51
|
Goshima G, Kiyomitsu T, Yoda K, Yanagida M. Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway. J Cell Biol 2003; 160:25-39. [PMID: 12515822 PMCID: PMC2172742 DOI: 10.1083/jcb.200210005] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Kinetochores are the chromosomal sites for spindle interaction and play a vital role for chromosome segregation. The composition of kinetochore proteins and their cellular roles are, however, poorly understood in higher eukaryotes. We identified a novel kinetochore protein family conserved from yeast to human that is essential for equal chromosome segregation. The human homologue hMis12 of yeast spMis12/scMtw1 retains conserved sequence features and locates at the kinetochore region indistinguishable from CENP-A, a centromeric histone variant. RNA interference (RNAi) analysis of HeLa cells shows that the reduced hMis12 results in misaligned metaphase chromosomes, lagging anaphase chromosomes, and interphase micronuclei without mitotic delay, while CENP-A is located at kinetochores. Further, the metaphase spindle length is abnormally extended. Spindle checkpoint protein hMad2 temporally localizes at kinetochores at early mitotic stages after RNAi. The RNAi deficiency of CENP-A leads to a similar mitotic phenotype, but the kinetochore signals of other kinetochore proteins, hMis6 and CENP-C, are greatly diminished. RNAi for hMis6, like that of a kinetochore kinesin CENP-E, induces mitotic arrest. Kinetochore localization of hMis12 is unaffected by CENP-A RNAi, demonstrating an independent pathway of CENP-A in human kinetochores.
Collapse
Affiliation(s)
- Gohta Goshima
- COE Research Project, Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
52
|
Jin QW, Pidoux AL, Decker C, Allshire RC, Fleig U. The mal2p protein is an essential component of the fission yeast centromere. Mol Cell Biol 2002; 22:7168-83. [PMID: 12242294 PMCID: PMC139813 DOI: 10.1128/mcb.22.20.7168-7183.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Precise segregation of chromosomes requires the activity of a specialized chromatin region, the centromere, that assembles the kinetochore complex to mediate the association with spindle microtubules. We show here that Mal2p, previously identified as a protein required for genome stability, is an essential component of the fission yeast centromere. Loss of functional Mal2p leads to extreme missegregation of chromosomes due to nondisjunction of sister chromatids and results in inviable cells. Mal2p associates specifically with the central region of the complex fission yeast centromere, where it is required for the specialized chromatin architecture as well as for transcriptional silencing of this region. Genetic evidence indicates that mal2(+) interacts with mis12(+), encoding another component of the inner centromere core complex. In addition, Mal2p is required for correct metaphase spindle length. Our data imply that the Mal2p protein is required to build up a functional fission yeast centromere.
Collapse
Affiliation(s)
- Quan-Wen Jin
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
53
|
Smirnova JB, McFarlane RJ. The unique centromeric chromatin structure of Schizosaccharomyces pombe is maintained during meiosis. J Biol Chem 2002; 277:19817-22. [PMID: 11909862 DOI: 10.1074/jbc.m200765200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In meiosis I sister centromeres are unified in their polarity on the spindle, and this unique behavior is known to require the function of meiosis-specific factors that set some intrinsic property of the centromeres. The fission yeast, Schizosaccharomyces pombe, possesses complex centromeres consisting of repetitive DNA elements, making it an excellent model in which to study the behavior of complex centromeres. In mitosis, during which sister centromeres mediate chromosome segregation by establishing bipolar chromosome attachments to the spindle, the central core of the S. pombe centromere chromatin has a unique irregular nucleosome pattern. Deletion of repeats flanking this core structure have no effect on mitotic chromosome segregation, but have profound effects during meiosis. While this demonstrates that the outer repeats are critical for normal meiotic sister centromere behavior, exactly how they function and how monopolarity is established remains unclear. In this study we provide the first analysis of the chromatin structure of a complex centromere during meiosis. We show that the nature and extent of the unique central core chromatin structure is maintained with no measurable expansion. This demonstrates that monopolarity of sister centromeres, and subsequent reversion to bipolarity, does not involve a global change to the centromeric chromatin structure.
Collapse
Affiliation(s)
- Julia B Smirnova
- Molecular and Cell Biology Group, School of Biological Sciences, Memorial Building, University of Wales-Bangor, Deiniol Road, Bangor, Gwynedd LL57 2UW, United Kingdom
| | | |
Collapse
|
54
|
Malik HS, Vermaak D, Henikoff S. Recurrent evolution of DNA-binding motifs in the Drosophila centromeric histone. Proc Natl Acad Sci U S A 2002; 99:1449-54. [PMID: 11805302 PMCID: PMC122211 DOI: 10.1073/pnas.032664299] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2001] [Accepted: 12/12/2001] [Indexed: 11/18/2022] Open
Abstract
All eukaryotes contain centromere-specific histone H3 variants (CenH3s), which replace H3 in centromeric chromatin. We have previously documented the adaptive evolution of the Drosophila CenH3 (Cid) in comparisons of Drosophila melanogaster and Drosophila simulans, a divergence of approximately 2.5 million years. We have proposed that rapidly changing centromeric DNA may be driving CenH3's altered DNA-binding specificity. Here, we compare Cid sequences from a phylogenetically broader group of Drosophila species to suggest that Cid has been evolving adaptively for at least 25 million years. Our analysis also reveals conserved blocks not only in the histone-fold domain but also in the N-terminal tail. In several lineages, the N-terminal tail of Cid is characterized by subgroup-specific oligopeptide expansions. These expansions resemble minor groove DNA binding motifs found in various histone tails. Remarkably, similar oligopeptides are also found in N-terminal tails of human and mouse CenH3 (Cenp-A). The recurrent evolution of these motifs in CenH3 suggests a packaging function for the N-terminal tail, which results in a unique chromatin organization at the primary constriction, the cytological marker of centromeres.
Collapse
Affiliation(s)
- Harmit S Malik
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | |
Collapse
|
55
|
Irelan JT, Gutkin GI, Clarke L. Functional redundancies, distinct localizations and interactions among three fission yeast homologs of centromere protein-B. Genetics 2001; 157:1191-203. [PMID: 11238404 PMCID: PMC1461574 DOI: 10.1093/genetics/157.3.1191] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several members of protein families that are conserved in higher eukaryotes are known to play a role in centromere function in the fission yeast Schizosaccharomyces pombe, including two homologs of the mammalian centromere protein CENP-B, Abp1p and Cbh1p. Here we characterize a third S. pombe CENP-B homolog, Cbh2p (CENP-B homolog 2). cbh2Delta strains exhibited a modest elevation in minichromosome loss, similar to cbh1Delta or abp1Delta strains. cbh2Delta cbh1Delta strains showed little difference in growth or minichromosome loss rate when compared to single deletion strains. In contrast, cbh2Delta abp1Delta strains displayed dramatic morphological and chromosome segregation defects, as well as enhancement of the slow-growth phenotype of abp1Delta strains, indicating partial functional redundancy between these proteins. Both cbh2Delta abp1Delta and cbh1Delta abp1Delta strains also showed strongly enhanced sensitivity to a microtubule-destabilizing drug, consistent with a mitotic function for these proteins. Cbh2p was localized to the central core and core-associated repeat regions of centromeric heterochromatin, but not at several other centromeric and arm locations tested. Thus, like its mammalian counterpart, Cbh2p appeared to be localized exclusively to a portion of centromeric heterochromatin. In contrast, Abp1p was detected in both centromeric heterochromatin and in chromatin at two of three replication origins tested. Cbh2p and Abp1p homodimerized in the budding yeast two-hybrid assay, but did not interact with each other. These results suggest that indirect cooperation between different CENP-B-like DNA binding proteins with partially overlapping chromatin distributions helps to establish a functional centromere.
Collapse
Affiliation(s)
- J T Irelan
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
56
|
Floridia G, Zatterale A, Zuffardi O, Tyler-Smith C. Mapping of a human centromere onto the DNA by topoisomerase II cleavage. EMBO Rep 2000; 1:489-93. [PMID: 11263492 PMCID: PMC1083782 DOI: 10.1093/embo-reports/kvd110] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have mapped the positions of topoisomerase II binding sites at the centromere of the human Y chromosome using etoposide-mediated DNA cleavage. A single region of cleavage is seen at normal centromeres, spanning approximately 50 kb within the centromeric alphoid array, but this pattern is abolished at two inactive centromeres. It therefore provides a marker for the position of the active centromere. Although the underlying centromeric DNA structure is variable, the position of the centromere measured in this way is fixed relative to the Yp edge of the array, and has retained the same position for >100,000 years.
