder (OCD). Yet, unlike alterations in fronto-striatal and limbic connectivity, connectivity in the fronto-parietal (FPN) and cingulo-opercular (CON) networks involved in cognitive control has received little attention. METHODS The coherence of FPN, CON and fronto-limbic networks was investigated in 39 unmedicated OCD patients, 16 of their unaffected siblings and 36 healthy controls using resting-state functional-connectivity MRI and a seed-based analysis approach. RESULTS FPN and CON connectivity was similar for patients and controls. Siblings showed higher connectivity than patients within the CON, and between the CON and FPN compared to patients and controls (trend level). In OCD patients, but not in siblings, fronto-limbic hyperconnectivity was present compared to controls. In contrast to our expectations, no group differences in resting-state connectivity of the cognitive control networks were observed between OCD patients and controls. CONCLUSIONS The increased within- and between-network connectivity in siblings, but not in patients, could indicate a mechanism of increased cognitive control that may act as a protective mechanism. None of the observed network alterations can be considered an endophenotype for OCD since differences were present in either patients or siblings, but not in both groups.
Collapse
Affiliation(s)
- Froukje E de Vries
- a Department of Psychiatry , VU University Medical Centre , Amsterdam , The Netherlands.,b Neuroscience Campus Amsterdam , Amsterdam , The Netherlands
| | - Stella J de Wit
- a Department of Psychiatry , VU University Medical Centre , Amsterdam , The Netherlands.,b Neuroscience Campus Amsterdam , Amsterdam , The Netherlands
| | - Odile A van den Heuvel
- a Department of Psychiatry , VU University Medical Centre , Amsterdam , The Netherlands.,b Neuroscience Campus Amsterdam , Amsterdam , The Netherlands.,c Department of Anatomy and Neurosciences , VU University Medical Centre , Amsterdam , The Netherlands
| | - Dick J Veltman
- a Department of Psychiatry , VU University Medical Centre , Amsterdam , The Netherlands.,b Neuroscience Campus Amsterdam , Amsterdam , The Netherlands
| | - Danielle C Cath
- d Department of Clinical and Health psychology , Altrecht Academic Anxiety Centre, Utrecht University , Utrecht , The Netherlands
| | - Anton J L M van Balkom
- a Department of Psychiatry , VU University Medical Centre , Amsterdam , The Netherlands.,e EMGO + Institute , VU University , Amsterdam , The Netherlands
| | - Ysbrand D van der Werf
- a Department of Psychiatry , VU University Medical Centre , Amsterdam , The Netherlands.,b Neuroscience Campus Amsterdam , Amsterdam , The Netherlands.,c Department of Anatomy and Neurosciences , VU University Medical Centre , Amsterdam , The Netherlands
| |
Collapse
|
64
|
Weltens N, Iven J, Van Oudenhove L, Kano M. The gut-brain axis in health neuroscience: implications for functional gastrointestinal disorders and appetite regulation. Ann N Y Acad Sci 2019; 1428:129-150. [PMID: 30255954 DOI: 10.1111/nyas.13969] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/07/2018] [Accepted: 08/23/2018] [Indexed: 12/20/2022]
Abstract
Over the past few years, scientific interest in the gut-brain axis (i.e., the bidirectional communication system between the gastrointestinal tract and the brain) has exploded, mostly due to the identification of the gut microbiota as a novel key player in this communication. However, important progress has also been made in other aspects of gut-brain axis research, which has been relatively underemphasized in the review literature. Therefore, in this review, we provide a comprehensive, although not exhaustive, overview of recent research on the functional neuroanatomy of the gut-brain axis and its relevance toward the multidisciplinary field of health neuroscience, excluding studies on the role of the gut microbiota. More specifically, we first focus on irritable bowel syndrome, after which we outline recent findings on the role of the gut-brain axis in appetite and feeding regulation, primarily focusing on the impact of subliminal nutrient-related gut-brain signals. We conclude by providing future perspectives to facilitate translation of the findings from gut-brain axis neuroscientific research to clinical applications in these domains.
Collapse
Affiliation(s)
- Nathalie Weltens
- Laboratory for Brain-Gut Axis Studies (LaBGAS), Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), University of Leuven, Leuven, Belgium.,Leuven Brain Institute, University of Leuven, Leuven, Belgium
| | - Julie Iven
- Laboratory for Brain-Gut Axis Studies (LaBGAS), Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), University of Leuven, Leuven, Belgium.,Leuven Brain Institute, University of Leuven, Leuven, Belgium
| | - Lukas Van Oudenhove
- Laboratory for Brain-Gut Axis Studies (LaBGAS), Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), University of Leuven, Leuven, Belgium.,Leuven Brain Institute, University of Leuven, Leuven, Belgium.,Consultation-Liaison Psychiatry, University Psychiatric Centre KU Leuven, Campus Gasthuisberg, University of Leuven, Leuven, Belgium
| | - Michiko Kano
- Frontiers Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, Japan.,Department of Behavioral Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
65
|
Wu H, Zhou R, Zhao L, Qiu J, Guo C. Neural bases underlying the association between balanced time perspective and trait anxiety. Behav Brain Res 2019; 359:206-214. [PMID: 30408512 DOI: 10.1016/j.bbr.2018.10.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 11/19/2022]
Abstract
The aims of present study were to investigate the association between balanced time perspective (BTP) and trait anxiety, and the neural substrates underlying this association using voxel-based morphometry (VBM) and resting-state functional connectivity (RSFC) methods. 140 college students (83 females) ranging in age from 17 to 25 years were assessed on deviation from the balanced time perspective (DBTP) and trait anxiety. Behavioral analyses found BTP could significantly predict trait anxiety after controlling age and gender. Whole-brain VBM analyses found that DBTP was positively correlated with gray matter volume (GMV) in the parahippocampal gyrus (PHG) and precuneus, while trait anxiety positively correlated with GMV in the PHG. Considering the overlapping region in the PHG, we further defined the overlapping region as the seed, and calculated seed-to-voxel-based functional connectivity in resting-state. RSFC results showed that DBTP was positively associated with the RSFC between the PHG and medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC), and precuneus, whereas negatively correlated with the RSFC between the PHG and cuneus. Trait anxiety was also positively correlated with the RSFC between the PHG and PCC while negatively correlated with the RSFC between the PHG and cuneus. Mediation analysis further found GMV in the overlapping PHG and PHG-PCC, PHG-cuneus functional connectivity played significantly mediating roles in the relation between DBTP and trait anxiety. In sum, our research suggests the structural features of the PHG and its connectivity with PCC and cuneus may be the neural bases underlying the association between BTP and trait anxiety.
Collapse
Affiliation(s)
- Huimin Wu
- The Lab of Mental Health and Social Adaptation, Faculty of Psychology, Southwest University, Chongqing, China; Research Center of Mental Health Education, Southwest University, Chongqing, China
| | - Renhui Zhou
- The Lab of Mental Health and Social Adaptation, Faculty of Psychology, Southwest University, Chongqing, China; Research Center of Mental Health Education, Southwest University, Chongqing, China
| | - Le Zhao
- School of Education, Beijing Normal University, Zhuhai, China
| | - Junjie Qiu
- School of Educational Science, Lingnan Normal University, Zhanjiang, China
| | - Cheng Guo
- The Lab of Mental Health and Social Adaptation, Faculty of Psychology, Southwest University, Chongqing, China; Research Center of Mental Health Education, Southwest University, Chongqing, China.
| |
Collapse
|
66
|
Predicting treatment outcome for anxiety disorders with or without comorbid depression using clinical, imaging and (epi)genetic data. Curr Opin Psychiatry 2019; 32:1-6. [PMID: 30480619 DOI: 10.1097/yco.0000000000000468] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW The present review complements previous reviews on prediction research in anxiety disorders with a focus on clinical, imaging and genetic as well as epigenetic factors and aims to provide recommendations for the design of future integrative studies in adults as well as children. RECENT FINDINGS Clinical factors predicting worse outcome such as a diagnosis of social anxiety disorder, comorbid depression and certain cognitive, behavioral and personality traits as well as low socioeconomic status were confirmed in large clinical studies. Imaging factors focusing on the fear and anxiety network were repeatedly described as predicting therapy response in small exploratory studies. The plethora of candidate gene studies has now been complemented by large genome-wide association studies and small epigenetic investigations with the need for replication in larger samples. SUMMARY The present status of research on predictors for therapy response in anxiety disorders, in particular on imaging and genetic factors, is still fragmentary. Some clinical factors for poorer outcome, though, have been consistently replicated and should be considered in the revision of therapy guidelines. There is a definite need for large integrative studies at the national and international level integrating multiple levels of biomarkers at different stages of development.
Collapse
|
67
|
Cosci F, Mansueto G. Biological and Clinical Markers in Panic Disorder. Psychiatry Investig 2019; 16:27-36. [PMID: 30184613 PMCID: PMC6354043 DOI: 10.30773/pi.2018.07.26] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/26/2018] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE Classifying mental disorders on the basis of objective makers might clarify their aetiology, help in making the diagnosis, identify "at risk" individuals, determine the severity of mental illness, and predict the course of the disorder. This study aims to review biological and clinical markers of panic disorder (PD). METHODS A computerized search was carried out in PubMed and Science Direct using the key words: "marker/biomarker/clinical marker/neurobiology/staging" combined using Boolean AND operator with "panic." In addition, the reference lists from existing reviews and from the articles retrieved were inspected. Only English language papers published in peer-reviewed journals were included. RESULTS Structural changes in the amygdala, hippocampus, cerebral blood level in the left occipital cortex, serotonin 5-TH and noradrenergic systems activation, aberrant respiratory regulation, hearth rate variability, blood cells and peripheral blood stem cells, hypothalamic-pituitary-adrenal axis dysregulation were identified as potential candidate biomarkers of PD. Staging was identified as clinical marker of PD. According to the staging model, PD is described as follows: prodromal phase (stage 1); acute phase (stage 2); panic attacks (stage 3); chronic phase (stage 4). CONCLUSION The clinical utility, sensitivity, specificity, and the predictive value of biomarkers for PD is still questionable. The staging model of PD might be a valid susceptibility, diagnostic, prognostic, and predictive marker of PD. A possible longitudinal model of biological and clinical markers of PD is proposed.
