51
|
Cavaco M, Castanho MARB, Neves V. The Use of Antibody-Antibiotic Conjugates to Fight Bacterial Infections. Front Microbiol 2022; 13:835677. [PMID: 35330773 PMCID: PMC8940529 DOI: 10.3389/fmicb.2022.835677] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/14/2022] [Indexed: 12/26/2022] Open
Abstract
The emergence of antimicrobial resistance (AMR) is rapidly increasing and it is one of the significant twenty-first century's healthcare challenges. Unfortunately, the development of effective antimicrobial agents is a much slower and complex process compared to the spread of AMR. Consequently, the current options in the treatment of AMR are limited. One of the main alternatives to conventional antibiotics is the use of antibody-antibiotic conjugates (AACs). These innovative bioengineered agents take advantage of the selectivity, favorable pharmacokinetic (PK), and safety of antibodies, allowing the administration of more potent antibiotics with less off-target effects. Although AACs' development is challenging due to the complexity of the three components, namely, the antibody, the antibiotic, and the linker, some successful examples are currently under clinical studies.
Collapse
Affiliation(s)
| | | | - Vera Neves
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
52
|
Han M, Smith R, Rock DA. Capillary Electrophoresis-Mass Spectrometry (CE-MS) by Sheath-Flow Nanospray Interface and Its Use in Biopharmaceutical Applications. Methods Mol Biol 2022; 2531:15-47. [PMID: 35941476 DOI: 10.1007/978-1-0716-2493-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Both capillary electrophoresis (CE) and mass spectrometry (MS) technologies are powerful analytical tools that have been used extensively in the characterization of biologics in the biopharmaceutical industry. The direct coupling of CE with MS is an attractive approach, in that the high separation capability of CE and the ultrasensitive detection and accurate identification performance of MS can be combined to provide a powerful system for the analysis of complex analytes. In this chapter, we discuss the detailed procedure of carrying out CE-MS analysis using a nano sheath-flow interface and its applications including intact mass analysis of monoclonal antibodies and fusion proteins, and a biotransformation study of two Fc-FGF21 molecules in a single-dose pharmacokinetic mice study. Optimization processes, including the finetuning of CE conditions and MS parameters, are illustrated in this chapter, with focuses on method robustness and assay reproducibility.
Collapse
Affiliation(s)
- Mei Han
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., South San Francisco, CA, USA.
| | - Richard Smith
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Dan A Rock
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| |
Collapse
|
53
|
Masłowska K, Witkowska E, Tymecka D, Halik PK, Misicka A, Gniazdowska E. Synthesis, Physicochemical and Biological Study of Gallium-68- and Lutetium-177-Labeled VEGF-A 165/NRP-1 Complex Inhibitors Based on Peptide A7R and Branched Peptidomimetic. Pharmaceutics 2022; 14:pharmaceutics14010100. [PMID: 35056995 PMCID: PMC8779334 DOI: 10.3390/pharmaceutics14010100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 02/01/2023] Open
Abstract
Neuropilin-1 (NRP-1) is a surface receptor found on many types of cancer cells. The overexpression of NRP-1 and its interaction with vascular endothelial growth factor-165 (VEGF165) are associated with tumor growth and metastasis. Therefore, compounds that block the VEGF165/NRP-1 interaction represent a promising strategy to image and treat NRP-1-related pathologies. The aim of the presented work was to design and synthesize radioconjugates of two known peptide-type inhibitors of the VEGF165/NRP-1 complex: A7R peptide and its shorter analog, the branched peptidomimetic Lys(hArg)-Dab-Pro-Arg. Both peptide-type inhibitors were coupled to a radionuclide chelator (DOTA) via a linker (Ahx) and so radiolabeled with Ga-68 and Lu-177 radionuclides, for diagnostic and therapeutic uses, respectively. The synthesized radioconjugates were tested for their possible use as theranostic-like radiopharmaceuticals for the imaging and therapy of cancers that overexpress NRP-1. The obtained results indicate good efficiency of the radiolabeling reaction and satisfactory stability, at least 3t1/2 for the 68Ga- and 1t1/2 for the 177Lu-radiocompounds, in solutions mimicking human body fluids. However, enzymatic degradation of both the studied inhibitors caused insufficient stability of the radiocompounds in human serum, indicating that further modifications are needed to sufficiently stabilize the peptidomimetics with inhibitory properties against VEGF165/NRP-1 complex formation.
Collapse
Affiliation(s)
- Katarzyna Masłowska
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (P.K.H.); (E.G.)
- Correspondence: (K.M.); (A.M.)
| | - Ewa Witkowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (E.W.); (D.T.)
| | - Dagmara Tymecka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (E.W.); (D.T.)
| | - Paweł Krzysztof Halik
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (P.K.H.); (E.G.)
| | - Aleksandra Misicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (E.W.); (D.T.)
- Correspondence: (K.M.); (A.M.)
| | - Ewa Gniazdowska
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (P.K.H.); (E.G.)
| |
Collapse
|
54
|
Banik A, Ahmed SR, Marma H, Sinha S, Rahman Khan MM, Miah K. Targeting mucormycosis polyprotein (RVT_1 region) through antifungal phytochemicals of plants: An in-silico perspective. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
55
|
Martell EM, González-Garcia M, Ständker L, Otero-González AJ. Host defense peptides as immunomodulators: The other side of the coin. Peptides 2021; 146:170644. [PMID: 34464592 DOI: 10.1016/j.peptides.2021.170644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022]
Abstract
Host defense peptides (HDPs) exhibit a broad range of antimicrobial and immunomodulatory activities. In this sense, both functions are like different sides of the same coin. The direct antimicrobial side was discovered first, and widely studied for the development of anti-infective therapies. In contrast, the immunomodulatory side was recognized later and in the last 20 years the interest in this field has been continuously growing. Different to their antimicrobial activities, the immunomodulatory activities of host defense peptides are more effective in vivo. They offer a great opportunity for new therapeutic applications in the fields of anti-infective therapy, chronic inflammatory diseases treatment, novel vaccine adjuvants development and anticancer immunotherapy. These immune related functions of HDPs includes chemoattraction of leukocytes, modulation of inflammation, enhancement of antigen presentation and polarization of adaptive immune responses. Our attempt with this review is to make a careful evaluation of different aspects of the less explored, but attractive immunomodulatory side of the HDP functional coin.
Collapse
Affiliation(s)
- Ernesto M Martell
- Center for Protein Studies, Faculty of Biology, Havana University, Cuba
| | | | - Ludger Ständker
- Core Facility Functional Peptidomics (CFP), Ulm University Medical Center, Ulm, Germany
| | | |
Collapse
|
56
|
In Silico and In Vitro Evaluation of the Antimicrobial Potential of Bacillus cereus Isolated from Apis dorsata Gut against Neisseria gonorrhoeae. Antibiotics (Basel) 2021; 10:antibiotics10111401. [PMID: 34827339 PMCID: PMC8614935 DOI: 10.3390/antibiotics10111401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial resistance is a major public health and development concern on a global scale. The increasing resistance of the pathogenic bacteria Neisseria gonorrhoeae to antibiotics necessitates efforts to identify potential alternative antibiotics from nature, including insects, which are already recognized as a source of natural antibiotics by the scientific community. This study aimed to determine the potential of components of gut-associated bacteria isolated from Apis dorsata, an Asian giant honeybee, as an antibacterial against N. gonorrhoeae by in vitro and in silico methods as an initial process in the stage of new drug discovery. The identified gut-associated bacteria of A. dorsata included Acinetobacter indicus and Bacillus cereus with 100% identity to referenced bacteria from GenBank. Cell-free culture supernatants (CFCS) of B. cereus had a very strong antibacterial activity against N. gonorrhoeae in an in vitro antibacterial testing. Meanwhile, molecular docking revealed that antimicrobial lipopeptides from B. cereus (surfactin, fengycin, and iturin A) had a comparable value of binding-free energy (BFE) with the target protein receptor for N. gonorrhoeae, namely penicillin-binding protein (PBP) 1 and PBP2 when compared with the ceftriaxone, cefixime, and doxycycline. The molecular dynamics simulation (MDS) study revealed that the surfactin remains stable at the active site of PBP2 despite the alteration of the H-bond and hydrophobic interactions. According to this finding, surfactin has the greatest antibacterial potential against PBP2 of N. gonorrhoeae.
Collapse
|
57
|
Lucas AT, Moody A, Schorzman AN, Zamboni WC. Importance and Considerations of Antibody Engineering in Antibody-Drug Conjugates Development from a Clinical Pharmacologist's Perspective. Antibodies (Basel) 2021; 10:30. [PMID: 34449544 PMCID: PMC8395454 DOI: 10.3390/antib10030030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/04/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Antibody-drug conjugates (ADCs) appear to be in a developmental boom, with five FDA approvals in the last two years and a projected market value of over $4 billion by 2024. Major advancements in the engineering of these novel cytotoxic drug carriers have provided a few early success stories. Although the use of these immunoconjugate agents are still in their infancy, valuable lessons in the engineering of these agents have been learned from both preclinical and clinical failures. It is essential to appreciate how the various mechanisms used to engineer changes in ADCs can alter the complex pharmacology of these agents and allow the ADCs to navigate the modern-day therapeutic challenges within oncology. This review provides a global overview of ADC characteristics which can be engineered to alter the interaction with the immune system, pharmacokinetic and pharmacodynamic profiles, and therapeutic index of ADCs. In addition, this review will highlight some of the engineering approaches being explored in the creation of the next generation of ADCs.
Collapse
Affiliation(s)
- Andrew T. Lucas
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.T.L.); (A.N.S.)