Collapse
Affiliation(s)
- G Floridia
- Department of Biochemistry, University of Oxford, UK
| | | | | | | |
Collapse
|
57
|
Baum M, Clarke L. Fission yeast homologs of human CENP-B have redundant functions affecting cell growth and chromosome segregation. Mol Cell Biol 2000; 20:2852-64. [PMID: 10733588 PMCID: PMC85508 DOI: 10.1128/mcb.20.8.2852-2864.2000] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two functionally important DNA sequence elements in centromeres of the fission yeast Schizosaccharomyces pombe are the centromeric central core and the K-type repeat. Both of these DNA elements show internal functional redundancy that is not correlated with a conserved DNA sequence. Specific, but degenerate, sequences in these elements are bound in vitro by the S. pombe DNA-binding proteins Abp1p (also called Cbp1p) and Cbhp, which are related to the mammalian centromere DNA-binding protein CENP-B. In this study, we determined that Abp1p binds to at least one of its target sequences within S. pombe centromere II central core (cc2) DNA with an affinity (K(s) = 7 x 10(9) M(-1)) higher than those of other known centromere DNA-binding proteins for their cognate targets. In vivo, epitope-tagged Cbhp associated with centromeric K repeat chromatin, as well as with noncentromeric regions. Like abp1(+)/cbp1(+), we found that cbh(+) is not essential in fission yeast, but a strain carrying deletions of both genes (Deltaabp1 Deltacbh) is extremely compromised in growth rate and morphology and missegregates chromosomes at very high frequency. The synergism between the two null mutations suggests that these proteins perform redundant functions in S. pombe chromosome segregation. In vitro assays with cell extracts with these proteins depleted allowed the specific assignments of several binding sites for them within cc2 and the K-type repeat. Redundancy observed at the centromere DNA level appears to be reflected at the protein level, as no single member of the CENP-B-related protein family is essential for proper chromosome segregation in fission yeast. The relevance of these findings to mammalian centromeres is discussed.
Collapse
Affiliation(s)
- M Baum
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|
58
|
Goshima G, Saitoh S, Yanagida M. Proper metaphase spindle length is determined by centromere proteins Mis12 and Mis6 required for faithful chromosome segregation. Genes Dev 1999; 13:1664-77. [PMID: 10398680 PMCID: PMC316848 DOI: 10.1101/gad.13.13.1664] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/1999] [Accepted: 05/14/1999] [Indexed: 11/25/2022]
Abstract
High-fidelity chromosome transmission is fundamental in controlling the quality of the cell division cycle. The spindle pole-to-pole distance remains constant from metaphase to anaphase A. We show that fission yeast sister centromere-connecting proteins, Mis6 and Mis12, are required for correct spindle morphogenesis, determining metaphase spindle length. Thirty-five to sixty percent extension of metaphase spindle length takes place in mis6 and mis12 mutants. This may be due to incorrect spindle morphogenesis containing impaired sister centromeres or force unbalance between pulling by the linked sister kinetochores and kinetochore-independent pushing. The mutant spindle fully extends in anaphase, although it is accompanied by drastic missegregation by aberrant sister centromere separation. Hence, metaphase spindle length may be crucial for segregation fidelity. Suppressors of mis12 partly restore normal metaphase spindle length. In mis4 that is defective in sister chromatid cohesion, metaphase spindle length is also long, but anaphase spindle extension is blocked, probably due to the activated spindle checkpoint. Extensive missegregation is caused in mis12 only when Mis12 is inactivated from the previous M through to the following M, an effective way to avoid missegregation in the cell cycle. Mis12 has conserved homologs in budding yeast and filamentous fungi.
Collapse
Affiliation(s)
- G Goshima
- Core Research for Evolutional Science and Technology (CREST) Research Project, Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 Japan
| | | | | |
Collapse
|
59
|
Abstract
Microtubule-based motility in the cell is directly associated with changes in microtubule numbers through nucleation and growth and shrinkage of the polymer from the ends. Recent analysis of spindle pole bodies and kinetochores in yeast reveal how the cell builds specialized structures for association with the ends of microtubules.
Collapse
Affiliation(s)
- W S Saunders
- Department of Biological Sciences 258 Crawford Hall University of Pittsburgh Pittsburgh PA 15260 USA. wsaund+@pitt.edu
| |
Collapse
|
60
|
Grewal SI, Bonaduce MJ, Klar AJ. Histone deacetylase homologs regulate epigenetic inheritance of transcriptional silencing and chromosome segregation in fission yeast. Genetics 1998; 150:563-76. [PMID: 9755190 PMCID: PMC1460350 DOI: 10.1093/genetics/150.2.563] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Position-effect control at the silent mat2-mat3 interval and at centromeres and telomeres in fission yeast is suggested to be mediated through the assembly of heterochromatin-like structures. Therefore, trans-acting genes that affect silencing may encode either chromatin proteins, factors that modify them, or factors that affect chromatin assembly. Here, we report the identification of an essential gene, clr6 (cryptic loci regulator), which encodes a putative histone deacetylase that when mutated affects epigenetically maintained repression at the mat2-mat3 region and at centromeres and reduces the fidelity of chromosome segregation. Furthermore, we show that the Clr3 protein, when mutated, alleviates recombination block at mat region as well as silencing at donor loci and at centromeres and telomeres, also shares strong homology to known histone deacetylases. Genetic analyses indicate that silencing might be regulated by at least two overlapping histone deacetylase activities. We also found that transient inhibition of histone deacetylase activity by trichostatin A results in the increased missegregation of chromosomes in subsequent generations and, remarkably, alters the imprint at the mat locus, causing the heritable conversion of the repressed epigenetic state to the expressed state. This work supports the model that the level of histone deacetylation has a role in the assembly of repressive heterochromatin and provides insight into the mechanism of epigenetic inheritance.
Collapse
Affiliation(s)
- S I Grewal
- Gene Regulation and Chromosome Biology Laboratory, ABL-Basic Research Program, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, Maryland 21702-1201, USA
| | | | | |
Collapse
|
61
|
Doe CL, Wang G, Chow C, Fricker MD, Singh PB, Mellor EJ. The fission yeast chromo domain encoding gene chp1(+) is required for chromosome segregation and shows a genetic interaction with alpha-tubulin. Nucleic Acids Res 1998; 26:4222-9. [PMID: 9722643 PMCID: PMC147838 DOI: 10.1093/nar/26.18.4222] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In eukaryotes, the segregation of chromosomes is co-ordinated by the centromere and must proceed accurately if aneuploidy and cell death are to be avoided. The fission yeast centromere is complex, containing highly repetitive regions of DNA showing the characteristics of heterochromatin. Two proteins, Swi6p and Clr4p, that are associated with the fission yeast centromere also contain a chromo (chromatin organisation modifier) domain and are required for centromere function. We have analysed a novel fission yeast gene encoding a putative chromo domain called chp 1(+) (chromo domain protein in Schizosaccharomyces p ombe ). In the absence of Chp1p protein, cells are viable but show chromosome segregation defects such as lagging chromosomes on the spindle during anaphase and high rates of minichromosome loss, phenotypes which are also displayed by swi 6 and clr 4. A fusion protein between green fluorescent protein (GFP) and Chp1p, like Swi6p, is localized to discrete sites within the nucleus. In contrast to Swi6p and Clr4p, Chp1p is not required to repress silent mating-type genes. We demonstrate a genetic interaction between chp 1(+) and alpha-tubulin ( nda 2(+)) and between swi 6(+) and beta-tubulin ( nda 3(+)). Chp1p and Swi6p proteins may be components of the kinetochore which captures and stabilizes the microtubules of the spindle.
