51
|
Akazawa N, Nakamura M, Eda N, Murakami H, Nakagata T, Nanri H, Park J, Hosomi K, Mizuguchi K, Kunisawa J, Miyachi M, Hoshikawa M. Gut microbiota alternation with training periodization and physical fitness in Japanese elite athletes. Front Sports Act Living 2023; 5:1219345. [PMID: 37521099 PMCID: PMC10382754 DOI: 10.3389/fspor.2023.1219345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction The gut microbiome plays a fundamental role in host homeostasis through regulating immune functions, enzyme activity, and hormone secretion. Exercise is associated with changes in gut microbiome composition and function. However, few studies have investigated the gut microbiome during training periodization. The present study aimed to investigate the relationship between training periodization and the gut microbiome in elite athletes. Methods In total, 84 elite athletes participated in the cross-sectional study; and gut microbiome was determined during their transition or preparation season period. Further, 10 short-track speed skate athletes participated in the longitudinal study, which assessed the gut microbiome and physical fitness such as aerobic capacity and anaerobic power in the general and specific preparation phase of training periodization. The gut microbiome was analyzed using 16S rRNA sequencing. Results The cross-sectional study revealed significant differences in Prevotella, Bifidobacterium, Parabacteroides, and Alistipes genera and in enterotype distribution between transition and preparation season phase periodization. In the longitudinal study, training phase periodization altered the level of Bacteroides, Blautia, and Bifidobacterium in the microbiome. Such changes in the microbiome were significantly correlated with alternations in aerobic capacity and tended to correlate with the anaerobic power. Discussion These findings suggest that periodization alters the gut microbiome abundance related to energy metabolism and trainability of physical fitness. Athlete's condition may thus be mediated to some extent by the microbiota in the intestinal environment.
Collapse
Affiliation(s)
- Nobuhiko Akazawa
- Department of Sports Research, Japan Institute of Sports Sciences, Tokyo, Japan
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Mariko Nakamura
- Department of Sports Sciences, Japan Institute of Sports Sciences, Tokyo, Japan
| | - Nobuhiko Eda
- Department of Sports Research, Japan Institute of Sports Sciences, Tokyo, Japan
- Department of Fundamental Education, Dokkyo Medical University, Tochigi, Japan
| | - Haruka Murakami
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Takashi Nakagata
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
- Laboratory of Gut Microbiome for Health, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Hinako Nanri
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
- Laboratory of Gut Microbiome for Health, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Jonguk Park
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kenji Mizuguchi
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Motohiko Miyachi
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Masako Hoshikawa
- Department of Sports Research, Japan Institute of Sports Sciences, Tokyo, Japan
| |
Collapse
|
52
|
Ji MH, Gao YZ, Shi CN, Wu XM, Yang JJ. Acute and long-term cognitive impairment following sepsis: mechanism and prevention. Expert Rev Neurother 2023; 23:931-943. [PMID: 37615511 DOI: 10.1080/14737175.2023.2250917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
INTRODUCTION Sepsis is a severe host response to infection, which induces both acute and long-term cognitive impairment. Despite its high incidence following sepsis, the underlying mechanisms remain elusive and effective treatments are not available clinically. AREA COVERED This review focuses on elucidating the pathological mechanisms underlying cognitive impairment following sepsis. Specifically, the authors discuss the role of systemic inflammation response, blood-brain barrier disruption, neuroinflammation, mitochondrial dysfunction, neuronal dysfunction, and Aβ accumulation and tau phosphorylation in cognitive impairment after sepsis. Additionally, they review current strategies to ameliorate cognitive impairment. EXPERT OPINION Potential interventions to reduce cognitive impairment after sepsis include earlier diagnosis and effective infection control, hemodynamic homeostasis, and adequate brain perfusion. Furthermore, interventions to reduce inflammatory response, reactive oxygen species, blood-brain barrier disruption, mitochondrial dysfunction, neuronal injury or death could be beneficial. Implementing strategies to minimize delirium, sleep disturbance, stress factors, and immobility are also recommended. Furthermore, avoiding neurotoxins and implementing early rehabilitation may also be important for preventing cognitive impairment after sepsis.
Collapse
Affiliation(s)
- Mu-Huo Ji
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Zhu Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cui-Na Shi
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin-Miao Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
53
|
Deng R, Wang M, Song Y, Shi Y. A Bibliometric Analysis on the Research Trend of Exercise and the Gut Microbiome. Microorganisms 2023; 11:microorganisms11040903. [PMID: 37110325 PMCID: PMC10141121 DOI: 10.3390/microorganisms11040903] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
This article aims to provide an overview of research hotspots and trends in exercise and the gut microbiome, a field which has recently gained increasing attention. The relevant publications on exercise and the gut microbiome were identified from the Web of Science Core Collection database. The publication types were limited to articles and reviews. VOSviewer 1.6.18 (Centre for Science and Technology Studies, Leiden University, Leiden, the Netherlands) and the R package "bibliometrix" (R Foundation: Vienna, Austria) were used to conduct a bibliometric analysis. A total of 327 eligible publications were eventually identified, including 245 original articles and 82 reviews. A time trend analysis showed that the number of publications rapidly increased after 2014. The leading countries/regions in this field were the USA, China, and Europe. Most of the active institutions were from Europe and the USA. Keyword analysis showed that the relationship between disease, the gut microbiome, and exercise occurs throughout the development of this field of research. The interactions between the gut microbiota, exercise, status of the host's internal environment, and probiotics, are important facets as well. The research topic evolution presents a trend of multidisciplinary and multi-perspective comprehensive analysis. Exercise might become an effective intervention for disease treatment by regulating the gut microbiome. The innovation of exercise-centered lifestyle intervention therapy may become a significant trend in the future.
Collapse
Affiliation(s)
- Ruiyi Deng
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| | - Mopei Wang
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing 100191, China
| | - Yahan Song
- Library, Peking University Third Hospital, Beijing 100191, China
| | - Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
54
|
Lu Y, Bu FQ, Wang F, Liu L, Zhang S, Wang G, Hu XY. Recent advances on the molecular mechanisms of exercise-induced improvements of cognitive dysfunction. Transl Neurodegener 2023; 12:9. [PMID: 36850004 PMCID: PMC9972637 DOI: 10.1186/s40035-023-00341-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/09/2023] [Indexed: 03/01/2023] Open
Abstract
Physical exercise is of great significance for maintaining human health. Exercise can provide varying degrees of benefits to cognitive function at all stages of life cycle. Currently, with the aging of the world's population and increase of life expectancy, cognitive dysfunction has gradually become a disease of high incidence, which is accompanied by neurodegenerative diseases in elderly individuals. Patients often exhibit memory loss, aphasia and weakening of orientation once diagnosed, and are unable to have a normal life. Cognitive dysfunction largely affects the physical and mental health, reduces the quality of life, and causes a great economic burden to the society. At present, most of the interventions are aimed to maintain the current cognitive level and delay deterioration of cognition. In contrast, exercise as a nonpharmacological therapy has great advantages in its nontoxicity, low cost and universal application. The molecular mechanisms underlying the effect of exercise on cognition are complex, and studies have been extensively centered on neural plasticity, the direct target of exercise in the brain. In addition, mitochondrial stability and energy metabolism are essential for brain status. Meanwhile, the organ-brain axis responds to exercise and induces release of cytokines related to cognition. In this review, we summarize the latest evidence on the molecular mechanisms underlying the effects of exercise on cognition, and point out directions for future research.
Collapse
Affiliation(s)
- Yi Lu
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Fa-Qian Bu
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Fang Wang
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Li Liu
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Shuai Zhang
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Guan Wang
- West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xiu-Ying Hu
- West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
55
|
The Pleiotropic Effects of Gut Microbiota in Colorectal Cancer Progression: How to Turn Foes into Friends. Cancers (Basel) 2023; 15:cancers15030916. [PMID: 36765873 PMCID: PMC9913371 DOI: 10.3390/cancers15030916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
Colorectal Cancer (CRC) is one of most frequent malignant cancers, showing high lethality worldwide [...].
Collapse
|
56
|
Chen H, Wang J, Ouyang Q, Peng X, Yu Z, Wang J, Huang J. Alterations of gut microbes and their correlation with clinical features in middle and end-stages chronic kidney disease. Front Cell Infect Microbiol 2023; 13:1105366. [PMID: 37033494 PMCID: PMC10079997 DOI: 10.3389/fcimb.2023.1105366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Gut microecosystem has been shown to play an important role in human health. In recent years, the concept of the gut-kidney axis has been proposed to explain the potential association between gut microbiota and chronic kidney disease (CKD). Here, a cohort of fecal samples collected from patients with CKD (n = 13) were involved. The composition of gut microbial communities and clinical features in CKD and end-stage renal disease (ESRD) were characterized. Our study focused on the changes in gut microbiome and the correlation with clinical features in patients with CKD and ESRD by analyzing high-throughput sequencing results of collected feces. We elucidated the alterations of gut microbiota in CKD patients at different stages of disease and initially identified the gut microbiota associated with CKD progression. We also combined correlation analysis to identify clinical features closely related to the gut microbiome. Our results offered the possibility of using non-invasive gut microbiome in the early diagnosis of course from CKD to ESRD and provide new insights into the association between clinical features and gut microbiota in CKD.
Collapse
Affiliation(s)
- Hao Chen
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Jingyan Wang
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Qin Ouyang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xinyue Peng
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Jianwen Wang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Jing Huang, ; Jianwen Wang,
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- *Correspondence: Jing Huang, ; Jianwen Wang,
| |
Collapse
|
57
|
Dhopatkar N, Keeler JL, Mutwalli H, Whelan K, Treasure J, Himmerich H. Gastrointestinal symptoms, gut microbiome, probiotics and prebiotics in anorexia nervosa: A review of mechanistic rationale and clinical evidence. Psychoneuroendocrinology 2023; 147:105959. [PMID: 36327759 DOI: 10.1016/j.psyneuen.2022.105959] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/22/2022] [Accepted: 10/20/2022] [Indexed: 11/27/2022]
Abstract
Recent research has revealed the pivotal role that the gut microbiota might play in psychiatric disorders. In anorexia nervosa (AN), the gut microbiota may be involved in pathophysiology as well as in the gastrointestinal (GI) symptoms commonly experienced. This review collates evidence for the potential role of gut microbiota in AN, including modulation of the immune system, the gut-brain axis and GI function. We examined studies comparing gut microbiota in AN with healthy controls as well as those looking at modifications in gut microbiota with nutritional treatment. Changes in energy intake and nutritional composition influence gut microbiota and may play a role in the evolution of the gut microbial picture in AN. Additionally, some evidence indicates that pre-morbid gut microbiota may influence risk of developing AN. There appear to be similarities in gut microbial composition, mechanisms of interaction and GI symptoms experienced in AN and other GI disorders such as inflammatory bowel disease and functional GI disorders. Probiotics and prebiotics have been studied in these disorders showing therapeutic effects of probiotics in some cases. Additionally, some evidence exists for the therapeutic benefits of probiotics in depression and anxiety, commonly seen as co-morbidities in AN. Moreover, preliminary evidence for the use of probiotics in AN has shown positive effects on immune modulation. Based on these findings, we discuss the potential therapeutic role for probiotics in ameliorating symptoms in AN.
