51
|
Janson J, Andersson G, Bergquist L, Eriksson M, Folgering JHA. Impact of chemical modification of sulfamidase on distribution to brain interstitial fluid and to CSF after an intravenous administration in awake, freely-moving rats. Mol Genet Metab Rep 2020; 22:100554. [PMID: 31908953 PMCID: PMC6939024 DOI: 10.1016/j.ymgmr.2019.100554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022] Open
Abstract
Mucopolysaccharidosis III A (MPS IIIA) is an autosomal recessive lysosomal storage disorder caused by deficiency of the enzyme sulfamidase. The disorder results in accumulation of heparan sulfate, lysosomal enlargement and cellular and organ dysfunction. Patients exhibit progressive neurodegeneration and behavioral problems and no treatment is currently available. Enzyme replacement therapy is explored as potential treatment strategy for MPS IIIA patients and to modify the disease, sulfamidase must reach the brain. The glycans of recombinant human sulfamidase (rhSulfamidase) can be chemically modified to generate CM-rhSulfamidase. The chemical modification reduced the affinity to the cation-independent mannose-6-phosphate receptor with the aim a prolonged higher concentration in circulation and thus at the blood brain barrier. The pharmacokinetic properties in serum and the distribution to brain and to cerebrospinal fluid (CSF) of chemically modified recombinant human sulfamidase (CM-rhSulfamidase) were studied and compared to those of rhSulfamidase, after a single intravenous (i.v.) 30 mg/kg dose in awake, freely-moving male Sprague Dawley rats. Distribution to brain was studied by microdialysis of the interstitial fluid in prefrontal cortex and by repeated intra-individual CSF sampling from the cisterna magna. Push-pull microdialysis facilitated sampling of brain interstitial fluid to determine large molecule concentrations in awake, freely-moving male Sprague Dawley rats. Together with repeated serum and CSF sampling, push-pull microdialysis facilitated determination of CM-rhSulfamidase and rhSulfamidase kinetics after i.v. administration by non-compartments analysis and by a population modelling approach. Chemical modification increased the area under the concentration versus time in serum, CSF and brain interstitial fluid at least 7-fold. The results and the outcome of a population modelling approach of the concentration versus time data indicated that both compounds pass the BBB with an equilibrium established fairly rapid after administration. We suggest that prolonged high serum concentrations facilitated high brain interstitial fluid concentrations, which could be favorable to reach various target cells in the brain.
Collapse
Key Words
- AUClast, area under the concentration-time curve from t = 0 to the last observed concentration
- AUC∞, area under the concentration-time curve from t = 0 to infinity
- CL, clearance
- CM-rhSulfamidase, chemically modified recombinant human sulfamidase
- CNS distribution
- CNS, central nervous system
- CSF, cerebrospinal fluid
- Cmax, maximum concentration
- Enzyme replacement therapy
- HS, heparan sulfate
- ID, identifier
- IF, interstitial fluid
- LLOQ, lower limit of quantification
- M6PR, mannose-6-phosphate receptor
- MPS IIIA, mucopolysaccharidosis type III A
- MSD-ECL, meso scale discovery electrochemiluminescence
- Microdialysis
- Mucopolysaccharidosis IIIA
- PBS, phosphate buffered saline
- PK, pharmacokinetics
- Pharmacokinetics
- SD, standard deviation
- SGSH, N-sulfoglucosamine sulfohydrolase
- Sulfamidase
- V, volume of distribution
- aCSF, artificial cerebrospinal fluid
- h.a.d., hours after dose
- i.v., intravenous
- rhSulfamidase, recombinant human sulfamidase
- t½, terminal half-life
Collapse
Affiliation(s)
- Juliette Janson
- Research & Translational Science Unit, Swedish Orphan Biovitrum AB (publ), SE-112 76 Stockholm, Sweden
| | - Gudrun Andersson
- Research & Translational Science Unit, Swedish Orphan Biovitrum AB (publ), SE-112 76 Stockholm, Sweden
| | - Lars Bergquist
- Research & Translational Science Unit, Swedish Orphan Biovitrum AB (publ), SE-112 76 Stockholm, Sweden
| | - Maria Eriksson
- Research & Translational Science Unit, Swedish Orphan Biovitrum AB (publ), SE-112 76 Stockholm, Sweden
| | - Joost H A Folgering
- Charles River Laboratories location Groningen, De Mudden 16, 9747AW Groningen, the Netherlands
| |
Collapse
|
52
|