Collapse
Affiliation(s)
- C L Doe
- Microbiology Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK, Department of Development and Genetics, The Babraham Institute, Babraham Hall, Babraham, Cambridge CB2 4AT, UK
| | | | | | | | | | | |
Collapse
|
62
|
Shepard W, Cruse WB, Fourme R, de la Fortelle E, Prangé T. A zipper-like duplex in DNA: the crystal structure of d(GCGAAAGCT) at 2.1 A resolution. Structure 1998; 6:849-61. [PMID: 9687367 DOI: 10.1016/s0969-2126(98)00087-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The replication origin of the single-stranded (ss)DNA bacteriophage G4 has been proposed to fold into a hairpin loop containing the sequence GCGAAAGC. This sequence comprises a purine-rich motif (GAAA), which also occurs in conserved repetitive sequences of centromeric DNA. ssDNA analogues of these sequences often show exceptional stability which is associated with hairpin loops or unusual duplexes, and may be important in DNA replication and centromere function. Nuclear magnetic resonance (NMR) studies indicate that the GCGAAAGC sequence forms a hairpin loop in solution, while centromere-like repeats dimerise into unusual duplexes. The factors stabilising these unusual secondary structure elements in ssDNA, however, are poorly understood. RESULTS The nonamer d(GCGAAAGCT) was crystallised as a bromocytosine derivative in the presence of cobalt hexammine. The crystal structure, solved by the multiple wavelength anomalous dispersion (MAD) method at the bromine K-edge, reveals an unexpected zipper-like motif in the middle of a standard B-DNA duplex. Four central adenines, flanked by two sheared G.A mismatches, are intercalated and stacked on top of each other without any interstrand Watson-Crick base pairing. The cobalt hexammine cation appears to participate only in crystal cohesion. CONCLUSIONS The GAAA consensus sequence can dimerise into a stable zipper-like duplex as well as forming a hairpin loop. The arrangement closes the minor groove and exposes the intercalated, unpaired, adenines to the solvent and DNA-binding proteins. Such a motif, which can transform into a hairpin, should be considered as a structural option in modelling DNA and as a potential binding site, where it could have a role in DNA replication, nuclease resistance, ssDNA genome packaging and centromere function.
Collapse
Affiliation(s)
- W Shepard
- LURE, Université Paris-Sud, Orsay, France.
| | | | | | | | | |
Collapse
|
63
|
Vershinin AV, Heslop-Harrison JS. Comparative analysis of the nucleosomal structure of rye, wheat and their relatives. PLANT MOLECULAR BIOLOGY 1998; 36:149-161. [PMID: 9484470 DOI: 10.1023/a:1005912822671] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Analysis of the structure of chromatin in cereal species using micrococcal nuclease (MNase) cleavage showed nucleosomal organization and a ladder with typical nucleosomal spacing of 175-185 bp. Probing with a set of DNA probes localized in the authentic telomeres, subtelomeric regions and bulk chromatin revealed that these chromosomal regions have nucleosomal organization but differ in size of nucleosomes and rate of cleavage between both species and regions. Chromatin from Secale and Dasypyrum cleaved more quickly than that from wheat and barley, perhaps because of their higher content of repetitive sequences with hairpin structures accessible to MNase cleavage. In all species, the telomeric chromatin showed more rapid cleavage kinetics and a shorter nucleosome length (160 bp spacing) than bulk chromatin. Rye telomeric repeat arrays were shortest, ranging from 8 kb to 50 kb while those of wheat ranged from 15 kb up to 175 kb. A gradient of sensitivity to MNase was detected along rye chromosomes. The rye-specific subtelomeric sequences pSc200 and pSc250 have nucleosomes of two lengths, those of the telomeric and of bulk nucleosomes, indicating that the telomeric structure may extended into the chromosomes. More proximal sequences common to rye and wheat, the short tandem-repeat pSc119.2 and rDNA sequence pTa71, showed longer nucleosomal sizes characteristic of bulk chromatin in both species. A strictly defined spacing arrangement (phasing) of nucleosomes was demonstrated along arrays of tandem repeats with different monomer lengths (118, 350 and 550 bp) by combining MNase and restriction enzyme digestion.
Collapse
Affiliation(s)
- A V Vershinin
- Department of Cell Biology, John Innes Centre, Norwich, UK
| | | |
Collapse
|
64
|
Abstract
The centromere is required to ensure the equal distribution of replicated chromosomes to daughter nuclei. Centromeres are frequently associated with heterochromatin, an enigmatic nuclear component that causes the epigenetic transcriptional repression of nearby marker genes (position-effect variegation or silencing). The process of chromosome segregation by movement along microtubules to spindle poles is highly conserved, yet the putative cis-acting centromeric DNA sequences bear little or no similarity across species. Recently, studies in several systems have revealed that the centromere itself might be epigenetically regulated and that the higher-order structure of the underlying heterochromatin contributes to centromere function and kinetochore assembly.
Collapse
Affiliation(s)
- G H Karpen
- Molecular Biology and Virology Laboratory, Salk Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
65
|
Abstract
The methods available for analysis of the chromatin of Schizosaccharomyces pombe are time consuming (>8 h) and/or result in some degradation of the chromatin. Here we report an optimised method for the preparation of spheroplasts and the isolation of nuclei which takes <25 min and is suitable for analysis of chromatin structure by micrococcal nuclease, restriction endonuclease or by immunoprecipitation.
Collapse
Affiliation(s)
- J A Mason
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | |
Collapse
|
66
|
Lee JK, Huberman JA, Hurwitz J. Purification and characterization of a CENP-B homologue protein that binds to the centromeric K-type repeat DNA of Schizosaccharomyces pombe. Proc Natl Acad Sci U S A 1997; 94:8427-32. [PMID: 9237993 PMCID: PMC22944 DOI: 10.1073/pnas.94.16.8427] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have purified and characterized a novel 60-kDa protein that binds to centromeric K-type repeat DNA from Schizosaccharomyces pombe. This protein was initially purified by its ability to bind to the autonomously replicating sequence 3002 DNA. Cloning of the gene encoding this protein revealed that it possesses significant homology to the mammalian centromere DNA-binding protein CENP-B and S. pombe Abp1, and this gene was designated as cbh+ (CENP-B homologue). Cbh protein specifically interacts in vitro with the K-type repeat DNA, which is essential for centromere function. The Cbh-binding consensus sequence was determined by DNase I footprinting assays as PyPuATATPyPuTA, featuring an inverted repeat of the first four nucleotides. Based on its binding activity to centromeric DNA and homology to centromere proteins, we suggest that this protein may be a functional homologue of the mammalian CENP-B in S. pombe.
Collapse
Affiliation(s)
- J K Lee
- Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | |
Collapse
|
67
|
Saitoh S, Takahashi K, Yanagida M. Mis6, a fission yeast inner centromere protein, acts during G1/S and forms specialized chromatin required for equal segregation. Cell 1997; 90:131-43. [PMID: 9230309 DOI: 10.1016/s0092-8674(00)80320-7] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Disorder in sister chromatid separation can lead to genome instability and cancer. A temperature-sensitive S. pombe mis6-302 frequently loses a minichromosome at 26 degrees C and abolishes equal segregation of regular chromosomes at 36 degrees C. The mis6+ gene is essential for viability, and its deletion results in missegregation identical to mis6-302. Mis6 acts before or at the onset of S phase, and mitotic missegregation defects are produced only after the passage of G1/S at 36 degrees C. Mis6 locates at the centromeres throughout the cell cycle. In the mutant, positioning of the centromeres becomes abnormal, and specialized chromatin in the inner centromeres, which give the smear micrococcal nuclease pattern in wild type, is disrupted. The ability to establish correct biorientation of sister centromeres in metaphase cells requires the Mis6-containing chromatin and originates during the passage of G1/S.
Collapse
Affiliation(s)
- S Saitoh
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashiraka-Oiwakecho, Sakyo-ku, Japan
| | | | | |
Collapse
|
68
|
Thon G, Friis T. Epigenetic inheritance of transcriptional silencing and switching competence in fission yeast. Genetics 1997; 145:685-96. [PMID: 9055078 PMCID: PMC1207853 DOI: 10.1093/genetics/145.3.685] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Epigenetic events allow the inheritance of phenotypic changes that are not caused by an alteration in DNA sequence. Here we characterize an epigenetic phenomenon occurring in the mating-type region of fission yeast. Cells of fission yeast switch between the P and M mating-type by interconverting their expressed mating-type cassette between two allelic forms, mat1-P and mat1-M. The switch results from gene conversions of mat1 by two silent cassettes, mat2-P and mat3-M, which are linked to each other and to mat1. GREWAL and KLAR observed that the ability to both switch mat1 and repress transcription near mat2-P and mat3-M was maintained epigenetically in a strain with an 8-kb deletion between mat2 and mat3. Using a strain very similar to theirs, we determined that interconversions between the switching- and silencing-proficient state and the switching and silencing-deficient state occurred less frequently than once per 1000 cell divisions. Although transcriptional silencing was alleviated by the 8-kb deletion, it was not abolished. We performed a mutant search and obtained a class of trans-acting mutations that displayed a strong cumulative effect with the 8-kb deletion. These mutations allow to assess the extent to which silencing is affected by the deletion and provide new insights on the redundancy of the silencing mechanism.