Collapse
Affiliation(s)
- Fiammetta Cosci
- Department of Health Sciences, University of Florence, Florence, Italy.,Maastricht University Medical Center, Department of Psychiatry & Psychology, School for Mental Health & Neuroscience, Maastricht, the Netherlands
| | - Giovanni Mansueto
- Department of Health Sciences, University of Florence, Florence, Italy.,Maastricht University Medical Center, Department of Psychiatry & Psychology, School for Mental Health & Neuroscience, Maastricht, the Netherlands
| |
Collapse
|
68
|
Cancino A, Leiva-Bianchi M, Serrano C, Ballesteros-Teuber S, Cáceres C, Vitriol V. Factors Associated with Psychiatric Comorbidity in Depression Patients in Primary Health Care in Chile. DEPRESSION RESEARCH AND TREATMENT 2018; 2018:1701978. [PMID: 30364064 PMCID: PMC6188730 DOI: 10.1155/2018/1701978] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/17/2018] [Accepted: 09/13/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To identify the clinical and psychosocial factors associated with psychiatric comorbidity in patients consulting for depression in Primary Health Care (PHC) in Chile. METHODS 394 patients with a diagnosis of major depression being treated in a Chilean PHC were evaluated using a sociodemographic and clinical interview, the mini-international neuropsychiatric interview (MINI), a childhood trauma events (CTEs) screening, the intimate partner violence (IPV) scale, the Life Experiences Survey (LES), and the Hamilton Depression Rating Scale (HDRS). RESULTS Positive correlations were established between higher number of psychiatric comorbidities and severity of depressive symptoms (r = 0.358), frequency of CTEs (r = 0.228), frequency of IPV events (r = 0.218), frequency of recent stressful life events (r = 0.188), number of previous depressive episodes (r = 0.340), and duration of these (r = 0.120). Inverse correlations were determined with age at the time of the first consultation (r = -0.168), age of onset of depression (r = -0.320), and number of medical comorbidities (r = -0.140). Of all associated factors, early age of the first depressive episode, CTEs antecedents, and recent stressful life events explain 13.6% of total variability in psychiatric comorbidities. CONCLUSIONS A higher prevalence of psychiatric comorbidity among subjects seeking help for depression in Chilean PHCs is associated with early onset of depression, clinical severity, chronicity, and interpersonal adversity experienced since childhood.
Collapse
Affiliation(s)
- Alfredo Cancino
- Medicine School, Universidad de Talca, Talca, Chile
- Communal Mental Health Program, Primary Health Care Department, Municipality of Curicó, Curicó, Chile
| | | | - Carlos Serrano
- Faculty of Psychology, University of Talca, Talca, Chile
| | | | | | - Verónica Vitriol
- Medicine School, Universidad de Talca, Talca, Chile
- Hospital San Juan de Dios, Curicó, Chile
| |
Collapse
|
69
|
Dougherty DD, Brennan BP, Stewart SE, Wilhelm S, Widge AS, Rauch SL. Neuroscientifically Informed Formulation and Treatment Planning for Patients With Obsessive-Compulsive Disorder: A Review. JAMA Psychiatry 2018; 75:1081-1087. [PMID: 30140845 DOI: 10.1001/jamapsychiatry.2018.0930] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IMPORTANCE Obsessive-compulsive disorder (OCD) is a common and often debilitating psychiatric illness. Recent advances in the understanding of the neuroscience of OCD have provided valuable insights that have begun to transform the way we think about the management of this disorder. This educational review provides an integrated neuroscience perspective on formulation and treatment planning for patients with OCD. The article is organized around key neuroscience themes most relevant for OCD. OBSERVATIONS An integrated neuroscience formulation of OCD is predicated on a fundamental understanding of phenomenology and symptom dimensions, fear conditioning and extinction, neurochemistry, genetics and animal models, as well as neurocircuitry and neurotherapeutics. Symptom dimensions provide a means to better understand the phenotypic heterogeneity within OCD with an eye toward more personalized treatments. The concept of abnormal fear extinction is central to OCD and to the underlying therapeutic mechanism of exposure and response prevention. A framework for understanding the neurochemistry of OCD focuses on both traditional monoaminergic systems and more recent evidence of glutamatergic and γ-aminobutyric acid-ergic dysfunction. Obsessive-compulsive disorder is highly heritable, and future work is needed to understand the contribution of genes to underlying pathophysiology. A circuit dysregulation framework focuses on cortico-striato-thalamo-cortical circuit dysfunction and the development of neurotherapeutic approaches targeting this circuit. The impact of these concepts on how we think about OCD diagnosis and treatment is discussed. Suggestions for future investigations that have the potential to further enhance the clinical management of OCD are presented. CONCLUSIONS AND RELEVANCE These key neuroscience themes collectively inform formulation and treatment planning for patients with OCD. The ultimate goal is to increase crosstalk between clinicians and researchers in an effort to facilitate translation of advances in neuroscience research to improved care for patients with OCD.
Collapse
Affiliation(s)
- Darin D Dougherty
- Division of Neurotherapeutics, Massachusetts General Hospital, Boston.,Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, Massachusetts.,Obsessive-Compulsive and Related Disorders Program, Massachusetts General Hospital, Boston.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Brian P Brennan
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, Massachusetts.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.,Biological Psychiatry Laboratory, McLean Hospital, Belmont, Massachusetts
| | - S Evelyn Stewart
- BC Mental Health & Addictions Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sabine Wilhelm
- Obsessive-Compulsive and Related Disorders Program, Massachusetts General Hospital, Boston.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Alik S Widge
- Division of Neurotherapeutics, Massachusetts General Hospital, Boston.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.,Picower Institute for Learning and Memory, Massachusetts Institute for Technology, Cambridge
| | - Scott L Rauch
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, Massachusetts.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
70
|
Bas-Hoogendam JM, van Steenbergen H, Tissier RLM, Houwing-Duistermaat JJ, Westenberg PM, van der Wee NJA. Subcortical brain volumes, cortical thickness and cortical surface area in families genetically enriched for social anxiety disorder - A multiplex multigenerational neuroimaging study. EBioMedicine 2018; 36:410-428. [PMID: 30266294 PMCID: PMC6197574 DOI: 10.1016/j.ebiom.2018.08.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Social anxiety disorder (SAD) is a disabling psychiatric condition with a genetic background. Brain alterations in gray matter (GM) related to SAD have been previously reported, but it remains to be elucidated whether GM measures are candidate endophenotypes of SAD. Endophenotypes are measurable characteristics on the causal pathway from genotype to phenotype, providing insight in genetically-based disease mechanisms. Based on a review of existing evidence, we examined whether GM characteristics meet two endophenotype criteria, using data from a unique sample of SAD-patients and their family-members of two generations. First, we investigated whether GM characteristics co-segregate with social anxiety within families genetically enriched for SAD. Secondly, heritability of the GM characteristics was estimated. METHODS Families with a genetic predisposition for SAD participated in the Leiden Family Lab study on SAD; T1-weighted MRI brain scans were acquired (n = 110, 8 families). Subcortical volumes, cortical thickness and cortical surface area were determined for a-priori determined regions of interest (ROIs). Next, associations with social anxiety and heritabilities were estimated. FINDINGS Several subcortical and cortical GM characteristics, derived from frontal, parietal and temporal ROIs, co-segregated with social anxiety within families (uncorrected p-level) and showed moderate to high heritability. INTERPRETATION These findings provide preliminary evidence that GM characteristics of multiple ROIs, which are distributed over the brain, are candidate endophenotypes of SAD. Thereby, they shed light on the genetic vulnerability for SAD. Future research is needed to confirm these results and to link them to functional brain alterations and to genetic variations underlying these GM changes. FUND: Leiden University Research Profile 'Health, Prevention and the Human Life Cycle'.
Collapse
Affiliation(s)
- Janna Marie Bas-Hoogendam
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands; Department of Psychiatry, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Henk van Steenbergen
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Renaud L M Tissier
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands.
| | | | - P Michiel Westenberg
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| |
Collapse
|
71
|
Perez-Garcia G, Gama Sosa MA, De Gasperi R, Tschiffely AE, McCarron RM, Hof PR, Gandy S, Ahlers ST, Elder GA. Blast-induced "PTSD": Evidence from an animal model. Neuropharmacology 2018; 145:220-229. [PMID: 30227150 DOI: 10.1016/j.neuropharm.2018.09.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/19/2018] [Accepted: 09/14/2018] [Indexed: 10/28/2022]
Abstract
A striking observation among veterans returning from the recent conflicts in Iraq and Afghanistan has been the co-occurrence of blast-related mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD). PTSD and mTBI might coexist due to additive effects of independent psychological and physical traumas experienced in a war zone. Alternatively blast injury might induce PTSD-related traits or damage brain structures that mediate responses to psychological stressors, increasing the likelihood that PTSD will develop following a subsequent psychological stressor. Rats exposed to repetitive low-level blasts consisting of three 74.5 kPa exposures delivered once daily for three consecutive days develop a variety of anxiety and PTSD-related behavioral traits that are present for at least 9 months after blast exposure. A single predator scent challenge delivered 8 months after the last blast exposure induces additional anxiety-related changes that are still present 45 days later. Because the blast injuries occur under general anesthesia, it appears that blast exposure in the absence of a psychological stressor can induce chronic PTSD-related traits. The reaction to a predator scent challenge delivered many months after blast exposure suggests that blast exposure in addition sensitizes the brain to react abnormally to subsequent psychological stressors. The development of PTSD-related behavioral traits in the absence of a psychological stressor suggests the existence of blast-induced "PTSD". Findings that PTSD-related behavioral traits can be reversed by BCI-838, a group II metabotropic glutamate receptor antagonist offers insight into pathogenesis and possible treatment options for blast-related brain injury. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Georgina Perez-Garcia
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA
| | - Miguel A Gama Sosa
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA
| | - Rita De Gasperi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA
| | - Anna E Tschiffely
- Department of Neurotrauma, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Richard M McCarron
- Department of Neurotrauma, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20914, USA
| | - Patrick R Hof
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sam Gandy
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; NFL Neurological Care Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen T Ahlers
- Department of Neurotrauma, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Gregory A Elder
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA.
| |
Collapse
|
72
|
Matthies S, Schiele MA, Koentges C, Pini S, Schmahl C, Domschke K. Please Don't Leave Me-Separation Anxiety and Related Traits in Borderline Personality Disorder. Curr Psychiatry Rep 2018; 20:83. [PMID: 30155649 DOI: 10.1007/s11920-018-0951-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW In light of the apparent symptomatic resemblance of separation anxiety disorder (SAD) symptoms on the one hand and abandonment fears, anxiousness, and separation insecurity central to borderline personality disorder (BPD) on the other hand, a comprehensive overview of separation anxiety and related traits in BPD is provided. RECENT FINDINGS Epidemiological, environmental, psychological, and neurobiological data connecting BPD to separation events, feelings of loneliness, insecure attachment styles, dimensional separation anxiety as well as SAD per se suggest a partly shared etiological pathway model underlying BPD and SAD. Differential diagnostic aspects and implications for treatment are discussed, highlighting separation anxiety as a promising transdiagnostic target for specific psychotherapeutic and pharmacological treatment approaches in BPD. This innovative angle on cross-disorder symptomatology might carry potential for novel preventive and therapeutic avenues in clinical practice by guiding the development of interventions specifically targeting separation anxiety and attachment-related issues in BPD.