- Carolina Center of Cancer Nanotechnology Excellence, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Amber Moody
- Carolina Center of Cancer Nanotechnology Excellence, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Allison N. Schorzman
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.T.L.); (A.N.S.)
| | - William C. Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.T.L.); (A.N.S.)
- Carolina Center of Cancer Nanotechnology Excellence, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Glolytics, LLC, Chapel Hill, NC 27517, USA
| |
Collapse
|
58
|
Abstract
Programmed cell death protein-1 (PD-1) inhibitory antibodies, often referred to as checkpoint inhibitors, have revolutionized the treatment of cancer. However, there is an unmet need for PD-1 agonists to treat autoimmune disorders. Herein, we describe the de novo design of a small, stable PD-1 binding protein and development of a synthetic PD-1 agonist. Programmed cell death protein-1 (PD-1) expressed on activated T cells inhibits T cell function and proliferation to prevent an excessive immune response, and disease can result if this delicate balance is shifted in either direction. Tumor cells often take advantage of this pathway by overexpressing the PD-1 ligand PD-L1 to evade destruction by the immune system. Alternatively, if there is a decrease in function of the PD-1 pathway, unchecked activation of the immune system and autoimmunity can result. Using a combination of computation and experiment, we designed a hyperstable 40-residue miniprotein, PD-MP1, that specifically binds murine and human PD-1 at the PD-L1 interface with a Kd of ∼100 nM. The apo crystal structure shows that the binder folds as designed with a backbone RMSD of 1.3 Å to the design model. Trimerization of PD-MP1 resulted in a PD-1 agonist that strongly inhibits murine T cell activation. This small, hyperstable PD-1 binding protein was computationally designed with an all-beta interface, and the trimeric agonist could contribute to treatments for autoimmune and inflammatory diseases.
Collapse
|
59
|
Kouhi A, Pachipulusu V, Kapenstein T, Hu P, Epstein AL, Khawli LA. Brain Disposition of Antibody-Based Therapeutics: Dogma, Approaches and Perspectives. Int J Mol Sci 2021; 22:ijms22126442. [PMID: 34208575 PMCID: PMC8235515 DOI: 10.3390/ijms22126442] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
Due to their high specificity, monoclonal antibodies have been widely investigated for their application in drug delivery to the central nervous system (CNS) for the treatment of neurological diseases such as stroke, Alzheimer’s, and Parkinson’s disease. Research in the past few decades has revealed that one of the biggest challenges in the development of antibodies for drug delivery to the CNS is the presence of blood–brain barrier (BBB), which acts to restrict drug delivery and contributes to the limited uptake (0.1–0.2% of injected dose) of circulating antibodies into the brain. This article reviews the various methods currently used for antibody delivery to the CNS at the preclinical stage of development and the underlying mechanisms of BBB penetration. It also describes efforts to improve or modulate the physicochemical and biochemical properties of antibodies (e.g., charge, Fc receptor binding affinity, and target affinity), to adapt their pharmacokinetics (PK), and to influence their distribution and disposition into the brain. Finally, a distinction is made between approaches that seek to modify BBB permeability and those that use a physiological approach or antibody engineering to increase uptake in the CNS. Although there are currently inherent difficulties in developing safe and efficacious antibodies that will cross the BBB, the future prospects of brain-targeted delivery of antibody-based agents are believed to be excellent.
Collapse
|
60
|
Universal Automated Immunoaffinity Purification-CE-MS Platform for Accelerating Next Generation Biologic Design. Anal Chem 2021; 93:5562-5569. [PMID: 33764735 DOI: 10.1021/acs.analchem.1c00149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As the pharmaceutical industry places greater emphasis on pairing biological pathways with appropriate therapeutic intervention, an increase in the use of biologic drugs has emerged. With increasing complexity of biotherapeutics, absorption, distribution, metabolism, and excretion (ADME) studies have also become increasingly complex. The characterization of ADME properties is critical to tuning the pharmacokinetic profiles of next generation biologics (NGBs). The knowledge of the fate of a drug is essential for the enhancement of the design processes, elongation of exposure at the desired site of action, and achieving efficacy with minimum toxicity. In vivo proteolytic cleavage of biotherapeutics may lead to undesirable in vivo properties, such as rapid clearance, low bioavailability, and loss of pharmacodynamic effect. All of these may affect drug efficacy and/or generate safety concerns through increases in immunogenicity or off-target toxicity. The work herein describes the development of a robust, fully automated immunoaffinity purification (IA)-capillary electrophoresis-mass spectrometry (CE-MS) workflow. The reagents were carefully optimized to maximize isolation yields while minimizing the number of experimental steps to analytical results. The result is the development of a comprehensive integrated platform for the characterization of a wide range of biotherapeutics, including peptibodies, monoclonal antibodies, and bispecific antibodies. Empowered by this automated IA-CE-MS approach, implementing biotransformation studies at an early drug discovery stage can speed up the drug development process.
Collapse
|
61
|
Nguyen JM, Liu X, DeLoffi M, Murisier A, Fekete S, Guillarme D, Lauber MA. Aptamer-based immunoaffinity LC-MS using an ultra-short column for rapid attomole level quantitation of intact mAbs. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1173:122694. [PMID: 33866109 DOI: 10.1016/j.jchromb.2021.122694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 12/25/2022]
Abstract
Quantification of proteins in biofluids has largely involved either traditional ligand binding assays or "bottom-up" mass spectrometry. Recently, top-down mass spectrometry using reversed-phase liquid chromatography (RPLC) paired with high-resolution mass spectrometry (HRMS) has emerged as a promising technique, due to the potential of better identification of post-translational modifications (PTMs), lack of downstream interferences, and less time-consuming sample preparation and analysis times. However, it can be difficult with this approach to robustly obtain high-fidelity MS data, especially when pushing for low limits of detection. To address these issues, we developed a chromatographic device with an optimized form factor and stationary phase to improve protein recovery, while reducing run times. We have observed that by using this device, it is possible to achieve attomole quantitation of mAbs without the addition of carrier proteins and with over three-fold higher throughput than columns employed in previous studies. Moreover, we have devised a novel affinity capture method, based on repurposing a unique aptamer ligand that can give 93% recovery of mAb using only a 2 h incubation. When hyphenated together, these two technologies greatly improve the ability to analyze proteins in complex matrices.
Collapse
Affiliation(s)
- Jennifer M Nguyen
- School of Science, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg, Denmark; Waters Corporation, 34 Maple Street, Milford, MA 01757-3696, United States.
| | - Xiaoxiao Liu
- Waters Corporation, 34 Maple Street, Milford, MA 01757-3696, United States
| | - Maureen DeLoffi
- Waters Corporation, 34 Maple Street, Milford, MA 01757-3696, United States
| | - Amarande Murisier
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Matthew A Lauber
- Waters Corporation, 34 Maple Street, Milford, MA 01757-3696, United States
| |
Collapse
|
62
|
Modeling Pharmacokinetics and Pharmacodynamics of Therapeutic Antibodies: Progress, Challenges, and Future Directions. Pharmaceutics 2021; 13:pharmaceutics13030422. [PMID: 33800976 PMCID: PMC8003994 DOI: 10.3390/pharmaceutics13030422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022] Open
Abstract
With more than 90 approved drugs by 2020, therapeutic antibodies have played a central role in shifting the treatment landscape of many diseases, including autoimmune disorders and cancers. While showing many therapeutic advantages such as long half-life and highly selective actions, therapeutic antibodies still face many outstanding issues associated with their pharmacokinetics (PK) and pharmacodynamics (PD), including high variabilities, low tissue distributions, poorly-defined PK/PD characteristics for novel antibody formats, and high rates of treatment resistance. We have witnessed many successful cases applying PK/PD modeling to answer critical questions in therapeutic antibodies’ development and regulations. These models have yielded substantial insights into antibody PK/PD properties. This review summarized the progress, challenges, and future directions in modeling antibody PK/PD and highlighted the potential of applying mechanistic models addressing the development questions.
Collapse
|
63
|
Bryniarski MA, Zhao B, Chaves LD, Mikkelsen JH, Yee BM, Yacoub R, Shen S, Madsen M, Morris ME. Immunoglobulin G Is a Novel Substrate for the Endocytic Protein Megalin. AAPS JOURNAL 2021; 23:40. [PMID: 33677748 DOI: 10.1208/s12248-021-00557-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/07/2021] [Indexed: 11/30/2022]
Abstract
Therapeutic immunoglobulin G (IgG) antibodies comprise the largest class of protein therapeutics. Several factors that influence their overall disposition have been well-characterized, including target-mediated mechanics and convective flow. What remains poorly defined is the potential for non-targeted entry into various tissues or cell types by means of uptake via cell surface receptors at those sites. Megalin and cubilin are large endocytic receptors whose cooperative function plays important physiological roles at the tissues in which they are expressed. One such example is the kidney, where loss of either results in significant declines in proximal tubule protein reabsorption. Due to their diverse ligand profile and broad tissue expression, megalin and cubilin represent potential candidates for receptor-mediated uptake of IgG into various epithelia. Therefore, the objective of the current work was to determine if IgG was a novel ligand of megalin and/or cubilin. Direct binding was measured for human IgG with both megalin and the cubilin/amnionless complex. Additional work focusing on the megalin-IgG interaction was then conducted to build upon these findings. Cell uptake studies using megalin ligands for competitive inhibition or proximal tubule cells stably transduced with megalin-targeted shRNA constructs supported a role for megalin in the endocytosis of human IgG. Furthermore, a pharmacokinetic study using transgenic mice with a kidney-specific mosaic knockout of megalin demonstrated increased urinary excretion of human IgG in megalin knockout mice when compared to wild-type controls. These findings indicate that megalin is capable of binding and internalizing IgG via a high affinity interaction.
