51
|
Flaibani M, Boldrin L, Cimetta E, Piccoli M, Coppi PD, Elvassore N. Muscle Differentiation and Myotubes Alignment Is Influenced by Micropatterned Surfaces and Exogenous Electrical Stimulation. Tissue Eng Part A 2009; 15:2447-57. [DOI: 10.1089/ten.tea.2008.0301] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Marina Flaibani
- Department of Chemical Engineering Principles and Practice, University of Padova, Padova, Italy
| | - Luisa Boldrin
- Stem Cell Processing Laboratory and Division of Paediatric Surgery, Department of Paediatrics, University of Padova, Padova, Italy
| | - Elisa Cimetta
- Department of Chemical Engineering Principles and Practice, University of Padova, Padova, Italy
| | - Martina Piccoli
- Stem Cell Processing Laboratory and Division of Paediatric Surgery, Department of Paediatrics, University of Padova, Padova, Italy
| | - Paolo De Coppi
- Stem Cell Processing Laboratory and Division of Paediatric Surgery, Department of Paediatrics, University of Padova, Padova, Italy
- Surgery Unit, UCL Institute of Child Health and Great Ormond Street Hospital, London, United Kingdom
| | - Nicola Elvassore
- Department of Chemical Engineering Principles and Practice, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
52
|
Deponti D, Buono R, Catanzaro G, De Palma C, Longhi R, Meneveri R, Bresolin N, Bassi MT, Cossu G, Clementi E, Brunelli S. The low-affinity receptor for neurotrophins p75NTR plays a key role for satellite cell function in muscle repair acting via RhoA. Mol Biol Cell 2009; 20:3620-7. [PMID: 19553472 PMCID: PMC2777922 DOI: 10.1091/mbc.e09-01-0012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 06/15/2009] [Indexed: 11/11/2022] Open
Abstract
Regeneration of muscle fibers, lost during pathological muscle degeneration or after injuries, is mediated by the production of new myofibres. This process, sustained by the resident stem cells of the muscle, the satellite cells, is finely regulated by local cues, in particular by cytokines and growth factors. Evidence in the literature suggests that nerve growth factor (NGF) is involved in muscle fiber regeneration; however, its role and mechanism of action were unclear. We have investigated this issue in in vivo mouse models of muscle regeneration and in primary myogenic cells. Our results demonstrate that NGF acts through its low-affinity receptor p75(NTR) in a developmentally regulated signaling pathway necessary to myogenic differentiation and muscle repair in vivo. We also demonstrate that this action of NGF is mediated by the down-regulation of RhoA-GTP signaling in myogenic cells.
Collapse
MESH Headings
- Animals
- Cell Differentiation/physiology
- Cell Fusion
- Cells, Cultured
- Cytoskeleton/metabolism
- Humans
- Mice
- Muscle Fibers, Skeletal/physiology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiology
- Nerve Growth Factor/metabolism
- Receptors, Nerve Growth Factor/metabolism
- Regeneration/physiology
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/physiology
- Signal Transduction/physiology
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
| | - Roberta Buono
- Division of Regenerative Medicine, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giuseppina Catanzaro
- Division of Regenerative Medicine, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Clara De Palma
- Department of Preclinical Sciences, LITA-Vialba, University of Milano, 20157 Milan, Italy
| | - Renato Longhi
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche
| | - Raffaella Meneveri
- Department of Experimental Medicine, University of Milano-Bicocca, 20052 Monza, Italy
| | - Nereo Bresolin
- *E. Medea Scientific Institute, 23842 Bosisio Parini, Italy
- Department of Neurological Sciences, University of Milano, 20129 Milan, Italy; and
| | | | - Giulio Cossu
- Division of Regenerative Medicine, San Raffaele Scientific Institute, 20132 Milan, Italy
- Department of Biology, University of Milano, 20130 Milan, Italy
| | - Emilio Clementi
- *E. Medea Scientific Institute, 23842 Bosisio Parini, Italy
- Department of Preclinical Sciences, LITA-Vialba, University of Milano, 20157 Milan, Italy
| | - Silvia Brunelli
- Division of Regenerative Medicine, San Raffaele Scientific Institute, 20132 Milan, Italy
- Department of Experimental Medicine, University of Milano-Bicocca, 20052 Monza, Italy
| |
Collapse
|
53
|
Tatsumi R, Sankoda Y, Anderson JE, Sato Y, Mizunoya W, Shimizu N, Suzuki T, Yamada M, Rhoads RP, Ikeuchi Y, Allen RE. Possible implication of satellite cells in regenerative motoneuritogenesis: HGF upregulates neural chemorepellent Sema3A during myogenic differentiation. Am J Physiol Cell Physiol 2009; 297:C238-52. [DOI: 10.1152/ajpcell.00161.2009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Regenerative coordination and remodeling of the intramuscular motoneuron network and neuromuscular connections are critical for restoring skeletal muscle function and physiological properties. The regulatory mechanisms of such coordination remain unclear, although both attractive and repulsive axon guidance molecules may be involved in the signaling pathway. Here we show that expression of a neural secreted chemorepellent semaphorin 3A (Sema3A) is remarkably upregulated in satellite cells of resident myogenic stem cells that are positioned beneath the basal lamina of mature muscle fibers, when treated with hepatocyte growth factor (HGF), established as an essential cue in muscle fiber growth and regeneration. When satellite cells were treated with HGF in primary cultures of cells or muscle fibers, Sema3A message and protein were upregulated as revealed by reverse transcription-polymerase chain reaction and immunochemical studies. Other growth factors had no inductive effect except for a slight effect of epidermal growth factor treatment. Sema3A upregulation was HGF dose dependent with a maximum (about 7- to 8-fold units relative to the control) at 10–25 ng/ml and occurred exclusively at the early-differentiation stage, as characterized by the level of myogenin expression and proliferation (bromodeoxyuridine incorporation) of the cells. Neutralizing antibody to the HGF-specific receptor, c-met, did not abolish the HGF response, indicating that c-met may not mediate the Sema3A expression signaling. Finally, in vivo Sema3A was upregulated in the differentiation phase of satellite cells isolated from muscle regenerating following crush injury. Overall, the data highlight a heretofore unexplored and active role for satellite cells as a key source of Sema3A expression triggered by HGF, hence suggesting that regenerative activity toward motor innervation may importantly reside in satellite cells and could be a crucial contributor during postnatal myogenesis.
Collapse
|
54
|
Benabdallah BF, Bouchentouf M, Rousseau J, Tremblay JP. Overexpression of Follistatin in Human Myoblasts Increases Their Proliferation and Differentiation, and Improves the Graft Success in SCID Mice. Cell Transplant 2009; 18:709-18. [DOI: 10.3727/096368909x470865] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Duchenne muscular dystrophy is caused by the absence of functional dystrophin, leading to the myofiber membrane instability and progressive muscle atrophy. Myoblast transplantation in dystrophic muscles is a potential therapy, as it permits the long-term restoration of dystrophin expression in transplanted muscles. However, the success of this approach is limited by the short period of muscle repair following myoblast transplantation. Myostatin, a powerful inhibitor of muscle growth, is involved in terminating the period of muscle repair following injury by reducing myoblast proliferation and differentiation. Follistatin forms a complex with myostatin, preventing its interaction with its receptor and thus blocking the myostatin signal. Here, we used a lentivirus to overexpress the follistatin protein in normal myoblasts to block the myostatin signaling. We measured the potential of transduced myoblasts to proliferate and to form multinucleated myotubes in vitro. And finally, we considered the engraftment success of those transduced myoblasts in comparison with control cells in vivo within SCID mice TA muscle. Our results first confirmed the overexpression of follistatin into lentivirus transduced myoblasts, and second showed that the overexpression of the follistatin in normal human myoblasts improved in vitro their proliferation rate by about 1.5-fold after 96 h and also their differentiation rate by about 1.6- and 1.8-fold, respectively, in the absence and in the presence of recombinant myostatin. Finally, our data demonstrated that the engraftment of human normal myoblasts overexpressing the follistatin protein into SCID mouse muscles was enhanced by twofold.