Collapse
Affiliation(s)
- G Thon
- Department of Genetics, Institute of Molecular Biology, University of Copenhagen, Denmark.
| | | |
Collapse
|
69
|
Shelby RD, Vafa O, Sullivan KF. Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. J Cell Biol 1997; 136:501-13. [PMID: 9024683 PMCID: PMC2134286 DOI: 10.1083/jcb.136.3.501] [Citation(s) in RCA: 250] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/1996] [Revised: 11/27/1996] [Indexed: 02/03/2023] Open
Abstract
We investigated the requirements for targeting the centromeric histone H3 homologue CENP-A for assembly at centromeres in human cells by transfection of epitope-tagged CENP-A derivatives into HeLa cells. Centromeric targeting is driven solely by the conserved histone fold domain of CENP-A. Using the crystal structure of histone H3 as a guide, a series of CENP-A/histone H3 chimeras was constructed to test the role of discrete structural elements of the histone fold domain. Three elements were identified that are necessary for efficient targeting to centromeres. Two correspond to contact sites between histone H3 and nucleosomal DNA. The third maps to a homotypic H3-H3 interaction site important for assembly of the (H3/H4)2 heterotetramer. Immunoprecipitation confirms that CENP-A self-associates in vivo. In addition, targeting requires that CENP-A expression is uncoupled from histone H3 synthesis during S phase. CENP-A mRNA accumulates later in the cell cycle than histone H3, peaking in G2. Isolation of the gene for human CENP-A revealed a regulatory motif in the promoter region that directs the late S/G2 expression of other cell cycle-dependent transcripts such as cdc2, cdc25C, and cyclin A. Our data suggest a mechanism for molecular recognition of centromeric DNA at the nucleosomal level mediated by a cooperative series of differentiated CENP-A-DNA contact sites arrayed across the surface of a CENP-A nucleosome and a distinctive assembly pathway occurring late in the cell cycle.
Collapse
Affiliation(s)
- R D Shelby
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
70
|
Shelby RD, Hahn KM, Sullivan KF. Dynamic elastic behavior of alpha-satellite DNA domains visualized in situ in living human cells. J Biophys Biochem Cytol 1996; 135:545-57. [PMID: 8909532 PMCID: PMC2121065 DOI: 10.1083/jcb.135.3.545] [Citation(s) in RCA: 171] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have constructed a fluorescent alpha-satellite DNA-binding protein to explore the motile and mechanical properties of human centromeres. A fusion protein consisting of human CENP-B coupled to the green fluorescent protein (GFP) of A. victoria specifically targets to centromeres when expressed in human cells. Morphometric analysis revealed that the alpha-satellite DNA domain bound by CENPB-GFP becomes elongated in mitosis in a microtubule-dependent fashion. Time lapse confocal microscopy in live mitotic cells revealed apparent elastic deformations of the central domain of the centromere that occurred during metaphase chromosome oscillations. These observations demonstrate that the interior region of the centromere behaves as an elastic element that could play a role in the mechanoregulatory mechanisms recently identified at centromeres. Fluorescent labeling of centromeres revealed that they disperse throughout the nucleus in a nearly isometric expansion during chromosome decondensation in telophase and early G1. During interphase, centromeres were primarily stationary, although motility of individual or small groups of centromeres was occasionally observed at very slow rates of 7-10 microns/h.
Collapse
Affiliation(s)
- R D Shelby
- Department of Cell Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
71
|
Smith MM, Yang P, Santisteban MS, Boone PW, Goldstein AT, Megee PC. A novel histone H4 mutant defective in nuclear division and mitotic chromosome transmission. Mol Cell Biol 1996; 16:1017-26. [PMID: 8622646 PMCID: PMC231084 DOI: 10.1128/mcb.16.3.1017] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The histone proteins are essential for the assembly and function of th e eukaryotic chromosome. Here we report the first isolation of a temperature-sensitive lethal histone H4 mutant defective in mitotic chromosome transmission Saccharomyces cerevisiae. The mutant requires two amino acid substitutions in histone H4: a lethal Thr-to-Ile change at position 82, which lies within one of the DNA-binding surfaces of the protein, and a substitution of Ala to Val at position 89 that is an intragenic suppressor. Genetic and biochemical evidence shows that the mutant histone H4 is temperature sensitive for function but not for synthesis, deposition, or stability. The chromatin structure of 2 micrometer circle minichromosomes is temperature sensitive in vivo, consistent with a defect in H4-DNA interactions. The mutant also has defects in transcription, displaying weak Spt- phenotypes. At the restrictive temperature, mutant cells arrest in the cell cycle at nuclear division, with a large bud, a single nucleus with 2C DNA content, and a short bipolar spindle. At semipermissive temperatures, the frequency of chromosome loss is elevated 60-fold in the mutant while DNA recombination frequencies are unaffected. High-copy CSE4, encoding an H3 variant related to the mammalian CENP-A kinetochore antigen, was found to suppress the temperature sensitivity of the mutant without suppressing the Spt- transcription defect. These genetic, biochemical, and phenotypic results indicate that this novel histone H4 mutant defines one or more chromatin-dependent steps in chromosome segregation.
Collapse
Affiliation(s)
- M M Smith
- Department of Microbiology, University of Virginia Cancer Center, Charlottesville, 22908, USA
| | | | | | | | | | | |
Collapse
|
72
|
Smerdon GR, Aves SJ, Walton EF. Production of human gastric lipase in the fission yeast Schizosaccharomyces pombe. Gene 1995; 165:313-8. [PMID: 8522196 DOI: 10.1016/0378-1119(95)00495-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A cDNA encoding human gastric lipase (hGL) has been expressed on multicopy plasmids in the fission yeast Schizosaccharomyces pombe (Sp). Active lipase is secreted from transformants containing the hGL cDNA under the control of either the Sp adh1 promoter (Padh1) or the plant cauliflower mosaic virus (CaMV) 35S promoter. Cell-wall-associated lipase activities are greatest in the early logarithmic growth phase and with Padh1. Western blot analysis indicates that a protein of identical molecular mass to natural hGL is secreted by Sp, although the major secreted product is of a higher molecular mass than either native hGL or recombinant hGL produced in the budding yeast Saccharomyces cerevisiae (Sc). Several distinct hGL are present within cells at all growth phases. Treatment of these proteins with endoglycosidase H gives rise to a single species equivalent in size to deglycosylated natural hGL, indicating that most of these are glycosylation intermediates. An hGL of similar molecular mass accumulates intracellularly in Sp when a modified version of cDNA is used which lacks the sequence encoding the natural secretory signal peptide. Production of hGL markedly slows the growth rate of Sp. The average copy number per cell of the plasmid expressing the hGL cDNA from the recombinant Padh1 is 2-3, as compared with 11-12 for the control plasmid.
Collapse
Affiliation(s)
- G R Smerdon
- Department of Biological Sciences, University of Exeter, UK
| | | | | |
Collapse
|
73
|
Schmidt R, West J, Love K, Lenehan Z, Lister C, Thompson H, Bouchez D, Dean C. Physical map and organization of Arabidopsis thaliana chromosome 4. Science 1995; 270:480-3. [PMID: 7570002 DOI: 10.1126/science.270.5235.480] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A physical map of Arabidopsis thaliana chromosome 4 was constructed in yeast artificial chromosome clones and used to analyze the organization of the chromosome. Mapping of the nucleolar organizing region and the centromere integrated the physical and cytogenetic maps. Detailed comparison of physical with genetic distances showed that the frequency of recombination varied substantially, with relative hot and cold spots occurring along the whole chromosome. Eight repeated DNA sequence families were found in a complex arrangement across the centromeric region and nowhere else on the chromosome.