Collapse
Affiliation(s)
- Namrata Dhopatkar
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham BR3 3BX, UK.
| | - Johanna Louise Keeler
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK.
| | - Hiba Mutwalli
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK.
| | - Kevin Whelan
- Department of Nutritional Sciences, King's College London, London SE1 9NH, UK.
| | - Janet Treasure
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham BR3 3BX, UK; Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK.
| | - Hubertus Himmerich
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham BR3 3BX, UK; Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK.
| |
Collapse
|
58
|
Qiu Y, Fernández-García B, Lehmann HI, Li G, Kroemer G, López-Otín C, Xiao J. Exercise sustains the hallmarks of health. JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:8-35. [PMID: 36374766 PMCID: PMC9923435 DOI: 10.1016/j.jshs.2022.10.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 05/23/2023]
Abstract
Exercise has long been known for its active role in improving physical fitness and sustaining health. Regular moderate-intensity exercise improves all aspects of human health and is widely accepted as a preventative and therapeutic strategy for various diseases. It is well-documented that exercise maintains and restores homeostasis at the organismal, tissue, cellular, and molecular levels to stimulate positive physiological adaptations that consequently protect against various pathological conditions. Here we mainly summarize how moderate-intensity exercise affects the major hallmarks of health, including the integrity of barriers, containment of local perturbations, recycling and turnover, integration of circuitries, rhythmic oscillations, homeostatic resilience, hormetic regulation, as well as repair and regeneration. Furthermore, we summarize the current understanding of the mechanisms responsible for beneficial adaptations in response to exercise. This review aimed at providing a comprehensive summary of the vital biological mechanisms through which moderate-intensity exercise maintains health and opens a window for its application in other health interventions. We hope that continuing investigation in this field will further increase our understanding of the processes involved in the positive role of moderate-intensity exercise and thus get us closer to the identification of new therapeutics that improve quality of life.
Collapse
Affiliation(s)
- Yan Qiu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Benjamin Fernández-García
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo 33011, Spain; Department of Morphology and Cell Biology, Anatomy, University of Oviedo, Oviedo 33006, Spain
| | - H Immo Lehmann
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris 75231, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif 94805, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris 75015, France.
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo 33006, Spain; Centro de Investigación Biomédica en Red Enfermedades Cáncer (CIBERONC), Oviedo 33006, Spain.
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
59
|
Xu MY, Guo CC, Li MY, Lou YH, Chen ZR, Liu BW, Lan L. Brain-gut-liver axis: Chronic psychological stress promotes liver injury and fibrosis via gut in rats. Front Cell Infect Microbiol 2022; 12:1040749. [PMID: 36579341 PMCID: PMC9791198 DOI: 10.3389/fcimb.2022.1040749] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Background The effect of chronic psychological stress on hepatitis and liver fibrosis is concerned. However, its mechanism remains unclear. We investigated the effect and mechanism of chronic psychological stress in promoting liver injury and fibrosis through gut. Methods Sixty male SD rats were randomly assigned to 6 groups. Rat models of chronic psychological stress (4 weeks) and liver fibrosis (8 weeks) were established. The diversity of gut microbiota in intestinal feces, permeability of intestinal mucosa, pathologies of intestinal and liver tissues, collagen fibers, protein expressions of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), nuclear factor kappa β (NF-κβ), tumor necrosis factor α (TNF-α) and interleukin 1 (IL-1) in liver tissue, liver function and coagulation function in blood and lipopolysaccharide (LPS) in portal vein blood were detected and analyzed. Results The diversities and abundances of gut microbiota were significant differences in rats among each group. The pathological lesions of intestinal and liver tissues, decreased expression of occludin protein in intestinal mucosa, deposition of collagen fibers and increased protein expression of TLR4, MyD88, NF-κβ, TNF-α and IL-1 in liver tissue, increased LPS level in portal vein blood, and abnormalities of liver function and coagulation function, were observed in rats exposed to chronic psychological stress or liver fibrosis. There were significant differences with normal rats. When the dual intervention factors of chronic psychological stress and liver fibrosis were superimposed, the above indicators were further aggravated. Conclusion Chronic psychological stress promotes liver injury and fibrosis, depending on changes in the diversity of gut microbiota and increased intestinal permeability caused by psychological stress, LPS that enters liver and acts on TLR4, and active LPS-TLR4 pathway depend on MyD88. It demonstrates the possibility of existence of brain-gut-liver axis.
Collapse
Affiliation(s)
- Meng-Yang Xu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Henan University, Kaifeng, China
| | - Can-Can Guo
- Department of Infectious Diseases, Jining No.1 People′s Hospital, Jining, China
| | - Meng-Ying Li
- Department of Gastroenterology and Hepatology, Kaifeng Central Hospital, Kaifeng, China
| | - Yu-Han Lou
- Department of Gastroenterology and Hepatology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Zhuo-Ran Chen
- Department of Gastroenterology and Hepatology, Henan No.3 Provincial People’s Hospital, Zhengzhou, China
| | - Bo-Wei Liu
- Department of Gastroenterology and Hepatology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Ling Lan
- Department of Gastroenterology and Hepatology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China,*Correspondence: Ling Lan,
| |
Collapse
|
60
|
Liu M, Zhong P. Modulating the Gut Microbiota as a Therapeutic Intervention for Alzheimer's Disease. Indian J Microbiol 2022; 62:494-504. [PMID: 36458227 PMCID: PMC9705639 DOI: 10.1007/s12088-022-01025-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/05/2022] [Indexed: 11/05/2022] Open
Abstract
Growing evidence suggested that the change of composition and proportion of intestinal microbiota may be related to many diseases, such as irritable bowel syndrome, bipolar disorder, Parkinson's disease, as well as Alzheimer's disease. Current literature supports the fact that unbalanced gut microbial composition (gut dysbiosis) is a risk factor for AD. In our review, we briefly sum up the recent progress regarding the correlations between the gut microbiota and AD. Therapeutic interventions capable of modulating the make-up of the gut microflora may exert beneficial effects on AD, preventing or delaying the beginning of AD or counteracting its development. Additionally, well-documented approaches that can positively influence AD may exert their beneficial effects through modifying the gut microbiota. Therefore, other novel interventions which can target on gut microbiota will also be potential therapies for AD. The chances and challenges that AD is confronted with in the research field of microbiomics are also discussed in this review.
Collapse
Affiliation(s)
- Mingli Liu
- Neurology, Yangpu District Shidong Hospital of Shanghai, No. 999 Shiguang Road, Yangpu District, Shanghai, China
| | - Ping Zhong
- Neurology, Yangpu District Shidong Hospital of Shanghai, No. 999 Shiguang Road, Yangpu District, Shanghai, China
| |
Collapse
|
61
|
Current and Future Therapeutic Options for Irritable Bowel Syndrome with Diarrhea and Functional Diarrhea. Dig Dis Sci 2022; 68:1677-1690. [PMID: 36376576 DOI: 10.1007/s10620-022-07700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/12/2022] [Indexed: 11/15/2022]
Abstract
Irritable bowel syndrome with diarrhea and functional diarrhea are disorders of gut-brain interaction presenting with chronic diarrhea; they have significant impact on quality of life. The two conditions may exist as a continuum and their treatment may overlap. Response to first-line therapy with antispasmodics and anti-diarrheal agents is variable, leaving several patients with suboptimal symptom control and need for alternative therapeutic options. Our aim was to discuss current pharmacologic options and explore alternative therapeutic approaches and future perspectives for symptom management in irritable bowel syndrome with diarrhea and functional diarrhea. We conducted a search of PubMed, Cochrane, clinicaltrial.gov, major meeting abstracts for publications on current, alternative, and emerging drugs for irritable bowel syndrome with diarrhea and functional diarrhea. Currently approved therapeutic options for patients with first-line refractory irritable bowel syndrome with diarrhea and functional diarrhea include serotonin-3 receptor antagonists, eluxadoline and rifaximin. Despite their proven efficacy, cost and availability worldwide impact their utilization. One-third of patients with disorders of gut-brain interaction with diarrhea have bile acid diarrhea and may benefit from drugs targeting bile acid synthesis and excretion. Further understanding of underlying pathophysiology of irritable bowel syndrome with diarrhea and functional diarrhea related to bile acid metabolism, gastrointestinal transit, and microbiome has led to evaluation of novel therapeutic approaches, including fecal microbiota transplantation and enterobacterial "crapsules". These opportunities to treat disorders of gut-brain interaction with diarrhea should be followed with formal studies utilizing large samples of well-characterized patients at baseline and validated response outcomes as endpoints for regulatory approval.
Collapse
|
62
|
Lee CC, Liao YC, Lee MC, Cheng YC, Chiou SY, Lin JS, Huang CC, Watanabe K. Different Impacts of Heat-Killed and Viable Lactiplantibacillus plantarum TWK10 on Exercise Performance, Fatigue, Body Composition, and Gut Microbiota in Humans. Microorganisms 2022; 10:2181. [PMID: 36363775 PMCID: PMC9692508 DOI: 10.3390/microorganisms10112181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 03/21/2024] Open
Abstract
Lactiplantibacillus plantarum TWK10, a probiotic strain, has been demonstrated to improve exercise performance, regulate body composition, and ameliorate age-related declines. Here, we performed a comparative analysis of viable and heat-killed TWK10 in the regulation of exercise performance, body composition, and gut microbiota in humans. Healthy adults (n = 53) were randomly divided into three groups: Control, TWK10 (viable TWK10, 3 × 1011 colony forming units/day), and TWK10-hk (heat-killed TWK10, 3 × 1011 cells/day) groups. After six-week administration, both the TWK10 and TWK10-hk groups had significantly improved exercise performance and fatigue-associated features and reduced exercise-induced inflammation, compared with controls. Viable TWK10 significantly promoted improved body composition, by increasing muscle mass proportion and reducing fat mass. Gut microbiota analysis demonstrated significantly increasing trends in the relative abundances of Akkermansiaceae and Prevotellaceae in subjects receiving viable TWK10. Predictive metagenomic profiling revealed that heat-killed TWK10 administration significantly enhanced the signaling pathways involved in amino acid metabolisms, while glutathione metabolism, and ubiquinone and other terpenoid-quinone biosynthesis pathways were enriched by viable TWK10. In conclusion, viable and heat-killed TWK10 had similar effects in improving exercise performance and attenuating exercise-induced inflammatory responses as probiotics and postbiotics, respectively. Viable TWK10 was also highly effective in regulating body composition. The differences in efficacy between viable and heat-killed TWK10 may be due to differential impacts in shaping gut microbiota.
Collapse
Affiliation(s)
- Chia-Chia Lee
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan
| | - Yi-Chu Liao
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan
| | - Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan
| | - Yi-Chen Cheng
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan
| | - Shiou-Yun Chiou
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan
| | - Jin-Seng Lin
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan
| | - Koichi Watanabe
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan
- Department of Animal Science and Technology, National Taiwan University, Taipei 10672, Taiwan
| |
Collapse
|
63
|
Zeng M, Chen S, Zhou X, Zhang J, Chen X, Sun J. The relationship between physical exercise and mobile phone addiction among Chinese college students: Testing mediation and moderation effects. Front Psychol 2022; 13:1000109. [PMID: 36262440 PMCID: PMC9574398 DOI: 10.3389/fpsyg.2022.1000109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Background During the COVID-19 pandemic, suspensions of activities and long periods of self-isolation led to a sharp increase in excessive use of mobile phones, which sparked public concern about mobile phone addiction (MPA). In recent years, more and more attention has been paid to physical exercise as a protective effect of MPA. However, more studies are needed to reveal this relationship and the exact mechanisms, based on which this study tested the mediating and moderating roles of self-control, rumination, psychological distress, and loneliness between physical exercise and MPA. Methods In this cross-sectional study, primary data was collected by questionnaire from 1,843 college students (19.75 ± 1.3) from five universities in Sichuan Province in Mainland China. Mobile Phone Addiction Tendency Scale (MPATS), Physical Activity Rating Scale-3 (PARS-3), Self-Control Scale (SCS), Ruminative Response Scale (RRS), Depression Anxiety Stress Scale-21 (DASS-21), and UCLA Loneliness Scale (UCLA-20) were investigated. The mediating models were examined using SPSS PROCESS macro 3.3 software, in which the mediation variables were self-control, rumination, and psychological distress, and the moderation was loneliness. Gender, major, and grade were included as control variables. Result Self-control, rumination, and psychological distress played a simple mediating role between physical exercise and MPA. Moreover, not only self-control and rumination but also self-control and psychological distress played the chain mediating roles between physical exercise and MPA. The chain pathways were moderated by loneliness. Specifically, the effect was more substantial among college students with higher loneliness. Conclusion The conclusions corroborate and clarify that self-control, rumination, and psychological distress mediated the association between physical exercise and MPA, and the mediation effects were moderated via loneliness. This present study advanced our understanding of how and when college students’ physical exercise was related to MPA. It also illustrates that educators and parents should pay more attention to college students’ physical exercise.
