51
|
Paidipally P, Tripathi D, Van A, Radhakrishnan RK, Dhiman R, Venkatasubramanian S, Devalraju KP, Tvinnereim AR, Valluri VL, Vankayalapati R. Interleukin-21 Regulates Natural Killer Cell Responses During Mycobacterium tuberculosis Infection. J Infect Dis 2019; 217:1323-1333. [PMID: 29390153 DOI: 10.1093/infdis/jiy034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
Background In the current study, we determined the effects of interleukin (IL)-21 on human natural killer (NK) cells and monocyte responses during Mycobacterium tuberculosis (Mtb) infection. Methods We found that Mtb stimulated CD4+ and NK T cells from healthy individuals with latent tuberculosis infection (LTBI+) are major sources of IL-21. CD4+ cells from tuberculosis patients secreted less IL-21 than did CD4+ cells from healthy LTBI+ individuals. Interleukin-21 had no direct effect on Mtb-stimulated monocytes. Results Interleukin-21-activated NK cells produced interferon (IFN)-γ, perforin, granzyme B, and granulysin; lysed Mtb-infected monocytes; and reduced Mtb growth. Interleukin-21-activated NK cells also enhanced IL-1β, IL-18, and CCL4/macrophage-inflammatory protein (MIP)-1β production and reduced IL-10 production by Mtb-stimulated monocytes. Recombinant IL-21 (1) inhibited Mtb growth, (2) enhanced IFN-γ, IL-1β, IL-18, and MIP-1β, and (3) reduced IL-10 expression in the lungs of Mtb-infected Rag2 knockout mice. Conclusions These findings suggest that activated T cells enhance NK cell responses to lyse Mtb-infected human monocytes and restrict Mtb growth in monocytes through IL-21 production. Interleukin-21-activated NK cells also enhance the immune response by augmenting IL-1β, IL-18, and MIP-1β production and reducing IL-10 production by monocytes in response to an intracellular pathogen.
Collapse
Affiliation(s)
- Padmaja Paidipally
- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Center, Tyler
| | - Deepak Tripathi
- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Center, Tyler
| | - Abhinav Van
- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Center, Tyler
| | - Rajesh Kumar Radhakrishnan
- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Center, Tyler
| | - Rohan Dhiman
- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Center, Tyler
| | | | | | - Amy R Tvinnereim
- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Center, Tyler
| | | | - Ramakrishna Vankayalapati
- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Center, Tyler
| |
Collapse
|
52
|
Yshii L, Pignolet B, Mauré E, Pierau M, Brunner-Weinzierl M, Hartley O, Bauer J, Liblau R. IFN-γ is a therapeutic target in paraneoplastic cerebellar degeneration. JCI Insight 2019; 4:127001. [PMID: 30944244 DOI: 10.1172/jci.insight.127001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Paraneoplastic neurological disorders result from an autoimmune response against neural self-antigens that are ectopically expressed in neoplastic cells. In paraneoplastic disorders associated to autoantibodies against intracellular proteins, such as paraneoplastic cerebellar degeneration (PCD), current data point to a major role of cell-mediated immunity. In an animal model, in which a neo-self-antigen was expressed in both Purkinje neurons and implanted breast tumor cells, immune checkpoint blockade led to complete tumor control at the expense of cerebellum infiltration by T cells and Purkinje neuron loss, thereby mimicking PCD. Here, we identify 2 potential therapeutic targets expressed by cerebellum-infiltrating T cells in this model, namely α4 integrin and IFN-γ. Mice with PCD were treated with anti-α4 integrin antibodies or neutralizing anti-IFN-γ antibodies at the onset of neurological signs. Although blocking α4 integrin had little or no impact on disease development, treatment using the anti-IFN-γ antibody led to almost complete protection from PCD. These findings strongly suggest that the production of IFN-γ by cerebellum-invading T cells plays a major role in Purkinje neuron death. Our successful preclinical use of neutralizing anti-IFN-γ antibody for the treatment of PCD offers a potentially new therapeutic opportunity for cancer patients at the onset of paraneoplastic neurological disorders.