Collapse
Affiliation(s)
- Mark A Bryniarski
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Bei Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Lee D Chaves
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA.,Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | | | - Benjamin M Yee
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Rabi Yacoub
- Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Mette Madsen
- Department of Biomedicine, Aarhus University, 8000, Aarhus C., Denmark
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA.
| |
Collapse
|
64
|
Rogers H, Adeniyi O, Ramamoorthy A, Bailey S, Pacanowski M. Clinical Pharmacology Studies Supporting Oligonucleotide Therapy Development: An Assessment of Therapies Approved and in Development Between 2012 and 2018. Clin Transl Sci 2021; 14:468-475. [PMID: 33278337 PMCID: PMC7993268 DOI: 10.1111/cts.12945] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/18/2020] [Indexed: 11/26/2022] Open
Abstract
Synthetic nucleotides that utilize RNA-centric pharmacology can target diseases at the RNA level, thus altering protein expression in ways previously inaccessible to small molecules and therapeutic biologics. Recognizing that the unique pharmacology of oligonucleotides may require specific considerations in pre-approval assessment, clinical and nonclinical pharmacology studies being conducted for a selected set of oligonucleotide therapies in a 6-year period were assessed. This investigation focused primarily on the four following areas: (i) drug-drug interaction (DDI) potential, (ii) organ impairment (i.e., renal and hepatic impairment), (iii) immunogenicity, and (iv) cardiac safety. Data were summarized and assessed from 14 Investigational New Drug programs and 7 New Drug Applications submitted to the US Food and Drug Administration (FDA) from the period of January 2012 to August 2018, encompassing 152 unique studies. The assessment of DDI potential was largely consistent with the recommendations of current DDI-relevant guidances. Limited data were available to provide recommendations across organ impairment categories. Limited data on immunogenicity indicate impact on pharmacokinetic, the impact on safety and efficacy, although not extensively evaluated, appeared negligible. Cardiac safety evaluation indicated a potential for discordant translation of risk from nonclinical studies to clinical findings. Continued experience with synthetic oligonucleotide therapies will help inform the development of best practices to support their development and regulatory approval.
Collapse
Affiliation(s)
- Hobart Rogers
- Center for Drug Evaluation and ResearchOffice of Translational SciencesOffice of Clinical PharmacologyUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Oluseyi Adeniyi
- Center for Drug Evaluation and ResearchOffice of Translational SciencesOffice of Clinical PharmacologyUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Anuradha Ramamoorthy
- Center for Drug Evaluation and ResearchOffice of Translational SciencesOffice of Clinical PharmacologyUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Samantha Bailey
- School of PharmacyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Michael Pacanowski
- Center for Drug Evaluation and ResearchOffice of Translational SciencesOffice of Clinical PharmacologyUS Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
65
|
Physiologically based pharmacokinetic (PBPK) modeling of RNAi therapeutics: Opportunities and challenges. Biochem Pharmacol 2021; 189:114468. [PMID: 33577889 DOI: 10.1016/j.bcp.2021.114468] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
Physiologically based pharmacokinetic (PBPK) modeling is a powerful tool with many demonstrated applications in various phases of drug development and regulatory review. RNA interference (RNAi)-based therapeutics are a class of drugs that have unique pharmacokinetic properties and mechanisms of action. With an increasing number of RNAi therapeutics in the pipeline and reaching the market, there is a considerable amount of active research in this area requiring a multidisciplinary approach. The application of PBPK models for RNAi therapeutics is in its infancy and its utility to facilitate the development of this new class of drugs is yet to be fully evaluated. From this perspective, we briefly discuss some of the current computational modeling approaches used in support of efficient development and approval of RNAi therapeutics. Considerations for PBPK model development are highlighted both in a relative context between small molecules and large molecules such as monoclonal antibodies and as it applies to RNAi therapeutics. In addition, the prospects for drawing upon other recognized avenues of PBPK modeling and some of the foreseeable challenges in PBPK model development for these chemical modalities are briefly discussed. Finally, an exploration of the potential application of PBPK model development for RNAi therapeutics is provided. We hope these preliminary thoughts will help initiate a dialogue between scientists in the relevant sectors to examine the value of PBPK modeling for RNAi therapeutics. Such evaluations could help standardize the practice in the future and support appropriate guidance development for strengthening the RNAi therapeutics development program.
Collapse
|
66
|
Anderson TS, Wooster AL, La-Beck NM, Saha D, Lowe DB. Antibody-drug conjugates: an evolving approach for melanoma treatment. Melanoma Res 2021; 31:1-17. [PMID: 33165241 DOI: 10.1097/cmr.0000000000000702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Melanoma continues to be an aggressive and deadly form of skin cancer while therapeutic options are continuously developing in an effort to provide long-term solutions for patients. Immunotherapeutic strategies incorporating antibody-drug conjugates (ADCs) have seen varied levels of success across tumor types and represent a promising approach for melanoma. This review will explore the successes of FDA-approved ADCs to date compared to the ongoing efforts of melanoma-targeting ADCs. The challenges and opportunities for future therapeutic development are also examined to distinguish how ADCs may better impact individuals with malignancies such as melanoma.
Collapse
Affiliation(s)
| | | | - Ninh M La-Beck
- Departments of Immunotherapeutics and Biotechnology
- Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas, USA
| | | | - Devin B Lowe
- Departments of Immunotherapeutics and Biotechnology
| |
Collapse
|
67
|
Judák P, Esposito S, Coppieters G, Van Eenoo P, Deventer K. Doping control analysis of small peptides: A decade of progress. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1173:122551. [PMID: 33848801 DOI: 10.1016/j.jchromb.2021.122551] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
Small peptides are handled in the field of sports drug testing analysis as a separate group doping substances. It is a diverse group, which includes but is not limited to growth hormone releasing-factors and gonadotropin-releasing hormone analogues. Significant progress has been achieved during the past decade in the doping control analysis of these peptides. In this article, achievements in the application of liquid chromatography-mass spectrometry-based methodologies are reviewed. To meet the augmenting demands for analyzing an increasing number of samples for the presence of an increasing number of prohibited small peptides, testing methods have been drastically simplified, whilst their performance level remained constant. High-resolution mass spectrometers have been installed in routine laboratories and became the preferred detection technique. The discovery and implementation of metabolites/catabolites in testing methods led to extended detection windows of some peptides, thus, contributed to more efficient testing in the anti-doping community.
Collapse
Affiliation(s)
- Péter Judák
- Department of Diagnostic Sciences, Doping Control Laboratory, Ghent University, Zwijnaarde, Belgium.
| | - Simone Esposito
- ADME/DMPK Department, Drug Discovery Division, IRBM S.p.A, Pomezia, Rome, Italy
| | - Gilles Coppieters
- Department of Diagnostic Sciences, Doping Control Laboratory, Ghent University, Zwijnaarde, Belgium
| | - Peter Van Eenoo
- Department of Diagnostic Sciences, Doping Control Laboratory, Ghent University, Zwijnaarde, Belgium
| | - Koen Deventer
- Department of Diagnostic Sciences, Doping Control Laboratory, Ghent University, Zwijnaarde, Belgium
| |
Collapse
|
68
|
Oral peptide delivery: challenges and the way ahead. Drug Discov Today 2021; 26:931-950. [PMID: 33444788 DOI: 10.1016/j.drudis.2021.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/16/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Peptides and proteins have emerged as potential therapeutic agents and, in the search for the best treatment regimen, the oral route has been extensively evaluated because of its non-invasive and safe nature. The physicochemical properties of peptides and proteins along with the hurdles in the gastrointestinal tract (GIT), such as degrading enzymes and permeation barriers, are challenges to their delivery. To address these challenges, several conventional and novel approaches, such as nanocarriers, site-specific and stimuli specific delivery, are being used. In this review, we discuss the challenges to the oral delivery of peptides and the approaches used to tackle these challenges.
Collapse
|
69
|
Chang HY, Wu S, Li Y, Zhang W, Burrell M, Webster CI, Shah DK. Brain pharmacokinetics of anti-transferrin receptor antibody affinity variants in rats determined using microdialysis. MAbs 2021; 13:1874121. [PMID: 33499723 PMCID: PMC7849817 DOI: 10.1080/19420862.2021.1874121] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 01/10/2023] Open
Abstract
Receptor-mediated transcytosis (RMT) is used to enhance the delivery of monoclonal antibodies (mAb) into the central nervous system (CNS). While the binding to endogenous receptors on the brain capillary endothelial cells (BCECs) may facilitate the uptake of mAbs in the brain, a strong affinity for the receptor may hinder the efficiency of transcytosis. To quantitatively investigate the effect of binding affinity on the pharmacokinetics (PK) of anti-transferrin receptor (TfR) mAbs in different regions of the rat brain, we conducted a microdialysis study to directly measure the concentration of free mAbs at different sites of interest. Our results confirmed that bivalent anti-TfR mAb with an optimal dissociation constant (KD) value (76 nM) among four affinity variants can have up to 10-fold higher transcytosed free mAb exposure in the brain interstitial fluid (bISF) compared to lower and higher affinity mAbs (5 and 174 nM). This bell-shaped relationship between KD values and the increased brain exposure of mAbs was also visible when using whole-brain PK data. However, we found that mAb concentrations in postvascular brain supernatant (obtained after capillary depletion) were almost always higher than the concentrations measured in bISF using microdialysis. We also observed that the increase in mAb area under the concentration curve in CSF compartments was less significant, which highlights the challenge in using CSF measurement as a surrogate for estimating the efficiency of RMT delivery. Our results also suggest that the determination of mAb concentrations in the brain using microdialysis may be necessary to accurately measure the PK of CNS-targeted antibodies at the site-of-actions in the brain.