Collapse
Affiliation(s)
| | - M. Bouchentouf
- Génétique humaine, Centre de Recherche du CHUL, Québec, Canada
| | - J. Rousseau
- Génétique humaine, Centre de Recherche du CHUL, Québec, Canada
| | - J. P. Tremblay
- Génétique humaine, Centre de Recherche du CHUL, Québec, Canada
| |
Collapse
|
55
|
Gilson H, Schakman O, Kalista S, Lause P, Tsuchida K, Thissen JP. Follistatin induces muscle hypertrophy through satellite cell proliferation and inhibition of both myostatin and activin. Am J Physiol Endocrinol Metab 2009; 297:E157-64. [PMID: 19435857 DOI: 10.1152/ajpendo.00193.2009] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Follistatin (FS) inhibits several members of the TGF-beta superfamily, including myostatin (Mstn), a negative regulator of muscle growth. Mstn inhibition by FS represents a potential therapeutic approach of muscle atrophy. The aim of our study was to investigate the mechanisms of the FS-induced muscle hypertrophy. To test the role of satellite cells in the FS effect, we used irradiation to destroy their proliferative capacity. FS overexpression increased the muscle weight by about 37% in control animals, but the increase reached only 20% in irradiated muscle, supporting the role of cell proliferation in the FS-induced hypertrophy. Surprisingly, the muscle hypertrophy caused by FS reached the same magnitude in Mstn-KO as in WT mice, suggesting that Mstn might not be the only ligand of FS involved in the regulation of muscle mass. To assess the role of activin (Act), another FS ligand, in the FS-induced hypertrophy, we electroporated FSI-I, a FS mutant that does not bind Act with high affinity. Whereas FS electroporation increased muscle weight by 32%, the muscle weight gain induced by FSI-I reached only 14%. Furthermore, in Mstn-KO mice, FSI-I overexpression failed to induce hypertrophy, in contrast to FS. Therefore, these results suggest that Act inhibition may contribute to FS-induced hypertrophy. Finally, the role of Act as a regulator of muscle mass was supported by the observation that ActA overexpression induced muscle weight loss (-15%). In conclusion, our results show that satellite cell proliferation and both Mstn and Act inhibition are involved in the FS-induced muscle hypertrophy.
Collapse
Affiliation(s)
- Hélène Gilson
- Unité de Diabétologie et Nutrition, Université Catholique de Louvain, 54 Ave. Hippocrate, B-1200, Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
56
|
Tsuchida K, Nakatani M, Hitachi K, Uezumi A, Sunada Y, Ageta H, Inokuchi K. Activin signaling as an emerging target for therapeutic interventions. Cell Commun Signal 2009; 7:15. [PMID: 19538713 PMCID: PMC2713245 DOI: 10.1186/1478-811x-7-15] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 06/18/2009] [Indexed: 01/24/2023] Open
Abstract
After the initial discovery of activins as important regulators of reproduction, novel and diverse roles have been unraveled for them. Activins are expressed in various tissues and have a broad range of activities including the regulation of gonadal function, hormonal homeostasis, growth and differentiation of musculoskeletal tissues, regulation of growth and metastasis of cancer cells, proliferation and differentiation of embryonic stem cells, and even higher brain functions. Activins signal through a combination of type I and II transmembrane serine/threonine kinase receptors. Activin receptors are shared by multiple transforming growth factor-β (TGF-β) ligands such as myostatin, growth and differentiation factor-11 and nodal. Thus, although the activity of each ligand is distinct, they are also redundant, both physiologically and pathologically in vivo. Activin receptors activated by ligands phosphorylate the receptor-regulated Smads for TGF-β, Smad2 and 3. The Smad proteins then undergo multimerization with the co-mediator Smad4, and translocate into the nucleus to regulate the transcription of target genes in cooperation with nuclear cofactors. Signaling through receptors and Smads is controlled by multiple mechanisms including phosphorylation and other posttranslational modifications such as sumoylation, which affect potein localization, stability and transcriptional activity. Non-Smad signaling also plays an important role in activin signaling. Extracellularly, follistatin and related proteins bind to activins and related TGF-β ligands, and control the signaling and availability of ligands. The functions of activins through activin receptors are pleiotrophic, cell type-specific and contextual, and they are involved in the etiology and pathogenesis of a variety of diseases. Accordingly, activin signaling may be a target for therapeutic interventions. In this review, we summarize the current knowledge on activin signaling and discuss the potential roles of this pathway as a molecular target of therapy for metabolic diseases, musculoskeletal disorders, cancers and neural damages.
Collapse
Affiliation(s)
- Kunihiro Tsuchida
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| | | | | | | | | | | | | |
Collapse
|
57
|
Tirziu D, Simons M. Endothelium-driven myocardial growth or nitric oxide at the crossroads. Trends Cardiovasc Med 2009; 18:299-305. [PMID: 19345317 DOI: 10.1016/j.tcm.2009.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/19/2009] [Accepted: 01/21/2009] [Indexed: 12/12/2022]
Abstract
Endothelium lining the coronary vasculature and the heart chambers is a dynamic sensor that serves a variety of functions including bidirectional communications with cardiac myocytes. Among endothelium-released factors, nitric oxide exerts multifactorial effects on various cell types in the heart and may play a role in growth of the vasculature and myocardial hypertrophy. This review summarizes new data regarding the endothelium-to-myocyte signaling focusing on its role in regulation of cardiac hypertrophy through a nitric-oxide-mediated paracrine signal.