Collapse
Affiliation(s)
- Swantje Matthies
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, D-79104, Freiburg, Germany
| | - Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, D-79104, Freiburg, Germany
| | - Christa Koentges
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, D-79104, Freiburg, Germany
| | - Stefano Pini
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, D-79104, Freiburg, Germany.
| |
Collapse
|
73
|
Caldirola D, Alciati A, Riva A, Perna G. Are there advances in pharmacotherapy for panic disorder? A systematic review of the past five years. Expert Opin Pharmacother 2018; 19:1357-1368. [PMID: 30063164 DOI: 10.1080/14656566.2018.1504921] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Several effective medications are available for treating panic disorder (PD). However, outcomes are unsatisfactory in a number of patients, suggesting the usefulness of expanding the array of antipanic drugs and improving the quality of response to current recommended treatments. AREAS COVERED The authors have performed an updated systematic review of pharmacological studies (phase III onwards) to examine whether advances have been made in the last five years. Only four studies were included. D-cycloserine no longer seemed promising as a cognitive-behavioral therapy (CBT) enhancer. Some preliminary findings concerning the optimization of recommended medications deserved consideration, including: the possibility that SSRIs are more effective than CBT alone in treating panic attacks, combined therapy is preferable when agoraphobia is present, and clonazepam is more potent than paroxetine in decreasing panic relapse. EXPERT OPINION Given the lack of novel treatments, expanding a personalized approach to the existing medications seems to be the most feasible strategy to improve pharmacotherapy outcomes regarding PD. Recent technological progress, including wearable devices collecting real-time data, 'big data' platforms, and application of machine learning techniques might help make outcome prediction more reliable. Further research on previously promising novel treatments is also recommended.
Collapse
Affiliation(s)
- Daniela Caldirola
- a Department of Clinical Neurosciences , Hermanas Hospitalarias, Villa San Benedetto Menni Hospital, FoRiPsi , Albese con Cassano, Como , Italy
| | - Alessandra Alciati
- a Department of Clinical Neurosciences , Hermanas Hospitalarias, Villa San Benedetto Menni Hospital, FoRiPsi , Albese con Cassano, Como , Italy
- b Humanitas Clinical and Research Center , Milan , Italy
| | - Alice Riva
- a Department of Clinical Neurosciences , Hermanas Hospitalarias, Villa San Benedetto Menni Hospital, FoRiPsi , Albese con Cassano, Como , Italy
| | - Giampaolo Perna
- a Department of Clinical Neurosciences , Hermanas Hospitalarias, Villa San Benedetto Menni Hospital, FoRiPsi , Albese con Cassano, Como , Italy
- c Department of Biomedical Sciences , Humanitas University , Rozzano, Milan , Italy
- d Department of Psychiatry and Neuropsychology, Faculty of Health , Medicine and Life Sciences, Maastricht University , Maastricht , The Netherlands
- e Department of Psychiatry and Behavioral Sciences , Leonard Miller School of Medicine, Miami University , Miami , FL , USA
| |
Collapse
|
74
|
Scientific Evidence for the Evaluation of Neurological Soft Signs as Atypical Neurodevelopment Markers in Childhood Neuropsychiatric Disorders. J Psychiatr Pract 2018; 24:230-238. [PMID: 30427806 DOI: 10.1097/pra.0000000000000312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Motor dysfunction is commonly present in children with neurodevelopmental disorders. Developmental changes in voluntary control of motor skills include improvements in speed and motor coordination as well as reduced frequency of neurological soft signs (NSS) that are commonly observed in typically developing younger children. NSS are motor and sensory conditions that cannot be linked to specific cerebral lesions. The persistence of NSS into later childhood and adolescence is linked with an increased risk of psychiatric disorders. This finding gives support to the neurodevelopmental model of NSS in which minor neurological impairments may be viewed as potential signs of deviant brain development and might represent trait markers of vulnerability for neurodevelopmental disorders. Given that NSS are easily detectable, it is important that clinicians increase their knowledge of the clinical presentation and research implications of the relationship between NSS and childhood neurodevelopmental disorders. To the best of our knowledge, this is the first review article to give an updated overview of the current knowledge of NSS in the most common neuropsychiatric disorders of childhood/adolescence, such as attention-deficit/hyperactivity disorder, autism spectrum disorder, obsessive-compulsive disorder, bipolar disorder, and first episode of psychosis. The article also presents key points for future research studies on this topic.
Collapse
|
75
|
Bas-Hoogendam JM, Harrewijn A, Tissier RLM, van der Molen MJW, van Steenbergen H, van Vliet IM, Reichart CG, Houwing-Duistermaat JJ, Slagboom PE, van der Wee NJA, Westenberg PM. The Leiden Family Lab study on Social Anxiety Disorder: A multiplex, multigenerational family study on neurocognitive endophenotypes. Int J Methods Psychiatr Res 2018; 27:e1616. [PMID: 29700902 PMCID: PMC6001802 DOI: 10.1002/mpr.1616] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Social anxiety disorder (SAD) is a serious and prevalent psychiatric condition, with a heritable component. However, little is known about the characteristics that are associated with the genetic component of SAD, the so-called "endophenotypes". These endophenotypes could advance our insight in the genetic susceptibility to SAD, as they are on the pathway from genotype to phenotype. The Leiden Family Lab study on Social Anxiety Disorder (LFLSAD) is the first multiplex, multigenerational study aimed to identify neurocognitive endophenotypes of social anxiety. METHODS The LFLSAD is characterized by a multidisciplinary approach and encompasses a variety of measurements, including a clinical interview, functional and structural magnetic resonance imaging and an electroencephalography experiment. Participants are family members from 2 generations, from families genetically enriched for SAD. RESULTS The sample (n = 132 participants, from 9 families) was characterized by a high prevalence of SAD, in both generations (prevalence (sub)clinical SAD: 38.3%). Furthermore, (sub)clinical SAD was positively related to self-reported social anxiety, fear of negative evaluation, trait anxiety, behavioral inhibition, negative affect, and the level of depressive symptoms. CONCLUSIONS By the multidimensional character of the measurements and thorough characterization of the sample, the LFLSAD offers unique opportunities to investigate candidate neurocognitive endophenotypes of SAD.
Collapse
Affiliation(s)
- Janna Marie Bas-Hoogendam
- Developmental and Educational Psychology, Institute of Psychology, Leiden University, Leiden, The Netherlands.,Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Anita Harrewijn
- Developmental and Educational Psychology, Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Renaud L M Tissier
- Developmental and Educational Psychology, Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - Melle J W van der Molen
- Developmental and Educational Psychology, Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Henk van Steenbergen
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands.,Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - Irene M van Vliet
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - P Eline Slagboom
- Section of Molecular Epidemiology, Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - P Michiel Westenberg
- Developmental and Educational Psychology, Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| |
Collapse
|
76
|
Cocchi L, Zalesky A, Nott Z, Whybird G, Fitzgerald PB, Breakspear M. Transcranial magnetic stimulation in obsessive-compulsive disorder: A focus on network mechanisms and state dependence. NEUROIMAGE-CLINICAL 2018; 19:661-674. [PMID: 30023172 PMCID: PMC6047114 DOI: 10.1016/j.nicl.2018.05.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023]
Abstract
Background Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique that has shown promise as an adjunct treatment for the symptoms of Obsessive-Compulsive Disorder (OCD). Establishing a clear clinical role for TMS in the treatment of OCD is contingent upon evidence of significant efficacy and reliability in reducing symptoms. Objectives We present the basic principles supporting the effects of TMS on brain activity with a focus on network-based theories of brain function. We discuss the promises and pitfalls of this technique as a means of modulating brain activity and reducing OCD symptoms. Methods Synthesis of trends and critical perspective on the potential benefits and limitations of TMS interventions in OCD. Findings Our critical synthesis suggests the need to better quantify the role of TMS in a clinical setting. The context in which the stimulation is performed, the neural principles supporting the effects of local stimulation on brain networks, and the heterogeneity of neuroanatomy are often overlooked in the clinical application of TMS. The lack of consideration of these factors may partly explain the variable efficacy of TMS interventions for OCD symptoms. Conclusions Results from existing clinical studies and emerging knowledge about the effects of TMS on brain networks are encouraging but also highlight the need for further research into the use of TMS as a means of selectively normalising OCD brain network dynamics and reducing related symptoms. The combination of neuroimaging, computational modelling, and behavioural protocols known to engage brain networks affected by OCD has the potential to improve the precision and therapeutic efficacy of TMS interventions. The efficacy of this multimodal approach remains, however, to be established and its effective translation in clinical contexts presents technical and implementation challenges. Addressing these practical, scientific and technical issues is required to assess whether OCD can take its place alongside major depressive disorder as an indication for the use of TMS.