Collapse
Affiliation(s)
- Hsueh-Yuan Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Shengjia Wu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Yingyi Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Wanying Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Matthew Burrell
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Carl I. Webster
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Dhaval K. Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
70
|
An B, Zhang M, Pu J, Qu Y, Shen S, Zhou S, Ferrari L, Vazvaei F, Qu J. Toward Accurate and Robust Liquid Chromatography–Mass Spectrometry-Based Quantification of Antibody Biotherapeutics in Tissues. Anal Chem 2020; 92:15152-15161. [DOI: 10.1021/acs.analchem.0c03620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Bo An
- The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States
- New York State Center of Excellence in Bioinformatics and Life Science, Buffalo, New York 14203, United States
- Protein MS, In-vitro/In-vivo Translation, GlaxoSmithKline Pharmaceuticals, Collegeville, Pennsylvania 19426, United States
| | - Ming Zhang
- The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States
- New York State Center of Excellence in Bioinformatics and Life Science, Buffalo, New York 14203, United States
| | - Jie Pu
- The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States
- New York State Center of Excellence in Bioinformatics and Life Science, Buffalo, New York 14203, United States
| | - Yang Qu
- The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States
- New York State Center of Excellence in Bioinformatics and Life Science, Buffalo, New York 14203, United States
| | - Shichen Shen
- The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States
- New York State Center of Excellence in Bioinformatics and Life Science, Buffalo, New York 14203, United States
| | - Shaolian Zhou
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel CH-4070, Switzerland
| | - Luca Ferrari
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel CH-4070, Switzerland
| | - Faye Vazvaei
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center New York, Buffalo, New York 10016, United States
| | - Jun Qu
- The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States
- New York State Center of Excellence in Bioinformatics and Life Science, Buffalo, New York 14203, United States
| |
Collapse
|
71
|
Hoang Anh N, Min JE, Kim SJ, Phuoc Long N. Biotherapeutic Products, Cellular Factories, and Multiomics Integration in Metabolic Engineering. ACTA ACUST UNITED AC 2020; 24:621-633. [DOI: 10.1089/omi.2020.0112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jung Eun Min
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Sun Jo Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Nguyen Phuoc Long
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
72
|
Ibeanu N, Egbu R, Onyekuru L, Javaheri H, Tee Khaw P, R. Williams G, Brocchini S, Awwad S. Injectables and Depots to Prolong Drug Action of Proteins and Peptides. Pharmaceutics 2020; 12:E999. [PMID: 33096803 PMCID: PMC7589296 DOI: 10.3390/pharmaceutics12100999] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
Proteins and peptides have emerged in recent years to treat a wide range of multifaceted diseases such as cancer, diabetes and inflammation. The emergence of polypeptides has yielded advancements in the fields of biopharmaceutical production and formulation. Polypeptides often display poor pharmacokinetics, limited permeability across biological barriers, suboptimal biodistribution, and some proclivity for immunogenicity. Frequent administration of polypeptides is generally required to maintain adequate therapeutic levels, which can limit efficacy and compliance while increasing adverse reactions. Many strategies to increase the duration of action of therapeutic polypeptides have been described with many clinical products having been developed. This review describes approaches to optimise polypeptide delivery organised by the commonly used routes of administration. Future innovations in formulation may hold the key to the continued successful development of proteins and peptides with optimal clinical properties.
Collapse
Affiliation(s)
- Nkiruka Ibeanu
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Raphael Egbu
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Lesley Onyekuru
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Hoda Javaheri
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Peng Tee Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Gareth R. Williams
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Steve Brocchini
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Sahar Awwad
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| |
Collapse
|
73
|
Biodistribution and elimination pathways of PEGylated recombinant human deoxyribonuclease I after pulmonary delivery in mice. J Control Release 2020; 329:1054-1065. [PMID: 33091532 DOI: 10.1016/j.jconrel.2020.10.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023]
Abstract
Conjugation of recombinant human deoxyribonuclease I (rhDNase) to polyethylene glycol (PEG) of 20 to 40 kDa was previously shown to prolong the residence time of rhDNase in the lungs of mice after pulmonary delivery while preserving its full enzymatic activity. This work aimed to study the fate of native and PEGylated rhDNase in the lungs and to elucidate their biodistribution and elimination pathways after intratracheal instillation in mice. In vivo fluorescence imaging revealed that PEG30 kDa-conjugated rhDNase (PEG30-rhDNase) was retained in mouse lungs for a significantly longer period of time than native rhDNase (12 days vs 5 days). Confocal microscopy confirmed the presence of PEGylated rhDNase in lung airspaces for at least 7 days. In contrast, the unconjugated rhDNase was cleared from the lung lumina within 24 h and was only found in lung parenchyma and alveolar macrophages thereafter. Systemic absorption of intact rhDNase and PEG30-rhDNase was observed. However, this was significantly lower for the latter. Catabolism, primarily in the lungs and secondarily systemically followed by renal excretion of byproducts were the predominant elimination pathways for both native and PEGylated rhDNase. Catabolism was nevertheless more extensive for the native protein. On the other hand, mucociliary clearance appeared to play a less prominent role in the clearance of those proteins after pulmonary delivery. The prolonged presence of PEGylated rhDNase in lung airspaces appears ideal for its mucolytic action in patients with cystic fibrosis.
Collapse
|
74
|
Banik A, Ahmed SR, Sajib EH, Deb A, Sinha S, Azim KF. Identification of potential inhibitory analogs of metastasis tumor antigens (MTAs) using bioactive compounds: revealing therapeutic option to prevent malignancy.. [DOI: 10.1101/2020.10.19.345975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
AbstractThe deeper understanding of metastasis phenomenon and detection of drug targets could be a potential approach to minimize cancer mortality. In this study, attempts were taken to unmask novel therapeutics to prevent metastasis and cancer progression. Initially, we explored the physiochemical, structural and functional insights of three metastasis tumor antigens (MTAs) and evaluated some plant based bioactive compounds as potent MTA inhibitors. From 50 plant metabolites screened, isoflavone, gingerol, citronellal and asiatic acid showed maximum binding affinity with all three MTA proteins. The ADME analysis detected no undesirable toxicity that could reduce the drug likeness properties of top plant metabolites. Moreover, molecular dynamics studies revealed that the complexes were stable and showed minimum fluctuation at molecular level. We further performed ligand based virtual screening to identify similar drug molecules using a large collection of 3,76,342 compounds from DrugBank. The results suggested that several structural analogs (e.g. Tramadol, Nabumetone, DGLA, Hydrocortisone) may act as agonist to block the MTA proteins and inhibit cancer progression at early stage. The study could be useful to develop effective medications against cancer metastasis in future. Due to encouraging results, we highly recommend furtherin vitroandin vivotrials for the experimental validation of the findings.
Collapse
|
75
|
Chen ZY, Xie DF, Liu ZY, Zhong YQ, Zeng JY, Chen Z, Chen XL. Identification of the significant pathways of Banxia Houpu decoction in the treatment of depression based on network pharmacology. PLoS One 2020; 15:e0239843. [PMID: 32997725 PMCID: PMC7527207 DOI: 10.1371/journal.pone.0239843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 09/14/2020] [Indexed: 01/05/2023] Open
Abstract
Banxia Houpu decoction (BXHPD) has been used to treat depression in clinical practice for centuries. However, the pharmacological mechanisms of BXHPD still remain unclear. Network Pharmacology (NP) approach was used to explore the potential molecular mechanisms of BXHPD in treating depression. Potential active compounds of BXHPD were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform Database. STRING database was used to build a interaction network between the active compounds and target genes associated with depression. The topological features of nodes were visualized and calculated. Significant pathways and biological functions were identified using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. A total of 44 active compounds were obtained from BXHPD, and 121 potential target genes were considered to be therapeutically relevant. Pathway analysis indicated that MAPK signaling pathway, ErbB signaling pathway, HIF-1 signaling pathway and PI3K-Akt pathway were significant pathways in depression. They were mainly involved in promoting nerve growth and nutrition and alleviating neuroinflammatory conditions. The result provided some potential ways for modern medicine in the treatment of depression.
Collapse
Affiliation(s)
- Zi-ying Chen
- Shenzhen Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan-feng Xie
- Shenzhen Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi-yuan Liu
- Shenzhen Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong-qi Zhong
- Shenzhen Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing-yan Zeng
- Shenzhen Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zheng Chen
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- * E-mail: (XLC); (ZC)
| | - Xin-lin Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
- * E-mail: (XLC); (ZC)
| |
Collapse
|
76
|
Hu S, D'Argenio DZ. Predicting monoclonal antibody pharmacokinetics following subcutaneous administration via whole-body physiologically-based modeling. J Pharmacokinet Pharmacodyn 2020; 47:385-409. [PMID: 32500362 DOI: 10.1007/s10928-020-09691-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022]
Abstract
Use of the subcutaneous (SC) route for administering monoclonal antibodies (mAbs) to treat chronic conditions has been hindered because of an incomplete understanding of fundamental mechanisms controlling mAb absorption from the SC site, and due to the limited translatability of preclinical studies. In this paper, we report on the development and evaluation of a whole-body physiologically-based model to predict mAb pharmacokinetics following SC administration. The circulatory model is based on the physiological processes governing mAb transport and includes two mAb-specific parameters representing differences in pinocytosis rate and the diffusive/convective transport rates among mAbs. At the SC administration site, two additional parameters are used to represent mAb differences in lymphatic capillary uptake and in pre-systemic clearance. Model development employed clinical intravenous (IV) plasma PK data from 20 mAbs and SC plasma PK data from 12 of these mAbs, as obtained from the literature. The resulting model reliably described both the IV and SC measured plasma concentration data. In addition, a metric based on the positive charge across the mAb's complementarity determining region vicinity was found to positively correlate with the model-based estimates of the mAb-specific parameter governing organ/tissue pinocytosis transport and with estimates of the mAb's SC lymphatic capillary clearance. These two relationships were incorporated into the model and accurately predicted the SC PK profiles of three out of four separate mAbs not included in model development. The whole-body physiologically-based model reported herein, provides a platform to characterize and predict the plasma disposition of monoclonal antibodies following SC administration in humans.