Collapse
Affiliation(s)
- Daniela Tirziu
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
58
|
Wang G, Burczynski FJ, Hasinoff BB, Zhang K, Lu Q, Anderson JE. Development of a Nitric Oxide-Releasing Analogue of the Muscle Relaxant Guaifenesin for Skeletal Muscle Satellite Cell Myogenesis. Mol Pharm 2009; 6:895-904. [PMID: 19317416 DOI: 10.1021/mp800226z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Guqi Wang
- McColl-Lockwood Laboratory, Carolinas Medical Center, Charlotte, North Carolina 28232, and Faculty of Pharmacy, Department of Human Anatomy and Cell Science, Faculty of Medicine, and Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | - Frank J. Burczynski
- McColl-Lockwood Laboratory, Carolinas Medical Center, Charlotte, North Carolina 28232, and Faculty of Pharmacy, Department of Human Anatomy and Cell Science, Faculty of Medicine, and Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | - Brian B. Hasinoff
- McColl-Lockwood Laboratory, Carolinas Medical Center, Charlotte, North Carolina 28232, and Faculty of Pharmacy, Department of Human Anatomy and Cell Science, Faculty of Medicine, and Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | - Kaidong Zhang
- McColl-Lockwood Laboratory, Carolinas Medical Center, Charlotte, North Carolina 28232, and Faculty of Pharmacy, Department of Human Anatomy and Cell Science, Faculty of Medicine, and Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | - Qilong Lu
- McColl-Lockwood Laboratory, Carolinas Medical Center, Charlotte, North Carolina 28232, and Faculty of Pharmacy, Department of Human Anatomy and Cell Science, Faculty of Medicine, and Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | - Judy E. Anderson
- McColl-Lockwood Laboratory, Carolinas Medical Center, Charlotte, North Carolina 28232, and Faculty of Pharmacy, Department of Human Anatomy and Cell Science, Faculty of Medicine, and Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| |
Collapse
|
59
|
Burdi R, Rolland JF, Fraysse B, Litvinova K, Cozzoli A, Giannuzzi V, Liantonio A, Camerino GM, Sblendorio V, Capogrosso RF, Palmieri B, Andreetta F, Confalonieri P, De Benedictis L, Montagnani M, De Luca A. Multiple pathological events in exercised dystrophic mdx mice are targeted by pentoxifylline: outcome of a large array of in vivo and ex vivo tests. J Appl Physiol (1985) 2009; 106:1311-24. [DOI: 10.1152/japplphysiol.90985.2008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The phosphodiesterases inhibitor pentoxifylline gained attention for Duchenne muscular dystrophy therapy for its claimed anti-inflammatory, antioxidant, and antifibrotic action. A recent finding also showed that pentoxifylline counteracts the abnormal overactivity of a voltage-independent calcium channel in myofibers of dystrophic mdx mice. The possible link between workload, altered calcium homeostasis, and oxidative stress pushed toward a more detailed investigation. Thus a 4- to 8-wk treatment with pentoxifylline (50 mg·kg−1·day−1 ip) was performed in mdx mice, undergoing or not a chronic exercise on treadmill. In vivo, the treatment partially increased forelimb strength and enhanced resistance to treadmill running in exercised animals. Ex vivo, pentoxifylline restored the mechanical threshold, an electrophysiological index of calcium homeostasis, and reduced resting cytosolic calcium in extensor digitorum longus muscle fibers. Mn quenching and patch-clamp technique confirmed that this effect was paralleled by a drug-induced reduction of membrane permeability to calcium. The treatment also significantly enhanced isometric tetanic tension in mdx diaphragm. The plasma levels of creatine kinase and reactive oxygen species were both significantly reduced in treated-exercised animals. Dihydroethidium staining, used as an indicator of reactive oxygen species production, showed that pentoxifylline significantly reduced the exercise-induced increase in fluorescence in the mdx tibialis anterior muscle. A significant decrease in connective tissue area and profibrotic cytokine transforming growth factor-β1 was solely found in tibialis anterior muscle. In both diaphragm and gastrocnemius muscle, a significant increase in neural cell adhesion molecule-positive area was instead observed. This data supports the interest toward pentoxifylline and allows insight in the level of cross talk between pathogenetic events in workloaded dystrophic muscle.
Collapse
|
60
|
Colussi C, Gurtner A, Rosati J, Illi B, Ragone G, Piaggio G, Moggio M, Lamperti C, D'Angelo G, Clementi E, Minetti G, Mozzetta C, Antonini A, Capogrossi MC, Puri PL, Gaetano C. Nitric oxide deficiency determines global chromatin changes in Duchenne muscular dystrophy. FASEB J 2009; 23:2131-41. [PMID: 19264835 DOI: 10.1096/fj.08-115618] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present study provides evidence that abnormal patterns of global histone modification are present in the skeletal muscle nuclei of mdx mice and Duchenne muscular dystrophy (DMD) patients. A combination of specific histone H3 modifications, including Ser-10 phosphorylation, acetylation of Lys 9 and 14, and Lys 79 methylation, were found enriched in muscle biopsies from human patients affected by DMD and in late-term fetuses, early postnatal pups, or adult mdx mice. In this context, chromatin immunoprecipitation experiments showed an enrichment of these modifications at the loci of genes involved in proliferation or inflammation, suggesting a regulatory effect on gene expression. Remarkably, the reexpression of dystrophin induced by gentamicin treatment or the administration of nitric oxide (NO) donors reversed the abnormal pattern of H3 histone modifications. These findings suggest an unanticipated link between the dystrophin-activated NO signaling and the remodeling of chromatin. In this context, the regulation of class IIa histone deacetylases (HDACs) 4 and 5 was found altered as a consequence of the reduced NO-dependent protein phosphatase 2A activity, indicating that both NO and class IIa HDACs are important for satellite cell differentiation and gene expression in mdx mice. In conclusion, this work provides the first evidence of a role for NO as an epigenetic regulator in DMD.
Collapse
Affiliation(s)
- Claudia Colussi
- Laboratorio di Terapia Genica e Biologia Vascolare, Istituto Cardiologico Monzino, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
The dynamics of the nitric oxide release-transient from stretched muscle cells. Int J Biochem Cell Biol 2009; 41:625-31. [DOI: 10.1016/j.biocel.2008.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 07/12/2008] [Accepted: 07/16/2008] [Indexed: 11/20/2022]
|
62
|
Cowling BS, McGrath MJ, Nguyen MA, Cottle DL, Kee AJ, Brown S, Schessl J, Zou Y, Joya J, Bönnemann CG, Hardeman EC, Mitchell CA. Identification of FHL1 as a regulator of skeletal muscle mass: implications for human myopathy. ACTA ACUST UNITED AC 2009; 183:1033-48. [PMID: 19075112 PMCID: PMC2600747 DOI: 10.1083/jcb.200804077] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Regulators of skeletal muscle mass are of interest, given the morbidity and mortality of muscle atrophy and myopathy. Four-and-a-half LIM protein 1 (FHL1) is mutated in several human myopathies, including reducing-body myopathy (RBM). The normal function of FHL1 in muscle and how it causes myopathy remains unknown. We find that FHL1 transgenic expression in mouse skeletal muscle promotes hypertrophy and an oxidative fiber-type switch, leading to increased whole-body strength and fatigue resistance. Additionally, FHL1 overexpression enhances myoblast fusion, resulting in hypertrophic myotubes in C2C12 cells, (a phenotype rescued by calcineurin inhibition). In FHL1-RBM C2C12 cells, there are no hypertrophic myotubes. FHL1 binds with the calcineurin-regulated transcription factor NFATc1 (nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1), enhancing NFATc1 transcriptional activity. Mutant RBM-FHL1 forms aggregate bodies in C2C12 cells, sequestering NFATc1 and resulting in reduced NFAT nuclear translocation and transcriptional activity. NFATc1 also colocalizes with mutant FHL1 to reducing bodies in RBM-afflicted skeletal muscle. Therefore, via NFATc1 signaling regulation, FHL1 appears to modulate muscle mass and strength enhancement.
Collapse
Affiliation(s)
- Belinda S Cowling
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment. Proc Natl Acad Sci U S A 2008; 105:19183-7. [PMID: 19047631 DOI: 10.1073/pnas.0805514105] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The overlapping histological and biochemical features underlying the beneficial effect of deacetylase inhibitors and NO donors in dystrophic muscles suggest an unanticipated molecular link among dystrophin, NO signaling, and the histone deacetylases (HDACs). Higher global deacetylase activity and selective increased expression of the class I histone deacetylase HDAC2 were detected in muscles of dystrophin-deficient MDX mice. In vitro and in vivo siRNA-mediated down-regulation of HDAC2 in dystrophic muscles was sufficient to replicate the morphological and functional benefits observed with deacetylase inhibitors and NO donors. We found that restoration of NO signaling in vivo, by adenoviral-mediated expression of a constitutively active endothelial NOS mutant in MDX muscles, and in vitro, by exposing MDX-derived satellite cells to NO donors, resulted in HDAC2 blockade by cysteine S-nitrosylation. These data reveal a special contribution of HDAC2 in the pathogenesis of Duchenne muscular dystrophy and indicate that HDAC2 inhibition by NO-dependent S-nitrosylation is important for the therapeutic response to NO donors in MDX mice. They also define a common target for independent pharmacological interventions in the treatment of Duchenne muscular dystrophy.