Collapse
Affiliation(s)
- Miaolin Zeng
- Institute of Sports Science, Sichuan University, Chengdu, China
| | - Siyu Chen
- Institute of Sports Science, Sichuan University, Chengdu, China
| | - Xiangyi Zhou
- Institute of Sports Science, Sichuan University, Chengdu, China
| | - Jincheng Zhang
- Institute of Sports Science, Sichuan University, Chengdu, China
| | - Xin Chen
- Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Jingquan Sun
- Institute of Sports Science, Sichuan University, Chengdu, China
- School of Physical Education, Sichuan University, Chengdu, China
- *Correspondence: Jingquan Sun,
| |
Collapse
|
64
|
A Minireview Exploring the Interplay of the Muscle-Gut-Brain (MGB) Axis to Improve Knowledge on Mental Disorders: Implications for Clinical Neuroscience Research and Therapeutics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8806009. [PMID: 36160716 PMCID: PMC9499796 DOI: 10.1155/2022/8806009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022]
Abstract
What benefit might emerge from connecting clinical neuroscience with microbiology and exercise science? What about the influence of the muscle-gut-brain (MGB) axis on mental health? The gut microbiota colonizes the intestinal tract and plays a pivotal role in digestion, production of vitamins and immune system development, but it is also able to exert a particular effect on psychological well-being and appears to play a critical role in regulating several muscle metabolic pathways. Endogenous and exogenous factors may cause dysbiosis, with relevant consequences on the composition and function of the gut microbiota that may also modulate muscle responses to exercise. The capacity of specific psychobiotics in ameliorating mental health as complementary strategies has been recently suggested as a novel treatment for some neuropsychiatric diseases. Moreover, physical exercise can modify qualitative and quantitative composition of the gut microbiota and alleviate certain psychopathological symptoms. In this minireview, we documented evidence about the impact of the MGB axis on mental health, which currently appears to be a possible target in the context of a multidimensional intervention mainly including pharmacological and psychotherapeutic treatments, especially for depressive mood.
Collapse
|
65
|
Mazzawi T, Hausken T, Refsnes PF, Hatlebakk JG, Lied GA. The Effect of Anaerobically Cultivated Human Intestinal Microbiota Compared to Fecal Microbiota Transplantation on Gut Microbiota Profile and Symptoms of Irritable Bowel Syndrome, a Double-Blind Placebo-Controlled Study. Microorganisms 2022; 10:microorganisms10091819. [PMID: 36144420 PMCID: PMC9503104 DOI: 10.3390/microorganisms10091819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Fecal microbiota transplantation (FMT) from healthy donors has been shown to improve the symptoms of irritable bowel syndrome (IBS) and changes the profile of the gut microbiota for the recipients. Alternatively, anaerobically cultivated human intestinal microbiota (ACHIM) can be used to manipulate the gut microbiota. The aim of the current study was to compare the efficacy and safety of ACHIM suspension with donor-FMT and placebo (patient's own feces) to treat IBS. Out of the 62 originally included eligible patients with diarrhea-predominant IBS and their respective donors, only 43 patients completed the study by answering the questionnaires and delivering fecal samples before transplantation and after 1, 4, 12 and 24 weeks. The patients were randomized into three subgroups for receiving ACHIM suspension (n = 17), donor-FMT (n = 11), or placebo (n = 15), and were followed up for 24 weeks. Fecal samples were analyzed by sequencing 16S rRNA gene using the GA-map Dysbiosis Test (Genetic Analysis AS, Oslo, Norway). IBS symptom questionnaires improved in all three subgroups. Bacterial strain signals in IBS patients were more significant for Actinobacteria spp. and Bifidobacteria spp. after receiving donor-FMT compared to placebo and for Alistipes onderdonkii before and after treatment in the subgroups of ACHIM and donor-FMT vs. placebo. These signals change after treatment with ACHIM suspension and donor FMT towards those measured for healthy controls, but not after placebo. IBS symptom questionnaires improved in all three forms of transplantation. Some bacterial strain signals were significantly different between ACHIM and donor-FMT vs. placebo. However, the placebo subgroup failed to change the gut microbiota towards signals measured for healthy controls. The safety and efficacy of ACHIM and donor-FMT seems similar in the current study, but further larger studies are needed.
Collapse
Affiliation(s)
- Tarek Mazzawi
- Division of Gastroenterology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Norwegian Competence Center for Functional Gastrointestinal Disorders, Section of Gastroenterology, Haukeland University Hospital, 5021 Bergen, Norway
- Center for Nutrition, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
- Faculty of Medicine, Al-Balqa Applied University, 19117 Al-Salt, Jordan
- Correspondence:
| | - Trygve Hausken
- Division of Gastroenterology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Norwegian Competence Center for Functional Gastrointestinal Disorders, Section of Gastroenterology, Haukeland University Hospital, 5021 Bergen, Norway
- Center for Nutrition, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Per Førde Refsnes
- Division of Gastroenterology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Norwegian Competence Center for Functional Gastrointestinal Disorders, Section of Gastroenterology, Haukeland University Hospital, 5021 Bergen, Norway
- Center for Nutrition, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Jan Gunnar Hatlebakk
- Division of Gastroenterology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Norwegian Competence Center for Functional Gastrointestinal Disorders, Section of Gastroenterology, Haukeland University Hospital, 5021 Bergen, Norway
- Center for Nutrition, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Gülen Arslan Lied
- Division of Gastroenterology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Norwegian Competence Center for Functional Gastrointestinal Disorders, Section of Gastroenterology, Haukeland University Hospital, 5021 Bergen, Norway
- Center for Nutrition, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
66
|
The Effects of Physical Activity on the Gut Microbiota and the Gut–Brain Axis in Preclinical and Human Models: A Narrative Review. Nutrients 2022; 14:nu14163293. [PMID: 36014798 PMCID: PMC9413457 DOI: 10.3390/nu14163293] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Increasing evidence supports the importance of the gut microbiota (GM) in regulating multiple functions related to host physical health and, more recently, through the gut–brain axis (GBA), mental health. Similarly, the literature on the impact of physical activity (PA), including exercise, on GM and GBA is growing. Therefore, this narrative review summarizes and critically appraises the existing literature that delves into the benefits or adverse effects produced by PA on physical and mental health status through modifications of the GM, highlighting differences and similarities between preclinical and human studies. The same exercise in animal models, whether performed voluntarily or forced, has different effects on the GM, just as, in humans, intense endurance exercise can have a negative influence. In humans and animals, only aerobic PA seems able to modify the composition of the GM, whereas cardiovascular fitness appears related to specific microbial taxa or metabolites that promote a state of physical health. The PA favors bacterial strains that can promote physical performance and that can induce beneficial changes in the brain. Currently, it seems useful to prioritize aerobic activities at a moderate and not prolonged intensity. There may be greater benefits if PA is undertaken from a young age and the effects on the GM seem to gradually disappear when the activity is stopped. The PA produces modifications in the GM that can mediate and induce mental health benefits.
Collapse
|
67
|
Bonomini-Gnutzmann R, Plaza-Díaz J, Jorquera-Aguilera C, Rodríguez-Rodríguez A, Rodríguez-Rodríguez F. Effect of Intensity and Duration of Exercise on Gut Microbiota in Humans: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9518. [PMID: 35954878 PMCID: PMC9368618 DOI: 10.3390/ijerph19159518] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023]
Abstract
(1) Background: The gut microbiota might play a part in affecting athletic performance and is of considerable importance to athletes. The aim of this study was to search the recent knowledge of the protagonist played by high-intensity and high-duration aerobic exercise on gut microbiota composition in athletes and how these effects could provide disadvantages in sports performance. (2) Methods: This systematic review follows the PRISMA guidelines. An exhaustive bibliographic search in Web of Science, PubMed, and Scopus was conducted considering the articles published in the last 5 years. The selected articles were categorized according to the type of study. The risk of bias was assessed using the Joanna Briggs Institute's Critical Appraisal Tool for Systematic Reviews. (3) Results: Thirteen studies had negative effects of aerobic exercise on intestinal microbiota such as an upsurge in I-FABP, intestinal distress, and changes in the gut microbiota, such as an increase in Prevotella, intestinal permeability and zonulin. In contrast, seven studies observed positive effects of endurance exercise, including an increase in the level of bacteria such as increased microbial diversity and increased intestinal metabolites. (4) Conclusions: A large part of the studies found reported adverse effects on the intestinal microbiota when performing endurance exercises. In studies carried out on athletes, more negative effects on the microbiota were found than in those carried out on non-athletic subjects.
Collapse
Affiliation(s)
| | - Julio Plaza-Díaz
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Carlos Jorquera-Aguilera
- Escuela de Nutrición y Dietética, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile;
| | - Andrés Rodríguez-Rodríguez
- Gastric Cancer Research Group—Laboratory of Oncology, UC Center for Investigational Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
| | - Fernando Rodríguez-Rodríguez
- IRyS Group, Physical Education School, Pontificia Universidad Católica de Valparaíso, Valparaíso 2374631, Chile;
| |
Collapse
|
68
|
Ribeiro FM, Silva MA, Lyssa V, Marques G, Lima HK, Franco OL, Petriz B. The molecular signaling of exercise and obesity in the microbiota-gut-brain axis. Front Endocrinol (Lausanne) 2022; 13:927170. [PMID: 35966101 PMCID: PMC9365995 DOI: 10.3389/fendo.2022.927170] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is one of the major pandemics of the 21st century. Due to its multifactorial etiology, its treatment requires several actions, including dietary intervention and physical exercise. Excessive fat accumulation leads to several health problems involving alteration in the gut-microbiota-brain axis. This axis is characterized by multiple biological systems generating a network that allows bidirectional communication between intestinal bacteria and brain. This mutual communication maintains the homeostasis of the gastrointestinal, central nervous and microbial systems of animals. Moreover, this axis involves inflammatory, neural, and endocrine mechanisms, contributes to obesity pathogenesis. The axis also acts in appetite and satiety control and synthesizing hormones that participate in gastrointestinal functions. Exercise is a nonpharmacologic agent commonly used to prevent and treat obesity and other chronic degenerative diseases. Besides increasing energy expenditure, exercise induces the synthesis and liberation of several muscle-derived myokines and neuroendocrine peptides such as neuropeptide Y, peptide YY, ghrelin, and leptin, which act directly on the gut-microbiota-brain axis. Thus, exercise may serve as a rebalancing agent of the gut-microbiota-brain axis under the stimulus of chronic low-grade inflammation induced by obesity. So far, there is little evidence of modification of the gut-brain axis as a whole, and this narrative review aims to address the molecular pathways through which exercise may act in the context of disorders of the gut-brain axis due to obesity.