Slimano F, Djerada Z, Guerin J, Bellouch MI, Brassart-Pasco S, Dukic S. Intratumoral distribution of YSNSG cyclopeptide in a mouse melanoma model using microdialysis. Eur J Pharm Sci 2019; 143:105201. [PMID: 31866565 DOI: 10.1016/j.ejps.2019.105201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
Abstract
The YSNSG peptide is a synthetic cyclopeptide targeting αvβ3 integrin with antitumor activity. Previous study has determined main pharmacokinetic parameters in plasma and in tissue in healthy animals using microdialysis. First we aim to assess the impact of a 20 mg/kg dosage instead of 10 mg/kg in tumor growth inhibition. Secondly we aim to investigate the YSNSG peptide distribution in two different tumor regions in animals with melanoma. C57BL/6 mice were exposed at Days 8, 10 and 12 after melanoma cells implantation (B16F1) to different dosage of YSNSG peptide or control, respectively (n = 10 per group). Data analysis was performed at D16, 20 and 24 with a Nonlinear Mixed-Effects (NLME) approach. For pharmacokinetic study n = 8 mice (same disease condition) received YSNSG peptide by intravenous after insertion of two microdialysis probes in central peripheral region of tumor, respectively. Plasma and tissue samples were collected during 2 h. A non-compartmental analysis was performed to determine main pharmacokinetic parameters. There was a significant tumor growth inhibition in mice receiving 20 mg/kg vs Control (p < 0.02). Main plasma parameters were half-life elimination 25.8 ± 8.2 min, volume of distribution 11.9 ± 0.4 mL, clearance 19.8 ± 9.4 mL/h and area under the curve 1,173.6 µg.min/mL. Penetration rate of the YSNSG peptide from plasma to tumor tissue were 3.3 ± 2.1% and 3.4 ± 2.7% in central and peripheral, respectively. Contrary to subcutaneous distribution in healthy animals the distribution of the YSNSG peptide into tumoral tissue is low but seems non-heterogeneous between central and peripheral tumor region.
Collapse
Affiliation(s)
- Florian Slimano
- MEDyC Research Unit, UMR CNRS/URCA n°7369, SFR CAP-Santé, Reims University, 51, rue Cognacq-Jay, 51100 Reims, France; Department of Pharmacy, CHU Reims, Avenue du General Koenig, and Faculty of Pharmacy, Reims University, 51, rue Cognacq-Jay, 51100 Reims, France.
| | - Zoubir Djerada
- Department of Pharmacology and Toxicology, CHU Reims, Avenue du General Koenig, 51100 Reims, France; EA3801, SFR CAP-Santé, Faculty of Medicine, Reims University, 51, rue Cognacq-Jay, 51100 Reims, France
| | - Juline Guerin
- MEDyC Research Unit, UMR CNRS/URCA n°7369, SFR CAP-Santé, Reims University, 51, rue Cognacq-Jay, 51100 Reims, France
| | - Morad Id Bellouch
- MEDyC Research Unit, UMR CNRS/URCA n°7369, SFR CAP-Santé, Reims University, 51, rue Cognacq-Jay, 51100 Reims, France
| | - Sylvie Brassart-Pasco
- MEDyC Research Unit, UMR CNRS/URCA n°7369, SFR CAP-Santé, Reims University, 51, rue Cognacq-Jay, 51100 Reims, France
| | - Sylvain Dukic
- MEDyC Research Unit, UMR CNRS/URCA n°7369, SFR CAP-Santé, Reims University, 51, rue Cognacq-Jay, 51100 Reims, France; Department of Pharmacy, CHU Reims, Avenue du General Koenig, and Faculty of Pharmacy, Reims University, 51, rue Cognacq-Jay, 51100 Reims, France
| |
Collapse
|
53
|
How to Make Anticancer Drugs Cross the Blood-Brain Barrier to Treat Brain Metastases. Int J Mol Sci 2019; 21:ijms21010022. [PMID: 31861465 PMCID: PMC6981899 DOI: 10.3390/ijms21010022] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022] Open
Abstract
The incidence of brain metastases has increased in the last 10 years. However, the survival of patients with brain metastases remains poor and challenging in daily practice in medical oncology. One of the mechanisms suggested for the persistence of a high incidence of brain metastases is the failure to cross the blood-brain barrier of most chemotherapeutic agents, including the more recent targeted therapies. Therefore, new pharmacological approaches are needed to optimize the efficacy of anticancer drug protocols. In this article, we present recent findings in molecular data on brain metastases. We then discuss published data from pharmacological studies on the crossing of the blood-brain barrier by anticancer agents. We go on to discuss future developments to facilitate drug penetration across the blood-brain barrier for the treatment of brain metastases among cancer patients, using physical methods or physiological transporters.