Collapse
|
64
|
Mozzetta C, Minetti G, Puri PL. Regenerative pharmacology in the treatment of genetic diseases: the paradigm of muscular dystrophy. Int J Biochem Cell Biol 2008; 41:701-10. [PMID: 18804548 DOI: 10.1016/j.biocel.2008.08.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 08/18/2008] [Accepted: 08/28/2008] [Indexed: 01/21/2023]
Abstract
Current evidence supports the therapeutic potential of pharmacological interventions that counter the progression of genetic disorders by promoting regeneration of the affected organs or tissues. The rationale behind this concept lies on the evidence that targeting key events downstream of the genetic defect can compensate, at least partially, the pathological consequence of the related disease. In this regard, the beneficial effect exerted on animal models of muscular dystrophy by pharmacological strategies that enhance muscle regeneration provides an interesting paradigm. In this review, we describe and discuss the potential targets of pharmacological strategies that promote regeneration of dystrophic muscles and alleviate the consequence of the primary genetic defect. Regenerative pharmacology provides an immediate and suitable therapeutic opportunity to slow down the decline of muscles in the present generation of dystrophic patients, with the perspective to hold them in conditions such that they could benefit of future, more definitive, therapies.
Collapse
Affiliation(s)
- Chiara Mozzetta
- Dulbecco Telethon Institute at Fondazione Santa Lucia/EBRI, Via di Fosso Fiorano, 64-00143 Roma, Italy
| | | | | |
Collapse
|
65
|
AAV-dependent targeting of myostatin function: follistatin strikes back at muscular dystrophy. Gene Ther 2008; 15:1075-6. [PMID: 18528431 DOI: 10.1038/gt.2008.95] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
66
|
Hnia K, Gayraud J, Hugon G, Ramonatxo M, De La Porte S, Matecki S, Mornet D. L-arginine decreases inflammation and modulates the nuclear factor-kappaB/matrix metalloproteinase cascade in mdx muscle fibers. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1509-19. [PMID: 18458097 DOI: 10.2353/ajpath.2008.071009] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, X-linked disorder associated with dystrophin deficiency that results in chronic inflammation, sarcolemma damage, and severe skeletal muscle degeneration. Recently, the use of L-arginine, the substrate of nitric oxide synthase (nNOS), has been proposed as a pharmacological treatment to attenuate the dystrophic pattern of DMD. However, little is known about signaling events that occur in dystrophic muscle with l-arginine treatment. Considering the implication of inflammation in dystrophic processes, we asked whether L-arginine inhibits inflammatory signaling cascades. We demonstrate that L-arginine decreases inflammation and enhances muscle regeneration in the mdx mouse model. Classic stimulatory signals, such as proinflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha, are significantly decreased in mdx mouse muscle, resulting in lower nuclear factor (NF)-kappaB levels and activity. NF-kappaB serves as a pivotal transcription factor with multiple levels of regulation; previous studies have shown perturbation of NF-kappaB signaling in both mdx and DMD muscle. Moreover, L-arginine decreases the activity of metalloproteinase (MMP)-2 and MMP-9, which are transcriptionally activated by NF-kappaB. We show that the inhibitory effect of L-arginine on the NF-kappaB/MMP cascade reduces beta-dystroglycan cleavage and translocates utrophin and nNOS throughout the sarcolemma. Collectively, our results clarify the molecular events by which L-arginine promotes muscle membrane integrity in dystrophic muscle and suggest that NF-kappaB-related signaling cascades could be potential therapeutic targets for DMD management.
Collapse
Affiliation(s)
- Karim Hnia
- INSERM ERI 25 Muscle et Pathologies, CHU A. de Villeneuve, Université de Montpellier1, EA 4202, 34295 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
67
|
Fanzani A, Giuliani R, Colombo F, Rossi S, Stoppani E, Martinet W, Preti A, Marchesini S. The enzymatic activity of sialidase Neu2 is inversely regulated during in vitro myoblast hypertrophy and atrophy. Biochem Biophys Res Commun 2008; 370:376-81. [DOI: 10.1016/j.bbrc.2008.03.111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 03/25/2008] [Indexed: 01/21/2023]
|
68
|
Illi B, Russo CD, Colussi C, Rosati J, Pallaoro M, Spallotta F, Rotili D, Valente S, Ragone G, Martelli F, Biglioli P, Steinkuhler C, Gallinari P, Mai A, Capogrossi MC, Gaetano C. Nitric Oxide Modulates Chromatin Folding in Human Endothelial Cells via Protein Phosphatase 2A Activation and Class II Histone Deacetylases Nuclear Shuttling. Circ Res 2008; 102:51-8. [DOI: 10.1161/circresaha.107.157305] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nitric oxide (NO) modulates important endothelial cell (EC) functions and gene expression by a molecular mechanism which is still poorly characterized. Here we show that in human umbilical vein ECs (HUVECs) NO inhibited serum-induced histone acetylation and enhanced histone deacetylase (HDAC) activity. By immunofluorescence and Western blot analyses it was found that NO induced class II HDAC4 and 5 nuclear shuttling and that class II HDACs selective inhibitor MC1568 rescued serum-dependent histone acetylation above control level in NO-treated HUVECs. In contrast, class I HDACs inhibitor MS27–275 had no effect, indicating a specific role for class II HDACs in NO-dependent histone deacetylation. In addition, it was found that NO ability to induce HDAC4 and HDAC5 nuclear shuttling involved the activation of the protein phosphatase 2A (PP2A). In fact, HDAC4 nuclear translocation was impaired in ECs expressing small-t antigen and exposed to NO. Finally, in cells engineered to express a HDAC4-Flag fusion protein, NO induced the formation of a macromolecular complex including HDAC4, HDAC3, HDAC5, and an active PP2A. The present results show that NO-dependent PP2A activation plays a key role in class II HDACs nuclear translocation.
Collapse
Affiliation(s)
- Barbara Illi
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| | - Claudio Dello Russo
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| | - Claudia Colussi
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| | - Jessica Rosati
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| | - Michele Pallaoro
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| | - Francesco Spallotta
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| | - Dante Rotili
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| | - Sergio Valente
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| | - Gianluca Ragone
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| | - Fabio Martelli
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| | - Paolo Biglioli
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| | - Christian Steinkuhler
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| | - Paola Gallinari
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| | - Antonello Mai
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| | - Maurizio C. Capogrossi
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| | - Carlo Gaetano
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| |
Collapse
|
69
|
Abstract
The fusion of postmitotic mononucleated myoblasts to form syncytial myofibers is a critical step in the formation of skeletal muscle. Myoblast fusion occurs both during development and throughout adulthood, as skeletal muscle growth and regeneration require the accumulation of additional nuclei within myofibers. Myoblasts must undergo a complex series of molecular and morphological changes prior to fusing with one another. Although many molecules regulating myoblast fusion have been identified, the precise mechanism by which these molecules act in concert to control fusion remains to be elucidated. A comprehensive understanding of how myo-blast fusion is controlled may contribute to the treatment of various disorders associated with loss of muscle mass. In this chapter, we examine progress made toward elucidating the cellular and molecular pathways involved in mammalian myoblast fusion. Special emphasis is placed on the molecules that regulate myofiber formation without discernibly affecting biochemical differentiation.