Collapse
Affiliation(s)
- Luca Cocchi
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, Australia; Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia
| | - Zoie Nott
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Paul B Fitzgerald
- Epworh Clinic Epworth Healthcare, Camberwell, Victoria Australia and the MAPrc, Monash University Central Clinical School and The Alfred, Melbourne, Australia
| | | |
Collapse
|
77
|
Çeri V, Aykutlu HC, Görker I, Akça ÖF, Tarakçıoğlu MC, Aksoy UM, Kaya H, Sertdemir M, İnce E, Kadak MT, Yalçın GY, Guliyev C, Bilgiç A, Çiftçi E, Tekin K, Tuna ZO, Oğuzdoğan B, Duman NS, Semerci B, Üneri ÖŞ, Karabekiroglu K, Mutluer T, Nebioglu M, Başgül ŞS, Naharcı Mİ, Maden Ö, Hocaoğlu Ç, Durmaz O, Usta H, Boşgelmez Ş, Puşuroğlu M, Eser HY, Kaçar M, Çakır M, Karatepe HT, Işık Ü, Kara H, Yeloğlu ÇH, Yazıcı E, Gündüz A, Karataş KS, Yavlal F, Uzun N, Yazici AB, Bodur Ş, Aslan EA, Batmaz S, Çelik F, Açıkel SB, Topal Z, Altunsoy N, Tulacı ÖD, Demirel ÖF, Çıtak S, Çak HT, Artık AB, Özçetin A, Özdemir I, Çelik FGH, Kültür SEÇ, Çipil A, Ay R, Arman AR, Yazıcı KU, Yuce AE, Yazıcı İP, Kurt E, Kaçar AŞ, Erbil N, Poyraz CA, Altın GE, Şahin B, Kılıç Ö, Turan Ş, Aydın M, Kuru E, Bozkurt A, Güleç H, İnan MY, Şevik AE, Baykal S, Karaer Y, Yanartaş O, Aksu H, Ergün S, Görmez A, Yıldız M, Bag S, Özkanoğlu FK, Caliskan M, Yaşar AB, Konuk E, Altın M, Bulut S, Bulut GÇ, Tulacı RG, Küpeli NY, Enver N, Tasci İ, Kani AS, et alÇeri V, Aykutlu HC, Görker I, Akça ÖF, Tarakçıoğlu MC, Aksoy UM, Kaya H, Sertdemir M, İnce E, Kadak MT, Yalçın GY, Guliyev C, Bilgiç A, Çiftçi E, Tekin K, Tuna ZO, Oğuzdoğan B, Duman NS, Semerci B, Üneri ÖŞ, Karabekiroglu K, Mutluer T, Nebioglu M, Başgül ŞS, Naharcı Mİ, Maden Ö, Hocaoğlu Ç, Durmaz O, Usta H, Boşgelmez Ş, Puşuroğlu M, Eser HY, Kaçar M, Çakır M, Karatepe HT, Işık Ü, Kara H, Yeloğlu ÇH, Yazıcı E, Gündüz A, Karataş KS, Yavlal F, Uzun N, Yazici AB, Bodur Ş, Aslan EA, Batmaz S, Çelik F, Açıkel SB, Topal Z, Altunsoy N, Tulacı ÖD, Demirel ÖF, Çıtak S, Çak HT, Artık AB, Özçetin A, Özdemir I, Çelik FGH, Kültür SEÇ, Çipil A, Ay R, Arman AR, Yazıcı KU, Yuce AE, Yazıcı İP, Kurt E, Kaçar AŞ, Erbil N, Poyraz CA, Altın GE, Şahin B, Kılıç Ö, Turan Ş, Aydın M, Kuru E, Bozkurt A, Güleç H, İnan MY, Şevik AE, Baykal S, Karaer Y, Yanartaş O, Aksu H, Ergün S, Görmez A, Yıldız M, Bag S, Özkanoğlu FK, Caliskan M, Yaşar AB, Konuk E, Altın M, Bulut S, Bulut GÇ, Tulacı RG, Küpeli NY, Enver N, Tasci İ, Kani AS, Bahçeci B, Oğuz G, Şenyuva G, Ünal GT, Yektaş Ç, Örüm MH, Göka E, Gıca Ş, Şahmelikoğlu Ö, Dinç GŞ, Erşan S, Erşan E, Ceylan MF, Hesapçıoğlu ST, Solmaz M, Balcioglu YH, Cetin M, Tosun M, Yurteri N, Ulusoy S, Karadere ME, Kivrak Y, Görmez V. Symposium Oral Presentations. PSYCHIAT CLIN PSYCH 2018. [DOI: 10.1080/24750573.2018.1464274] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Veysi Çeri
- Marmara University Pendik Research and Training Hospital, Child and Adolescent Psychiatry Clinic, Istanbul, Turkey
| | - Hasan Cem Aykutlu
- Department of Child and Adolescent Psychiatry, Trakya University School of Medicine, Edirne, Turkey
| | - Işık Görker
- Department of Child and Adolescent Psychiatry, Trakya University School of Medicine, Edirne, Turkey
| | - Ömer Faruk Akça
- Department of Child and Adolescent Psychiatry, Necmettin Erbakan University Meram School of Medicine, Konya, Turkey
| | - Mahmut Cem Tarakçıoğlu
- Health Sciences University Kanuni Sultan Süleyman Research and Training Hospital, Istanbul, Turkey
| | - Umut Mert Aksoy
- Health Sciences University Kanuni Sultan Süleyman Research and Training Hospital, Istanbul, Turkey
| | - Heysem Kaya
- Department of Computer Engineering, Çorlu Faculty of Engineering, Namık Kemal University, Çorlu, Tekirdağ, Turkey
| | - Merve Sertdemir
- Department of Child and Adolescent Psychiatry, Necmettin Erbakan University Meram School of Medicine, Konya, Turkey
| | - Ezgi İnce
- Department of Psychiatry, Istanbul University Istanbul School of Medicine, Istanbul, Turkey
| | - Muhammed Tayyib Kadak
- Department of Child and Adolescent Psychiatry, Istanbul University Cerrahpaşa School of Medicine, Istanbul, Turkey
| | | | | | - Ayhan Bilgiç
- Department of Child and Adolescent Psychiatry, Necmettin Erbakan University Meram School of Medicine, Konya, Turkey
| | - Elvan Çiftçi
- Department of Psychiatry, Erenkoy Research and Training Hospital, Istanbul, Turkey
| | | | | | | | | | - Bengi Semerci
- Department of Psychology, Hasan Kalyoncu University, Gaziantep, Turkey
| | - Özden Şükran Üneri
- Department of Child and Adolescent Psychiatry, Yıldırım Beyazıt University School of Medicine, Ankara, Turkey
| | | | - Tuba Mutluer
- Koç University Hospital, Department of Child and Adolescent Psychiatry, Istanbul, Turkey
| | - Melike Nebioglu
- Health Sciences University, Haydarpaşa Numune Research and Training Hospital, Istanbul, Turkey
| | | | - Mehmet İlkin Naharcı
- Division of Geriatrics, Department of Internal Medicine, Health Sciences University, Ankara, Turkey
| | - Özgür Maden
- SBÜ Sultan Abdülhamid Han Education and Training Hospital, Department of Psychiatry, Istanbul, Turkey
| | - Çiçek Hocaoğlu
- Department of Psychiatry, Recep Tayyip Erdogan University School of Medicine, Rize, Turkey
| | - Onur Durmaz
- Erenköy Mental Health and Neurology Research and Training Hospital, Department of Psychiatry, Istanbul, Turkey
| | - Haluk Usta
- Erenköy Mental Health and Neurology Research and Training Hospital, Department of Psychiatry, Istanbul, Turkey
| | - Şükriye Boşgelmez
- Kocaeli Derince Research and Training Hospital, Psychiatry Clinic, Kocaeli, Turkey
| | | | - Hale Yapıcı Eser
- KOÇ University School of Medicine, Istanbul, Turkey
- KOÇ University Research Center FOR Translational Medicine (Kuttam), Istanbul, Turkey
- Koç University School of Medicine Department of Psychiatry, Istanbul, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Murat Kaçar
- Department of Child and Adolescent Psychiatry, Recep Tayyip Erdogan University School of Medicine, Rize, Turkey
| | - Mahmut Çakır
- Child Psychiatry Clinic, Health Sciences University, Amasya Research and Training Hospital, Amasya, Turkey
| | - Hasan Turan Karatepe
- Department of Psychiatry, Istanbul Medeniyet University, School of Medicine, Istanbul, Turkey
| | - Ümit Işık
- Department of Child and Adolescent Psychiatry, Yozgat State Hospital, Yozgat, Turkey
| | - Halil Kara
- Department of Child and Adolescent Psychiatry, Aksaray University Research and Training Hospital, Aksaray, Turkey
| | | | - Esra Yazıcı
- Department of Psychiatry, Sakarya University School of Medicine, Sakarya, Turkey
| | - Anıl Gündüz
- Health Sciences University, Haydarpaşa Numune Research and Training Hospital, Istanbul, Turkey
| | - Kader Semra Karataş
- Recep Tayyip Erdogan University School of Medicine Psychiatry Department, Rize, Turkey
| | - Figen Yavlal
- Department of Neurology, School of Medicine, Bahcesehir University, Istanbul, Turkey
- Department of Neurology, Bahcesehir University School of Medicine, Istanbul, Turkey
| | - Necati Uzun
- Department of Child and Adolescent Psychiatry, Elazığ Psychiatry Hospital, Elazığ, Turkey
| | - Ahmet Bulent Yazici
- Department of Psychiatry, Sakarya University School of Medicine, Sakarya, Turkey
| | - Şahin Bodur
- Health Sciences University, Gulhane Research and Training Hospital, Child and Adolescent Psychiatry Clinic, Ankara, Turkey
| | - Esma Akpınar Aslan
- Department of Psychiatry, Gaziosmanpaşa University School of Medicine, Tokat, Turkey
| | - Sedat Batmaz
- Department of Psychiatry, Gaziosmanpasa University School of Medicine, Tokat, Turkey
| | - Feyza Çelik
- Department of Psychiatry, Dumlupınar University School of Medicine, Evliya Çelebi Research and Training Hospital, Kütahya, Turkey
| | - Sadettin Burak Açıkel
- Dr. Sami Ulus Research and Training Hospital, Child and Adolescent Psychiatry Department, Ankara, Turkey
| | | | | | | | - Ömer Faruk Demirel
- Department of Psychiatry, Cerrahpaşa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Serhat Çıtak
- Department of Psychiatry, Istanbul Medeniyet University, School of Medicine, Istanbul, Turkey
| | - Halime Tuna Çak
- Department of Child and Adolescent Psychiatry, Hacettepe University School of Medicine, Ankara, Turkey
| | - Abdül Baki Artık
- Department of Child and Adolescent Psychiatry, Hacettepe University School of Medicine, Ankara, Turkey
| | - Adnan Özçetin
- Department of Psychiatry, Duzce University School of Medicine, Duzce, Turkey
| | - Ilker Özdemir
- Giresun University Prof. Dr. A. İlhan Özdemir Research and Training Hospital, Giresun, Turkey
| | | | | | - Arif Çipil
- Health Sciences University, Haydarpaşa Numune Research and Training Hospital, Istanbul, Turkey
| | - Rukiye Ay
- Malatya Research and Training Hospital, Malatya, Turkey
| | - Ayşe Rodopman Arman
- Department of Child and Adolescent Psychiatry, Marmara University School of Medicine, Istanbul
| | - Kemal Utku Yazıcı