Collapse
Affiliation(s)
- Filipe M. Ribeiro
- Post-Graduation Program in Physical Education, Catholic University of Brasilia, Brasilia, Brazil
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, Brazil
- Laboratory of Molecular Exercise Physiology - University Center of the Federal District - UDF, Brasilia, Brazil
| | - Maycon A. Silva
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, Brazil
| | - Victória Lyssa
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, University of Brasilia, Brasilia, Brazil
| | - Gabriel Marques
- Laboratory of Molecular Exercise Physiology - University Center of the Federal District - UDF, Brasilia, Brazil
| | - Henny K. Lima
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, Brazil
| | - Octavio L. Franco
- Post-Graduation Program in Physical Education, Catholic University of Brasilia, Brasilia, Brazil
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, Brazil
- S-Inova Biotech, Catholic University Dom Bosco, Biotechnology Program, Campo Grande, Brazil
| | - Bernardo Petriz
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, Brazil
- Laboratory of Molecular Exercise Physiology - University Center of the Federal District - UDF, Brasilia, Brazil
- Postgraduate Program in Rehabilitation Sciences - University of Brasília, Brasília, Brazil
| |
Collapse
|
69
|
Diet Is a Stronger Covariate than Exercise in Determining Gut Microbial Richness and Diversity. Nutrients 2022; 14:nu14122507. [PMID: 35745235 PMCID: PMC9229834 DOI: 10.3390/nu14122507] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity is a common metabolic disorder caused by a sedentary lifestyle, and a high-fat and a high-glucose diet in the form of fast foods. High-fat diet-induced obesity is a major cause of diabetes and cardiovascular diseases, whereas exercise and physical activity can ameliorate these disorders. Moreover, exercise and the gut microbiota are known to be interconnected, since exercise can increase the gut microbial diversity and contribute to the beneficial health effects. In this context, we analyzed the effect of diet and exercise on the gut microbiota of mice, by next-generation sequencing of the bacterial V4 region of 16S rRNA. Briefly, mice were divided into four groups: chow-diet (CD), high-fat diet (HFD), high-fat diet + exercise (HFX), and exercise-only (EX). The mice underwent treadmill exercise and diet intervention for 8 weeks, followed by the collection of their feces and DNA extraction for sequencing. The data were analyzed using the QIIME 2 bioinformatics platform and R software to assess their gut microbial composition, richness, and diversity. The Bacteroidetes to Firmicutes ratio was found to be decreased manifold in the HFD and HFX groups compared to the CD and EX groups. The gut microbial richness was comparatively lower in the HFD and HFX groups and higher in the CD and EX groups (ACE, Chao1, and observed OTUs). However, the Shannon alpha diversity index was higher in the HFD and HFX groups than in the CD and EX groups. The beta diversity based on Jaccard, Bray-Curtis, and weighted UniFrac distance metrics was significant among the groups, as measured by PERMANOVA. Paraprevotella, Desulfovibrio, and Lactococcus were the differentially abundant/present genera based on the intervention groups and in addition to these three bacteria, Butyricimonas and Desulfovibrio C21c20 were differentially abundant/present based on diet. Hence, diet significantly contributed to the majority of the changes in the gut microbiota.
Collapse
|
70
|
Wegierska AE, Charitos IA, Topi S, Potenza MA, Montagnani M, Santacroce L. The Connection Between Physical Exercise and Gut Microbiota: Implications for Competitive Sports Athletes. Sports Med 2022; 52:2355-2369. [PMID: 35596883 PMCID: PMC9474385 DOI: 10.1007/s40279-022-01696-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2022] [Indexed: 12/16/2022]
Abstract
Gut microbiota refers to those microorganisms in the human digestive tract that display activities fundamental in human life. With at least 4 million different bacterial types, the gut microbiota is composed of bacteria that are present at levels sixfold greater than the total number of cells in the entire human body. Among its multiple functions, the microbiota helps promote the bioavailability of some nutrients and the metabolization of food, and protects the intestinal mucosa from the aggression of pathogenic microorganisms. Moreover, by stimulating the production of intestinal mediators able to reach the central nervous system (gut/brain axis), the gut microbiota participates in the modulation of human moods and behaviors. Several endogenous and exogenous factors can cause dysbiosis with important consequences on the composition and functions of the microbiota. Recent research underlines the importance of appropriate physical activity (such as sports), nutrition, and a healthy lifestyle to ensure the presence of a functional physiological microbiota working to maintain the health of the whole human organism. Indeed, in addition to bowel disturbances, variations in the qualitative and quantitative microbial composition of the gastrointestinal tract might have systemic negative effects. Here, we review recent studies on the effects of physical activity on gut microbiota with the aim of identifying potential mechanisms by which exercise could affect gut microbiota composition and function. Whether physical exercise of variable work intensity might reflect changes in intestinal health is analyzed.
Collapse
Affiliation(s)
- Angelika Elzbieta Wegierska
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, p.zza G. Cesare 11, 70124, Bari, Italy.,Italian Athletics Federation (FIDAL), Rome, Italy
| | - Ioannis Alexandros Charitos
- Emergency/Urgent Department, National Poisoning Center, Riuniti University Hospital of Foggia, Foggia, Italy
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan "A. Xhuvani", Elbasan, Albania
| | - Maria Assunta Potenza
- Department of Biomedical Sciences and Human Oncology-Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, p.zza G. Cesare 11, 70124, Bari, Italy
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology-Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, p.zza G. Cesare 11, 70124, Bari, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, p.zza G. Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
71
|
Li Z, Zhu Y, Kang Y, Qin S, Chai J. Neuroinflammation as the Underlying Mechanism of Postoperative Cognitive Dysfunction and Therapeutic Strategies. Front Cell Neurosci 2022; 16:843069. [PMID: 35418837 PMCID: PMC8995749 DOI: 10.3389/fncel.2022.843069] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common neurological complication following surgery and general anesthesia, especially in elderly patients. Severe cases delay patient discharge, affect the patient’s quality of life after surgery, and are heavy burdens to society. In addition, as the population ages, surgery is increasingly used for older patients and those with higher prevalences of complications. This trend presents a huge challenge to the current healthcare system. Although studies on POCD are ongoing, the underlying pathogenesis is still unclear due to conflicting results and lack of evidence. According to existing studies, the occurrence and development of POCD are related to multiple factors. Among them, the pathogenesis of neuroinflammation in POCD has become a focus of research in recent years, and many clinical and preclinical studies have confirmed the correlation between neuroinflammation and POCD. In this article, we reviewed how central nervous system inflammation occurred, and how it could lead to POCD with changes in peripheral circulation and the pathological pathways between peripheral circulation and the central nervous system (CNS). Furthermore, we proposed some potential therapeutic targets, diagnosis and treatment strategies at the cellular and molecular levels, and clinical applications. The goal of this article was to provide a better perspective for understanding the occurrence of POCD, its development, and preventive strategies to help manage these vulnerable geriatric patients.
Collapse
Affiliation(s)
- Zhichao Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Youzhuang Zhu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yihan Kang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shangyuan Qin
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Chai
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Jun Chai,
| |
Collapse
|
72
|
Cataldi S, Bonavolontà V, Poli L, Clemente FM, De Candia M, Carvutto R, Silva AF, Badicu G, Greco G, Fischetti F. The Relationship between Physical Activity, Physical Exercise, and Human Gut Microbiota in Healthy and Unhealthy Subjects: A Systematic Review. BIOLOGY 2022; 11:479. [PMID: 35336852 PMCID: PMC8945171 DOI: 10.3390/biology11030479] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 02/06/2023]
Abstract
Several studies have been conducted to find at least an association between physical activity (PA)/ physical exercise (PE) and the possibility to modulate the gut microbiome (GM). However, the specific effects produced on the human GM by different types of PA/PE, different training modalities, and their age-related effects are not yet fully understood. Therefore, this systematic review aims to evaluate and summarize the current scientific evidence investigating the bi-directional relationship between PA/PE and the human GM, with a specific focus on the different types/variables of PA/PE and age-related effects, in healthy and unhealthy people. A systematic search was conducted across four databases (Web of Science, Medline (PubMed), Google Scholar, and Cochrane Library). Information was extracted using the populations, exposure, intervention, comparison, outcomes (PICOS) format. The Oxford Quality Scoring System Scale, the Risk of Bias in Non-Randomized Studies of Interventions (ROBINS-I) tool, and the JBI Critical Appraisal Checklist for Analytical Cross-Sectional Studies were used as a qualitative measure of the review. The protocol was registered in PROSPERO (code: CRD42022302725). The following data items were extracted: author, year of publication, study design, number and age of participants, type of PA/PE carried out, protocol/workload and diet assessment, duration of intervention, measurement tools used, and main outcomes. Two team authors reviewed 694 abstracts for inclusion and at the end of the screening process, only 76 full texts were analyzed. Lastly, only 25 research articles met the eligibility criteria. The synthesis of these findings suggests that GM diversity is associated with aerobic exercise contrary to resistance training; abundance of Prevotella genus seems to be correlated with training duration; no significant change in GM richness and diversity are detected when exercising according to the minimum dose recommended by the World Health Organizations; intense and prolonged PE can induce a higher abundance of pro-inflammatory bacteria; PA does not lead to significant GM α/β-diversity in elderly people (60+ years). The heterogeneity of the training parameters used in the studies, diet control, and different sequencing methods are the main confounders. Thus, this systematic review can provide an in-depth overview of the relationship between PA/PE and the human intestinal microbiota and, at the same time, provide indications from the athletic and health perspective.
Collapse
Affiliation(s)
- Stefania Cataldi
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| | - Valerio Bonavolontà
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| | - Luca Poli
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| | - Filipe Manuel Clemente
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal; (F.M.C.); (A.F.S.)
- Research Center in Sports Performance, Recreation, Innovation and Technology (SPRINT), 4960-320 Melgaço, Portugal
- Instituto de Telecomunicações, Delegação da Covilhã, 1049-001 Lisboa, Portugal
| | - Michele De Candia
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| | - Roberto Carvutto
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| | - Ana Filipa Silva
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal; (F.M.C.); (A.F.S.)
- Research Center in Sports Performance, Recreation, Innovation and Technology (SPRINT), 4960-320 Melgaço, Portugal
- The Research Centre in Sports Sciences, Health Sciences and Human Development (CIDESD), 5001-801 Vila Real, Portugal
| | - Georgian Badicu
- Department of Physical Education and Special Motricity, Transilvania University of Brasov, 500068 Brasov, Romania;
| | - Gianpiero Greco
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| | - Francesco Fischetti
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| |
Collapse
|
73
|
Huang WC, Tung CL, Yang YCSH, Lin IH, Ng XE, Tung YT. Endurance exercise ameliorates Western diet-induced atherosclerosis through modulation of microbiota and its metabolites. Sci Rep 2022; 12:3612. [PMID: 35256637 PMCID: PMC8901804 DOI: 10.1038/s41598-022-07317-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/08/2022] [Indexed: 12/21/2022] Open
Abstract
The World Health Organization determined cardiovascular disease to be the leading cause of death globally; atherosclerosis is the primary cause of the high morbidity and mortality rates. Regular physical activity is an effective strategy for maintaining endothelial health and function to prevent the development of atherosclerosis. Obesity is also a crucial risk factor for atherosclerotic progression in combination with various complications and systemic inflammation. Physiological homeostasis is modulated by the intestinal microbiota, but the mechanisms through which exercise attenuates atherosclerosis through the microbiota have not been elucidated. Therefore, we investigated the effects of endurance exercise on atherosclerosis induced by a Western diet (WD) and apolipoprotein E (ApoE) knockout in terms of microbiota parameters and metabolites. Genetically modified ApoE knockout mice (C57BL/6-Apoeem1Narl/Narl, ApoEKO) and wild-type mice (C57BL6/J) were divided into the following four groups (n = 6), namely, wild-type mice fed a chow diet (WT CD), ApoEKO mice fed a chow diet (ApoE CD), ApoEKO mice fed a WD (ApoE WD), and ApoEKO mice fed a WD and performing endurance exercise (ApoE WD EX), for a 12-week intervention. The WD significantly induced obesity and atherosclerotic syndrome in the ApoE WD group. Severe atherosclerotic lesions and arterial thickness were significantly elevated and accompanied by increases in VCAM-1, MCP-1, TNF-α, and IL-1β for immune cell chemotaxis and inflammation during atherosclerotic pathogenesis in the ApoE WD group. In addition, dysbiosis in the ApoE WD group resulted in the lowest short-chain fatty acid (SCFA) production. Endurance exercise intervention (ApoE WD EX) significantly alleviated atherosclerotic syndrome by reducing obesity, significantly inhibiting VCAM-1, MCP-1, TNF-α, and IL-1β expression, and increasing the production of SCFAs. Modulation of the microbiota associated with inflammation, such as Desulfovibrio, Tyzzerella, and Lachnospiraceae_ge, and increased SCFA production, particularly through an abundance of Rikenellaceae and Dubosiella, were also observed after exercise intervention. Endurance exercise can alleviate WD-induced atherosclerosis through the amelioration of obesity, inflammation, and chemotaxis signaling, which are modulated by the microbiota and derived SCFAs.