Collapse
Affiliation(s)
- Katie M Jansen
- Graduate Program in Biochemistry, Cell and Developmental Biology, Department of Pharmacology, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
70
|
Deponti D, François S, Baesso S, Sciorati C, Innocenzi A, Broccoli V, Muscatelli F, Meneveri R, Clementi E, Cossu G, Brunelli S. Necdin mediates skeletal muscle regeneration by promoting myoblast survival and differentiation. ACTA ACUST UNITED AC 2007; 179:305-19. [PMID: 17954612 PMCID: PMC2064766 DOI: 10.1083/jcb.200701027] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Regeneration of muscle fibers that are lost during pathological muscle degeneration or after injuries is sustained by the production of new myofibers. An important cell type involved in muscle regeneration is the satellite cell. Necdin is a protein expressed in satellite cell–derived myogenic precursors during perinatal growth. However, its function in myogenesis is not known. We compare transgenic mice that overexpress necdin in skeletal muscle with both wild-type and necdin null mice. After muscle injury the necdin null mice show a considerable defect in muscle healing, whereas mice that overexpress necdin show a substantial increase in myofiber regeneration. We also find that in muscle, necdin increases myogenin expression, accelerates differentiation, and counteracts myoblast apoptosis. Collectively, these data clarify the function and mechanism of necdin in skeletal muscle and show the importance of necdin in muscle regeneration.
Collapse
Affiliation(s)
- Daniela Deponti
- Department of Histology and Medical Embryology, University of Roma-La Sapienza, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Betters JL, Long JH, Howe KS, Braith RW, Soltow QA, Lira VA, Criswell DS. Nitric oxide reverses prednisolone-induced inactivation of muscle satellite cells. Muscle Nerve 2007; 37:203-9. [DOI: 10.1002/mus.20915] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
72
|
Le Grand F, Rudnicki MA. Skeletal muscle satellite cells and adult myogenesis. Curr Opin Cell Biol 2007; 19:628-33. [PMID: 17996437 DOI: 10.1016/j.ceb.2007.09.012] [Citation(s) in RCA: 363] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 09/26/2007] [Indexed: 12/29/2022]
Abstract
Research focusing on the canonical adult myogenic progenitor, the skeletal muscle satellite cell, is still an ever-growing field 46 years from their initial description. Recent publications revealed numerous new aspects of satellite cell biology, starting from their developmental life to their role as the principal self-renewing myogenic stem cell in adult skeletal muscle and finally their loss during aging. The myogenic potential of satellite cells is under the molecular control of specific paired-box and bHLH transcription factors whose tightly orchestrated balance accounts for an effective skeletal muscle regeneration. New reports also demonstrate satellite cells relationships with blood vessels and the high myogenic potential of stem cell subsets related to both lineages.
Collapse
Affiliation(s)
- Fabien Le Grand
- Sprott Center for Stem Cell Research, Ottawa Health Research Institute, 501 Smyth Road, Ottawa, K1H 8L6 Ontario, Canada
| | | |
Collapse
|
73
|
Zaccagnini G, Martelli F, Magenta A, Cencioni C, Fasanaro P, Nicoletti C, Biglioli P, Pelicci PG, Capogrossi MC. p66(ShcA) and oxidative stress modulate myogenic differentiation and skeletal muscle regeneration after hind limb ischemia. J Biol Chem 2007; 282:31453-9. [PMID: 17726026 DOI: 10.1074/jbc.m702511200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress plays a pivotal role in ischemic injury, and p66(ShcA)ko mice exhibit both lower oxidative stress and decreased tissue damage following hind limb ischemia. Thus, it was investigated whether tissue regeneration following acute hind limb ischemia was altered in p66(ShcA)ko mice. Upon femoral artery dissection, muscle regeneration started earlier and was completed faster than in wild-type (WT) control. Moreover, faster regeneration was associated with decreased oxidative stress. Unlike ischemia, cardiotoxin injury induced similar skeletal muscle damage in both genotypes. However, p66(ShcA)ko mice regenerated faster, in agreement with the regenerative advantage upon ischemia. Since no difference between p66(ShcA)wt and knock-out (ko) mice was found in blood perfusion recovery after ischemia, satellite cells (SCs), a resident population of myogenic progenitors, were examined. Similar SCs numbers were present in WT and ko mice. However, in vitro cultured p66(ShcA)ko SCs displayed lower oxidative stress levels and higher proliferation rate and differentiated faster than WT. Furthermore, when exposed to sublethal H(2)O(2) doses, p66(ShcA)ko SCs were resistant to H(2)O(2)-induced inhibition of differentiation. Finally, myogenic conversion induced by MyoD overexpression was more efficient in p66(ShcA)ko fibroblasts compared with WT. The present work demonstrates that oxidative stress and p66(ShcA) play a crucial role in the regenerative pathways activated by acute ischemia.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Cell Differentiation/physiology
- Cells, Cultured
- Fluorescent Antibody Technique, Direct
- Hindlimb/blood supply
- Histocytochemistry
- Ischemia/pathology
- Ischemia/physiopathology
- Luminescent Measurements
- Mice
- Mice, Inbred Strains
- Mice, Knockout
- Microscopy, Fluorescence
- Muscle, Skeletal/cytology
- Muscle, Skeletal/physiology
- Oxidative Stress
- Reactive Oxygen Species/metabolism
- Regeneration
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/metabolism
- Shc Signaling Adaptor Proteins
- Spectrometry, Fluorescence
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Thiobarbituric Acid Reactive Substances/analysis
- Time Factors
Collapse
Affiliation(s)
- Germana Zaccagnini
- Laboratorio di Biologia Vascolare e Terapia Genica, Dipartimento di Chirurgia Vascolare, Centro Cardiologico Monzino--Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20138 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Gordon SE, Westerkamp CM, Savage KJ, Hickner RC, George SC, Fick CA, McCormick KM. Basal, but not overload-induced, myonuclear addition is attenuated by NG-nitro-l-arginine methyl ester (l-NAME) administration. Can J Physiol Pharmacol 2007; 85:646-51. [PMID: 17823627 DOI: 10.1139/y07-024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to examine the effect of blocking nitric oxide synthase (NOS) activity via NG-nitro-l-arginine methyl ester (l-NAME) on myonuclear addition in skeletal muscle under basal and overloaded conditions. Female Sprague–Dawley rats (approx. 220 g) were placed into 1 of the following 4 groups (n = 7–9/group): 7-day skeletal muscle overload (O), sham operation (S), skeletal muscle overload with l-NAME treatment (OLN), and sham operation with l-NAME treatment (SLN). Plantaris muscles were overloaded via bilateral surgical ablation of the gastrocnemius muscles and l-NAME (0.75 mg/mL) was administered in the animals’ daily drinking water starting 2 days prior to surgery and continued until sacrifice. Myonuclear addition was assessed as subsarcolemmal incorporation of nuclei labeled with 5-bromo-2′-deoxyuridine (approx. 25 mg·(kg body mass)–1·day–1) delivered via osmotic pump during the overload period. As expected, muscle wet mass, total protein content, fiber cross-sectional area, and myonuclear addition were significantly higher (p ≤ 0.05) in O vs. S; however, only the increase in wet mass and total protein content (per body mass) were attenuated by l-NAME administration. Interestingly, l-NAME significantly reduced myonuclear addition by 75% in nonoverloaded muscles (SLN vs. S). Muscle hepatocyte growth factor protein content increased with overload, but was unaffected by l-NAME in either loading state. These data indicate that NOS inhibition in rat plantaris muscle attenuates myonuclear addition under basal, but not overloaded, conditions.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Bromodeoxyuridine/metabolism
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cell Proliferation/drug effects
- Drinking
- Enzyme Inhibitors/administration & dosage
- Enzyme Inhibitors/pharmacology
- Female
- Hepatocyte Growth Factor/metabolism
- Immunohistochemistry
- Intranuclear Inclusion Bodies/drug effects
- Intranuclear Inclusion Bodies/metabolism
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Proteins/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- NG-Nitroarginine Methyl Ester/administration & dosage
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide Synthase/antagonists & inhibitors
- Rats
- Rats, Sprague-Dawley
- Sarcolemma/drug effects
- Sarcolemma/metabolism
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/drug effects
- Satellite Cells, Skeletal Muscle/metabolism
- Time Factors
Collapse
Affiliation(s)
- Scott E Gordon
- Human Performance Laboratory, Department of Exercise and Sport Science, East Carolina University, Greenville, NC 27858, USA.