Collapse
Affiliation(s)
- Lidia Yshii
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Béatrice Pignolet
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France.,Department of Clinical Neurosciences, Toulouse University Hospital, Toulouse, France
| | - Emilie Mauré
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Mandy Pierau
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Monika Brunner-Weinzierl
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Oliver Hartley
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roland Liblau
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
| |
Collapse
|
53
|
Watson SF, Knol LI, Witteveldt J, Macias S. Crosstalk Between Mammalian Antiviral Pathways. Noncoding RNA 2019; 5:E29. [PMID: 30909383 PMCID: PMC6468734 DOI: 10.3390/ncrna5010029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/15/2022] Open
Abstract
As part of their innate immune response against viral infections, mammals activate the expression of type I interferons to prevent viral replication and dissemination. An antiviral RNAi-based response can be also activated in mammals, suggesting that several mechanisms can co-occur in the same cell and that these pathways must interact to enable the best antiviral response. Here, we will review how the classical type I interferon response and the recently described antiviral RNAi pathways interact in mammalian cells. Specifically, we will uncover how the small RNA biogenesis pathway, composed by the nucleases Drosha and Dicer can act as direct antiviral factors, and how the type-I interferon response regulates the function of these. We will also describe how the factors involved in small RNA biogenesis and specific small RNAs impact the activation of the type I interferon response and antiviral activity. With this, we aim to expose the complex and intricate network of interactions between the different antiviral pathways in mammals.
Collapse
Affiliation(s)
- Samir F Watson
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.
| | - Lisanne I Knol
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.
| | - Jeroen Witteveldt
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.
| | - Sara Macias
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.
| |
Collapse
|
54
|
Cramer JV, Benakis C, Liesz A. T cells in the post-ischemic brain: Troopers or paramedics? J Neuroimmunol 2019; 326:33-37. [DOI: 10.1016/j.jneuroim.2018.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/04/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022]
|
55
|
Farid AS, Fath EM, Mido S, Nonaka N, Horii Y. Hepatoprotective immune response during Trichinella spiralis infection in mice. J Vet Med Sci 2018; 81:169-176. [PMID: 30541982 PMCID: PMC6395222 DOI: 10.1292/jvms.18-0540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Infections with gastrointestinal nematodes provoke immune and inflammatory responses
mediated by cytokines released from T-helper type-2 (Th2) cells. Infections with
Trichinella species have been reported to differ by the host species.
Previously, in rats, we observed acute liver inflammation in response to infection with
Trichinella spiralis, and the rat hosts showed a series of biochemical
changes characterized by a decrease in serum paraoxonase (PON) 1 activity associated with
the down-regulation of hepatic PON1 synthesis. In the present study, we investigated the
effect(s) of species differences on the immune response against T.
spiralis infection by analyzing serum PON1 activity and the associated
inflammatory/anti-inflammatory mediators in mice. There were inconsistent changes in the
serum PON1 activity of mice infected with T. spiralis, and these changes
were associated with significant increases in the serum levels of interleukin (IL)-2,
IL-4, IL-10, IL-12 (p70), granulocyte-macrophage colony-stimulating factor, and tumor
necrosis factor α during the enteric phase of the infection, while the levels of IL-5 and
interferon γ were significantly increased throughout the entire experimental period.
Moreover, T. spiralis infection in mice was associated with little
inflammatory cell infiltration in hepatic tissues. Given the zoonotic prevalence of
T. spiralis, further mechanistic research in this area is
warranted.