Collapse
Affiliation(s)
- Shihao Hu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - David Z D'Argenio
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
77
|
Chang HP, Kim SJ, Shah DK. Whole-Body Pharmacokinetics of Antibody in Mice Determined using Enzyme-Linked Immunosorbent Assay and Derivation of Tissue Interstitial Concentrations. J Pharm Sci 2020; 110:446-457. [PMID: 32502472 DOI: 10.1016/j.xphs.2020.05.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022]
Abstract
Here we have reported whole-body disposition of wild-type IgG and FcRn non-binding IgG in mice, determined using Enzyme-Linked Immunosorbent Assay (ELISA). The disposition data generated using ELISA are compared with previously published biodistribution data generated using radiolabelled IgG. In addition, we introduce a novel concept of ABCIS values, which are defined as percentage ratios of tissue interstitial and plasma AUC values. These values can help in predicting tissue interstitial concentrations of monoclonal antibodies (mAbs) based on the plasma concentrations. Tissue interstitial concentrations derived from our study are also compared with previously reported values measured using microdialysis or centrifugation method. Lastly, the new set of biodistribution data generated using ELISA are used to refine the PBPK model for mAbs.
Collapse
Affiliation(s)
- Hsuan-Ping Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Se Jin Kim
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
78
|
Shou WZ. Current status and future directions of high-throughput ADME screening in drug discovery. J Pharm Anal 2020; 10:201-208. [PMID: 32612866 PMCID: PMC7322755 DOI: 10.1016/j.jpha.2020.05.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
During the last decade high-throughput in vitro absorption, distribution, metabolism and excretion (HT-ADME) screening has become an essential part of any drug discovery effort of synthetic molecules. The conduct of HT-ADME screening has been "industrialized" due to the extensive development of software and automation tools in cell culture, assay incubation, sample analysis and data analysis. The HT-ADME assay portfolio continues to expand in emerging areas such as drug-transporter interactions, early soft spot identification, and ADME screening of peptide drug candidates. Additionally, thanks to the very large and high-quality HT-ADME data sets available in many biopharma companies, in silico prediction of ADME properties using machine learning has also gained much momentum in recent years. In this review, we discuss the current state-of-the-art practices in HT-ADME screening including assay portfolio, assay automation, sample analysis, data processing, and prediction model building. In addition, we also offer perspectives in future development of this exciting field.
Collapse
Affiliation(s)
- Wilson Z. Shou
- Bristol-Myers Squibb, PO Box 4000, Princeton, NJ, 08540, USA
| |
Collapse
|
79
|
Simmons JK, Burke PJ, Cochran JH, Pittman PG, Lyon RP. Reducing the antigen-independent toxicity of antibody-drug conjugates by minimizing their non-specific clearance through PEGylation. Toxicol Appl Pharmacol 2020; 392:114932. [DOI: 10.1016/j.taap.2020.114932] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 11/24/2022]
|
80
|
Pharmacokinetic Characterization and Tissue Distribution of Fusion Protein Therapeutics by Orthogonal Bioanalytical Assays and Minimal PBPK Modeling. Molecules 2020; 25:molecules25030535. [PMID: 31991858 PMCID: PMC7037219 DOI: 10.3390/molecules25030535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/15/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Characterization of pharmacokinetic (PK) properties and target tissue distribution of therapeutic fusion proteins (TFPs) are critical in supporting in vivo efficacy. We evaluated the pharmacokinetic profile of an investigational TFP consisting of human immunoglobulin G4 fused to the modified interferon alpha by orthogonal bioanalytical assays and applied minimal physiologically based pharmacokinetic (PBPK) modeling to characterize the TFP pharmacokinetics in mouse. The conventional ligand binding assay (LBA), immunocapture-liquid chromatography/tandem mass spectrometry (IC-LC/MS) detecting the human IgG4 peptide or the interferon alpha peptide were developed to measure the TFP concentrations in mouse plasma and tumor. The minimal PBPK model incorporated a tumor compartment model was used for data fitting. The plasma clearance measured by LBA and IC-LC/MS was comparable in the range of 0.5–0.6 mL/h/kg. However, the tumor exposure measured by the generic human IgG4 IC-LC/MS was significantly underestimated compared with the interferon alpha specific IC-LC/MS and LBA. Furthermore, the minimal PBPK model simultaneously captured the relationship between plasma and tissue exposure. We proposed the streamlined practical strategy to characterize the plasma exposure and tumor distribution of a TFP by both LBA and IC-LC/MS. The minimal PBPK modeling was established for better understanding of pharmacokinetic profile of investigational TFPs in the biotherapeutic discovery.
Collapse
|
81
|
Meyer DW, Bou LB, Shum S, Jonas M, Anderson ME, Hamilton JZ, Hunter JH, Wo SW, Wong AO, Okeley NM, Lyon RP. An in Vitro Assay Using Cultured Kupffer Cells Can Predict the Impact of Drug Conjugation on in Vivo Antibody Pharmacokinetics. Mol Pharm 2020; 17:802-809. [DOI: 10.1021/acs.molpharmaceut.9b00991] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- David W Meyer
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| | - Lauren B Bou
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| | - Sara Shum
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| | - Mechthild Jonas
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| | - Martha E Anderson
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| | - Joe Z Hamilton
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| | - Joshua H Hunter
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| | - Serena W Wo
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| | - Abbie O Wong
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| | - Nicole M Okeley
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| | - Robert P Lyon
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| |
Collapse
|
82
|
Viala M, Tosi D. [Determining the dose to be injected in the first clinical trials with monoclonal antibodies: not so easy!]. Med Sci (Paris) 2020; 35:1121-1129. [PMID: 31903926 DOI: 10.1051/medsci/2019209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Monoclonal antibodies are a therapeutic tool frequently used in oncology, as they allow the specific targeting of molecules expressed by cancer cells and, in most cases, induce minimal toxic effects on healthy tissues. Because monoclonal antibodies frequently lack significant toxicity and are not associated to a direct relationship between dose and effect, the methods of clinical development traditionally used for chemotherapy agents are scarcely useful for this class of drugs. In addition, no consensus exists on the definition of parameters different from toxicity that could assist the process of dose selection of monoclonal antibody in early clinical trials.
Collapse
Affiliation(s)
- Marie Viala
- Unité d'Essais de Phase Précoce (UEPP), Institut du Cancer de Montpellier (ICM), Montpellier, France
| | - Diego Tosi
- Unité d'Essais de Phase Précoce (UEPP), Institut du Cancer de Montpellier (ICM), Montpellier, France - Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Montpellier, France
| |
Collapse
|
83
|
Varkhede N, Bommana R, Schöneich C, Forrest ML. Proteolysis and Oxidation of Therapeutic Proteins After Intradermal or Subcutaneous Administration. J Pharm Sci 2020; 109:191-205. [PMID: 31408633 PMCID: PMC6937400 DOI: 10.1016/j.xphs.2019.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022]
Abstract
The intradermal (ID) and subcutaneous (SC) routes are commonly used for therapeutic proteins (TPs) and vaccines; however, the bioavailability of TPs is typically less than small molecule drugs given via the same routes. Proteolytic enzymes in the dermal, SC, and lymphatic tissues may be responsible for the loss of TPs. In addition, the TPs may be exposed to reactive oxygen species generated in the SC tissue and the lymphatic system in response to injection-related trauma and impurities within the formulation. The reactive oxygen species can oxidize TPs to alter their efficacy and immunogenicity potential. Mechanistic understandings of the dominant proteolysis and oxidative routes are useful in the drug discovery process, formulation development, and to assess the potential for immunogenicity and altered pharmacokinetics (PK). Furthermore, in vitro tools representing the ID or SC and lymphatic system can be used to evaluate the extent of proteolysis of the TPs after the injection and before systemic entry. The in vitro clearance data may be included in physiologically based pharmacokinetic models for improved PK predictions. In this review, we have summarized various physiological factors responsible for proteolysis and oxidation of TPs after ID and SC administration.
Collapse
Affiliation(s)
- Ninad Varkhede
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047; Department of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM), Merck Research Laboratories, West Point, Pennsylvania 19486
| | - Rupesh Bommana
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047; MedImmune, Gaithersburg, Maryland 20878
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047
| | - M Laird Forrest
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047.
| |
Collapse
|
84
|
Johnston HM, Pota K, Barnett MM, Kinsinger O, Braden P, Schwartz TM, Hoffer E, Sadagopan N, Nguyen N, Yu Y, Gonzalez P, Tircsó G, Wu H, Akkaraju G, Chumley MJ, Green KN. Enhancement of the Antioxidant Activity and Neurotherapeutic Features through Pyridol Addition to Tetraazamacrocyclic Molecules. Inorg Chem 2019; 58:16771-16784. [PMID: 31774280 PMCID: PMC7323501 DOI: 10.1021/acs.inorgchem.9b02932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's and other neurodegenerative diseases are chronic conditions affecting millions of individuals worldwide. Oxidative stress is a consistent component described in the development of many neurodegenerative diseases. Therefore, innovative strategies to develop drug candidates that overcome oxidative stress in the brain are needed. To target these challenges, a new, water-soluble 12-membered tetraaza macrocyclic pyridinophane L4 was designed and produced using a building-block approach. Potentiometric data show that the neutral species of L4 provides interesting zwitterionic behavior at physiological pH, akin to amino acids, and a nearly ideal isoelectric point of 7.3. The copper(II) complex of L4 was evaluated by X-ray diffraction and cyclic voltammetry to show the potential modes of antioxidant activity derived, which was also demonstrated by 2,2-diphenyl-1-picrylhydrazyl and coumarin carboxylic acid antioxidant assays. L4 was shown to have dramatically enhanced antioxidant activity and increased biological compatibility compared to parent molecules reported previously. L4 attenuated hydrogen peroxide (H2O2)-induced cell viability loss more efficiently than precursor molecules in the mouse hippocampal HT-22 cell model. L4 also showed potent (fM) level protection against H2O2 cell death in a BV2 microglial cell culture. Western blot studies indicated that L4 enhanced the cellular antioxidant defense capacity via Nrf2 signaling activation as well. Moreover, a low-cost analysis and high metabolic stability in phase I and II models were observed. These encouraging results show how the rational design of lead compounds is a suitable strategy for the development of treatments for neurodegenerative diseases where oxidative stress plays a substantial role.