Collapse
|
54
|
Huang S, Chen G, Ye N, Kou X, Zhu F, Shen J, Ouyang G. Solid-phase microextraction: An appealing alternative for the determination of endogenous substances - A review. Anal Chim Acta 2019; 1077:67-86. [PMID: 31307724 DOI: 10.1016/j.aca.2019.05.054] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
The determination of endogenous substances is of great significance for obtaining important biotic information such as biological components, metabolic pathways and disease biomarkers in different living organisms (e.g. plants, insects, animals and humans). However, due to the complex matrix and the trace concentrations of target analytes, the sample preparation procedure is an essential step before the analytes of interest are introduced into a detection instrument. Solid-phase microextraction (SPME), an emerging sample preparation technique that integrates sampling, extraction, concentration, and sample introduction into one step, has gained wide acceptance in various research fields, including in the determination of endogenous compounds. In this review, recent developments and applications of SPME for the determination of endogenous substances over the past five years are summarized. Several aspects, including the design of SPME devices (sampling configuration and coating), applications (in vitro and in vivo sampling), and coupling with emerging instruments (comprehensive two-dimensional gas chromatography (GC × GC), ambient mass spectrometry (AMS) and surface enhanced Raman scattering (SERS)) are involved. Finally, the challenges and opportunities of SPME methods in endogenous substances analysis are also discussed.
Collapse
Affiliation(s)
- Siming Huang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Niru Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China; College of Chemistry & Molecular Engineering, Center of Advanced Analysis and Computational Science, Zhengzhou University, Kexue Avenue 100, Zhengzhou, 450001, PR China.
| |
Collapse
|
55
|
Chang HY, Wu S, Meno-Tetang G, Shah DK. A translational platform PBPK model for antibody disposition in the brain. J Pharmacokinet Pharmacodyn 2019; 46:319-338. [PMID: 31115858 DOI: 10.1007/s10928-019-09641-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 05/06/2019] [Indexed: 12/31/2022]
Abstract
In this manuscript, we have presented the development of a novel platform physiologically-based pharmacokinetic (PBPK) model to characterize brain disposition of mAbs in the mouse, rat, monkey and human. The model accounts for known anatomy and physiology of the brain, including the presence of distinct blood-brain barrier and blood-cerebrospinal fluid (CSF) barrier. CSF and interstitial fluid turnover, and FcRn mediated transport of mAbs are accounted for. The model was first used to characterize published and in-house pharmacokinetic (PK) data on the disposition of mAbs in rat brain, including the data on PK of mAb in different regions of brain determined using microdialysis. Majority of model parameters were fixed based on literature reported values, and only 3 parameters were estimated using rat data. The rat PBPK model was translated to mouse, monkey, and human, simply by changing the values of physiological parameters corresponding to each species. The translated PBPK models were validated by a priori predicting brain PK of mAbs in all three species, and comparing predicted exposures with observed data. The platform PBPK model was able to a priori predict all the validation PK profiles reasonably well (within threefold), without estimating any parameters. As such, the platform PBPK model presented here provides an unprecedented quantitative tool for prediction of mAb PK at the site-of-action in the brain, and preclinical-to-clinical translation of mAbs being developed against central nervous system (CNS) disorders. The proposed model can be further expanded to account for target engagement, disease pathophysiology, and novel mechanisms, to support discovery and development of novel CNS targeting mAbs.