| | | | | | | | | | | | | |
Collapse
|
75
|
Zhang SJ, Truskey GA, Kraus WE. Effect of cyclic stretch on β1D-integrin expression and activation of FAK and RhoA. Am J Physiol Cell Physiol 2007; 292:C2057-69. [PMID: 17267546 DOI: 10.1152/ajpcell.00493.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Integrins play a pivotal role in proliferation, differentiation, and survival in skeletal and cardiac myocytes. The β1D-isoform of the β1-integrin is specifically expressed in striated skeletal muscle. However, little is known about the role and the mechanisms by which the splice variant β1D-integrin regulates myogenesis and mechanotransduction. We observed that cyclic mechanical stretch increases β1D-integrin protein levels and activates the downstream cytoskeletal signaling proteins focal adhesion kinase (FAK) and RhoA. Elimination of native β1D-integrin expression by RNA interference in immature developing myoblasts abolished stretch-induced increases in FAK phosphorylation and further downregulated RhoA activity. Blocking of β1D-integrin expression prevented myocellular fusion to form multinucleated mature myotubes. Restoration of human β1D-integrin expression in β1D-integrin-deficient cells partially restored myotube formation. The onset of myofusion also requires the generation of nitric oxide (NO). The release of NO affects cytoskeletal proteins by mediating RhoA activity and protein degradation. Our previous study demonstrated that stretch-induced NO positively modulates mechanical properties of differentiating skeletal myocytes. We found a significant decrease in NO production and apparent elastic modulus in β1D-integrin-deficient cells, suggesting signaling interactions between β1D-integrin and neuronal NO synthase to mediate mechanotransduction and myogenesis in skeletal myocytes. These results suggest that, in addition to regulating differentiation, the β1D-integrin isoform plays a critical role in the response of skeletal myoblasts to cyclic stretch by activating the downstream components of FAK and RhoA activity and affecting NO release.
Collapse
|
76
|
Wozniak AC, Anderson JE. Nitric oxide-dependence of satellite stem cell activation and quiescence on normal skeletal muscle fibers. Dev Dyn 2007; 236:240-50. [PMID: 17117435 DOI: 10.1002/dvdy.21012] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Satellite cells (quiescent precursors in normal adult skeletal muscle) are activated for growth and regeneration. Signaling by nitric oxide (NO) and hepatocyte growth factor (HGF) during activation has not been examined in a model that can distinguish quiescent from activated satellite cells. We tested the hypothesis that NO and HGF are required to regulate activation using the single-fiber culture model. In normal fibers, HGF and inhibition of NO synthase (NOS) each increased activation without stretching, and NOS inhibition reduced stretch-activation. Activation in unstretched mdx and NOS-I(-/-) fibers was three- to fourfold higher than normal, and was reduced by stretching. Distinctions were not due to different pax7-expressing populations on normal and mdx fibers. The population of c-met-expressing satellite cells on normal fibers was increased by stretch, demonstrating functional heterogeneity among normal satellite cells. Cycloheximide did not prevent the stretch-related increase in c-met expression, suggesting c-met may be an immediate-early gene in satellite cell activation. Results have important implications for designing new therapies that target the role of exercise in health, aging, and disease.
Collapse
Affiliation(s)
- Ashley C Wozniak
- Department of Human Anatomy and Cell Science, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
77
|
Sciorati C, Galvez BG, Brunelli S, Tagliafico E, Ferrari S, Cossu G, Clementi E. Ex vivo treatment with nitric oxide increases mesoangioblast therapeutic efficacy in muscular dystrophy. J Cell Sci 2007; 119:5114-23. [PMID: 17158915 DOI: 10.1242/jcs.03300] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Muscular dystrophies are characterized by primary wasting of skeletal muscle for which no satisfactory therapy is available. Studies in animal models have shown that stem cell-based therapies may improve the outcome of the disease, and that mesoangioblasts are promising stem cells in this respect. The efficacy of mesoangioblasts in yielding extensive muscle repair is, however, still limited. We found that mesoangioblasts treated with nitric oxide (NO) donors and injected intra-arterially in alpha-sarcoglycan-null dystrophic mice have a significantly enhanced ability to migrate to dystrophic muscles, to resist their apoptogenic environment and engraft into them, yielding a significant recovery of alpha-sarcolgycan expression. In vitro NO-treated mesoangioblasts displayed an enhanced chemotactic response to myotubes, cytokines and growth factors generated by the dystrophic muscle. In addition, they displayed an increased ability to fuse with myotubes and differentiating myoblasts and to survive when exposed to cytotoxic stimuli similar to those present in the dystrophic muscle. All the effects of NO were cyclic GMP-dependent since they were mimicked by treatment with the membrane permeant cyclic-GMP analogue 8-bromo-cGMP and prevented by inhibiting guanylate cyclase. We conclude that NO donors exert multiple beneficial effects on mesoangioblasts that may be used to increase their efficacy in cell therapy of muscular dystrophies.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cell Differentiation/drug effects
- Cell Movement/drug effects
- Cells, Cultured
- Cyclic GMP/analogs & derivatives
- Cyclic GMP/pharmacology
- Gene Expression Profiling
- Immunohistochemistry
- Mesoderm/cytology
- Mesoderm/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/therapy
- Nitric Oxide Donors/pharmacology
- Sarcoglycans/deficiency
- Sarcoglycans/genetics
- Stem Cell Transplantation
- Stem Cells/cytology
- Stem Cells/drug effects
- Stem Cells/metabolism
Collapse
Affiliation(s)
- Clara Sciorati
- Stem Cell Research Institute, H San Raffaele Scientific Institute, 20132, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
78
|
Brunelli S, Sciorati C, D'Antona G, Innocenzi A, Covarello D, Galvez BG, Perrotta C, Monopoli A, Sanvito F, Bottinelli R, Ongini E, Cossu G, Clementi E. Nitric oxide release combined with nonsteroidal antiinflammatory activity prevents muscular dystrophy pathology and enhances stem cell therapy. Proc Natl Acad Sci U S A 2006; 104:264-9. [PMID: 17182743 PMCID: PMC1765447 DOI: 10.1073/pnas.0608277104] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Duchenne muscular dystrophy is a relatively common disease that affects skeletal muscle, leading to progressive paralysis and death. There is currently no resolutive therapy. We have developed a treatment in which we combined the effects of nitric oxide with nonsteroidal antiinflammatory activity by using HCT 1026, a nitric oxide-releasing derivative of flurbiprofen. Here, we report the results of long-term (1-year) oral treatment with HCT 1026 of two murine models for limb girdle and Duchenne muscular dystrophies (alpha-sarcoglycan-null and mdx mice). In both models, HCT 1026 significantly ameliorated the morphological, biochemical, and functional phenotype in the absence of secondary effects, efficiently slowing down disease progression. HCT 1026 acted by reducing inflammation, preventing muscle damage, and preserving the number and function of satellite cells. HCT 1026 was significantly more effective than the corticosteroid prednisolone, which was analyzed in parallel. As an additional beneficial effect, HCT 1026 enhanced the therapeutic efficacy of arterially delivered donor stem cells, by increasing 4-fold their ability to migrate and reconstitute muscle fibers. The therapeutic strategy we propose is not selective for a subset of mutations; it provides ground for immediate clinical experimentation with HCT 1026 alone, which is approved for use in humans; and it sets the stage for combined therapies with donor or autologous, genetically corrected stem cells.