Collapse
Affiliation(s)
- Hannah M. Johnston
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Kristof Pota
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Madalyn M. Barnett
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Olivia Kinsinger
- Department of Biology, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Paige Braden
- Department of Biology, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Timothy M. Schwartz
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Emily Hoffer
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Nishanth Sadagopan
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Nam Nguyen
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Yu Yu
- Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas (UNT) Health Science Center, Fort Worth, Texas 76107, United States
| | - Paulina Gonzalez
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Gyula Tircsó
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4010, Hungary
| | - Hongli Wu
- Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas (UNT) Health Science Center, Fort Worth, Texas 76107, United States
- North Texas Eye Research Institute, University of North Texas (UNT) Health Science Center, Fort Worth, Texas 76107, United States
| | - Giridhar Akkaraju
- Department of Biology, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Michael J. Chumley
- Department of Biology, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Kayla N. Green
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| |
Collapse
|
85
|
Crowell SR, Wang K, Famili A, Shatz W, Loyet KM, Chang V, Liu Y, Prabhu S, Kamath AV, Kelley RF. Influence of Charge, Hydrophobicity, and Size on Vitreous Pharmacokinetics of Large Molecules. Transl Vis Sci Technol 2019; 8:1. [PMID: 31695962 PMCID: PMC6827426 DOI: 10.1167/tvst.8.6.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/24/2019] [Indexed: 01/04/2023] Open
Abstract
Purpose Development of therapeutics for retinal disease with improved durability is hampered by inadequate understanding of pharmacokinetic (PK) drivers following intravitreal injection. Previous work shows that hydrodynamic radius is correlated with vitreal half-life over the range of 3 to 7 nm, and that charge and hydrophobicity influence systemic clearance. Better understanding the molecular attributes affecting vitreal elimination half-life enables improved design of therapeutics and enhances clinical translatability. Methods Impacts of charge and hydrophobicity on vitreal PK in the rabbit were systematically assessed using antibody and antibody fragment (Fab) variant series, including ranibizumab, altered through amino acid changes in hypervariable regions of the light chain. The impact of molecule size on vitreal PK was assessed in the rabbit, nonhuman primate, and human for a range of molecules (1–45 nm, net charge −1324 to +22.9 in rabbit), including published and internal data. Results No correlation was observed between vitreal PK and charge or hydrophobicity. Equivalent rabbit vitreal PK was observed for ranibizumab and its variants with isoelectric points (pI) in the range of 6.8 to 10.2, and hydrophobicities of the variable domain unit (FvHI) between 1009 and 1296; additional variant series had vitreal PK similarly unaffected by pI (5.4–10.2) and FvHI (1004–1358). Strong correlations were observed between vitreal half-life and hydrodynamic radius for preclinical species (R2 = 0.8794–0.9366). Conclusions Diffusive properties of soluble large molecules, as quantified by hydrodynamic radius, make a key contribution to vitreal elimination, whereas differences in charge or hydrophobicity make minor or negligible contributions. Translational Relevance These results support estimation of vitreal elimination rates based on molecular size in relevant preclinical species and humans.
Collapse
Affiliation(s)
- Susan R Crowell
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, South San Francisco, CA, USA
| | - Kathryn Wang
- Drug Delivery, Genentech, South San Francisco, CA, USA
| | - Amin Famili
- Drug Delivery, Genentech, South San Francisco, CA, USA
| | - Whitney Shatz
- Protein Chemistry, Genentech, South San Francisco, CA, USA
| | - Kelly M Loyet
- Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA
| | - Vincent Chang
- Bioanalytical Sciences, Genentech, South San Francisco, CA, USA
| | - Yanqiu Liu
- Bioanalytical Sciences, Genentech, South San Francisco, CA, USA
| | - Saileta Prabhu
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, South San Francisco, CA, USA
| | - Amrita V Kamath
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, South San Francisco, CA, USA
| | | |
Collapse
|
86
|
Abstract
Metabolism and transport of many drugs oscillate with times of the day (solar time), resulting in circadian time-dependent drug exposure and pharmacokinetics.Time-dependent pharmacokinetics (also known as chronopharmacokinetics) is associated with time-varying drug effects and toxicity.This review summarizes drug-metabolizing enzymes and transporters with rhythmic expressions in the liver, intestine and/or kidney. Correlations of these diurnal proteins with circadian variations in drug exposure and effects/toxicity are covered. We also discuss the molecular mechanisms for circadian control of enzymes and transporters.Mechanism-based chronopharmacokinetics would facilitate a better understanding of chronopharmacology and the design of time-specific drug delivery systems, ultimately leading to improved drug efficacy and minimized toxicity.
Collapse
Affiliation(s)
- Mengjing Zhao
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Huijie Xing
- Institution of Laboratory Animal, Jinan University, Guangzhou, China
| | - Min Chen
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Dong Dong
- School of Medicine, Jinan University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
87
|
Rock BM, Foti RS. Pharmacokinetic and Drug Metabolism Properties of Novel Therapeutic Modalities. Drug Metab Dispos 2019; 47:1097-1099. [PMID: 31399505 DOI: 10.1124/dmd.119.088708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022] Open
Abstract
The discovery and development of novel pharmaceutical therapies is rapidly transitioning from a small molecule-dominated focus to a more balanced portfolio consisting of small molecules, monoclonal antibodies, engineered proteins (modified endogenous proteins, bispecific antibodies, and fusion proteins), oligonucleotides, and gene-based therapies. This commentary, and the special issue as a whole, aims to highlight these emerging modalities and the efforts underway to better understand their unique pharmacokinetic and absorption, disposition, metabolism, and excretion (ADME) properties. The articles highlighted herein can be broadly grouped into those focusing on the ADME properties of novel therapeutics, those exploring targeted-delivery strategies, and finally, those discussing oligonucleotide therapies. It is also evident that whereas the field in general continues to progress toward new and more complex molecules, a significant amount of effort is still being placed on antibody-drug conjugates. As therapeutic molecules become increasingly complex, a parallel demand for advancements in experimental and analytical tools will become increasingly evident, both to increase the speed and efficiency of identifying safe and efficacious molecules and simultaneously decreasing our dependence on in vivo studies in preclinical species. The research and commentary included in this special issue will provide researchers, clinicians, and the patients we serve more options in the ongoing fight against grievous illnesses and unmet medical needs. SIGNIFICANCE STATEMENT: Recent trends in drug discovery and development suggest a shift away from a small molecule-dominated approach to a more balanced portfolio that includes small molecules, monoclonal antibodies, engineered proteins, and gene therapies. The research presented in this special issue of Drug Metabolism and Disposition will serve to highlight advancements in the understanding of the mechanisms that govern the pharmacokinetic and drug metabolism properties of the novel therapeutic modalities.
Collapse
Affiliation(s)
- Brooke M Rock
- Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (B.M.R.) and Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F.)
| | - Robert S Foti
- Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (B.M.R.) and Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F.)
| |
Collapse
|
88
|
Bajracharya R, Song JG, Back SY, Han HK. Recent Advancements in Non-Invasive Formulations for Protein Drug Delivery. Comput Struct Biotechnol J 2019; 17:1290-1308. [PMID: 31921395 PMCID: PMC6944732 DOI: 10.1016/j.csbj.2019.09.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/04/2019] [Accepted: 09/07/2019] [Indexed: 01/14/2023] Open
Abstract
Advancements in biotechnology and protein engineering expand the availability of various therapeutic proteins including vaccines, antibodies, hormones, and growth factors. In addition, protein drugs hold many therapeutic advantages over small synthetic drugs in terms of high specificity and activity. This has led to further R&D investment in protein-based drug products and an increased number of drug approvals for therapeutic proteins. However, there are many biological and biopharmaceutical obstacles inherent to protein drugs including physicochemical and enzymatic destabilization, which limit their development and clinical application. Therefore, effective formulations of therapeutic proteins are needed to overcome the various physicochemical and biological barriers. In current medical practice, protein drugs are predominantly available in injectable formulations, which have disadvantages including pain, the possibility of infection, high cost, and low patient compliance. Consequently, non-invasive drug delivery systems for therapeutic proteins have gained great attention in the research and development of biomedicines. Therefore, this review covers the various formulation approaches to optimizing the delivery properties of protein drugs with an emphasis on improving bioavailability and patient compliance. It provides a comprehensive update on recent advancements in nanotechnologies with regard to non-invasive protein drug delivery systems, which is also categorized by the route of administrations including oral, nasal, transdermal, pulmonary, ocular, and rectal delivery systems.