Collapse
Affiliation(s)
- R Schmidt
- Department of Molecular Genetics, Biotechnology, John Innes Centre, Colney, Norwich, UK
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Smith JG, Caddle MS, Bulboaca GH, Wohlgemuth JG, Baum M, Clarke L, Calos MP. Replication of centromere II of Schizosaccharomyces pombe. Mol Cell Biol 1995; 15:5165-72. [PMID: 7651433 PMCID: PMC230763 DOI: 10.1128/mcb.15.9.5165] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The centromeric DNAs of Schizosaccharomyces pombe chromosomes resemble those of higher eukaryotes in being large and composed predominantly of repeated sequences. To begin a detailed analysis of the mode of replication of a complex centromere, we examined whether any sequences within S. pombe centromere II (cen2) have the ability to mediate autonomous replication. We found a high density of segments with such activity, including at least eight different regions comprising most of the repeated and unique centromeric DNA elements. A physical mapping analysis using two-dimensional gels showed that autonomous replication initiated within the S. pombe sequences in each plasmid. A two-dimensional gel analysis of replication on the chromosomes revealed that the K and L repeat elements, which occur in multiple copies at all three centromeres and comprise approximately 70% of total centromeric DNA mass in S. pombe, are both sites of replication initiation. In contrast, the unique cen2 central core, which contains multiple segments that can support autonomous replication, appears to be repressed for initiation on the chromosome. We discuss the implications of these findings for our understanding of DNA replication and centromere function.
Collapse
Affiliation(s)
- J G Smith
- Department of Genetics, Stanford University School of Medicine, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
75
|
Sipiczki M. Phylogenesis of fission yeasts. Contradictions surrounding the origin of a century old genus. Antonie Van Leeuwenhoek 1995; 68:119-49. [PMID: 8546451 DOI: 10.1007/bf00873099] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The phylogenesis of fungi is controversial due to their simple morphology and poor fossilization. Traditional classification supported by morphological studies and physiological traits placed the fission yeasts in one group with ascomycetous yeasts. The rRNA sequence comparisons, however, revealed an enormous evolutionary gap between Saccharomyces and Schizosaccharomyces. As shown in this review, the protein sequences also show a large gap which is almost as large as that separating Schizosaccharomyces from higher animals. Since the two yeasts share features (both cytological and molecular) in common which are also characteristic of ascomycetous fungi, their separation must have taken place later than the sequence differences may suggest. Possible reasons for the paradox are discussed. The sequence data also suggest a slower evolutionary rate in the Schizosaccharomyces lineage than in the Saccharomyces branch. In the fission yeast lineage two ramifications can be supposed. First S. japonicus (Hasegawaea japonica) branched off, then S. octosporus (Octosporomyces octosporus) separated from S. pombe.
Collapse
Affiliation(s)
- M Sipiczki
- Department of Genetics, University of Debrecen, Hungary
| |
Collapse
|
76
|
Ford RA, Bhattacharjee JK. Molecular properties of the lys1+ gene and the regulation of alpha-aminoadipate reductase in Schizosaccharomyces pombe. Curr Genet 1995; 28:131-7. [PMID: 8590464 DOI: 10.1007/bf00315779] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The alpha-aminoadipate pathway for the biosynthesis of lysine is unique to fungi. Molecular properties of the cloned lys1+ gene and the regulation of the encoded alpha-aminoadipate reductase (AAR) were investigated in the fission yeast Schizosaccharomyces pombe. A 5.2-kb HindIII-EcoRI fragment of S. pombe DNA, containing a functional lys1+ gene and a promoter, was subcloned to make the 10.7-kb plasmid pLYS1H. A nested 1.778-kb HindIII-EcoRI DNA fragment that complemented the lys1-131 mutant phenotype was sequenced from the plasmid pLYS1D, and shown to contain an open reading frame (ORF) of 470 amino acids, preceded by putative POLII promoter elements (TATA and CCAAT box elements, and two potential yeast GCN4-binding motifs) within 368 bp upstream of the start codon. This ORF shared with the corresponding region of the isofunctional AAR of Saccharomyces cerevisiae 49% amino-acid identity (62% similarity) overall, within which were smaller regions of marked sequence conservation. One such region coincided (95% identity) with a putative AMP-binding domain motif identified in the AAR of S. cerevisiae. In wild-type S. pombe, AAR activity from cells grown in lysine-supplemented minimal or YEPD media was less than the activity of cells grown in minimal medium. The AAR of S. pombe was more sensitive to feedback inhibition by lysine in vitro than the AAR of S. cerevisiae. These results show the effects of extensive evolutionary divergence on the structure and expression of a pivotal enzyme in the alpha-aminoadipate pathway. Presumably, delineated regions of strong sequence conservation correspond to discrete domains essential to AAR function.
Collapse
Affiliation(s)
- R A Ford
- Department of Microbiology, Miami University, Oxford, OH 45056, USA
| | | |
Collapse
|
77
|
Allshire RC. Elements of chromosome structure and function in fission yeast. SEMINARS IN CELL BIOLOGY 1995; 6:55-64. [PMID: 7548843 DOI: 10.1016/1043-4682(95)90001-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The investigation of fission yeast chromosome structure and function has moved rapidly over the past 10 years. The isolation of replication origins, telomeres and centromeres has allowed the development of minichromosomes, a yeast artificial chromosome (YAC)-like cloning system and investigations into chromosome segregation and behaviour during mitosis and meiosis. Many mutants have been isolated which are defective in chromosome segregation. The development of the fluorescent in-situ hybridization (FISH) technique for use in S. pombe has allowed the localization of centromeres and telomeres throughout mitosis and meiosis. In combination with indirect immunofluorescence to detect spindle and chromosomal proteins, the FISH technique should further advance our understanding of fission yeast chromosome structure and function. The recent discovery of a heterochromatin-like structure mediating transcriptional repression at centromeres reinforces the notion that fission yeast centromeres are similar to those of larger eukaryotes. Further characterization of such phenomena will accelerate the genetic dissection of this important chromosomal element.
Collapse
Affiliation(s)
- R C Allshire
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, Scotland, UK
| |
Collapse
|
78
|
Marschall LG, Clarke L. A novel cis-acting centromeric DNA element affects S. pombe centromeric chromatin structure at a distance. J Cell Biol 1995; 128:445-54. [PMID: 7860624 PMCID: PMC2199894 DOI: 10.1083/jcb.128.4.445] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The chromatin structure of the central core region of Schizosaccharomyces pombe centromeric DNA is unusual. This distinctive chromatin structure is associated only with central core sequences in a functional context and is modulated by a novel cis-acting DNA element (centromere enhancer) within the functionally critical K centromeric repeat, which is found in multiple copies in all three S. pombe centromeres. The centromere enhancer alters central core chromatin structure from a distance and in an orientation-independent manner without altering the nucleosomal packaging of sequences between the enhancer and the central core. These findings suggest a functionally relevant structural interaction between the enhancer and the centromeric central core brought about by DNA looping.
Collapse
Affiliation(s)
- L G Marschall
- Department of Biological Sciences, University of California, Santa Barbara 93106
| | | |
Collapse
|
79
|
Allshire RC, Nimmo ER, Ekwall K, Javerzat JP, Cranston G. Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev 1995; 9:218-33. [PMID: 7851795 DOI: 10.1101/gad.9.2.218] [Citation(s) in RCA: 371] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The ura4+ gene displays phenotypes consistent with variegated expression when inserted at 11 sites throughout fission yeast centromere 1. An abrupt transition occurs between the zone of centromeric repression and two adjacent expressed sites. Mutations in six genes alleviate repression of the silent-mating type loci and of ura4+ expressed from a site adjacent to the silent locus, mat3-M. Defects at all six loci affect repression of the ura4+ gene adjacent to telomeres and at the three centromeric sites tested. The clr4-S5 and rik1-304 mutations cause the most dramatic derepression at two out of three sites within cen1. All six mutations had only slight or intermediate effects on a third site in the center of cen1 or on telomeric repression. Strains with lesions at the clr4, rik1, and swi6 loci have highly elevated rates of chromosome loss. We propose that the products of these genes are integral in the assembly of a heterochromatin-like structure, with distinct domains, enclosing the entire centromeric region that reduces or excludes access to transcription factors. The formation of this heterochromatic structure may be an absolute requirement for the formation of a fully functional centromere.
Collapse
Affiliation(s)
- R C Allshire
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, Scotland, UK
| | | | | | | | | |
Collapse
|
80
|
Ferrer N, Azorín F, Villasante A, Gutiérrez C, Abad JP. Centromeric dodeca-satellite DNA sequences form fold-back structures. J Mol Biol 1995; 245:8-21. [PMID: 7823322 DOI: 10.1016/s0022-2836(95)80034-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The evolutionarily conserved centromeric dodeca-satellite DNA has an asymmetric distribution of guanine and cytosine residues resulting in one strand being relatively G-rich. This dodeca-satellite G-strand contains a GGGA-tract that is similar to the homopurine tracts found in most telomeric DNA sequences. Here, we show that the dodeca-satellite G-strand forms intramolecular hairpin structures that are stabilized by the formation of non-Watson-Crick G.A pairs as well as regular Watson-Crick G.C pairs. Special stacking interactions are also likely to contribute significantly to the stability of this structure. This hairpin conformation melts at relatively high temperature, around 75 degrees C, and is detected under many different ionic and pH conditions. As judged by electron microscopy visualization, these structures can be formed in a B-DNA environment. Under the same experimental conditions, neither the C-strand nor the double-stranded dodeca-satellite DNA were found to form any unusual DNA structure. A protein activity has been detected that preferentially binds to the single-stranded dodeca-satellite C-strand. The biological relevance of these results is discussed in view of the similarities to telomeric DNA.