Collapse
Affiliation(s)
- Silvia Brunelli
- *Department of Experimental Medicine, University of Milano–Bicocca, 20052 Monza, Italy
- San Raffaele Scientific Institute, Stem Cell Research Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Clara Sciorati
- San Raffaele Scientific Institute, Stem Cell Research Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Giuseppe D'Antona
- Department of Experimental Medicine, University of Pavia, 27100 Pavia, Italy
| | - Anna Innocenzi
- San Raffaele Scientific Institute, Stem Cell Research Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Diego Covarello
- San Raffaele Scientific Institute, Stem Cell Research Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Beatriz G. Galvez
- San Raffaele Scientific Institute, Stem Cell Research Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Cristiana Perrotta
- San Raffaele Scientific Institute, Stem Cell Research Institute, Via Olgettina 58, 20132 Milan, Italy
- Department of Preclinical Sciences, University of Milano, 20157 Milan, Italy
| | - Angela Monopoli
- Nicox Research Institute, Via Ariosto 21, 20091 Bresso, Italy
| | - Francesca Sanvito
- San Raffaele Scientific Institute, Stem Cell Research Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Roberto Bottinelli
- Department of Experimental Medicine, University of Pavia, 27100 Pavia, Italy
| | - Ennio Ongini
- Nicox Research Institute, Via Ariosto 21, 20091 Bresso, Italy
| | - Giulio Cossu
- San Raffaele Scientific Institute, Stem Cell Research Institute, Via Olgettina 58, 20132 Milan, Italy
- Department of Biology, University of Milano, 20130 Milan, Italy
- **To whom correspondence may be addressed at:
Stem Cell Research Institute, H. San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy. E-mail:
or
| | - Emilio Clementi
- San Raffaele Scientific Institute, Stem Cell Research Institute, Via Olgettina 58, 20132 Milan, Italy
- E. Medea Scientific Institute, 23842 Bosisio Parini, Italy; and
- Department of Preclinical Sciences, University of Milano, 20157 Milan, Italy
- **To whom correspondence may be addressed at:
Stem Cell Research Institute, H. San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy. E-mail:
or
| |
Collapse
|
79
|
Brunelli S, Rovere-Querini P, Sciorati C, Manfredi AA, Clementi E. Nitric oxide: emerging concepts about its use in cell-based therapies. Expert Opin Investig Drugs 2006; 16:33-43. [PMID: 17155852 DOI: 10.1517/13543784.16.1.33] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Regenerative medicine is an emerging clinical discipline in which cell-based therapies are used to restore the functions of damaged or defective tissues and organs. Along with the well-established use of cells derived from bone marrow or pancreatic islets, novel approaches of cell therapy have recently emerged that appear particularly promising; that is, those using cell-based vaccines and stem cells. This review focuses on the recent developments of these experimental therapeutic approaches and their drawbacks, with specific focus on dendritic cell vaccines in tumours and mesoangioblasts in muscular dystrophies. The authors discuss how the unique properties of a gaseous messenger, NO, may be exploited to overcome some of the drawbacks of these cell-based approaches in combined therapies based on NO-releasing drugs and cell delivery.
Collapse
Affiliation(s)
- Silvia Brunelli
- University of Milano-Bicocca, Department of Experimental, Environmental Medicine and Medical Biotechnology, 20052 Monza, Italy
| | | | | | | | | |
Collapse
|
80
|
Tidball JG, Wehling-Henricks M. The role of free radicals in the pathophysiology of muscular dystrophy. J Appl Physiol (1985) 2006; 102:1677-86. [PMID: 17095633 DOI: 10.1152/japplphysiol.01145.2006] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Null mutation of any one of several members of the dystrophin protein complex can cause progressive, and possibly fatal, muscle wasting. Although these muscular dystrophies arise from mutation of a single gene that is expressed primarily in muscle, the resulting pathology is complex and multisystemic, which shows a broader disruption of homeostasis than would be predicted by deletion of a single-gene product. Before the identification of the deficient proteins that underlie muscular dystrophies, such as Duchenne muscular dystrophy (DMD), oxidative stress was proposed as a major cause of the disease. Now, current knowledge supports the likelihood that interactions between the primary genetic defect and disruptions in the normal production of free radicals contribute to the pathophysiology of muscular dystrophies. In this review, we focus on the pathophysiology that results from dystrophin deficiency in humans with DMD and the mdx mouse model of DMD. Current evidence indicates three general routes through which free radical production can be disrupted in dystrophin deficiency to contribute to the ensuing pathology. First, constitutive differences in free radical production can disrupt signaling processes in muscle and other tissues and thereby exacerbate pathology. Second, tissue responses to the presence of pathology can cause a shift in free radical production that can promote cellular injury and dysfunction. Finally, behavioral differences in the affected individual can cause further changes in the production and stoichiometry of free radicals and thereby contribute to disease. Unfortunately, the complexity of the free radical-mediated processes that are perturbed in complex pathologies such as DMD will make it difficult to develop therapeutic approaches founded on systemic administration of antioxidants. More mechanistic knowledge of the specific disruptions of free radicals that underlie major features of muscular dystrophy is needed to develop more targeted and successful therapeutic approaches.