Collapse
|
89
|
Green KN, Pota K, Tircsó G, Gogolák RA, Kinsinger O, Davda C, Blain K, Brewer SM, Gonzalez P, Johnston HM, Akkaraju G. Dialing in on pharmacological features for a therapeutic antioxidant small molecule. Dalton Trans 2019; 48:12430-12439. [PMID: 31342985 PMCID: PMC6863055 DOI: 10.1039/c9dt01800j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pyridinophane molecule L2 (3,6,9,15-tetraazabicyclo[9.3.1]penta-deca-1(15),11,13-trien-13-ol) has shown promise as a therapuetic for neurodegenerative diseases involving oxidative stress and metal ion misregulation. Protonation and metal binding stability constants with Mg2+, Ca2+, Cu2+, and Zn2+ ions were determined to further explore the therapeutic and pharmacological potential of this water soluble small molecule. These studies show that incorporation of an -OH group in position 4 of the pyridine ring decreases the pI values compared to cyclen and L1 (3,6,9,15-tetraazabicyclo[9.3.1]penta-deca-1(15),11,13-triene). Furthermore, this approach tunes the basicity of the tetra-aza macrocyclic ligand through the enhanced resonance stabilization of the -OH in position 4 and rigidity of the pyridine ring such that L2 has increased basicity compared to previously reported tetra-aza macrocycles. A metal binding preference for Cu2+, a redox cycling agent known to produce oxidative stress, indicates that this would be the in vivo metal target of L2. However, the binding constant of L2 with Cu2+ is moderated compared to cyclen due to the rigidity of the ligand and shows how ligand design can be used to tune metal selectivity. An IC50 = 298.0 μM in HT-22 neuronal cells was observed. Low metabolic liability was determined in both Phase I and II in vitro models. Throughout these studies other metal binding systems were used for comparison and as appropriate controls. The reactivity reported to date and pharmacological features described herein warrant further studies in vivo and the pursuit of L2 congeners using the knowledge that pyridine substitution in a pyridinophane can be used to tune the structure of the ligand and retain the positive therapeutic outcomes.
Collapse
Affiliation(s)
- Kayla N Green
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, TX 76129, USA.
| | - Kristof Pota
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, TX 76129, USA.
| | - Gyula Tircsó
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen, H-4010, Hungary
| | - Réka Anna Gogolák
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen, H-4010, Hungary
| | - Olivia Kinsinger
- Department of Biology, Texas Christian University, 2950 S. Bowie, Fort Worth, TX 76129, USA
| | - Collin Davda
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, TX 76129, USA.
| | - Kimberly Blain
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, TX 76129, USA. and Department of Biology, Texas Christian University, 2950 S. Bowie, Fort Worth, TX 76129, USA
| | - Samantha M Brewer
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, TX 76129, USA.
| | - Paulina Gonzalez
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, TX 76129, USA.
| | - Hannah M Johnston
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, TX 76129, USA.
| | - Giridhar Akkaraju
- Department of Biology, Texas Christian University, 2950 S. Bowie, Fort Worth, TX 76129, USA
| |
Collapse
|
90
|
Iyengar ARS, Gupta S, Jawalekar S, Pande AH. Protein Chimerization: A New Frontier for Engineering Protein Therapeutics with Improved Pharmacokinetics. J Pharmacol Exp Ther 2019; 370:703-714. [PMID: 31010843 DOI: 10.1124/jpet.119.257063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/16/2019] [Indexed: 03/08/2025] Open
Abstract
With the advancement of medicine, the utility of protein therapeutics is increasing exponentially. However, a significant number of protein therapeutics suffer from grave limitations, which include their subpar pharmacokinetics. In this study, we have reviewed the emerging field of protein chimerization for improving the short circulatory half-life of protein therapeutics. We have discussed various aspects of protein therapeutics aiming at their mechanism of clearance and various approaches used to increase their short circulatory half-life with principal focus on the concept of chimerization. Furthermore, we have comprehensively reviewed various components of chimera, such as half-life extension partners and linkers, their shortcomings, and prospective work to be undertaken for developing effective chimeric protein therapeutics.
Collapse
Affiliation(s)
- A R Satvik Iyengar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| | - Shreya Gupta
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| | - Snehal Jawalekar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| |
Collapse
|
91
|
Pottash AE, Kuffner C, Noonan-Shueh M, Jay SM. Protein-based vehicles for biomimetic RNAi delivery. J Biol Eng 2019; 13:19. [PMID: 30891095 PMCID: PMC6390323 DOI: 10.1186/s13036-018-0130-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/09/2018] [Indexed: 12/30/2022] Open
Abstract
Broad translational success of RNA interference (RNAi) technology depends on the development of effective delivery approaches. To that end, researchers have developed a variety of strategies, including chemical modification of RNA, viral and non-viral transfection approaches, and incorporation with delivery vehicles such as polymer- and lipid-based nanoparticles, engineered and native proteins, extracellular vesicles (EVs), and others. Among these, EVs and protein-based vehicles stand out as biomimetically-inspired approaches, as both proteins (e.g. Apolipoprotein A-1, Argonaute 2, and Arc) and EVs mediate intercellular RNA transfer physiologically. Proteins specifically offer significant therapeutic potential due to their biophysical and biochemical properties as well as their ability to facilitate and tolerate manipulation; these characteristics have made proteins highly successful translational therapeutic molecules in the last two decades. This review covers engineered protein vehicles for RNAi delivery along with what is currently known about naturally-occurring extracellular RNA carriers towards uncovering design rules that will inform future engineering of protein-based vehicles.
Collapse
Affiliation(s)
- Alex Eli Pottash
- 1Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Christopher Kuffner
- 1Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Madeleine Noonan-Shueh
- 1Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Steven M Jay
- 1Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA.,2Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA.,3Program in Molecular and Cellular Biology, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
92
|
Jing X, Hou Y, Hallett W, Sahajwalla CG, Ji P. Key Physicochemical Characteristics Influencing ADME Properties of Therapeutic Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:115-129. [PMID: 31482497 DOI: 10.1007/978-981-13-7709-9_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Therapeutic proteins are a rapidly growing class of drugs in clinical settings. The pharmacokinetics (PK) of therapeutic proteins relies on their absorption, distribution, metabolism, and excretion (ADME) properties. Moreover, the ADME properties of therapeutic proteins are impacted by their physicochemical characteristics. Comprehensive evaluation of these characteristics and their impact on ADME properties are critical to successful drug development. This chapter summarizes all relevant physicochemical characteristics and their effect on ADME properties of therapeutic proteins.
Collapse
Affiliation(s)
- Xing Jing
- U.S. Food and Drug Administration, Office of Clinical Pharmacology, DV II, Silver Spring, MD, USA.
| | - Yan Hou
- U.S. Food and Drug Administration, Office of Clinical Pharmacology, DV II, Silver Spring, MD, USA
| | - William Hallett
- U.S. Food and Drug Administration, Office of Clinical Pharmacology, DV II, Silver Spring, MD, USA
| | - Chandrahas G Sahajwalla
- U.S. Food and Drug Administration, Office of Clinical Pharmacology, DV II, Silver Spring, MD, USA
| | - Ping Ji
- U.S. Food and Drug Administration, Office of Clinical Pharmacology, DV II, Silver Spring, MD, USA
| |
Collapse
|
93
|
Lucas AT, Robinson R, Schorzman AN, Piscitelli JA, Razo JF, Zamboni WC. Pharmacologic Considerations in the Disposition of Antibodies and Antibody-Drug Conjugates in Preclinical Models and in Patients. Antibodies (Basel) 2019; 8:E3. [PMID: 31544809 PMCID: PMC6640706 DOI: 10.3390/antib8010003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 12/11/2022] Open
Abstract
The rapid advancement in the development of therapeutic proteins, including monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs), has created a novel mechanism to selectively deliver highly potent cytotoxic agents in the treatment of cancer. These agents provide numerous benefits compared to traditional small molecule drugs, though their clinical use still requires optimization. The pharmacology of mAbs/ADCs is complex and because ADCs are comprised of multiple components, individual agent characteristics and patient variables can affect their disposition. To further improve the clinical use and rational development of these agents, it is imperative to comprehend the complex mechanisms employed by antibody-based agents in traversing numerous biological barriers and how agent/patient factors affect tumor delivery, toxicities, efficacy, and ultimately, biodistribution. This review provides an updated summary of factors known to affect the disposition of mAbs/ADCs in development and in clinical use, as well as how these factors should be considered in the selection and design of preclinical studies of ADC agents in development.
Collapse
Affiliation(s)
- Andrew T Lucas
- University of North Carolina (UNC), Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Ryan Robinson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Allison N Schorzman
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Joseph A Piscitelli
- University of North Carolina (UNC), Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
| | - Juan F Razo
- University of North Carolina (UNC), Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
| | - William C Zamboni
- University of North Carolina (UNC), Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
94
|
Goulet DR, Watson MJ, Tam SH, Zwolak A, Chiu ML, Atkins WM, Nath A. Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance. Drug Metab Dispos 2018; 46:1900-1907. [PMID: 30232177 PMCID: PMC7370997 DOI: 10.1124/dmd.118.081893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/10/2018] [Indexed: 12/27/2022] Open
Abstract
The serum half-life and clearance of therapeutic monoclonal antibodies (mAbs) are critical factors that impact their efficacy and optimal dosing regimen. The pH-dependent binding of an mAb to the neonatal Fc receptor (FcRn) has long been recognized as an important determinant of its pharmacokinetics. However, FcRn affinity alone is not a reliable predictor of mAb half-life, suggesting that other biologic or biophysical mechanisms must be accounted for. mAb thermal stability, which reflects its unfolding and aggregation propensities, may also relate to its pharmacokinetic properties. However, no rigorous statistical regression methods have been used to identify combinations of physical parameters that best predict biologic properties. In this work, a panel of eight mAbs with published human pharmacokinetic data were selected for biophysical analyses of FcRn binding and thermal stability. Biolayer interferometry was used to characterize FcRn/mAb binding at acidic and neutral pH, while differential scanning calorimetry was used to determine thermodynamic unfolding parameters. Individual binding or stability parameters were generally weakly correlated with half-life and clearance values. Least absolute shrinkage and selection operator regression was used to identify the combination of two parameters with the best correlation to half-life and clearance as being the FcRn binding response at pH 7.0 and the change in heat capacity. Leave-one-out subsampling yielded a root mean square difference between observed and predicted half-life of just 2.7 days (16%). Thus, the incorporation of multiple biophysical parameters into a cohesive model may facilitate early-stage prediction of in vivo half-life and clearance based on simple in vitro experiments.