Collapse
Affiliation(s)
- N Ferrer
- Department de Biologia Molecular i Cellular, Centre d'Investigació i Desenvolupament-CSIC, Barcelona, Spain
| | | | | | | | | |
Collapse
|
81
|
Sullivan KF, Hechenberger M, Masri K. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J Cell Biol 1994; 127:581-92. [PMID: 7962047 PMCID: PMC2120219 DOI: 10.1083/jcb.127.3.581] [Citation(s) in RCA: 353] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Centromeres are the differentiated chromosomal domains that specify the mitotic behavior of chromosomes. To examine the molecular basis for the specification of centromeric chromatin, we have cloned a human cDNA that encodes the 17-kD histone-like centromere antigen, CENP-A. Two domains are evident in the 140 aa CENP-A polypeptide: a unique NH2-terminal domain and a 93-amino acid COOH-terminal domain that shares 62% identity with nucleosomal core protein, histone H3. An epitope tagged derivative of CENP-A was faithfully targeted to centromeres when expressed in a variety of animal cells and this targeting activity was shown to reside in the histone-like COOH-terminal domain of CENP-A. These data clearly indicate that the assembly of centromeres is driven, at least in part, by the incorporation of a novel core histone into centromeric chromatin.
Collapse
Affiliation(s)
- K F Sullivan
- Department of Cell Biology, Scripps Research Institute, La Jolla, California 92037
| | | | | |
Collapse
|
82
|
Abstract
We report that human telomeres have an unusual chromatin structure characterized by diffuse micrococcal nuclease patterns. The altered chromatin manifested itself only in human telomeres that are relatively short (2 to 7 kb). In contrast, human and mouse telomeres with telomeric repeat arrays of 14 to 150 kb displayed a more canonical chromatin structure with extensive arrays of tightly packed nucleosomes. All telomeric nucleosomes showed a shorter repeat size than bulk nucleosomes, and telomeric mononucleosomal particles were found to be hypersensitive to micrococcal nuclease. However, telomeric nucleosomes were similar to bulk nucleosomes in the rate at which they sedimented through sucrose gradients. We speculate that mammalian telomeres have a bipartite structure with unusual chromatin near the telomere terminus and a more canonical nucleosomal organization in the proximal part of the telomere.
Collapse
|
83
|
Abstract
We report that human telomeres have an unusual chromatin structure characterized by diffuse micrococcal nuclease patterns. The altered chromatin manifested itself only in human telomeres that are relatively short (2 to 7 kb). In contrast, human and mouse telomeres with telomeric repeat arrays of 14 to 150 kb displayed a more canonical chromatin structure with extensive arrays of tightly packed nucleosomes. All telomeric nucleosomes showed a shorter repeat size than bulk nucleosomes, and telomeric mononucleosomal particles were found to be hypersensitive to micrococcal nuclease. However, telomeric nucleosomes were similar to bulk nucleosomes in the rate at which they sedimented through sucrose gradients. We speculate that mammalian telomeres have a bipartite structure with unusual chromatin near the telomere terminus and a more canonical nucleosomal organization in the proximal part of the telomere.
Collapse
Affiliation(s)
- H Tommerup
- Rockefeller University, New York, New York 10021
| | | | | |
Collapse
|
84
|
Baum M, Ngan VK, Clarke L. The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere. Mol Biol Cell 1994; 5:747-61. [PMID: 7812044 PMCID: PMC301093 DOI: 10.1091/mbc.5.7.747] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The DNA requirements for centromere function in fission yeast have been investigated using a minichromosome assay system. Critical elements of Schizosaccharomyces pombe centromeric DNA are portions of the centromeric central core and sequences within a 2.1-kilobase segment found on all three chromosomes as part of the K-type (K/K"/dg) centromeric repeat. The S. pombe centromeric central core contains DNA sequences that appear functionally redundant, and the inverted repeat motif that flanks the central core in all native fission yeast centromeres is not essential for centromere function in circular minichromosomes. Tandem copies of centromeric repeat K", in conjunction with the central core, exert an additive effect on centromere function, increasing minichromosome mitotic stability with each additional copy. Centromeric repeats B and L, however, and parts of the central core and its core-associated repeat are dispensable and cannot substitute for K-type sequences. Several specific protein binding sites have been identified within the centromeric K-type repeat, consistent with a recently proposed model for centromere/kinetochore function in S. pombe.
Collapse
Affiliation(s)
- M Baum
- Department of Biological Sciences, University of California, Santa Barbara 93106
| | | | | |
Collapse
|
85
|
Heus JJ, Zonneveld BJ, Steensma HY, Van den Berg JA. Mutational analysis of centromeric DNA elements of Kluyveromyces lactis and their role in determining the species specificity of the highly homologous centromeres from K. lactis and Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:325-33. [PMID: 8190085 DOI: 10.1007/bf00301068] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The centromere of Kluyveromyces lactis was delimited to a region of approximately 280 bp, encompassing KlCDEI, II, and III. Removal of 6 bp from the right side of KlCDEIII plus flanking sequences abolished centromere function, and removal of 5 bp of KlCDEI and flanking sequences resulted in strongly reduced centromere function. Deletions of 20-80 bp from KlCDEII resulted in a decrease in plasmid stability, indicating that KlCDEII must have a certain length for proper centromere function. Centromeres of K. lactis do not function in Saccharomyces cerevisiae and vice versa. Adapting the length of KlCDEII to that of ScCDEII did not improve KlCEN function in S. cerevisiae, while doubling the ScCDEII length did not improve ScCEN function in K. lactis. Thus the difference in CDEII length is not in itself responsible for the species specificity of the centromeres from each of the two species of budding yeast. A chimeric K. lactis centromere with ScCDEIII instead of KlCDEIII was no longer functional in K. lactis, but did improve plasmid stability in S. cerevisiae, although to a much lower level than a wild-type ScCEN. This indicates that the exact CDEIII sequence is important, and suggests that the flanking AT-rich CDEII has to conform to specific sequence requirements.
Collapse
Affiliation(s)
- J J Heus
- Clusius Laboratory, Department of Molecular and Cellular Biology, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
86
|
McManus J, Perry P, Sumner AT, Wright DM, Thomson EJ, Allshire RC, Hastie ND, Bickmore WA. Unusual chromosome structure of fission yeast DNA in mouse cells. J Cell Sci 1994; 107 ( Pt 3):469-86. [PMID: 8006067 DOI: 10.1242/jcs.107.3.469] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Chromosomes from the fission yeast Schizosaccharomyces pombe have been introduced into mouse cells by protoplast fusion. In most cell lines the yeast DNA integrates into a single site within a mouse chromosome and results in striking chromosome morphology at metaphase. Both light and electron microscopy show that the yeast chromosome region is narrower than the flanking mouse DNA. Regions of the yeast insert stain less intensely with propidium iodide than surrounding DNA and bear a morphological resemblance to fragile sites. We investigate the composition of the yeast transgenomes and the modification and chromatin structure of this yeast DNA in mouse cells. We suggest that the underlying basis for the structure we see lies above the level of DNA modification and nucleosome assembly, and may reflect the attachment of the yeast DNA to the rodent cell nucleoskeleton. The yeast integrant replicates late in S phase at a time when G bands of the mouse chromosomes are being replicated, and participates in sister chromatid exchanges at a high frequency. We discuss the implications of these studies to the understanding of how chromatin folding relates to metaphase chromosome morphology and how large stretches of foreign DNA behave when introduced into mammalian cells.