Collapse
Affiliation(s)
- James G Tidball
- Department of Physiological Science, University of California, Los Angeles, California 90095, USA.
| | | |
Collapse
|
81
|
Long JHD, Lira VA, Soltow QA, Betters JL, Sellman JE, Criswell DS. Arginine supplementation induces myoblast fusion via augmentation of nitric oxide production. J Muscle Res Cell Motil 2006; 27:577-84. [PMID: 17051348 DOI: 10.1007/s10974-006-9078-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 06/23/2006] [Indexed: 11/30/2022]
Abstract
The semi-essential amino acid, L-arginine (L-Arg), is the substrate for endogenous synthesis of nitric oxide, a molecule that is involved in myoblast proliferation and fusion. Since L-Arg supply may limit nitric oxide synthase (NOS) activity in endothelial cells, we examined L-Arg supplementation in differentiating mouse myoblasts and tested the hypothesis that L-Arg exerts direct effects on myoblast fusion via augmentation of endogenous nitric oxide production. C(2)C(12) myoblasts in differentiation media received one of the following treatments for 120 h: 1 mM L-Arg, 0.1 mM N-nitro-L-arginine methyl ester (L-NAME), L-Arg + L-NAME, 10 mM L-Lysine, or no supplement (Control). Cultures were fixed and stained with hematoxylin and eosin for microphotometric image analysis of myotube density, nuclear density, and fusion index (% of total nuclei in myotubes). Endogenous production of nitric oxide during the treatment period peaked between 24 and 48 h. L-Arg amplified nitric oxide production between 0 and 24 h and increased myotube density, total nuclei number, and nuclear fusion index. These L-Arg effects were prevented by the NOS inhibitor, L-NAME. Further, L-Lysine, a competitive inhibitor of L-Arg uptake, repressed nitric oxide production and reduced myotube density and fusion index. In summary, L-Arg augments myotube formation and increases nitric oxide production in a process limited by cellular L-Arg uptake.
Collapse
Affiliation(s)
- Jodi H D Long
- Center for Exercise Science, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | |
Collapse
|
82
|
Nakajima N, Takahashi T, Kitamura R, Isodono K, Asada S, Ueyama T, Matsubara H, Oh H. MicroRNA-1 facilitates skeletal myogenic differentiation without affecting osteoblastic and adipogenic differentiation. Biochem Biophys Res Commun 2006; 350:1006-12. [PMID: 17045567 DOI: 10.1016/j.bbrc.2006.09.153] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 09/27/2006] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs emerging as important post-transcriptional gene regulators. In this study, we examined the role of miR-1, an miRNA specifically expressed in cardiac and skeletal muscle tissue, on the myogenic, osteoblastic, and adipogenic differentiation of C2C12 cells. Upon induction of myogenic differentiation, miR-1 was robustly expressed. Retrovirus-mediated overexpression of miR-1 markedly enhanced expression of muscle creatine kinase, sarcomeric myosin, and alpha-actinin, while the effects on myogenin and MyoD expression were modest. Formation of myotubes was significantly augmented in miR-1-overexpressing cells, indicating miR-1 expression enhanced not only myogenic differentiation but also maturation into myotubes. In contrast, osteoblastic and adipogenic differentiation was not affected by forced expression of miR-1. Thus, the muscle-specific miRNA, miR-1, plays important roles in controlling myogenic differentiation and maturation in lineage-committed cells, rather than functioning in fate determination.
Collapse
Affiliation(s)
- Norio Nakajima
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Buckingham M. Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr Opin Genet Dev 2006; 16:525-32. [PMID: 16930987 DOI: 10.1016/j.gde.2006.08.008] [Citation(s) in RCA: 321] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 08/03/2006] [Indexed: 01/21/2023]
Abstract
Continuing research on the onset of skeletal myogenesis in the somite is providing new insights into the behaviour of early myogenic progenitor cells and how signalling molecules affect cell fate decisions, in addition to subsequent muscle growth. Genetic manipulations have revealed new regulatory aspects, including the role of Six transcription factors and the CXCR4 cytokine receptor during embryonic myogenesis. An important recent development is the identification of a novel population of somite-derived cells that make a major contribution to muscle growth. These cells, which are characterised by the expression of Pax3 and Pax7, also give rise to the satellite cells of postnatal muscle. The relationship between Pax and Myogenic regulatory factors has been explored. Furthermore, Pax7 is now shown to be required for the maintenance of satellite cells. New approaches that permit the grafting of purified satellite cells demonstrate their capacity for efficient muscle repair and for self-renewal. Regeneration in amphibians is now also shown to involve Pax-positive progenitor cells.
Collapse
Affiliation(s)
- Margaret Buckingham
- Department of Developmental Biology, CNRS URA2578, Pasteur Institute, 25 Rue du Docteur Roux, 75015 Paris Cedex, France.
| |
Collapse
|
84
|
Neto HS, Vomero VU, Marques MJ. l-arginine enhances muscle regeneration after experimental envenomation by B. jararacussu: A future for nitric oxide-based therapy? Toxicon 2006; 48:353-7. [PMID: 16876838 DOI: 10.1016/j.toxicon.2006.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 05/18/2006] [Accepted: 05/30/2006] [Indexed: 11/19/2022]
Abstract
We investigated whether muscle fiber regeneration would be rescued by exogenous administration of l-arginine, the precursor of endogenous synthesis of nitric oxide. The right tibialis anterioris muscle of adult mice (n=20) was injected with 80 microg of venom. One group of mice (n=10) received drinking water containing l-arginine (3.75 mg/ml) and another group (n=10) did not receive any pharmacological treatment. Two months later, muscle regeneration was evaluated by counting the total number of muscle fibers. We found that in l-arginine-treated mice, muscle regeneration was significantly higher (p<0.05) than in saline-treated (2.230+/-478 muscle fibers versus 1.005+/-134, respectively) although the level of muscle fiber population of uninjured tibialis anterioris muscle (3.121+/-102) was not attained. These results show that muscle regeneration was significantly facilitated by l-arginine and suggest that pharmacological activators of the NO pathway may be potentially useful for improving muscle regeneration in human envenomation by B. jararacussu.
Collapse
Affiliation(s)
- Humberto Santo Neto
- Departamento de Anatomia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CP 6109, CEP 13083-970 Campinas, SP, Brazil
| | | | | |
Collapse
|
85
|
Anderson JE. The satellite cell as a companion in skeletal muscle plasticity: currency, conveyance, clue, connector and colander. ACTA ACUST UNITED AC 2006; 209:2276-92. [PMID: 16731804 DOI: 10.1242/jeb.02088] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Satellite cells are companions to voluntary muscle fibres, and are named for their intimate positional or ;satellite' relationship, as if revolving around fibres, like a satellite moon around the earth. Studies on the nature of at least some satellite cells, including their capabilities for self-renewal and for giving rise to multiple lineages in a stem cell-like function, are exploring the molecular basis of phenotypes described by markers of specialized function and gene expression in normal development, neuromuscular disease and aging. In adult skeletal muscle, the self-renewing capacity of satellite cells contributes to muscle growth, adaptation and regeneration. Muscle remodeling, such as demonstrated by changes in myofibre cross-sectional area and length, nerve and tendon junctions, and fibre-type distribution, occur in the absence of injury and provide broad functional and structural diversity among skeletal muscles. Those contributions to plasticity involve the satellite cell in at least five distinct roles, here described using metaphors for behaviour or the investigator's perspective. Satellite cells are the 'currency' of muscle; have a 'conveyance' role in adaptation by domains of cytoplasm along a myofibre; serve researchers, through a marker role, as 'clues' to various activities of muscle; are 'connectors' that physically, and through signalling and cell-fibre communications, bridge myofibres to the intra- and extra-muscular environment; and are equipped as metabolic and genetic filters or 'colanders' that can rectify or modulate particular signals. While all these roles are still under exploration, each contributes to the plasticity of skeletal muscle and thence to the overall biology and function of an organism. The use of metaphor for describing these roles helps to clarify and scrutinize the definitions that form the basis of our understanding of satellite cell biology: the metaphors provide the construct for various approaches to detect or test the nature of satellite cell functions in skeletal muscle plasticity.
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Human Anatomy and Cell Science, Faculty of Medicine, University of Manitoba, Winnipeg, MB, R3E 0W3, Canada.
| |
Collapse
|