Collapse
Affiliation(s)
- Dennis R Goulet
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington (D.R.G., M.J.W., W.M.A., A.N.); and Biologics Research, Janssen Research and Development, LLC, Spring House, Pennsylvania (S.H.T., A.Z., M.L.C.)
| | - Michael J Watson
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington (D.R.G., M.J.W., W.M.A., A.N.); and Biologics Research, Janssen Research and Development, LLC, Spring House, Pennsylvania (S.H.T., A.Z., M.L.C.)
| | - Susan H Tam
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington (D.R.G., M.J.W., W.M.A., A.N.); and Biologics Research, Janssen Research and Development, LLC, Spring House, Pennsylvania (S.H.T., A.Z., M.L.C.)
| | - Adam Zwolak
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington (D.R.G., M.J.W., W.M.A., A.N.); and Biologics Research, Janssen Research and Development, LLC, Spring House, Pennsylvania (S.H.T., A.Z., M.L.C.)
| | - Mark L Chiu
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington (D.R.G., M.J.W., W.M.A., A.N.); and Biologics Research, Janssen Research and Development, LLC, Spring House, Pennsylvania (S.H.T., A.Z., M.L.C.)
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington (D.R.G., M.J.W., W.M.A., A.N.); and Biologics Research, Janssen Research and Development, LLC, Spring House, Pennsylvania (S.H.T., A.Z., M.L.C.)
| | - Abhinav Nath
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington (D.R.G., M.J.W., W.M.A., A.N.); and Biologics Research, Janssen Research and Development, LLC, Spring House, Pennsylvania (S.H.T., A.Z., M.L.C.)
| |
Collapse
|
95
|
ADME Considerations and Bioanalytical Strategies for Pharmacokinetic Assessments of Antibody-Drug Conjugates. Antibodies (Basel) 2018; 7:antib7040041. [PMID: 31544891 PMCID: PMC6698957 DOI: 10.3390/antib7040041] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are a unique class of biotherapeutics of inherent heterogeneity and correspondingly complex absorption, distribution, metabolism, and excretion (ADME) properties. Herein, we consider the contribution of various components of ADCs such as various classes of warheads, linkers, and conjugation strategies on ADME of ADCs. Understanding the metabolism and disposition of ADCs and interpreting exposure-efficacy and exposure-safety relationships of ADCs in the context of their various catabolites is critical for design and subsequent development of a clinically successful ADCs. Sophisticated bioanalytical assays are required for the assessments of intact ADC, total antibody, released warhead and relevant metabolites. Both ligand-binding assays (LBA) and hybrid LBA-liquid chromatography coupled with tandem mass spectrometry (LBA-LC-MS/MS) methods have been employed to assess pharmacokinetics (PK) of ADCs. Future advances in bioanalytical techniques will need to address the rising complexity of this biotherapeutic modality as more innovative conjugation strategies, antibody scaffolds and novel classes of warheads are employed for the next generation of ADCs. This review reflects our considerations on ADME of ADCs and provides a perspective on the current bioanalytical strategies for pharmacokinetic assessments of ADCs.
Collapse
|
96
|
Schultz C. Targeting the extracellular matrix for delivery of bioactive molecules to sites of arthritis. Br J Pharmacol 2018; 176:26-37. [PMID: 30311636 DOI: 10.1111/bph.14516] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 09/01/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022] Open
Abstract
Modifications to the extracellular matrix (ECM) can be either causal or consequential of disease processes including arthritis and cancer. In arthritis, the cartilage ECM is adversely affected by the aberrant behaviours of inflammatory cells, synoviocytes and chondrocytes, which secrete a plethora of cytokines and degradative proteases. In cancer, the ECM and stromal cells are linked to disease severity, and metalloproteinases are implicated in metastasis. There have been some successes in the field of targeted therapies, but efficacy depends upon the type and stage of disease. ECM targets are becoming increasingly attractive for drug delivery, owing to changes in ECM structure and composition in the diseased state, and the long in vivo half-life of its components. This review will highlight various strategies for targeting therapeutics to arthritic joints, including antibody and peptide-mediated drug delivery platforms to aid delivery to the ECM and retention at disease sites. LINKED ARTICLES: This article is part of a themed section on Translating the Matrix. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.1/issuetoc.
Collapse
Affiliation(s)
- Christopher Schultz
- Centre for Biochemical Pharmacology, Queen Mary University of London, Charterhouse Square Campus, London, UK
| |
Collapse
|
97
|
Bioanalytical workflow for novel scaffold protein–drug conjugates: quantitation of total Centyrin protein, conjugated Centyrin and free payload for Centyrin–drug conjugate in plasma and tissue samples using liquid chromatography–tandem mass spectrometry. Bioanalysis 2018; 10:1651-1665. [DOI: 10.4155/bio-2018-0201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: Alternative scaffold proteins have emerged as novel platforms for development of therapeutic applications. One such application is in protein–drug conjugates (PDCs), which are analogous to antibody–drug conjugates. Methodology: Liquid chromatography–mass spectrometry methods for quantitation of total protein, conjugate and free payload for a PDC based on Centyrin scaffold were developed. Tryptic peptides generated from a region of the Centyrin that does not contain a conjugation site, and another that has the conjugation site with the linker-payload attached were used as surrogates of the total and conjugated Centyrin, respectively. Conclusion: The methods were successfully applied to analysis of samples from mice to quantify the plasma and tissue concentrations. This same workflow can potentially be applied to other PDCs and site-specific antibody–drug conjugates.
Collapse
|
98
|
Viola M, Sequeira J, Seiça R, Veiga F, Serra J, Santos AC, Ribeiro AJ. Subcutaneous delivery of monoclonal antibodies: How do we get there? J Control Release 2018; 286:301-314. [DOI: 10.1016/j.jconrel.2018.08.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/29/2022]
|
99
|
Sidoryk K, Cmoch P, Świtalska M, Trzaskowski B, Wietrzyk J, Cybulski M. Efficient glycosylation of natural Danshensu and its enantiomer by sugar and 2-deoxy sugar donors. Carbohydr Res 2018; 460:19-28. [PMID: 29501860 DOI: 10.1016/j.carres.2018.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 11/15/2022]
Abstract
An efficient methodology of the glycosylation process of a secondary plant metabolite (R-Danshensu) and its enantiomer by sugar and 2-deoxy sugar donors was developed. The overall synthesis of the new sugar derivatives involved two steps, starting from the previously synthesized protected R and S Danshensu (1 and 2). The deoxy sugar derivatives of R and S Danshensu were obtained from available tri-O-acetyl-2-deoxy-D-glucal and di-O-acetyl-2-deoxy-D-ramnal. The direct glycosylation of 1 and 2 using glycal activation by an acid catalyst in all cases led to the α-anomers of deoxy sugar derivatives with good yields. As a result, a novel group of sugar and deoxy sugar conjugates with optically pure polyphenolic acids was successfully synthesized and their cytotoxic profile against two cancer cell lines was tested. An advantageous ADME profile and antiproliferative data classified this new group of compounds as a promising scaffold for further modification of more potent and selective anticancer agents.
Collapse
Affiliation(s)
- Katarzyna Sidoryk
- Pharmaceutical Research Institute, 8 Rydygiera Street, 01-793 Warsaw, Poland.
| | - Piotr Cmoch
- Pharmaceutical Research Institute, 8 Rydygiera Street, 01-793 Warsaw, Poland
| | - Marta Świtalska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigla Street, 53-114 Wroclaw, Poland
| | - Bartosz Trzaskowski
- University of Warsaw, Centre of New Technologies, 2c S. Banacha Street, 02-097 Warsaw, Poland
| | - Joanna Wietrzyk
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigla Street, 53-114 Wroclaw, Poland
| | - Marcin Cybulski
- Pharmaceutical Research Institute, 8 Rydygiera Street, 01-793 Warsaw, Poland
| |
Collapse
|
100
|
Turner MR, Balu-Iyer SV. Challenges and Opportunities for the Subcutaneous Delivery of Therapeutic Proteins. J Pharm Sci 2018; 107:1247-1260. [PMID: 29336981 PMCID: PMC5915922 DOI: 10.1016/j.xphs.2018.01.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 12/22/2022]
Abstract
Biotherapeutics is a rapidly growing drug class, and over 200 biotherapeutics have already obtained approval, with about 50 of these being approved in 2015 and 2016 alone. Several hundred protein therapeutic products are still in the pipeline, including interesting new approaches to treatment. Owing to patients' convenience of at home administration and reduced number of hospital visits as well as the reduction in treatment costs, subcutaneous (SC) administration of biologics is of increasing interest. Although several avenues for treatment using biotherapeutics are being explored, there is still a sufficient gap in knowledge regarding the interplay of formulation conditions, immunogenicity, and pharmacokinetics (PK) of the absorption of these compounds when they are given SC. This review seeks to highlight the major concerns and important factors governing this route of administration and suggest a holistic approach for effective SC delivery.
Collapse
Affiliation(s)
- Michael R Turner
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214.
| |
Collapse
|