Collapse
Affiliation(s)
- Hsueh-Yuan Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Kapoor Hall, Buffalo, NY, 14214-8033, USA
| | - Shengjia Wu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Kapoor Hall, Buffalo, NY, 14214-8033, USA
| | - Guy Meno-Tetang
- Quantitative Clinical Pharmacology/PK-PD, Modeling & Simulation, Immunology/Inflammation, UCB Pharmaceuticals, Brussels, Belgium
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Kapoor Hall, Buffalo, NY, 14214-8033, USA.
| |
Collapse
|
56
|
Guillon A, Pardessus J, Lhommet P, Parent C, Respaud R, Marchand D, Montharu J, De Monte M, Janiak P, Boixel C, Audat H, Huille S, Guillot E, Heuze-Vourc'h N. Exploring the fate of inhaled monoclonal antibody in the lung parenchyma by microdialysis. MAbs 2019; 11:297-304. [PMID: 30714473 DOI: 10.1080/19420862.2018.1556081] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Therapeutic antibodies (Abs) are emerging as major drugs to treat respiratory diseases, and inhalation may provide substantial benefits for their delivery. Understanding the behavior of Abs after pulmonary deposition is critical for their development. We investigated the pharmacokinetics of a nebulized Ab by continuous sampling in lung parenchyma using microdialysis in non-human primates. We defined the optimal conditions for microdialysis of Ab and demonstrated that lung microdialysis of Ab is feasible over a period of several days. The concentration-profile indicated a two-phase non-linear elimination and/or distribution of inhaled mAbX. Lung exposition was higher than the systemic one over a period of 33 hours and above MabX affinity for its target. The microdialysis results were supported by an excellent relationship with dosages from lung extracts.
Collapse
Affiliation(s)
- Antoine Guillon
- a Centre d'Etude des Pathologies Respiratoires , UMR 1100 , INSERM , Tours, France.,b Université de Tours , Tours , France.,c Service de Médecine intensive - réanimation , CHRU de Tours , Tours , France
| | - Jeoffrey Pardessus
- a Centre d'Etude des Pathologies Respiratoires , UMR 1100 , INSERM , Tours, France.,b Université de Tours , Tours , France
| | - Pierre Lhommet
- d Service de Chirurgie Thoracique , CHRU de Tours , Tours , France
| | - Christelle Parent
- a Centre d'Etude des Pathologies Respiratoires , UMR 1100 , INSERM , Tours, France.,b Université de Tours , Tours , France
| | - Renaud Respaud
- a Centre d'Etude des Pathologies Respiratoires , UMR 1100 , INSERM , Tours, France.,b Université de Tours , Tours , France.,e Service de Pharmacie , CHRU de Tours , Tours , France
| | - Denis Marchand
- a Centre d'Etude des Pathologies Respiratoires , UMR 1100 , INSERM , Tours, France.,b Université de Tours , Tours , France
| | | | | | - Philip Janiak
- g Cardiovascular & Metabolism , Sanofi R&D , Chilly-Mazarin , France
| | | | - Héloïse Audat
- i Analytics & Formulation Department/Biologics , Vitry Sur Seine , France
| | - Sylvain Huille
- i Analytics & Formulation Department/Biologics , Vitry Sur Seine , France
| | - Etienne Guillot
- g Cardiovascular & Metabolism , Sanofi R&D , Chilly-Mazarin , France
| | - Nathalie Heuze-Vourc'h
- a Centre d'Etude des Pathologies Respiratoires , UMR 1100 , INSERM , Tours, France.,b Université de Tours , Tours , France
| |
Collapse
|