Collapse
Affiliation(s)
- Ayman Samir Farid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Qalyubia, Egypt.,Laboratory of Veterinary Parasitic Diseases, Interdisciplinary Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Eman Mohamed Fath
- Laboratory of Veterinary Parasitic Diseases, Interdisciplinary Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan.,Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Qalyubia, Egypt
| | - Shogo Mido
- Laboratory of Veterinary Parasitic Diseases, Interdisciplinary Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Nariaki Nonaka
- Laboratory of Veterinary Parasitic Diseases, Interdisciplinary Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan.,Center for Animal Disease Control, University of Miyazaki, Gakuen-Kibanadai-Nishi 1-1, Miyazaki 889-2192, Japan
| | - Yoichiro Horii
- Laboratory of Veterinary Parasitic Diseases, Interdisciplinary Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan.,Center for Animal Disease Control, University of Miyazaki, Gakuen-Kibanadai-Nishi 1-1, Miyazaki 889-2192, Japan
| |
Collapse
|
56
|
Lin LCW, Chattopadhyay S, Lin JC, Hu CMJ. Advances and Opportunities in Nanoparticle- and Nanomaterial-Based Vaccines against Bacterial Infections. Adv Healthc Mater 2018; 7:e1701395. [PMID: 29508547 DOI: 10.1002/adhm.201701395] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/22/2018] [Indexed: 02/06/2023]
Abstract
As the dawn of the postantibiotic era we approach, antibacterial vaccines are becoming increasingly important for managing bacterial infection and reducing the need for antibiotics. Despite the success of vaccination, vaccines remain unavailable for many pressing microbial diseases, including tuberculosis, chlamydia, and staphylococcus infections. Amid continuing research efforts in antibacterial vaccine development, the advancement of nanomaterial engineering has brought forth new opportunities in vaccine designs. With increasing knowledge in antibacterial immunity and immunologic adjuvants, innovative nanoparticles are designed to elicit the appropriate immune responses for effective antimicrobial defense. Rationally designed nanoparticles are demonstrated to overcome delivery barriers to shape the adaptive immunity. This article reviews the advances in nanoparticle- and nanomaterial-based antibacterial vaccines and summarizes the development of nanoparticulate adjuvants for immune potentiation against microbial pathogens. In addition, challenges and progress in ongoing antibacterial vaccine development are discussed to highlight the opportunities for future vaccine designs.
Collapse
Affiliation(s)
- Leon Chien-Wei Lin
- Institute of Biomedical Sciences; Academia Sinica; 128, Sec. 2, Academia Road Nangang District Taipei 11529 Taiwan
| | - Saborni Chattopadhyay
- Institute of Biomedical Sciences; Academia Sinica; 128, Sec. 2, Academia Road Nangang District Taipei 11529 Taiwan
| | - Jung-Chen Lin
- Institute of Biomedical Sciences; Academia Sinica; 128, Sec. 2, Academia Road Nangang District Taipei 11529 Taiwan
| | - Che-Ming Jack Hu
- Institute of Biomedical Sciences; Academia Sinica; 128, Sec. 2, Academia Road Nangang District Taipei 11529 Taiwan
| |
Collapse
|
57
|
Brockwell NK, Parker BS. Tumor inherent interferons: Impact on immune reactivity and immunotherapy. Cytokine 2018; 118:42-47. [PMID: 29681426 DOI: 10.1016/j.cyto.2018.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 12/21/2022]
Abstract
Immunotherapy has revolutionized cancer treatment, with sustained responses to immune checkpoint inhibitors reported in a number of malignancies. Such therapeutics are now being trialed in aggressive or advanced cancers that are heavily reliant on untargeted therapies, such as triple negative breast cancer. However, responses have been underwhelming to date and are very difficult to predict, leading to an inability to accurately weigh up the benefit-to-risk ratio for their implementation. The tumor immune microenvironment has been closely linked to immunotherapeutic response, with superior responses observed in patients with T cell-inflamed or 'hot' tumors. One class of cytokines, the type I interferons, are a major dictator of tumor immune infiltration and activation. Tumor cell inherent interferon signaling dramatically influences the immune microenvironment and the expression of immune checkpoint proteins, hence regulators and targets of this pathway are candidate biomarkers of immunotherapeutic response. In support of a link between IFN signaling and immunotherapeutic response, the combination of type I interferon inducers with checkpoint immunotherapy has recently been demonstrated critical for a sustained anti-tumor response in aggressive breast cancer models. Here we review evidence that links type I interferons with a hot tumor immune microenvironment, response to checkpoint inhibitors and reduced risk of metastasis that supports their use as biomarkers and therapeutics in oncology.