Collapse
Affiliation(s)
- J McManus
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, Scotland
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Abstract
Chromatin structure at Schizosaccharomyces pombe centromeres is unusual. The insertion of the ura4 gene within these centromeres resulted in genetically identical cells mosaic for its expression. Placement of the ade6 gene within cen1 or cen3 resulted in red-white sectored colonies, demonstrating the instability of gene expression. The occurrence of pink colonies implied that intermediate levels of repression were established. Repression of both genes within centromeres was temperature sensitive. The chromatin structure of the ura4 gene at centromeres was altered, suggesting that the unusual chromatin encroaches into the gene and inhibits normal expression. These repressive effects at S. pombe centromeres resemble the classical phenomenon of position effect variegation imposed by Drosophila heterochromatin on nearby genes. However, since the epigenetic states can be set at intermediate levels of expression, a purely euchromatin-heterochromatin dichotomy does not apply. A model for the epigenetic regulation of genes placed within S. pombe centromeres is presented.
Collapse
Affiliation(s)
- R C Allshire
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, Scotland
| | | | | | | |
Collapse
|
88
|
Heus JJ, Bloom KS, Zonneveld BJ, Steensma HY, Van den Berg JA. Chromatin structures of Kluyveromyces lactis centromeres in K. lactis and Saccharomyces cerevisiae. Chromosoma 1993; 102:660-7. [PMID: 8306828 DOI: 10.1007/bf00352314] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have investigated the chromatin structure of Kluyveromyces lactis centromeres in isolated nuclei of K. lactis and Saccharomyces cerevisiae by using micrococcal nuclease and DNAse I digestion. The protected region found in K. lactis is approximately 270 bp long and encompasses the centromeric DNA elements, KlCDEI, KlCDEII, and KlCDEIII, but not KlCDE0. Halving KlCDEII to 82 bp impaired centromere function and led to a smaller protected structure (210 bp). Likewise, deletion of 5 bp from KlCDEI plus adjacent flanking sequences resulted in a smaller protected region and a decrease in centromere function. The chromatin structures of KlCEN2 and KlCEN4 present on plasmids were found to be similar to the structures of the corresponding centromeres in their chromosomal context. A different protection pattern of KlCEN2 was detected in S. cerevisiae, suggesting that KlCEN2 is not properly recognized by at least one of the centromere binding proteins of S. cerevisiae. The difference is mainly found at the KlCDEIII side of the structure. This suggests that one of the components of the ScCBF3-complex is not able to bind to KlCDEIII, which could explain the species specificity of K. lactis and S. cerevisiae centromeres.
Collapse
Affiliation(s)
- J J Heus
- Clusius Laboratory, Department of Molecular and Cellular Biology, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
89
|
Ueki N, Momoi H, Yamada H, Mizuno T. Distribution of bent DNA structures in the fission yeast centromere. Gene X 1993; 132:247-50. [PMID: 8224870 DOI: 10.1016/0378-1119(93)90202-e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To gain a clue as to the functional significance of DNA curvature, we experimentally characterized the distribution of bent DNA structures throughout the 35-kb cen1 sequence, one of the isolated functional centromeric DNA of the fission yeast, Schizosaccharomyces pombe. It was revealed that a relatively large central portion of cen1, covering a 2.2-kb DNA sequence, displays a remarkable DNA curvature.
Collapse
Affiliation(s)
- N Ueki
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Japan
| | | | | | | |
Collapse
|
90
|
Centromeres of the fission yeast Schizosaccharomyces pombe are highly variable genetic loci. Mol Cell Biol 1993. [PMID: 8336703 DOI: 10.1128/mcb.13.8.4578] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gross variations in the structure of the centromere of Schizosaccharomyces pombe chromosome III (cen3) were apparent following characterization of this centromeric DNA in strain Sp223 and comparison of the structure with that of cen3 in three other commonly used laboratory strains. Further differences in centromere structure were revealed when the structure of the centromere of S. pombe chromosome II (cen2) was compared among common laboratory strains and when the structures of cen2 and cen3 from our laboratory strains were compared with those reported from other laboratories. Differences observed in cen3 structure include variations in the arrangement of the centromeric K repeats and an inverted orientation of the conserved centromeric central core. In addition, we have identified two laboratory strains that contain a minimal cen2 repeat structure that lacks the tandem copies of the cen2-specific block of K-L-B-J repeats characteristic of Sp223 cen2. We have also determined that certain centromeric DNA structural motifs are relatively conserved among the four laboratory strains and eight additional wild-type S. pombe strains isolated from various food and beverage sources. We conclude that in S. pombe, as in higher eukaryotes, the centromere of a particular chromosome is not a defined genetic locus but can contain significant variability. However, the basic DNA structural motif of a central core immediately flanked by inverted repeats is a common parameter of the S. pombe centromere.
Collapse
|
91
|
Steiner NC, Hahnenberger KM, Clarke L. Centromeres of the fission yeast Schizosaccharomyces pombe are highly variable genetic loci. Mol Cell Biol 1993; 13:4578-87. [PMID: 8336703 PMCID: PMC360078 DOI: 10.1128/mcb.13.8.4578-4587.1993] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Gross variations in the structure of the centromere of Schizosaccharomyces pombe chromosome III (cen3) were apparent following characterization of this centromeric DNA in strain Sp223 and comparison of the structure with that of cen3 in three other commonly used laboratory strains. Further differences in centromere structure were revealed when the structure of the centromere of S. pombe chromosome II (cen2) was compared among common laboratory strains and when the structures of cen2 and cen3 from our laboratory strains were compared with those reported from other laboratories. Differences observed in cen3 structure include variations in the arrangement of the centromeric K repeats and an inverted orientation of the conserved centromeric central core. In addition, we have identified two laboratory strains that contain a minimal cen2 repeat structure that lacks the tandem copies of the cen2-specific block of K-L-B-J repeats characteristic of Sp223 cen2. We have also determined that certain centromeric DNA structural motifs are relatively conserved among the four laboratory strains and eight additional wild-type S. pombe strains isolated from various food and beverage sources. We conclude that in S. pombe, as in higher eukaryotes, the centromere of a particular chromosome is not a defined genetic locus but can contain significant variability. However, the basic DNA structural motif of a central core immediately flanked by inverted repeats is a common parameter of the S. pombe centromere.
Collapse
Affiliation(s)
- N C Steiner
- Department of Biological Sciences, University of California, Santa Barbara 93106
| | | | | |
Collapse
|
92
|
Wevrick R, Willard VP, Willard HF. Structure of DNA near long tandem arrays of alpha satellite DNA at the centromere of human chromosome 7. Genomics 1992; 14:912-23. [PMID: 1478672 DOI: 10.1016/s0888-7543(05)80112-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The centromeric regions of human chromosomes contain long tracts of tandemly repeated DNA, of which the most extensively characterized is alpha satellite. In a screen for additional centromeric DNA sequences, four phage clones were obtained which contain alpha satellite as well as other sequences not usually found associated with tandemly repeated alpha satellite DNA, including L1 repetitive elements, an Alu element, and a novel AT-rich repeated sequence. The alpha satellite DNA contained within these clones does not demonstrate the higher-order repeat structure typical of tandemly repeated alpha satellite. Two of the clones contain inversions; instead of the usual head-to-tail arrangement of alpha satellite monomers, the direction of the monomers changes partway through each clone. The presence of both inversions was confirmed in human genomic DNA by polymerase chain reaction amplification of the inverted regions. One phage clone contains a junction between alpha satellite DNA and a novel low-copy repeated sequence. The junction between the two types of DNA is abrupt and the junction sequence is characterized by the presence of runs of A's and T's, yielding an overall base composition of 65% AT with local areas > 80% AT. The AT-rich sequence is found in multiple copies on chromosome 7 and homologous sequences are found in (peri)centromeric locations on other human chromosomes, including chromosomes 1, 2, and 16. As such, the AT-rich sequence adjacent to alpha satellite DNA provides a tool for the further study of the DNA from this region of the chromosome. The phage clones examined are located within the same 3.3-Mb SstII restriction fragment on chromosome 7 as the two previously described alpha satellite arrays, D7Z1 and D7Z2. These new clones demonstrate that centromeric repetitive DNA, at least on chromosome 7, may be more heterogeneous in composition and organization than had previously been thought.
Collapse
Affiliation(s)
- R Wevrick
- Department of Genetics, Stanford University, California 94305
| | | | | |
Collapse
|
93
|
Gubbay J, Vivian N, Economou A, Jackson D, Goodfellow P, Lovell-Badge R. Inverted repeat structure of the Sry locus in mice. Proc Natl Acad Sci U S A 1992; 89:7953-7. [PMID: 1518820 PMCID: PMC49833 DOI: 10.1073/pnas.89.17.7953] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The testis-determining gene Sry is located on the short arm of the mouse Y chromosome in a region known to have undergone duplications and rearrangements in comparison with the equivalent portion of the human Y chromosome. Detailed analysis of the Sry genomic locus reveals a further difference in that the mouse Sry open reading frame lies within 2.8 kilobases of unique sequence at the center of a large inverted repeat. This repeat, which is found in both Mus musculus musculus and Mus musculus domesticus Y chromosomes, is not present at the human SRY locus. Recombination involving the repeat region may have led to an 11-kilobase deletion, precisely excising Sry in a line of XY female mice.