- Department of Child and Adolescent Psychiatry, Firat University School of Medicine, Elazig, Turkey
| | | | - İpek Perçinel Yazıcı
- Department of Child and Adolescent Psychiatry, Firat University School of Medicine, Elazig, Turkey
| | - Emel Kurt
- Psychiatry Clinic, Hisar Intercontinental Hospital, Istanbul, Turkey
| | - Anıl Şafak Kaçar
- Koc University, Research Center for Translational Medicine, Istanbul, Turkey
| | - Nurhan Erbil
- Department of Biophysics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Cana Aksoy Poyraz
- Department of Psychiatry, Istanbul University Cerrahpaşa School of Medicine, Istanbul, Turkey
| | | | - Berkan Şahin
- Iğdır State Hospital, Child and Adolescent Psychiatry Clinic, Iğdır, Turkey
| | - Özge Kılıç
- Department of Psychiatry, Koç University Hospital, Istanbul, Turkey
| | - Şenol Turan
- Department of Psychiatry, Istanbul University Cerrahpaşa School of Medicine, Istanbul, Turkey
| | - Memduha Aydın
- Department of Psychiatry, Selçuk University School of Medicine, Konya, Turkey
| | - Erkan Kuru
- Özel Boylam Psychiatry Hospital, Ankara, Turkey
| | - Abdullah Bozkurt
- Department of Child and Adolescent Psychiatry, Konya Research and Training Hospital, Konya, Turkey
| | - Hüseyin Güleç
- Erenköy Mental Health and Neurology Research and Training Hospital, Department of Psychiatry, Istanbul, Turkey
| | | | - Ali Emre Şevik
- Department of Psychiatry, Çanakkale 18 Mart University School of Medicine, Çanakkale, Türkiye
| | - Saliha Baykal
- Department of Child and Adolescent Psychiatry, Namık Kemal University School of Medicine, Tekirdağ, Turkey
| | - Yusuf Karaer
- Department of Child and Adolescent Psychiatry, Hacettepe University School of Medicine, Ankara, Turkey
| | - Omer Yanartaş
- Department of Psychiatry, Marmara Medical School, Istanbul, Turkiye
| | - Hatice Aksu
- Department of Child and Adolescent Psychiatry, Adnan Menderes University School of Medicine, Aydın, Turkey
| | - Serhat Ergün
- Department of Psychiatry, Marmara University Pendik Research and Training Hospital, Istanbul, Turkey
| | - Aynur Görmez
- Department of Child and Adolescent Psychiatry, Istanbul Medeniyet University School of Medicine, Istanbul, Turkey
| | - Mesut Yıldız
- Department of Psychiatry, School of Medicine, Marmara University, Istanbul, Turkey
| | - Sevda Bag
- Bakirkoy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | | | - Mecit Caliskan
- Health Sciences University, Haydarpaşa Numune Research and Training Hospital, Istanbul, Turkey
| | - Alişan Burak Yaşar
- Health Sciences University, Haydarpaşa Numune Research and Training Hospital, Istanbul, Turkey
- Behavioral Sciences Institute, Istanbul, Turkey
| | - Emre Konuk
- Health Sciences University, Haydarpaşa Numune Research and Training Hospital, Istanbul, Turkey
- Behavioral Sciences Institute, Istanbul, Turkey
| | - Murat Altın
- Istinye University Hospital, Psychiatry Clinic, Istanbul, Turkey
| | - Serkut Bulut
- Psychiatry Clinic, Health Sciences University Sakarya Research and Training Hospital, Sakarya, Turkey
| | | | - Rıza Gökçer Tulacı
- Uşak University School of Medicine Research and Training Hospital, Uşak, Turkey
| | - Neşe Yorguner Küpeli
- Department of Psychiatry, Marmara University Pendik Research and Training Hospital, Istanbul, Turkey
| | - Necati Enver
- Department of Otolaryngology, Marmara University Pendik Research and Training Hospital, Istanbul, Turkey
| | - İlker Tasci
- Health Sciences University, Gulhane School of Medicine, Department of Internal Medicine, Ankara, Turkey
| | - Ayşe Sakallı Kani
- Marmara University Pendik Research and Training Hospital, Istanbul, Turkey
| | - Bülent Bahçeci
- Department of Psychiatry, Recep Tayyip Erdogan University, Rize, Turkey
| | | | | | - Gülşen Teksin Ünal
- Bakirkoy Prof. Dr. Mazhar Osman Research and Training Hospital for Psychiatry, Neurology, and Neurosurgery, Istanbul, Turkey
| | - Çiğdem Yektaş
- Duzce University School of Medicine, Department of Child and Adolescent Psychiatry, Duzce, Turkey
| | - Mehmet Hamdi Örüm
- Department of Psychiatry, Adiyaman University School of Medicine, Adiyaman, Turkey
| | - Erol Göka
- SBÜ Ankara Numune Eğitim ve Araştırma Hastanesi
| | - Şakir Gıca
- Bakirkoy Prof. Dr. Mazhar Osman Research and Training Hospital for Psychiatry, Neurology, and Neurosurgery, Istanbul, Turkey
| | - Özge Şahmelikoğlu
- Bakirkoy Prof. Dr. Mazhar Osman Research and Training Hospital for Psychiatry, Neurology, and Neurosurgery, Istanbul, Turkey
| | - Gülser Şenses Dinç
- Department of Child and Adolescent Psychiatry, Ankara Children’s Hematology Oncology Research and Training Hospital, Ankara Turkey
| | - Serpil Erşan
- Cumhuriyet University Advanced Technology Research and Application Center, Sivas, Turkey
| | - Erdal Erşan
- Sivas Numune Hospital, Community Mental Health Center, Sivas, Turkey
| | - Mehmet Fatih Ceylan
- Department of Child and Adolescent Psychiatry, Yıldırım Beyazıt University School of Medicine, Ankara, Turkey
| | - Selma Tural Hesapçıoğlu
- Department of Child and Adolescent Psychiatry, Yıldırım Beyazıt University School of Medicine, Ankara, Turkey
| | - Mustafa Solmaz
- Health Sciences University Bagcilar Research and Training Hospital, Department of Psychiatry, Istanbul, Turkey
- Bakirkoy Prof. Mazhar Osman Training and Research Hospital for Psychiatry, Neurology, and Neurosurgery, Forensic Psychiatry Unit, Istanbul, Turkey
| | - Yasin Hasan Balcioglu
- Health Sciences University Bagcilar Research and Training Hospital, Department of Psychiatry, Istanbul, Turkey
- Bakirkoy Prof. Mazhar Osman Training and Research Hospital for Psychiatry, Neurology, and Neurosurgery, Forensic Psychiatry Unit, Istanbul, Turkey
| | | | - Musa Tosun
- Istanbul University Cerrahpaşa School of Medicine, Department of Child and Adolescent Psychiatry, Istanbul, Turkey
| | - Nihal Yurteri
- Duzce University School of Medicine, Department of Child and Adolescent Psychiatry, Duzce, Turkey
| | - Sevinc Ulusoy
- Bakirkoy Prof. Dr. Mazhar Osman Research and Training Hospital for Psychiatry and Neurology, Istanbul, Turkey
| | | | - Yüksel Kivrak
- Department of Psychiatry, Kafkas University School of Medicine, Kars, Turkey
| | - Vahdet Görmez
- Bezmialem Vakif University, Department of Child and Adolescent Psychiatry, Istanbul, Turkey
| |
Collapse
|
78
|
Ivanovs R, Kivite A, Ziedonis D, Mintale I, Vrublevska J, Rancans E. Association of depression and anxiety with cardiovascular co-morbidity in a primary care population in Latvia: a cross-sectional study. BMC Public Health 2018; 18:328. [PMID: 29510681 PMCID: PMC5840840 DOI: 10.1186/s12889-018-5238-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/28/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cardiovascular (CV) diseases (CVDs) are the leading cause of mortality worldwide. Globally, there is a growing interest in understanding and addressing modifiable psychosocial risk factors, particularly depression and anxiety, to prevent CVDs and to reduce morbidity and mortality. Despite the high premature mortality rate from CVDs in Latvia, this is the first Latvian study to examine the association of depression and anxiety with CVD morbidity in a primary care population. METHODS This cross-sectional study was carried out in 2015 within the framework of the National Research Program BIOMEDICINE at 24 primary care facilities throughout Latvia. Consecutive adult patients during a one-week time period at each facility were invited to join the study. Assessments onsite included a 9-item Patient Health Questionnaire (PHQ-9) and a 7-item Generalized Anxiety Disorder scale (GAD-7) followed by a socio-demographic questionnaire and measurements of height, weight, waist circumference, blood pressure, and total cholesterol. The diagnostic Mini International Neuropsychiatric Interview (MINI) was conducted over the telephone within 2 weeks after the visit to the general practitioner. A multivariate model was developed using binary logistic regression. RESULTS From the 1565 subjects (31.2% male), CVD was detected in 17.1%. Depression screening was positive (PHQ-9 ≥ 10) for 14.7%, and anxiety screening was positive (GAD-7 ≥ 10) for 10.1% of the study subjects. According to the MINI, 10.3% had current and 28.1% had lifetime depressive episode, and 16.1% had an anxiety disorder. Depression, not anxiety, was statistically significantly related to CVDs with an odds ratio (OR) of 1.52 (p = 0.04) for current depressive symptoms (PHQ-9 ≥ 10) and 2.08 (p = 0.002) for lifetime depressive episode (MINI). CONCLUSIONS Current depressive symptoms (PHQ-9 ≥ 10) and a lifetime depressive episode (according to the MINI) were significantly associated with increased risk of CV morbidity. Therefore, CV patients should be screened and treated for depression to potentially improve the prognosis of CVDs. Enhanced training and integration of mental health treatment in Latvian primary care settings may improve clinical outcomes.