Collapse
Affiliation(s)
- Wen-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei, 112, Taiwan, ROC
| | - Chun-Liang Tung
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 600, Taiwan, ROC.,Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung, 413, Taiwan, ROC
| | - Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, 110, Taiwan, ROC
| | - I-Hsuan Lin
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, 110, Taiwan, ROC.,Bioinformatics Core Facility, University of Manchester, Manchester, M13 9PT, UK
| | - Xin Er Ng
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, 110, Taiwan, ROC
| | - Yu-Tang Tung
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, 110, Taiwan, ROC. .,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan, ROC.
| |
Collapse
|
74
|
Dalpati N, Jena S, Jain S, Sarangi PP. Yoga and meditation, an essential tool to alleviate stress and enhance immunity to emerging infections: A perspective on the effect of COVID-19 pandemic on students. Brain Behav Immun Health 2022; 20:100420. [PMID: 35072120 PMCID: PMC8767968 DOI: 10.1016/j.bbih.2022.100420] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 12/16/2022] Open
Abstract
The COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has negatively impacted the global healthcare and economic systems worldwide. The COVID-19 pandemic has also created an emotional and psychological pandemic among people of all ages irrespective of economic status and physical wellbeing. As a consequence of prolonged lockdowns, one of the most severely affected age groups globally is the young adults' group, especially students. Uncertainties in the academic calendar, restricted outdoor activities, and unusual daily routines during lockdowns led to higher incidences of stress, anxiety, and depression among students worldwide. In this review, we summarise the available evidence on the effect of lockdowns on students and discuss possible positive impacts of yoga and meditation on various psychological, emotional, and immunological parameters, which can significantly influence the general wellbeing and academic performance of students. Perspectives shared in the review will also bring awareness on how yoga and meditation could boost students' performance and assist them in maintaining physical and mental wellbeing during stressful conditions such as future epidemics and pandemics with novel infections. This information could help create better educational curriculums and healthy routines for students.
Collapse
Affiliation(s)
- Nibedita Dalpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Subhashree Jena
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Shikha Jain
- Institute Wellness Center, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Pranita P Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
75
|
Mousa WK, Chehadeh F, Husband S. Recent Advances in Understanding the Structure and Function of the Human Microbiome. Front Microbiol 2022; 13:825338. [PMID: 35185849 PMCID: PMC8851206 DOI: 10.3389/fmicb.2022.825338] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Trillions of microbes live within our bodies in a deep symbiotic relationship. Microbial populations vary across body sites, driven by differences in the environment, immunological factors, and interactions between microbial species. Major advances in genome sequencing enable a better understanding of microbiome composition. However, most of the microbial taxa and species of the human microbiome are still unknown. Without revealing the identity of these microbes as a first step, we cannot appreciate their role in human health and diseases. A shift in the microbial balance, termed dysbiosis, is linked to a broad range of diseases from simple colitis and indigestion to cancer and dementia. The last decade has witnessed an explosion in microbiome research that led to a better understanding of the microbiome structure and function. This understanding leads to potential opportunities to develop next-generation microbiome-based drugs and diagnostic biomarkers. However, our understanding is limited given the highly personalized nature of the microbiome and its complex and multidirectional interactions with the host. In this review, we discuss: (1) our current knowledge of microbiome structure and factors that shape the microbial composition, (2) recent associations between microbiome dysbiosis and diseases, and (3) opportunities of new microbiome-based therapeutics. We analyze common themes, promises, gaps, and challenges of the microbiome research.
Collapse
Affiliation(s)
- Walaa K. Mousa
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, United Arab Emirates
- Department of Biology, Whitman College, Walla Walla, WA, United States
- College of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Fadia Chehadeh
- Department of Biology, Whitman College, Walla Walla, WA, United States
| | - Shannon Husband
- Department of Biology, Whitman College, Walla Walla, WA, United States
| |
Collapse
|
76
|
Donati Zeppa S, Ferrini F, Agostini D, Amatori S, Barbieri E, Piccoli G, Sestili P, Stocchi V. Nutraceuticals and Physical Activity as Antidepressants: The Central Role of the Gut Microbiota. Antioxidants (Basel) 2022; 11:antiox11020236. [PMID: 35204119 PMCID: PMC8868311 DOI: 10.3390/antiox11020236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
Major depressive disorder (MDD) is a common mental illness. Evidence suggests that the gut microbiota play an essential role in regulating brain functions and the pathogenesis of neuropsychiatric diseases, including MDD. There are numerous mechanisms through which the gut microbiota and brain can exchange information in a continuous, bidirectional communication. Current research emphasizes the interexchange of signals influenced by the gut microbiota that are detected and transduced in information from the gut to the nervous system involving neural, endocrine, and inflammatory mechanisms, suggesting a relationship between oxidative stress and the pathophysiology of MDD via the hyperactivation of inflammatory responses. Potential sources of inflammation in the plasma and hippocampus of depressed individuals could stem from increases in intestinal permeability. Some nutraceuticals, such as specific probiotics, namely psychobiotics, polyphenols, carotenoids, butyrate, and prebiotics, have been demonstrated to exert an antidepressant activity, but most of them need to be metabolized and activated by gut microorganisms. By inducing changes in the gut microbiota composition, physical exercise might also exert a role in alleviating depression-like symptoms. The mutual relationships among nutraceuticals, exercise, and depression will be discussed, and the potential role of the gut microbiota as a therapeutic target to treat depression will be explored.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
| | - Fabio Ferrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
| | - Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
| | - Stefano Amatori
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
- Correspondence:
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
| | - Giovanni Piccoli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
| | | |
Collapse
|
77
|
Sawicka-Śmiarowska E, Moniuszko-Malinowska A, Kamiński KA. Why Do These Microbes Like Me and How Could There Be a Link with Cardiovascular Risk Factors? J Clin Med 2022; 11:jcm11030599. [PMID: 35160056 PMCID: PMC8836897 DOI: 10.3390/jcm11030599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Cardiovascular diseases are the most common causes of hospitalization, death, and disability in Europe. Due to high prevalence and ensuing clinical complications, they lead to very high social and economic costs. Despite the knowledge of classical cardiovascular risk factors, there is an urgent need for discovering new factors that may play a role in the development of cardiovascular diseases or potentially influence prognosis. Recently, particular attention has been drawn to the endogenous microflora of the human body, mostly those inhabiting the digestive system. It has been shown that bacteria, along with their host cells, create an interactive ecosystem of interdependencies and relationships. This interplay could influence both the metabolic homeostasis and the immune processes of the host, hence leading to cardiovascular disease development. In this review, we attempt to describe, in the context of cardiovascular risk factors, why particular microbes occur in individuals and how they might influence the host’s cardiovascular system in health and disease.
Collapse
Affiliation(s)
- Emilia Sawicka-Śmiarowska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Department of Cardiology, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfection, Medical University of Bialystok, 15-540 Bialystok, Poland;
| | - Karol Adam Kamiński
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Correspondence: ; Tel.: +48-85-8318-656
| |
Collapse
|
78
|
The Influence of Gut Microbiota on Neurogenesis: Evidence and Hopes. Cells 2022; 11:cells11030382. [PMID: 35159192 PMCID: PMC8834402 DOI: 10.3390/cells11030382] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
Adult neurogenesis (i.e., the life-long generation of new neurons from undifferentiated neuronal precursors in the adult brain) may contribute to brain repair after damage, and participates in plasticity-related processes including memory, cognition, mood and sensory functions. Among the many intrinsic (oxidative stress, inflammation, and ageing), and extrinsic (environmental pollution, lifestyle, and diet) factors deemed to impact neurogenesis, significant attention has been recently attracted by the myriad of saprophytic microorganismal communities inhabiting the intestinal ecosystem and collectively referred to as the gut microbiota. A growing body of evidence, mainly from animal studies, reveal the influence of microbiota and its disease-associated imbalances on neural stem cell proliferative and differentiative activities in brain neurogenic niches. On the other hand, the long-claimed pro-neurogenic activity of natural dietary compounds endowed with antioxidants and anti-inflammatory properties (such as polyphenols, polyunsaturated fatty acids, or pro/prebiotics) may be mediated, at least in part, by their action on the intestinal microflora. The purpose of this review is to summarise the available information regarding the influence of the gut microbiota on neurogenesis, analyse the possible underlying mechanisms, and discuss the potential implications of this emerging knowledge for the fight against neurodegeneration and brain ageing.
Collapse
|
79
|
Miranda-Comas G, Petering RC, Zaman N, Chang R. Implications of the Gut Microbiome in Sports. Sports Health 2022; 14:894-898. [PMID: 35034531 PMCID: PMC9631033 DOI: 10.1177/19417381211060006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CONTEXT Two-thirds of an individual's gut microbiota is unique and influenced by dietary and exercise habits, age, sex, genetics, ethnicity, antibiotics, health, and disease. It plays important roles in nutrient and vitamin metabolism, inflammatory modulation, immune system function, and overall health of an individual. Specifically, in sports it may help decrease recovery time and improve athletic performance. EVIDENCE ACQUISITION PubMed and Medline databases were used for the literature search. Bibliographies based on the original search were utilized to pursue further literature search. STUDY DESIGN Clinical review. LEVEL OF EVIDENCE Level 4. RESULTS Diet and exercise play very important roles in the composition of the gut microbiota in the athletic and nonathletic individual. Ingestion of carbohydrates during and after exercise seems to have an anti-inflammatory effect postexercise. Supplementation with probiotic seems to aid in recovery after exercise, too, especially restoring the "normal" gut microbiota. Physically active individuals of all levels have more alpha diversity and "health-promoting gut species" in their microbiome than nonactive individuals, along with higher concentrations of short-chain fatty acids (SCFA) and SCFA-producing organisms. However, exercise interventions should be longer than 8 weeks to see these positive characteristics. Immune function is highly influenced by the gut microbiota's response to exercise. A transient immune dysfunction occurs after prolonged high-intensity exercise, which correlates with microbiota dysregulation. Nevertheless, long-term exposure to exercise will enhance the immune response and lead to positive changes in the gut microbiota. CONCLUSION Although the exact mechanisms of the effects that diet, exercise, and genetics have on the gut microbiota remain largely unknown, there is evidence that suggests overall health benefits. In the athletic population, these benefits can ultimately lead to performance improvement.
Collapse
Affiliation(s)
- Gerardo Miranda-Comas
- Department of Rehabilitation and
Human Performance, Icahn School of Medicine at Mount Sinai, New York, New
York,Gerardo
Miranda-Comas, MD, 1510 Ashford Avenue, Apartment 802, San Juan, PR
00911 ()
(Twitter: @SportsMDgmirand)
| | - Ryan C. Petering
- Department of Family Medicine,
Oregon Health & Science University School of Medicine, Portland,
Oregon
| | - Nadia Zaman
- PM&R, Tufts University School
of Medicine, Boston, Massachusetts
| | - Richard Chang
- Department of Rehabilitation and
Human Performance, Icahn School of Medicine at Mount Sinai, New York, New
York
| |
Collapse
|
80
|
Xia WJ, Xu ML, Yu XJ, Du MM, Li XH, Yang T, Li L, Li Y, Kang KB, Su Q, Xu JX, Shi XL, Wang XM, Li HB, Kang YM. Antihypertensive effects of exercise involve reshaping of gut microbiota and improvement of gut-brain axis in spontaneously hypertensive rat. Gut Microbes 2022; 13:1-24. [PMID: 33382364 PMCID: PMC7781639 DOI: 10.1080/19490976.2020.1854642] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Exercise (Ex) has long been recognized to produce beneficial effects on hypertension (HTN). This coupled with evidence of gut dysbiosis and an impaired gut-brain axis led us to hypothesize that reshaping of gut microbiota and improvement in impaired gut-brain axis would, in part, be associated with beneficial influence of exercise. Male spontaneously hypertensive rats (SHR) and Wistar Kyoto (WKY) rats were randomized into sedentary, trained, and detrained groups. Trained rats underwent moderate-intensity exercise for 12 weeks, whereas, detrained groups underwent 8 weeks of moderate-intensity exercise followed by 4 weeks of detraining. Fecal microbiota, gut pathology, intestinal inflammation, and permeability, brain microglia and neuroinflammation were analyzed. We observed that exercise training resulted in a persistent decrease in systolic blood pressure in the SHR. This was associated with increase in microbial α diversity, altered β diversity, and enrichment of beneficial bacterial genera. Furthermore, decrease in the number of activated microglia, neuroinflammation in the hypothalamic paraventricular nucleus, improved gut pathology, inflammation, and permeability were also observed in the SHR following exercise. Interestingly, short-term detraining did not abolish these exercise-mediated improvements. Finally, fecal microbiota transplantation from exercised SHR into sedentary SHR resulted in attenuated SBP and an improved gut-brain axis. These observations support our concept that an impaired gut-brain axis is linked to HTN and exercise ameliorates this impairment to induce antihypertensive effects.