Collapse
Affiliation(s)
- J Gubbay
- Laboratory of Eukaryotic Molecular Genetics, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
94
|
Godde JS, Widom J. Chromatin structure of Schizosaccharomyces pombe. A nucleosome repeat length that is shorter than the chromatosomal DNA length. J Mol Biol 1992; 226:1009-25. [PMID: 1518041 DOI: 10.1016/0022-2836(92)91049-u] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have used new methods for chromatin isolation, together with conventional methods for measuring the nucleosome repeat length, to determine the repeat length of Schizosaccharomyces pombe chromatin. We obtain a result of 156(+/- 2) bp. Equivalent results are obtained using a psoralen crosslinking method for measuring the repeat length in viable spheroplasts. That result, together with other control experiments, rules out many possible artifacts. The measured value of 156(+/- 2) bp is smaller than the length of DNA found in the chromatosome. Thus, the chromatosome cannot be the fundamental unit of chromatin structure in all eukaryotes. The crossed linker model of chromatin higher order structure is incompatible with a nucleosome repeat length of 156 bp, and thus cannot apply to all eukaryotes. The solenoid model of higher order structure is compatible with this repeat length only if the solenoid is right-handed. We note two other properties of this chromatin. (1) Early in digestion, the DNA length of mononucleosomes from S. pombe and Aspergillus nidulans exceeds the nucleosome repeat length. (2) Many methods for isolating chromatin from S. pombe yield an apparent nucleosome repeat length of less than or equal to 140 bp; this result is found to be an artifactual consequence of nucleosome sliding.
Collapse
Affiliation(s)
- J S Godde
- Department of Biochemistry, University of Illinois, Urbana 61801
| | | |
Collapse
|
95
|
Abstract
A mitotically unstable chromosome, detectable because of mosaic expression of marker genes, was generated by X-ray mutagenesis in Drosophila. Nondisjunction of this chromosome is evident in mitotic chromosome preparations, and premature sister chromatid separation is frequent. The mosaic phenotype is modified by genetic elements that are thought to alter chromatin structure. We hypothesize that the mitotic defects result from a breakpoint deep in the pericentric heterochromatin, within or very near to the DNA sequences essential for centromere function. This unique chromosome may provide a tool for the genetic and molecular dissection of a higher eukaryotic centromere.
Collapse
Affiliation(s)
- D R Wines
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | |
Collapse
|
96
|
Takahashi K, Murakami S, Chikashige Y, Funabiki H, Niwa O, Yanagida M. A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere. Mol Biol Cell 1992; 3:819-35. [PMID: 1515677 PMCID: PMC275637 DOI: 10.1091/mbc.3.7.819] [Citation(s) in RCA: 212] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Fission yeast centromeres vary in size but are organized in a similar fashion. Each consists of two distinct domains, namely, the approximately 15-kilobase (kb) central region (cnt+imr), containing chromosome-specific low copy number sequences, and 20- to 100-kb outer surrounding sequences (otr) with highly repetitive motifs common to all centromeres. The central region consists of an inner asymmetric sequence flanked by inverted repeats that exhibit strict identity with each other. Nucleotide changes in the left repeat are always accompanied with the same changes in the right. The chromatin structure of the central region is unusual. A nucleosomal nuclease digestion pattern formed on unstable plasmids but not on stable chromosome. DNase I hypersensitive sites correlate with the location of tRNA genes in the central region. Autonomously replicating sequences are also present in the central region. The behavior of truncated minichromosomes suggested that the central region is essential, but not sufficient, to confer transmission stability. A portion of the outer repetitive region is also required. A larger outer region is necessary to ensure correct meiotic behavior. Fluorescence in situ hybridization identified individual cens. In the interphase, they cluster near the nuclear periphery. The central sequence (cnt+imr) may play a role in positioning individual chromosomes within the nucleus, whereas the outer regions (otr) may interact with each other to form the higher-order complex structure.
Collapse
Affiliation(s)
- K Takahashi
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
97
|
Abstract
Centromeres and telomeres are both composed of specific DNA sequences and unique chromosomal proteins. Isolation and characterization of some of these sequences and proteins has greatly increased our knowledge of centromere and telomere structure. This information is allowing us to determine how centromeres and telomeres perform their various roles in a cell.
Collapse
Affiliation(s)
- C M Price
- Department of Chemistry, University of Nebraska, Lincoln 68588
| |
Collapse
|
98
|
Pretorius GH, Muller HE. Conservation of binding site specificity of three yeast DNA binding proteins. FEBS Lett 1992; 298:203-5. [PMID: 1544445 DOI: 10.1016/0014-5793(92)80057-n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sequence specific binding of protein extracts from 13 different yeast species to three oligonucleotide probes and two points mutants derived from Saccharomyces cerevisiae DNA binding proteins were tested using mobility shift assays. The probes were high affinity binding sites for GRF1/RAP1/ABF1 and CP1/CPF1. Most yeasts in the genus Saccharomyces showed specific binding to all three probes and also displayed similar sequence requirements when challenged by molar excesses of mutant probes. The affinities for the probes varied amongst the other yeasts tested, but in general, CPF1 binding activity was the most widespread, while the other two were more limited.
Collapse
Affiliation(s)
- G H Pretorius
- Department of Microbiology and Biochemistry, University of the Orange Free State, Bloemfontein, South Africa
| | | |
Collapse
|
99
|
Abstract
Recent studies have begun to yield some insight into the structural and regulatory components of centromeres, and new assays have been developed that promise to be of use in advancing our understanding of centromere structure and function. In the budding yeast Saccharomyces cerevisiae new proteins that are required for centromere function have been identified and an in vitro microtubule-binding assay that should assist in dissecting the process of centromere microtubule attachment has been developed. The centromere-specific DNA sequences in the fission yeast Schizosaccharomyces pombe have been identified and partially characterized. In addition, several mammalian centromere proteins have been further characterized, and localization and inhibition studies suggest roles for these proteins in the regulation and assembly of a functional kinetochore.
Collapse
Affiliation(s)
- W C Earnshaw
- Department of Cell Biology and Anatomy, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | | |
Collapse
|
100
|
Sullivan KF, Glass CA. CENP-B is a highly conserved mammalian centromere protein with homology to the helix-loop-helix family of proteins. Chromosoma 1991; 100:360-70. [PMID: 1893793 DOI: 10.1007/bf00337514] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CENP-B is a centromere associated protein originally identified in human cells as an 80 kDa autoantigen recognized by sera from patients with anti-centromere antibodies (ACA). Recent evidence indicates that CENP-B interacts with centromeric heterochromatin in human chromosomes and may bind to a specific subset of human alphoid satellite DNA. CENP-B has not been unambiguously identified in non-primates and could, in principal, be a primate-specific alphoid DNA binding protein. In this work, a human genomic DNA segment containing the CENP-B gene was isolated and subjected to DNA sequence analysis. In vitro expression identified the site for translation initiation of CENP-B, demonstrating that it is encoded by an intronless open reading frame (ORF) in human DNA. A homologous mouse gene was also isolated and characterized. It was found to possess a high degree of homology with the human gene, containing an intronless ORF coding for a 599 residue polypeptide with 96% sequence similarity to human CENP-B. 5' and 3' flanking and untranslated sequences were conserved at a level of 94.6% and 82.7%, respectively, suggesting that the regulatory properties of CENP-B may be conserved as well. CENP-B mRNA was detected in mouse cells and tissues and an immunoreactive nuclear protein identical in size to human CENP-B was detected in mouse 3T3 cells using human ACA. Analysis of the sequence of CENP-B revealed a segment of significant similarity to a DNA binding motif identified for the helix-loop-helix (HLH) family of DNA binding proteins. These data demonstrate that CENP-B is a highly conserved mammalian protein that may be a member of the HLH protein family and suggest that it plays a role in a conserved aspect of centromere structure or function.
Collapse
Affiliation(s)
- K F Sullivan
- Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, CA 92037
| | | |
Collapse
|