Collapse
Affiliation(s)
- R Ivanovs
- Department of Psychiatry and Narcology, Riga Stradins University, 2 Tvaika Str, Riga, LV-1005, Latvia.
| | - A Kivite
- Department of Public Health and Epidemiology, Riga Stradins University, 9 Kronvalda Ave, Riga, LV-1010, Latvia
| | - D Ziedonis
- Associate Vice Chancellor for Health Sciences, University of California San Diego, Biomedical Sciences Building, Room 1310, 9500 Gilman Drive #0602, La Jolla, CA, 92093, USA
| | - I Mintale
- Department of Cardiology, University Clinic of Paul Stradins, 13 Pilsonu Str, Riga, LV-1002, Latvia
| | - J Vrublevska
- Department of Psychiatry and Narcology, Riga Stradins University, 2 Tvaika Str, Riga, LV-1005, Latvia
| | - E Rancans
- Department of Psychiatry and Narcology, Riga Stradins University, 2 Tvaika Str, Riga, LV-1005, Latvia
| |
Collapse
|
79
|
Abstract
Anxiety disorders (generalized anxiety disorder, panic disorder/agoraphobia, social anxiety disorder, and others) are the most prevalent psychiatric disorders, and are associated with a high burden of illness. Anxiety disorders are often underrecognized and undertreated in primary care. Treatment is indicated when a patient shows marked distress or suffers from complications resulting from the disorder. The treatment recommendations given in this article are based on guidelines, meta-analyses, and systematic reviews of randomized controlled studies. Anxiety disorders should be treated with psychological therapy, pharmacotherapy, or a combination of both. Cognitive behavioral therapy can be regarded as the psychotherapy with the highest level of evidence. First-line drugs are the selective serotonin reuptake inhibitors and serotonin-norepinephrine reuptake inhibitors. Benzodiazepines are not recommended for routine use. Other treatment options include pregabalin, tricyclic antidepressants, buspirone, moclobemide, and others. After remission, medications should be continued for 6 to 12 months. When developing a treatment plan, efficacy, adverse effects, interactions, costs, and the preference of the patient should be considered.
Collapse
Affiliation(s)
- Borwin Bandelow
- Department of Psychiatry and Psychotherapy, University Medical Center, Gottingen, Germany
| | - Sophie Michaelis
- Department of Psychiatry and Psychotherapy, University Medical Center, Gottingen, Germany
| | - Dirk Wedekind
- Department of Psychiatry and Psychotherapy, University Medical Center, Gottingen, Germany
| |
Collapse
|
80
|
Abramowitz JS. Presidential Address: Are the Obsessive-Compulsive Related Disorders Related to Obsessive-Compulsive Disorder? A Critical Look at DSM-5's New Category. Behav Ther 2018; 49:1-11. [PMID: 29405915 DOI: 10.1016/j.beth.2017.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 12/18/2022]
Abstract
The 5th edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM) includes a new class of obsessive-compulsive and related disorders (OCRDs) that includes obsessive-compulsive disorder (OCD) and a handful of other putatively related conditions. Although this new category promises to raise awareness of underrecognized and understudied problems, the empirical validity and practical utility of this new DSM category is questionable. This article critically examines the arguments underlying the new OCRD class, illuminates a number of problems with this class, and then discusses implications for clinicians and researchers.
Collapse
|
81
|
Maron E, Lan CC, Nutt D. Imaging and Genetic Approaches to Inform Biomarkers for Anxiety Disorders, Obsessive-Compulsive Disorders, and PSTD. Curr Top Behav Neurosci 2018; 40:219-292. [PMID: 29796838 DOI: 10.1007/7854_2018_49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Anxiety disorders are the most common mental health problem in the world and also claim the highest health care cost among various neuropsychiatric disorders. Anxiety disorders have a chronic and recurrent course and cause significantly negative impacts on patients' social, personal, and occupational functioning as well as quality of life. Despite their high prevalence rates, anxiety disorders have often been under-diagnosed or misdiagnosed, and consequently under-treated. Even with the correct diagnosis, anxiety disorders are known to be difficult to treat successfully. In order to implement better strategies in diagnosis, prognosis, treatment decision, and early prevention for anxiety disorders, tremendous efforts have been put into studies using genetic and neuroimaging techniques to advance our understandings of the underlying biological mechanisms. In addition to anxiety disorders including panic disorder, generalised anxiety disorder (GAD), specific phobias, social anxiety disorders (SAD), due to overlapping symptom dimensions, obsessive-compulsive disorder (OCD), and post-traumatic stress disorder (PTSD) (which were removed from the anxiety disorder category in DSM-5 to become separate categories) are also included for review of relevant genetic and neuroimaging findings. Although the number of genetic or neuroimaging studies focusing on anxiety disorders is relatively small compare to other psychiatric disorders such as psychotic disorders or mood disorders, various structural abnormalities in the grey or white matter, functional alterations of activity during resting-state or task conditions, molecular changes of neurotransmitter receptors or transporters, and genetic associations have all been reported. With continuing effort, further genetic and neuroimaging research may potentially lead to clinically useful biomarkers for the prevention, diagnosis, and management of these disorders.
Collapse
Affiliation(s)
- Eduard Maron
- Neuropsychopharmacology Unit, Centre for Academic Psychiatry, Division of Brain Sciences, Imperial College London, London, UK.
- Department of Psychiatry, University of Tartu, Tartu, Estonia.
- Department of Psychiatry, North Estonia Medical Centre, Tallinn, Estonia.
| | - Chen-Chia Lan
- Neuropsychopharmacology Unit, Centre for Academic Psychiatry, Division of Brain Sciences, Imperial College London, London, UK
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan
| | - David Nutt
- Neuropsychopharmacology Unit, Centre for Academic Psychiatry, Division of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
82
|
Ivanovs R, Kivite A, Ziedonis D, Mintale I, Vrublevska J, Rancans E. Association of Depression and Anxiety With the 10-Year Risk of Cardiovascular Mortality in a Primary Care Population of Latvia Using the SCORE System. Front Psychiatry 2018; 9:276. [PMID: 29997533 PMCID: PMC6029265 DOI: 10.3389/fpsyt.2018.00276] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/07/2018] [Indexed: 12/15/2022] Open
Abstract
Background: Depression and anxiety have been recognized as independent risk factors for both the development and prognosis of cardiovascular (CV) diseases (CVD). The Systematic Coronary Risk Evaluation (SCORE) function measures the 10-year risk of a fatal CVD and is a crucial tool for guiding CV patient management. This study is the first in Latvia to investigate the association of depression and anxiety with the 10-year CV mortality risk in a primary care population. Methods: This cross-sectional study was conducted at 24 primary care facilities. During a 1-week period in 2015, all consecutive adult patients were invited to complete a nine-item Patient Health Questionnaire (PHQ-9) and a seven-item Generalized Anxiety Disorder scale (GAD-7) followed by sociodemographic questionnaire and physical measurements. The diagnostic Mini International Neuropsychiatric Interview (M.I.N.I.) was administered by telephone in the period of 2 weeks after the first contact at the primary care facility. A hierarchical multivariate analysis was performed. Results: The study population consisted of 1,569 subjects. Depressive symptoms (PHQ-9 ≥10) were associated with a 1.57 (95% confidence interval (CI): 1.06-2.33) times higher odds of a very high CV mortality risk (SCORE ≥10%), but current anxiety disorder (M.I.N.I.) reduced the CV mortality risk with an odds ratio of 0.58 (95% CI: 0.38-0.90). Conclusions: Our findings suggest that individuals with SCORE ≥10% should be screened and treated for depression to potentially delay the development and improve the prognosis of CVD. Anxiety could possibly have a protective influence on CV prognosis.
Collapse
Affiliation(s)
- Rolands Ivanovs
- Department of Psychiatry and Narcology, Riga Stradins University, Riga, Latvia
| | - Anda Kivite
- Department of Public Health and Epidemiology, Riga Stradins University, Riga, Latvia
| | - Douglas Ziedonis
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Iveta Mintale
- Department of Cardiology, University Clinic of Paul Stradins, Riga, Latvia
| | - Jelena Vrublevska
- Department of Psychiatry and Narcology, Riga Stradins University, Riga, Latvia
| | - Elmars Rancans
- Department of Psychiatry and Narcology, Riga Stradins University, Riga, Latvia
| |
Collapse
|
83
|
Liu L, Wang L, Cao C, Cao X, Zhu Y, Liu P, Luo S, Zhang J. Serotonin transporter 5-HTTLPR genotype is associated with intrusion and avoidance symptoms of DSM-5 posttraumatic stress disorder (PTSD) in Chinese earthquake survivors. ANXIETY STRESS AND COPING 2017; 31:318-327. [PMID: 29280387 DOI: 10.1080/10615806.2017.1420174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND OBJECTIVES Prior studies have found that the serotonin transporter gene-linked polymorphic region (5-HTTLPR) interacts with trauma exposure to increase general risk for Posttraumatic Stress Disorder (PTSD). However, there is little knowledge about the effects of the interaction on distinct symptom clusters of PTSD. This study aimed to investigate the relation between the interaction of 5-HTTLPR and earthquake-related exposures and a contemporary phenotypic model of DSM-5 PTSD symptoms in a traumatised adult sample from China. DESIGN A cross-sectional design with gene-environment interaction (G × E) approach was adopted. METHODS Participants were 1131 survivors who experienced 2008 Wenchuan earthquake. PTSD symptoms were assessed with the PTSD Checklist for DSM-5 (PCL-5). The 5-HTTLPR polymorphism was genotyped with capillary electrophoresis (CE) in ABI 3730xl genetic Analyzer. RESULTS Although there was no significant interaction between 5-HTTLPR and traumatic exposure on total PTSD symptoms, respondents with the LL genotype of 5-HTTLPR who were highly exposed to the earthquake experienced lower intrusion and avoidance symptoms than those with the S-allele carriers. CONCLUSIONS The findings suggest that the 5-HTTLPR may have an important impact on the development of PTSD and add to the extant knowledge on understanding and treating of posttraumatic psychopathology.