Collapse
Affiliation(s)
- Wen-Jie Xia
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’anChina,CONTACT Hong-Bao Li, Xi’an 710061, China
| | - Meng-Lu Xu
- Department of Nephrology, The First Affiliated Hospital of Xi’an Medical University, Xi’anChina,CONTACT Hong-Bao Li, Xi’an 710061, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’anChina,CONTACT Hong-Bao Li, Xi’an 710061, China
| | - Meng-Meng Du
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’anChina
| | - Xu-Hui Li
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’anChina
| | - Tao Yang
- Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OHUSA
| | - Lu Li
- Department of Nephrology, The First Affiliated Hospital of Xi’an Medical University, Xi’anChina
| | - Ying Li
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’anChina
| | - Kai B. Kang
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Qing Su
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’anChina
| | - Jia-Xi Xu
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’anChina
| | - Xiao-Lian Shi
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’anChina
| | - Xiao-Min Wang
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’anChina
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’anChina,CONTACT Hong-Bao Li, Xi’an 710061, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’anChina,CONTACT Hong-Bao Li, Xi’an 710061, China
| |
Collapse
|
81
|
Ortega MA, Alvarez-Mon MA, García-Montero C, Fraile-Martinez O, Guijarro LG, Lahera G, Monserrat J, Valls P, Mora F, Rodríguez-Jiménez R, Quintero J, Álvarez-Mon M. Gut Microbiota Metabolites in Major Depressive Disorder-Deep Insights into Their Pathophysiological Role and Potential Translational Applications. Metabolites 2022; 12:metabo12010050. [PMID: 35050172 PMCID: PMC8778125 DOI: 10.3390/metabo12010050] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota is a complex and dynamic ecosystem essential for the proper functioning of the organism, affecting the health and disease status of the individuals. There is continuous and bidirectional communication between gut microbiota and the host, conforming to a unique entity known as "holobiont". Among these crosstalk mechanisms, the gut microbiota synthesizes a broad spectrum of bioactive compounds or metabolites which exert pleiotropic effects on the human organism. Many of these microbial metabolites can cross the blood-brain barrier (BBB) or have significant effects on the brain, playing a key role in the so-called microbiota-gut-brain axis. An altered microbiota-gut-brain (MGB) axis is a major characteristic of many neuropsychiatric disorders, including major depressive disorder (MDD). Significative differences between gut eubiosis and dysbiosis in mental disorders like MDD with their different metabolite composition and concentrations are being discussed. In the present review, the main microbial metabolites (short-chain fatty acids -SCFAs-, bile acids, amino acids, tryptophan -trp- derivatives, and more), their signaling pathways and functions will be summarized to explain part of MDD pathophysiology. Conclusions from promising translational approaches related to microbial metabolome will be addressed in more depth to discuss their possible clinical value in the management of MDD patients.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (F.M.); (J.Q.)
- Correspondence:
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Paula Valls
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
| | - Fernando Mora
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (F.M.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Roberto Rodríguez-Jiménez
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
- Institute for Health Research 12 de Octubre Hospital, (Imas 12)/CIBERSAM (Biomedical Research Networking Centre in Mental Health), 28041 Madrid, Spain
| | - Javier Quintero
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (F.M.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| |
Collapse
|
82
|
Ningthoujam DS, Singh N, Mukherjee S. Possible Roles of Cyclic Meditation in Regulation of the Gut-Brain Axis. Front Psychol 2021; 12:768031. [PMID: 35002859 PMCID: PMC8727337 DOI: 10.3389/fpsyg.2021.768031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/29/2021] [Indexed: 01/15/2023] Open
Affiliation(s)
| | - Nilkamal Singh
- Department of Yoga, Manipur University, Imphal, India
- *Correspondence: Nilkamal Singh
| | | |
Collapse
|
83
|
Nutrition and Physical Activity-Induced Changes in Gut Microbiota: Possible Implications for Human Health and Athletic Performance. Foods 2021; 10:foods10123075. [PMID: 34945630 PMCID: PMC8700881 DOI: 10.3390/foods10123075] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is a complex heterogeneous microbial community modulated by endogenous and exogenous factors. Among the external causes, nutrition as well as physical activity appear to be potential drivers of microbial diversity, both at the taxonomic and functional level, likely also influencing endocrine system, and acting as endocrine organ itself. To date, clear-cut data regarding which microbial populations are modified, and by which mechanisms are lacking. Moreover, the relationship between the microbial shifts and the metabolic practical potential of the gut microbiota is still unclear. Further research by longitudinal and well-designed studies is needed to investigate whether microbiome manipulation may be an effective tool for improving human health and, also, performance in athletes, and whether these effects may be then extended to the overall health promotion of general populations. In this review, we evaluate and summarize the current knowledge regarding the interaction and cross-talks among hormonal modifications, physical performance, and microbiota content and function.
Collapse
|
84
|
Polverino A, Sorrentino P, Pesoli M, Mandolesi L. Nutrition and cognition across the lifetime: an overview on epigenetic mechanisms. AIMS Neurosci 2021; 8:448-476. [PMID: 34877399 PMCID: PMC8611190 DOI: 10.3934/neuroscience.2021024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/12/2021] [Indexed: 12/28/2022] Open
Abstract
The functioning of our brain depends on both genes and their interactions with environmental factors. The close link between genetics and environmental factors produces structural and functional cerebral changes early on in life. Understanding the weight of environmental factors in modulating neuroplasticity phenomena and cognitive functioning is relevant for potential interventions. Among these, nutrition plays a key role. In fact, the link between gut and brain (the gut-brain axis) is very close and begins in utero, since the Central Nervous System (CNS) and the Enteric Nervous System (ENS) originate from the same germ layer during the embryogenesis. Here, we investigate the epigenetic mechanisms induced by some nutrients on the cognitive functioning, which affect the cellular and molecular processes governing our cognitive functions. Furthermore, epigenetic phenomena can be positively affected by specific healthy nutrients from diet, with the possibility of preventing or modulating cognitive impairments. Specifically, we described the effects of several nutrients on diet-dependent epigenetic processes, in particular DNA methylation and histones post-translational modifications, and their potential role as therapeutic target, to describe how some forms of cognitive decline could be prevented or modulated from the early stages of life.
Collapse
Affiliation(s)
- Arianna Polverino
- Institute of Diagnosis and Treatment Hermitage Capodimonte, Naples, Italy.,Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy
| | - Pierpaolo Sorrentino
- Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France.,Institute of Applied Sciences and Intelligent Systems, National Research Council, Pozzuoli, Italy
| | - Matteo Pesoli
- Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy
| | - Laura Mandolesi
- Department of Humanities Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
85
|
Research Progress on the Role of Inflammatory Mechanisms in the Development of Postoperative Cognitive Dysfunction. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3883204. [PMID: 34869762 PMCID: PMC8642009 DOI: 10.1155/2021/3883204] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/19/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022]
Abstract
Postoperative cognitive dysfunction (POCD), as one of the common postoperative complications, mainly occurs after surgery and anesthesia, especially in the elderly. It refers to cognitive function changes such as decreased learning and memory ability and inability to concentrate. In severe cases, there could be personality changes and a decline in social behavior. At present, a great deal of research had been carried out on POCD, but its specific mechanism remains unclear. The release of peripheral inflammation-related factors, the degradation and destruction of the blood-brain barrier, the occurrence of central inflammation, and the neuronal apoptosis and synaptic loss could be promoted by neuroinflammation indicating that inflammatory mechanisms may play key roles in the occurrence of POCD.
Collapse
|
86
|
Lin G, Li S, Huang J, Gao D, Lu J. Hypoosmotic stress induced functional alternations of intestinal barrier integrity, inflammatory reactions, and neurotransmission along gut-brain axis in the yellowfin seabream (Acanthopagrus latus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1725-1738. [PMID: 34480680 DOI: 10.1007/s10695-021-01011-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The gut-brain axis plays a major role in multiple metabolic regulation processes, but studies regarding its responses to environmental stress in fish are still limited. In this study, we performed transcriptome sequencing analysis and enzyme-linked immunosorbent assay (ELISA) in yellowfin seabream (Acanthopagrus latus) exposed to environments with different water salinity (freshwater: 0 ppt; low-saline water: 3 ppt; brackish water: 6 ppt). According to transcriptome analysis, 707 and 1477 genes were identified as differentially expressed genes (DEGs) between freshwater and brackish water treatments in the brain and gut, respectively. Brain DEGs were significantly enriched into a set of Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with signal transduction, most of which were downregulated. Gut DEGs were enriched into a neurotransmission-relevant KEGG pathway tryptophan metabolism, and the downregulated DEGs were enriched into the KEGG pathway focal adhesion. ELISA demonstrated significant physiological responses of the brain and gut across treatments, as determined by the concentrations of tight junction protein ZO-2, interleukin 1β, and serotonin. Under hypoosmotic stress, the functions of the gut-brain axis are altered via impairment of intestinal barrier integrity, by disturbance of gut-brain neurotransmission, and through tissue-damaging inflammatory reactions. Our work identified candidate genes which showed significantly differential expression in the gut-brain axis when yellowfin seabream encountered hypoosmotic stress, which could shed lights on the understanding of the potential osmotic regulation mechanisms of the gut-brain axis in teleost.
Collapse
Affiliation(s)
- Genmei Lin
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Shizhu Li
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Junrou Huang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Dong Gao
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510275, Guangdong, China.
- Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519000, China.
| |
Collapse
|
87
|
Exercise mimetics: harnessing the therapeutic effects of physical activity. Nat Rev Drug Discov 2021; 20:862-879. [PMID: 34103713 DOI: 10.1038/s41573-021-00217-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/05/2023]
Abstract
Exercise mimetics are a proposed class of therapeutics that specifically mimic or enhance the therapeutic effects of exercise. Increased physical activity has demonstrated positive effects in preventing and ameliorating a wide range of diseases, including brain disorders such as Alzheimer disease and dementia, cancer, diabetes and cardiovascular disease. This article discusses the molecular mechanisms and signalling pathways associated with the beneficial effects of physical activity, focusing on effects on brain function and cognitive enhancement. Emerging therapeutic targets and strategies for the development of exercise mimetics, particularly in the field of central nervous system disorders, as well as the associated opportunities and challenges, are discussed.
Collapse
|
88
|
Moore TM, Terrazas A, Strumwasser AR, Lin AJ, Zhu X, Anand ATS, Nguyen CQ, Stiles L, Norheim F, Lang JM, Hui ST, Turcotte LP, Zhou Z. Effect of voluntary exercise upon the metabolic syndrome and gut microbiome composition in mice. Physiol Rep 2021; 9:e15068. [PMID: 34755487 PMCID: PMC8578881 DOI: 10.14814/phy2.15068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022] Open
Abstract
The metabolic syndrome is a cluster of conditions that increase an individual's risk of developing diseases. Being physically active throughout life is known to reduce the prevalence and onset of some aspects of the metabolic syndrome. Furthermore, previous studies have demonstrated that an individual's gut microbiome composition has a large influence on several aspects of the metabolic syndrome. However, the mechanism(s) by which physical activity may improve metabolic health are not well understood. We sought to determine if endurance exercise is sufficient to prevent or ameliorate the development of the metabolic syndrome and its associated diseases. We also analyzed the impact of physical activity under metabolic syndrome progression upon the gut microbiome composition. Utilizing whole-body low-density lipoprotein receptor (LDLR) knockout mice on a "Western Diet," we show that long-term exercise acts favorably upon glucose tolerance, adiposity, and liver lipids. Exercise increased mitochondrial abundance in skeletal muscle but did not reduce liver fibrosis, aortic lesion area, or plasma lipids. Lastly, we observed several changes in gut bacteria and their novel associations with metabolic parameters of clinical importance. Altogether, our results indicate that exercise can ameliorate some aspects of the metabolic syndrome progression and alter the gut microbiome composition.
Collapse
Affiliation(s)
- Timothy M. Moore
- Division of CardiologyDepartment of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Anthony Terrazas
- Division of CardiologyDepartment of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Alexander R. Strumwasser
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Amanda J. Lin
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Xiaopeng Zhu
- Division of Pediatric EndocrinologyDepartment of Pediatrics UCLA Children's Discovery and Innovation InstituteDepartment of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
- Present address:
Department of Endocrinology and Metabolism. Zhongshan HospitalFudan UniversityShanghaiP.R.China
| | - Akshay T. S. Anand
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Christina Q. Nguyen
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Linsey Stiles
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Frode Norheim
- Department of Human GeneticsUniversity of CaliforniaLos AngelesCaliforniaUSA
- Present address:
Department of NutritionFaculty of MedicineInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Jennifer M. Lang
- Department of Human GeneticsUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Simon T. Hui
- Division of CardiologyDepartment of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Lorraine P. Turcotte
- Department of Biological SciencesDana & David Dornsife College of Letters, Arts, and SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Zhenqi Zhou
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
89
|
El-Salhy M, Hausken T, Hatlebakk JG. Current status of fecal microbiota transplantation for irritable bowel syndrome. Neurogastroenterol Motil 2021; 33:e14157. [PMID: 34236740 DOI: 10.1111/nmo.14157] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a common gastrointestinal functional disorder. Although IBS is a benign condition, it reduces the quality of life considerably. While there is currently no effective treatment for this disorder, fecal microbiota transplantation (FMT) seems to be promising. PURPOSE The aim of this review was to analysis possible factors affecting the success or failure of the randomized controlled trials (RCTs) of FMT for IBS and highlighting the gaps in our knowledge that need to be filled and of sketching a possible model for successful FMT in IBS patients. METHODS A systematic search was conducted of literature published in English from January 2015 to December 2020 using the keywords: fecal microbiota transplantation, randomized trials, and IBS. KEY RESULTS Seven randomized controlled trials (RCTs) on the efficacy of FMT for IBS were found in the literature. Four of the seven RCTs found various positive effects, while the other three did not find any effect. CONCLUSIONS AND INFERENCES The efficacy of FMT for IBS appears to be donor-dependent. The effective (super) donor would need to have a favorable microbiota signature, and 11 clinical criteria that are known to be associated with a favorable microbiota have been suggested for selecting FMT donors for IBS. Comparing the microbiota of the effective donors with those of healthy subjects would reveal the favorable microbiota signature required for a super-donor. However, the studies reviewed were not designed to compare efficacy of different donor types. The dose of the fecal transplant is also an important factor influencing the outcome of FMT for IBS. However, further studies designed to test the effect of fecal transplant dose are needed to answer this question. Administering the fecal transplant to either the small or large intestine seems to be effective, but the optimal route of administration remains to be determined. Moreover, whether single or repeated FMT is more effective is also still unclear. A 1-year follow-up of IBS patients who received FMT showed that adverse events of abdominal pain, diarrhea, and constipation were both mild and self-limiting.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Department of Medicine, Stord Hospital, Stord, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, National Centre for Functional Gastrointestinal Disorders, Haukeland University Hospital, Bergen, Norway
| | - Trygve Hausken
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, National Centre for Functional Gastrointestinal Disorders, Haukeland University Hospital, Bergen, Norway
| | - Jan Gunnar Hatlebakk
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, National Centre for Functional Gastrointestinal Disorders, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
90
|
Li Y, Sun Q, Sun M, Sun P, Sun Q, Xia X. Physical Exercise and Psychological Distress: The Mediating Roles of Problematic Mobile Phone Use and Learning Burnout among Adolescents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9261. [PMID: 34501851 PMCID: PMC8430986 DOI: 10.3390/ijerph18179261] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 01/23/2023]
Abstract
Psychological distress among adolescents adversely affects their development and negatively impacts them later in life. The aim of the present study was to determine whether an association exists between physical exercise and psychological distress and to explore the roles of problematic mobile phone use and learning burnout with respect to this association. A total of 2077 Chinese adolescents were evaluated by using the Physical Exercise Questionnaire, the Self-rating Questionnaire for Adolescent Problematic Mobile Phone Use, the Learning Burnout Questionnaire, and the Depression Anxiety Stress Scale-21. A serial multiple mediation model was constructed using the SPSS PROCESS macro. The results showed that physical exercise was negatively associated with psychological distress in this Chinese adolescent population. Serial multiple mediation analysis revealed that problematic mobile phone use and learning burnout both independently and serially mediated the association between physical exercise and psychological distress. These findings provide evidence suggesting that increased attention should be given to problematic mobile phone use and learning burnout when establishing and implementing specific strategies that leverage greater participation in physical exercise to decrease psychological distress in adolescents.
Collapse
Affiliation(s)
- Yansong Li
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China;
| | - Qilong Sun
- Liaocheng Infant Normal School, Liaocheng 252699, China; (Q.S.); (M.S.); (P.S.); (Q.S.)
| | - Mingzhe Sun
- Liaocheng Infant Normal School, Liaocheng 252699, China; (Q.S.); (M.S.); (P.S.); (Q.S.)
| | - Peishuai Sun
- Liaocheng Infant Normal School, Liaocheng 252699, China; (Q.S.); (M.S.); (P.S.); (Q.S.)
| | - Qihui Sun
- Liaocheng Infant Normal School, Liaocheng 252699, China; (Q.S.); (M.S.); (P.S.); (Q.S.)
| | - Xue Xia
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
91
|
Buchmann Godinho D, da Silva Fiorin F, Schneider Oliveira M, Furian AF, Rechia Fighera M, Freire Royes LF. The immunological influence of physical exercise on TBI-induced pathophysiology: Crosstalk between the spleen, gut, and brain. Neurosci Biobehav Rev 2021; 130:15-30. [PMID: 34400178 DOI: 10.1016/j.neubiorev.2021.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is a non-degenerative and non-congenital insult to the brain and is recognized as a global public health problem, with a high incidence of neurological disorders. Despite the causal relationship not being entirely known, it has been suggested that multiorgan inflammatory response involving the autonomic nervous system and the spleen-gut brain axis dysfunction exacerbate the TBI pathogenesis in the brain. Thus, applying new therapeutic tools, such as physical exercise, have been described in the literature to act on the immune modulation induced by brain injuries. However, there are caveats to consider when interpreting the effects of physical exercise on this neurological injury. Given the above, this review will highlight the main findings of the literature involving peripheral immune responses in TBI-induced neurological damage and how changes in the cellular metabolism of the spleen-gut brain axis elicited by different protocols of physical exercise alter the pathophysiology induced by this neurological injury.
Collapse
Affiliation(s)
- Douglas Buchmann Godinho
- Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fernando da Silva Fiorin
- Programa de Pós-Graduação em Neuroengenharia, Instituto Internacional de Neurociências Edmond e Lily Safra, Instituto Santos Dumont, Macaíba, RN, Brazil
| | - Mauro Schneider Oliveira
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Ana Flavia Furian
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Michele Rechia Fighera
- Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Centro de Ciências da Saúde, Departamento de Clínica Médica e Pediatria, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | |
Collapse
|
92
|
Murciano-Brea J, Garcia-Montes M, Geuna S, Herrera-Rincon C. Gut Microbiota and Neuroplasticity. Cells 2021; 10:2084. [PMID: 34440854 PMCID: PMC8392499 DOI: 10.3390/cells10082084] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
The accumulating evidence linking bacteria in the gut and neurons in the brain (the microbiota-gut-brain axis) has led to a paradigm shift in the neurosciences. Understanding the neurobiological mechanisms supporting the relevance of actions mediated by the gut microbiota for brain physiology and neuronal functioning is a key research area. In this review, we discuss the literature showing how the microbiota is emerging as a key regulator of the brain's function and behavior, as increasing amounts of evidence on the importance of the bidirectional communication between the intestinal bacteria and the brain have accumulated. Based on recent discoveries, we suggest that the interaction between diet and the gut microbiota, which might ultimately affect the brain, represents an unprecedented stimulus for conducting new research that links food and mood. We also review the limited work in the clinical arena to date, and we propose novel approaches for deciphering the gut microbiota-brain axis and, eventually, for manipulating this relationship to boost mental wellness.
Collapse
Affiliation(s)
- Julia Murciano-Brea
- Department of Biodiversity, Ecology & Evolution, Biomathematics Unit, Complutense University of Madrid, 28040 Madrid, Spain; (J.M.-B.); (M.G.-M.)
- Modeling, Data Analysis and Computational Tools for Biology Research Group, Complutense University of Madrid, 28040 Madrid, Spain
| | - Martin Garcia-Montes
- Department of Biodiversity, Ecology & Evolution, Biomathematics Unit, Complutense University of Madrid, 28040 Madrid, Spain; (J.M.-B.); (M.G.-M.)
- Modeling, Data Analysis and Computational Tools for Biology Research Group, Complutense University of Madrid, 28040 Madrid, Spain
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, School of Medicine, University of Torino, 10124 Torino, Italy;
| | - Celia Herrera-Rincon
- Department of Biodiversity, Ecology & Evolution, Biomathematics Unit, Complutense University of Madrid, 28040 Madrid, Spain; (J.M.-B.); (M.G.-M.)
- Modeling, Data Analysis and Computational Tools for Biology Research Group, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
93
|
Honceriu C, Curpan AS, Ciobica A, Ciobica A, Trus C, Timofte D. Connections between Different Sports and Ergogenic Aids-Focusing on Salivary Cortisol and Amylase. ACTA ACUST UNITED AC 2021; 57:medicina57080753. [PMID: 34440959 PMCID: PMC8400367 DOI: 10.3390/medicina57080753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 11/30/2022]
Abstract
Athletes are exposed to a tremendous amount of stress, both physically and mentally, when performing high intensity sports with frequent practices, pushing numerous athletes into choose to use ergogenic aids such as caffeine or β-alanine to significantly improve their performance and ease the stress and pressure that is put onto the body. The beneficial or even detrimental effects of these so-called ergogenic aids can be appreciated through the use of numerous diagnostic tools that can analyze various body fluids. In the recent years, saliva samples are gaining more ground in the field of diagnostic as it is a non-invasive procedure, contains a tremendous amount of analytes that are subject to pathophysiological changes caused by diseases, exercises, fatigue as well as nutrition and hydration. Thus, we describe here the current progress regarding potential novel biomarkers for stress and physical activity, salivary α-amylase and salivary cortisol, as well as their use and measurement in combination with different already-known or new ergogenic aids.