Collapse
Affiliation(s)
- Luobing Liu
- a Laboratory for Traumatic Stress Studies, CAS Key Laboratory of Mental Health, Institute of Psychology , Chinese Academy of Sciences , Beijing , People's Republic of China.,b University of Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Li Wang
- a Laboratory for Traumatic Stress Studies, CAS Key Laboratory of Mental Health, Institute of Psychology , Chinese Academy of Sciences , Beijing , People's Republic of China.,b University of Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Chengqi Cao
- a Laboratory for Traumatic Stress Studies, CAS Key Laboratory of Mental Health, Institute of Psychology , Chinese Academy of Sciences , Beijing , People's Republic of China.,b University of Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Xing Cao
- a Laboratory for Traumatic Stress Studies, CAS Key Laboratory of Mental Health, Institute of Psychology , Chinese Academy of Sciences , Beijing , People's Republic of China.,b University of Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Ye Zhu
- a Laboratory for Traumatic Stress Studies, CAS Key Laboratory of Mental Health, Institute of Psychology , Chinese Academy of Sciences , Beijing , People's Republic of China.,b University of Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Ping Liu
- c People's Hospital of Deyang City , Deyang , People's Republic of China
| | - Shu Luo
- c People's Hospital of Deyang City , Deyang , People's Republic of China
| | - Jianxin Zhang
- a Laboratory for Traumatic Stress Studies, CAS Key Laboratory of Mental Health, Institute of Psychology , Chinese Academy of Sciences , Beijing , People's Republic of China
| |
Collapse
|
84
|
Ziegler C, Wolf C, Schiele MA, Feric Bojic E, Kucukalic S, Sabic Dzananovic E, Goci Uka A, Hoxha B, Haxhibeqiri V, Haxhibeqiri S, Kravic N, Muminovic Umihanic M, Cima Franc A, Jaksic N, Babic R, Pavlovic M, Warrings B, Bravo Mehmedbasic A, Rudan D, Aukst-Margetic B, Kucukalic A, Marjanovic D, Babic D, Bozina N, Jakovljevic M, Sinanovic O, Avdibegovic E, Agani F, Dzubur-Kulenovic A, Deckert J, Domschke K. Monoamine Oxidase A Gene Methylation and Its Role in Posttraumatic Stress Disorder: First Evidence from the South Eastern Europe (SEE)-PTSD Study. Int J Neuropsychopharmacol 2017; 21:423-432. [PMID: 29186431 PMCID: PMC5932467 DOI: 10.1093/ijnp/pyx111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/22/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Posttraumatic stress disorder is characterized by an overactive noradrenergic system conferring core posttraumatic stress disorder symptoms such as hyperarousal and reexperiencing. Monoamine oxidase A is one of the key enzymes mediating the turnover of noradrenaline. Here, DNA methylation of the monoamine oxidase A gene exonI/intronI region was investigated for the first time regarding its role in posttraumatic stress disorder risk and severity. METHODS Monoamine oxidase A methylation was analyzed via direct sequencing of sodium bisulfite-treated DNA extracted from blood cells in a total sample of N=652 (441 male) patients with current posttraumatic stress disorder, patients with remitted posttraumatic stress disorder, and healthy probands (comparison group) recruited at 5 centers in Bosnia-Herzegovina, Croatia, and the Republic of Kosovo. Posttraumatic stress disorder severity was measured by means of the Clinician-Administered Posttraumatic Stress Disorder Scale and its respective subscores representing distinct symptom clusters. RESULTS In the male, but not the female sample, patients with current posttraumatic stress disorder displayed hypermethylation of 3 CpGs (CpG3=43656362; CpG12=43656514; CpG13=43656553, GRCh38.p2 Assembly) as compared with remitted Posttraumatic Stress Disorder patients and healthy probands. Symptom severity (Clinician-Administered Posttraumatic Stress Disorder Scale scores) in male patients with current posttraumatic stress disorder significantly correlated with monoamine oxidase A methylation. This applied particularly to symptom clusters related to reexperiencing of trauma (cluster B) and hyperarousal (cluster D). CONCLUSIONS The present findings suggest monoamine oxidase A gene hypermethylation, potentially resulting in enhanced noradrenergic signalling, as a disease status and severity marker of current posttraumatic stress disorder in males. If replicated, monoamine oxidase A hypermethylation might serve as a surrogate marker of a hyperadrenergic subtype of posttraumatic stress disorder guiding personalized treatment decisions on the use of antiadrenergic agents.
Collapse
Affiliation(s)
- Christiane Ziegler
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany,Correspondence: Christiane Ziegler, PhD, Department of Psychiatry, University of Freiburg, Hauptstraße 5, D-79104 Freiburg, Germany ()
| | - Christiane Wolf
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Elma Feric Bojic
- Department of Genetics and Bioengineering, International Burch University, Sarajevo, Bosnia and Herzegovina
| | - Sabina Kucukalic
- Department of Psychiatry, University Clinical Center, Sarajevo, Bosnia and Herzegovina
| | | | - Aferdita Goci Uka
- Department of Psychiatry, University Clinical Center of Kosovo, Prishtina, Kosovo
| | - Blerina Hoxha
- Department of Psychiatry, University Clinical Center of Kosovo, Prishtina, Kosovo
| | - Valdete Haxhibeqiri
- Department of Medical Biochemistry, University Clinical Center of Kosovo, Prishtina, Kosovo,Institute of Kosovo Forensic Psychiatry, University Clinical Center of Kosovo, Prishtina, Kosovo
| | | | - Nermina Kravic
- Department of Psychiatry, University Clinical Center of Tuzla, Tuzla, Bosnia and Herzegovina
| | | | - Ana Cima Franc
- Department of Psychiatry, University Hospital Center Zagreb, Zagreb, Croatia
| | - Nenad Jaksic
- Department of Psychiatry, University Hospital Center Zagreb, Zagreb, Croatia
| | - Romana Babic
- Department of Psychiatry, University Clinical Center of Mostar, Mostar, Bosnia and Herzegovina
| | - Marko Pavlovic
- Department of Psychiatry, University Clinical Center of Mostar, Mostar, Bosnia and Herzegovina
| | - Bodo Warrings
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | | | - Dusko Rudan
- Department of Psychiatry, University Hospital Center Zagreb, Zagreb, Croatia
| | | | - Abdulah Kucukalic
- Department of Psychiatry, University Clinical Center, Sarajevo, Bosnia and Herzegovina
| | - Damir Marjanovic
- Department of Genetics and Bioengineering, International Burch University, Sarajevo, Bosnia and Herzegovina,Institute for Anthropological Researches, Zagreb, Croatia
| | - Dragan Babic
- Department of Psychiatry, University Clinical Center of Mostar, Mostar, Bosnia and Herzegovina
| | - Nada Bozina
- Department of Laboratory Diagnostics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Miro Jakovljevic
- Department of Psychiatry, University Hospital Center Zagreb, Zagreb, Croatia
| | - Osman Sinanovic
- Department of Neurology, University Clinical Center of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Esmina Avdibegovic
- Department of Psychiatry, University Clinical Center of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Ferid Agani
- Faculty of Medicine, University Hasan Prishtina, Prishtina, Kosovo
| | - Alma Dzubur-Kulenovic
- Department of Psychiatry, University Clinical Center, Sarajevo, Bosnia and Herzegovina
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
85
|
Schiele MA, Domschke K. Epigenetics at the crossroads between genes, environment and resilience in anxiety disorders. GENES BRAIN AND BEHAVIOR 2017; 17:e12423. [DOI: 10.1111/gbb.12423] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/27/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022]
Affiliation(s)
- M. A. Schiele
- Department of Psychiatry and Psychotherapy; Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg; Freiburg Germany
| | - K. Domschke
- Department of Psychiatry and Psychotherapy; Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg; Freiburg Germany
| |
Collapse
|
86
|
Bhakta A, Gavini K, Yang E, Lyman-Henley L, Parameshwaran K. Chronic traumatic stress impairs memory in mice: Potential roles of acetylcholine, neuroinflammation and corticotropin releasing factor expression in the hippocampus. Behav Brain Res 2017; 335:32-40. [DOI: 10.1016/j.bbr.2017.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/24/2017] [Accepted: 08/05/2017] [Indexed: 12/15/2022]
|
87
|
Dell'Osso B, Marazziti D, Albert U, Pallanti S, Gambini O, Tundo A, Zanaboni C, Servello D, Rizzo R, Scalone L, Benatti B, Altamura AC, Porta M. Parsing the phenotype of obsessive-compulsive tic disorder (OCTD): a multidisciplinary consensus. Int J Psychiatry Clin Pract 2017; 21:156-159. [PMID: 28379724 DOI: 10.1080/13651501.2017.1291822] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Obsessive-Compulsive Disorder (OCD) and Tic Disorder (TD) are highly disabling and often comorbid conditions. Of note, the DSM-5 acknowledged a new 'tic-related' specifier for OCD, which might be referred to as Obsessive-Compulsive Tic Disorder (OCTD), raising new interest toward a better clinical characterisation of affected patients. Available literature indicates that early onset, male gender, sensory phenomena and obsessions of symmetry, aggressiveness, hoarding, exactness and sounds as well as comorbidity with Attention Deficit Hyperactivity Disorder (ADHD) may be of more frequent observation in patients with OCTD. In order to share expertise in the field from different perspectives, a multidisciplinary panel of Italian clinicians, specifically involved in the clinical care of OCD and TD patients, participated into a consensus initiative, aimed to produce a shared document. As a result, after having examined the most relevant literature, authors sought to critically identify and discuss main epidemiologic, socio-demographic and clinical features characterising OCTD patients, along with other specific aspects including Health-Related Quality-of-Life (HRQoL), economic consequences related with the condition and its management, as well as treatment-related issues, that need to be further investigated.