Collapse
Affiliation(s)
- Cezar Honceriu
- Faculty of Physical Education and Sports, Alexandru Ioan Cuza University, B dul Carol I, No 11, 700506 Iasi, Romania;
| | - Alexandrina-Stefania Curpan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, B dul Carol I, No 11, 700506 Iasi, Romania;
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, B dul Carol I, No 11, 700506 Iasi, Romania;
- Center of Biomedical Research, Romanian Academy, B dul Carol I, No 8, 700505 Iasi, Romania
- Academy of Romanian Scientists, Splaiul Independentei nr. 54, Sector 5, 050094 Bucuresti, Romania
- Correspondence: (A.C.); (C.T.)
| | - Andrei Ciobica
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania; (A.C.); (D.T.)
| | - Constantin Trus
- Department of Morphological and Functional Sciences, Faculty of Medicine, Dunarea de Jos University, 800008 Galati, Romania
- Correspondence: (A.C.); (C.T.)
| | - Daniel Timofte
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania; (A.C.); (D.T.)
| |
Collapse
|
94
|
El-Salhy M, Patcharatrakul T, Gonlachanvit S. Fecal microbiota transplantation for irritable bowel syndrome: An intervention for the 21 st century. World J Gastroenterol 2021; 27:2921-2943. [PMID: 34168399 PMCID: PMC8192290 DOI: 10.3748/wjg.v27.i22.2921] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/03/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) affects about 12% of the global population. Although IBS does not develop into a serious disease or increase mortality, it results in a considerable reduction in the quality of life. The etiology of IBS is not known, but the intestinal microbiota appears to play a pivotal role in its pathophysiology. There is no effective treatment for IBS, and so the applied treatments clinically focus on symptom relief. Fecal microbiota transplantation (FMT), an old Chinese treatment, has been applied to IBS patients in seven randomized controlled trials (RCTs). Positive effects on IBS symptoms in various degrees were obtained in four of these RCTs, while there was no effect in the remaining three. Across the seven RCTs there were marked differences in the selection processes for the donor and treated patients, the transplant dose, the route of administration, and the methods used to measure how the patients responded to FMT. The present frontier discusses these differences and proposes: (1) criteria for selecting an effective donor (superdonor); (2) selection criteria for patients that are suitable for FMT; (3) the optimal FMT dose; and (4) the route of transplant administration. FMT appears to be safe, with only mild, self-limiting side effects of abdominal pain, cramping, tenderness, diarrhea, and constipation. Although it is early to speculate about the mechanisms underlying the effects of FMT, the available data suggest that changes in the intestinal bacteria accompanied by changes in fermentation patterns and fermentation products (specifically short-chain fatty acids) play an important role in improving the IBS symptoms seen after FMT. FMT appears to be a promising treatment for IBS, but further studies are needed before it can be applied in everyday clinical practice.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Department of Medicine, Stord Helse Fonna Hospital and University of Bergen, Stord 5416, Norway
| | - Tanisa Patcharatrakul
- Department of Medicine, King Chulalongkorn Memorial Hospital and Center of Excellence in Neurogastroenterology and Motility, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sutep Gonlachanvit
- Department of Medicine, King Chulalongkorn Memorial Hospital and Center of Excellence in Neurogastroenterology and Motility, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
95
|
Rajeev R, Seethalakshmi PS, Jena PK, Prathiviraj R, Kiran GS, Selvin J. Gut microbiome responses in the metabolism of human dietary components: Implications in health and homeostasis. Crit Rev Food Sci Nutr 2021; 62:7615-7631. [PMID: 34016000 DOI: 10.1080/10408398.2021.1916429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The gut microbiome and its link with human health and disease have gained a lot of attention recently. The microbiome executes its functions in the host by carrying out the transformation of dietary components and/or de novo synthesis of various essential nutrients. The presence of complex microbial communities makes it difficult to understand the host-microbiome interplay in the metabolism of dietary components. This review attempts to uncover the incredible role of the gut microbiome in the metabolism of dietary components, diet-microbiome interplay, and restoration of the microbiome. The in silico analysis performed in this study elucidates the functional description of essential/hub genes involved in the amino acid degradation pathway, which are mutually present in the host and its gut microbiome. Hence, the computational model helps comprehend the inter-and intracellular molecular networks between humans and their microbial partners.
Collapse
Affiliation(s)
- Riya Rajeev
- Department of Microbiology, Pondicherry University, Puducherry, India
| | - P S Seethalakshmi
- Department of Microbiology, Pondicherry University, Puducherry, India
| | - Prasant Kumar Jena
- Immunology and infectious disease research, Department of Pediatrics, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - R Prathiviraj
- Department of Microbiology, Pondicherry University, Puducherry, India
| | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry, India
| |
Collapse
|
96
|
Pugh JN, Lydon K, O'Donovan CM, O'Sullivan O, Madigan SM. More than a gut feeling: What is the role of the gastrointestinal tract in female athlete health? Eur J Sport Sci 2021; 22:755-764. [PMID: 33944684 DOI: 10.1080/17461391.2021.1921853] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As with much of science, the female athlete is under researched, particularly in the area of gastrointestinal (GI) physiology. Gut function is of pivotal importance to athletes in that it supports digestion and absorption of nutrients, as well as providing a barrier between the external environment and the circulation. While sex-derived differences in GI structure and function have been well characterised at rest, there remains a paucity of data examining this during exercise. The wider impact of the GI system has begun to be realised and it is now widely acknowledged to play a role in more systemic bodily systems. In the current review, we discuss localised issues including the GI structure, function, and microbiome of male and females. We also discuss GI-related symptoms experienced by athletes, highlight the differences in incidence between males and females, and discuss contributing factors. We then move beyond the gut to discuss wider biological processes that have been shown to have both sex-related differences and that are impacted by the GI system. Some of these areas include immune function and risk of illness, sleep, hormones, bone health and the gut-brain-axis. The magnitude of such effects and relationships is currently unknown but there is enough mechanistic data for future studies to consider a more central role that the gastrointestinal tract may play in overall female athlete health.Highlights There are both clear similarities and differences in male-female gastrointestinal structure and function.Females typically reported a greater prevalence of gastrointestinal symptoms at rest, in particular during menstruation, but not during exercise.The links between female microbiome, oestrogen, and systemic physiological and biological processes are yet to be fully elucidated.Many of the male-female differences seen (e.g. in immune function) may be, at least in part, influenced by such GI related differences.
Collapse
Affiliation(s)
- Jamie N Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Katie Lydon
- Department for Health, University of Bath, Bath, UK.,Trinity College Dublin/Health Service Executive Specialist Training Scheme in General Practice, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Ciara M O'Donovan
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland.,APC Microbiome Ireland, Cork, Ireland
| | - Orla O'Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland.,APC Microbiome Ireland, Cork, Ireland
| | - Sharon M Madigan
- Sport Ireland Institute, Dublin, Ireland.,Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
97
|
Molecular Mechanisms Underlying the Beneficial Effects of Exercise on Brain Function and Neurological Disorders. Int J Mol Sci 2021; 22:ijms22084052. [PMID: 33919972 PMCID: PMC8070923 DOI: 10.3390/ijms22084052] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
As life expectancy has increased, particularly in developed countries, due to medical advances and increased prosperity, age-related neurological diseases and mental health disorders have become more prevalent health issues, reducing the well-being and quality of life of sufferers and their families. In recent decades, due to reduced work-related levels of physical activity, and key research insights, prescribing adequate exercise has become an innovative strategy to prevent or delay the onset of these pathologies and has been demonstrated to have therapeutic benefits when used as a sole or combination treatment. Recent evidence suggests that the beneficial effects of exercise on the brain are related to several underlying mechanisms related to muscle–brain, liver–brain and gut–brain crosstalk. Therefore, this review aims to summarize the most relevant current knowledge of the impact of exercise on mood disorders and neurodegenerative diseases, and to highlight the established and potential underlying mechanisms involved in exercise–brain communication and their benefits for physiology and brain function.
Collapse
|
98
|
Laswi I, Shafiq A, Al-Ali D, Burney Z, Pillai K, Salameh M, Mhaimeed N, Zakaria D, Chaari A, Yousri NA, Bendriss G. A Comparative Pilot Study of Bacterial and Fungal Dysbiosis in Neurodevelopmental Disorders and Gastrointestinal Disorders: Commonalities, Specificities and Correlations with Lifestyle. Microorganisms 2021; 9:741. [PMID: 33918112 PMCID: PMC8065742 DOI: 10.3390/microorganisms9040741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 01/15/2023] Open
Abstract
Gastrointestinal disorders (GIDs) are a common comorbidity in patients with neurodevelopmental disorders (NDDs), while anxiety-like behaviors are common among patients with gastrointestinal diseases. It is still unclear as to which microbes differentiate these two groups. This pilot study aims at proposing an answer by exploring both the bacteriome and the mycobiome in a cohort of 55 volunteers with NDD, GID or controls, while accounting for additional variables that are not commonly included such as probiotic intake and diet. Recruited participants answered a questionnaire and provided a stool sample using the Fisherbrand collection kit. Bacterial and fungal DNA was extracted using the Qiagen Stool minikit. Sequencing (16sRNA and ITS) and phylogenetic analyses were performed using the PE300 Illumina Miseq v3 sequencing. Statistical analysis was performed using the R package. Results showed a significant decrease in bacterial alpha diversity in both NDD and GID, but an increased fungal alpha diversity in NDD. Data pointed at a significant bacterial dysbiosis between the three groups, but the mycobiome dysbiosis is more pronounced in NDD than in GID. Fungi seem to be more affected by probiotics, diet and antibiotic exposure and are proposed to be the main key player in differentiation between NDD and GID dybiosis.
Collapse
Affiliation(s)
- Ibrahim Laswi
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Ameena Shafiq
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Dana Al-Ali
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Zain Burney
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Krishnadev Pillai
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Mohammad Salameh
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Nada Mhaimeed
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Dalia Zakaria
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Ali Chaari
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Noha A. Yousri
- Research Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar;
- Computers and System Engineering, Alexandria University, Alexandria 21526, Egypt
| | - Ghizlane Bendriss
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| |
Collapse
|
99
|
Exercise and food supplement of vitamin C ameliorate hypertension through improvement of gut microflora in the spontaneously hypertensive rats. Life Sci 2021; 269:119097. [PMID: 33482189 DOI: 10.1016/j.lfs.2021.119097] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/04/2021] [Accepted: 01/14/2021] [Indexed: 12/20/2022]
Abstract
AIMS Exercise and food supplement of vitamin C (VC) are beneficial to human health, especially for those who suffer from hypertension. Here we tend to explore if gut microflora is involved in the anti-hypertensive effects of exercise and VC-supplement therapies. MATERIALS AND METHODS With the spontaneously hypertensive rat (SHR) model, the small intestine pathology and the fecal microbiota was analyzed along with the pro- and anti-inflammatory cytokines (PICs and AICs) and reactive oxygen species (ROS) in the hypothalamus paraventricular nucleus (PVN) and intestine. KEY FINDINGS We found that both exercise and VC intake, individually or combined, were able to alleviate the blood pressure in the SHRs comparing to the normotensive control Wistar-kyoto (WKY) rats. The expression level of PICs in the PVN and intestine of the SHRs was down-regulated while the AICs were up-regulated after treatments, together with down-regulation of ROS in the PVN. At meantime, the gut pathology was dramatically improved in the SHRs with exercise training or VC intake. Analysis of the gut microflora revealed significant changes in their composition. Several important micro-organisms that were deficient in the SHRs were found up-regulated by the treatments, including Turicibacter and Romboutsia which are involved in the short-chain fatty acid production. SIGNIFICANCE Exercise training and VC intake individually can modify the gut microflora composition and improve the inflammatory state in both PVN and intestine, which contribute to their anti-hypertensive function. Combination of the two treatments enhanced their effects and worth to be considered as a non-medical aid for the hypertensive patients.
Collapse
|
100
|
Dewi L, Rosidi A, Noer ER, Ayuningtyas A. The Prospect for Type 2 Diabetes Mellitus Combined with Exercise and Synbiotics: A Perspective. Curr Diabetes Rev 2021; 17:e012821190875. [PMID: 33511948 DOI: 10.2174/1573399817666210129102956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 11/22/2022]
Abstract
Change in gut microbiome diversity (the so-called dysbiosis) is correlated with insulin resistance conditions. Exercise is typically the first management for people with type 2 diabetes mellitus (T2DM), which is generally well-known for improving glucose regulation. The new prebiotics and probiotics, like synbiotics, designed to target specific diseases, require additional studies. While the effectiveness of exercise combined with synbiotics seems promising, this review discusses these agents' possibility of increasing the gut microbiota's diversity. Therefore, they could enhance short-chain fatty acids (SCFA). In particular, the synbiotic interaction on gut microbiota, the exercise mechanism in improving gut microbiota, and the prospect of the synergistic effect of the combination of synbiotic and exercise to improve insulin sensitivity are addressed.
Collapse
Affiliation(s)
- Luthfia Dewi
- Nutrition Department, Faculty of Nursing and Health Science, Universitas Muhammadiyah Semarang 50273, Semarang, Indonesia
| | - Ali Rosidi
- Nutrition Department, Faculty of Nursing and Health Science, Universitas Muhammadiyah Semarang 50273, Semarang, Indonesia
| | - Etika Ratna Noer
- Nutrition Department, Faculty of Medicine, Diponegoro University 50275, Semarang, Indonesia
| | - Annisa Ayuningtyas
- Nutrition Department, Faculty of Nursing and Health Science, Universitas Muhammadiyah Semarang 50273, Semarang, Indonesia
| |
Collapse
|