Collapse
Affiliation(s)
- Bernardo Dell'Osso
- a Department of Psychiatry, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico , University of Milan , Milan , Italy.,b Department of Psychiatry and Behavioral Sciences , Stanford University , CA , USA
| | - Donatella Marazziti
- c Department of Clinical and Experimental Medicine, Section of Psychiatry , University of Pisa , Pisa , Italy
| | - Umberto Albert
- d Department of Neuroscience Rita Levi Montalcini, AOU San Luigi Gonzaga , University of Turin , Orbassano , Italy
| | - Stefano Pallanti
- e Department of Psychiatry , University of Florence , Florence , Italy
| | - Orsola Gambini
- f Department of Health Sciences , University of Milan , Milan , Italy
| | | | - Carlotta Zanaboni
- h Department of Functional Neurosurgery , IRCCS Galeazzi Hospital, Tourette Center , Milan , Italy
| | - Domenico Servello
- h Department of Functional Neurosurgery , IRCCS Galeazzi Hospital, Tourette Center , Milan , Italy
| | - Renata Rizzo
- i Department of Clinical and Experimental Medicine, Child and Adolescent Neuropsychiatry , University of Catania , Catania , Italy
| | - Luciana Scalone
- j Center for Public Health Research (CESP), University of Milan Bicocca , Milan , Italy
| | - Beatrice Benatti
- a Department of Psychiatry, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico , University of Milan , Milan , Italy
| | - A Carlo Altamura
- a Department of Psychiatry, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico , University of Milan , Milan , Italy
| | - Mauro Porta
- h Department of Functional Neurosurgery , IRCCS Galeazzi Hospital, Tourette Center , Milan , Italy
| |
Collapse
|
88
|
Zapparoli L, Seghezzi S, Paulesu E. The What, the When, and the Whether of Intentional Action in the Brain: A Meta-Analytical Review. Front Hum Neurosci 2017; 11:238. [PMID: 28567010 PMCID: PMC5434171 DOI: 10.3389/fnhum.2017.00238] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/25/2017] [Indexed: 02/06/2023] Open
Abstract
In their attempt to define discrete subcomponents of intentionality, Brass and Haggard (2008) proposed their What, When, and Whether model (www-model) which postulates that the content, the timing and the possibility of generating an action can be partially independent both at the cognitive level and at the level of their neural implementation. The original proposal was based on a limited number of studies, which were reviewed with a discursive approach. To assess whether the model stands in front of the more recently published data, we performed a systematic review of the literature with a meta-analytic method based on a hierarchical clustering (HC) algorithm. We identified 15 PET/fMRI studies well-suited for this quest. HC revealed the existence of a rostro-caudal gradient within the medial prefrontal cortex, with the more anterior regions (the anterior cingulum) involved in more abstract decisions of whether to execute an action and the more posterior ones (the middle cingulum or the SMA) recruited in specifying the content and the timing components of actions. However, in contrast with the original www-model, this dissociation involves also brain regions well outside the median wall of the frontal lobe, in a component specific manner: the supramarginal gyrus for the what component, the pallidum and the thalamus for the when component, the putamen and the insula for the whether component. We then calculated co-activation maps on the three component-specific www clusters of the medial wall of the frontal/limbic lobe: to this end, we used the activation likelihood approach that we applied on the imaging studies on action contained in the BrainMap.org database. This analysis confirmed the main findings of the HC analyses. However, the BrainMap.org data analyses also showed that the aforementioned segregations are generated by paradigms in which subjects act in response to conditional stimuli rather than while driven by their own intentions. We conclude that the available data confirm that the neural underpinnings of intentionality can be fractionated in discrete components that are partially independent. We also suggest that intentionality manifests itself in discrete components through the boosting of general purpose action-related regions specialized for different aspects of action selection and inhibition.
Collapse
Affiliation(s)
| | | | - Eraldo Paulesu
- fMRI Unit, IRCCS Istituto Ortopedico GaleazziMilan, Italy.,Psychology Department and NeuroMI-Milan Centre for Neuroscience, University of Milano-BicoccaMilan, Italy
| |
Collapse
|
89
|
Abstract
Anxiety disorders constitute the largest group of mental disorders in most western societies and are a leading cause of disability. The essential features of anxiety disorders are excessive and enduring fear, anxiety or avoidance of perceived threats, and can also include panic attacks. Although the neurobiology of individual anxiety disorders is largely unknown, some generalizations have been identified for most disorders, such as alterations in the limbic system, dysfunction of the hypothalamic-pituitary-adrenal axis and genetic factors. In addition, general risk factors for anxiety disorders include female sex and a family history of anxiety, although disorder-specific risk factors have also been identified. The diagnostic criteria for anxiety disorders varies for the individual disorders, but are generally similar across the two most common classification systems: the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) and the International Classification of Diseases, Tenth Edition (ICD-10). Despite their public health significance, the vast majority of anxiety disorders remain undetected and untreated by health care systems, even in economically advanced countries. If untreated, these disorders are usually chronic with waxing and waning symptoms. Impairments associated with anxiety disorders range from limitations in role functioning to severe disabilities, such as the patient being unable to leave their home.
Collapse
Affiliation(s)
- Michelle G Craske
- Department of Psychology, University of California Los Angeles, 405 Hilgard Avenue, Los Angeles, California 90095, USA
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California, USA
| | - Thalia C Eley
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Mohammed R Milad
- Department of Psychiatry, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Charleston, Massachusetts, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland, USA
| | - Ronald M Rapee
- Department of Psychology, Centre for Emotional Health, Macquarie University, Sydney, New South Wales, Australia
| | - Hans-Ulrich Wittchen
- Institute of Clinical Psychology and Psychotherapy, Faculty of Science, Technische Universitaet Dresden, Dresden, Germany
| |
Collapse
|
90
|
Bandelow B, Baldwin D, Abelli M, Bolea-Alamanac B, Bourin M, Chamberlain SR, Cinosi E, Davies S, Domschke K, Fineberg N, Grünblatt E, Jarema M, Kim YK, Maron E, Masdrakis V, Mikova O, Nutt D, Pallanti S, Pini S, Ströhle A, Thibaut F, Vaghix MM, Won E, Wedekind D, Wichniak A, Woolley J, Zwanzger P, Riederer P. Biological markers for anxiety disorders, OCD and PTSD: A consensus statement. Part II: Neurochemistry, neurophysiology and neurocognition. World J Biol Psychiatry 2017; 18:162-214. [PMID: 27419272 PMCID: PMC5341771 DOI: 10.1080/15622975.2016.1190867] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Biomarkers are defined as anatomical, biochemical or physiological traits that are specific to certain disorders or syndromes. The objective of this paper is to summarise the current knowledge of biomarkers for anxiety disorders, obsessive-compulsive disorder (OCD) and posttraumatic stress disorder (PTSD). METHODS Findings in biomarker research were reviewed by a task force of international experts in the field, consisting of members of the World Federation of Societies for Biological Psychiatry Task Force on Biological Markers and of the European College of Neuropsychopharmacology Anxiety Disorders Research Network. RESULTS The present article (Part II) summarises findings on potential biomarkers in neurochemistry (neurotransmitters such as serotonin, norepinephrine, dopamine or GABA, neuropeptides such as cholecystokinin, neurokinins, atrial natriuretic peptide, or oxytocin, the HPA axis, neurotrophic factors such as NGF and BDNF, immunology and CO2 hypersensitivity), neurophysiology (EEG, heart rate variability) and neurocognition. The accompanying paper (Part I) focuses on neuroimaging and genetics. CONCLUSIONS Although at present, none of the putative biomarkers is sufficient and specific as a diagnostic tool, an abundance of high quality research has accumulated that should improve our understanding of the neurobiological causes of anxiety disorders, OCD and PTSD.
Collapse
Affiliation(s)
- Borwin Bandelow
- Department of Psychiatry and Psychotherapy, University of Göttingen, Germany
| | - David Baldwin
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Marianna Abelli
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Blanca Bolea-Alamanac
- School of Social and Community Medicine, Academic Unit of Psychiatry, University of Bristol, Bristol, UK
| | - Michel Bourin
- Neurobiology of Anxiety and Mood Disorders, University of Nantes, Nantes, France
| | - Samuel R. Chamberlain
- Hertfordshire Partnership University NHS Foundation Trust and University of Hertfordshire, Parkway, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Eduardo Cinosi
- Department of Neuroscience Imaging and Clinical Sciences, Gabriele D’Annunzio University, Chieti, Italy
| | - Simon Davies
- Centre for Addiction and Mental Health, Geriatric Psychiatry Division, University of Toronto, Toronto, Canada
- School of Social and Community Medicine, Academic Unit of Psychiatry, University of Bristol, Bristol, UK
| | - Katharina Domschke
- Department of Psychiatry Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Naomi Fineberg
- Hertfordshire Partnership University NHS Foundation Trust and University of Hertfordshire, Parkway, UK
| | - Edna Grünblatt
- Department of Psychiatry Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Marek Jarema
- Third Department of Psychiatry, Institute of Psychiatry and Neurology, Warszawa, Poland
| | - Yong-Ku Kim
- Department of Psychiatry College of Medicine, Korea University, Seoul, Republic of Korea
| | - Eduard Maron
- Department of Psychiatry, North Estonia Medical Centre, Tallinn, Estonia
- Department of Psychiatry, University of Tartu, Estonia
- Faculty of Medicine Department of Medicine, Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, UK
| | - Vasileios Masdrakis
- Athens University Medical School, First Department of Psychiatry, Eginition Hospital, Athens, Greece
| | - Olya Mikova
- Foundation Biological Psychiatry, Sofia, Bulgaria
| | - David Nutt
- Faculty of Medicine Department of Medicine, Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, UK
| | - Stefano Pallanti
- UC Davis Department of Psychiatry and Behavioural Sciences, Sacramento, CA, USA
| | - Stefano Pini
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Andreas Ströhle
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité – University Medica Center Berlin, Berlin, Germany
| | - Florence Thibaut
- Faculty of Medicine Paris Descartes, University Hospital Cochin, Paris, France
| | - Matilde M. Vaghix
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK
| | - Eunsoo Won
- Department of Psychiatry College of Medicine, Korea University, Seoul, Republic of Korea
| | - Dirk Wedekind
- Department of Psychiatry and Psychotherapy, University of Göttingen, Germany
| | - Adam Wichniak
- Third Department of Psychiatry, Institute of Psychiatry and Neurology, Warszawa, Poland
| | - Jade Woolley
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Peter Zwanzger
- kbo-Inn-Salzach-Klinikum Wasserburg am Inn, Germany
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Peter Riederer
- Department of Psychiatry Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
91
|
Schmidt A, Borgwardt S. Editorial: Third-Generation Neuroimaging: Translating Research into Clinical Utility. Front Psychiatry 2016; 7:170. [PMID: 27785124 PMCID: PMC5059361 DOI: 10.3389/fpsyt.2016.00170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/26/2016] [Indexed: 12/04/2022] Open
Affiliation(s)
- André Schmidt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Stefan Borgwardt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|