Collapse
Affiliation(s)
- Natasha K Brockwell
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Belinda S Parker
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
58
|
Zimara N, Chanyalew M, Aseffa A, van Zandbergen G, Lepenies B, Schmid M, Weiss R, Rascle A, Wege AK, Jantsch J, Schatz V, Brown GD, Ritter U. Dectin-1 Positive Dendritic Cells Expand after Infection with Leishmania major Parasites and Represent Promising Targets for Vaccine Development. Front Immunol 2018; 9:263. [PMID: 29535708 PMCID: PMC5834765 DOI: 10.3389/fimmu.2018.00263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/30/2018] [Indexed: 12/31/2022] Open
Abstract
Resistant mouse strains mount a protective T cell-mediated immune response upon infection with Leishmania (L.) parasites. Healing correlates with a T helper (Th) cell-type 1 response characterized by a pronounced IFN-γ production, while susceptibility is associated with an IL-4-dependent Th2-type response. It has been shown that dermal dendritic cells are crucial for inducing protective Th1-mediated immunity. Additionally, there is growing evidence that C-type lectin receptor (CLR)-mediated signaling is involved in directing adaptive immunity against pathogens. However, little is known about the function of the CLR Dectin-1 in modulating Th1- or Th2-type immune responses by DC subsets in leishmaniasis. We characterized the expression of Dectin-1 on CD11c+ DCs in peripheral blood, at the site of infection, and skin-draining lymph nodes of L. major-infected C57BL/6 and BALB/c mice and in peripheral blood of patients suffering from cutaneous leishmaniasis (CL). Both mouse strains responded with an expansion of Dectin-1+ DCs within the analyzed tissues. In accordance with the experimental model, Dectin-1+ DCs expanded as well in the peripheral blood of CL patients. To study the role of Dectin-1+ DCs in adaptive immunity against L. major, we analyzed the T cell stimulating potential of bone marrow-derived dendritic cells (BMDCs) in the presence of the Dectin-1 agonist Curdlan. These experiments revealed that Curdlan induces the maturation of BMDCs and the expansion of Leishmania-specific CD4+ T cells. Based on these findings, we evaluated the impact of Curdlan/Dectin-1 interactions in experimental leishmaniasis and were able to demonstrate that the presence of Curdlan at the site of infection modulates the course of disease in BALB/c mice: wild-type BALB/c mice treated intradermally with Curdlan developed a protective immune response against L. major whereas Dectin-1-/- BALB/c mice still developed the fatal course of disease after Curdlan treatment. Furthermore, the vaccination of BALB/c mice with a combination of soluble L. major antigens and Curdlan was able to provide a partial protection from severe leishmaniasis. These findings indicate that the ligation of Dectin-1 on DCs acts as an important checkpoint in adaptive immunity against L. major and should therefore be considered in future whole-organism vaccination strategies.
Collapse
Affiliation(s)
- Nicole Zimara
- Regensburg Center for Interventional Immunology (RCI), Institute of Immunology, University Medical Center Regensburg, University of Regensburg, Regensburg, Germany
| | - Menberework Chanyalew
- Armauer Hansen Research Institute, Leishmaniasis Research Laboratory, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Leishmaniasis Research Laboratory, Addis Ababa, Ethiopia
| | - Ger van Zandbergen
- Federal Institute for Vaccines and Biomedicines, Division of Immunology, Paul Ehrlich Institute, Langen, Germany
| | - Bernd Lepenies
- University of Veterinary Medicine Hannover, Immunology Unit, Research Center for Emerging Infections and Zoonoses (RIZ), Hannover, Germany
| | - Maximilian Schmid
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Richard Weiss
- Department of Molecular Biology, Division of Allergy and Immunology, University of Salzburg, Salzburg, Austria
| | - Anne Rascle
- Regensburg Center for Interventional Immunology (RCI), Institute of Immunology, University Medical Center Regensburg, University of Regensburg, Regensburg, Germany
| | - Anja Kathrin Wege
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| | - Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| | - Gordon D. Brown
- MRC Centre for Medical Mycology, University of Aberdeen, Aberdeen, United Kingdom
| | - Uwe Ritter
- Regensburg Center for Interventional Immunology (RCI), Institute of Immunology, University Medical Center Regensburg, University of Regensburg, Regensburg, Germany
| |
Collapse
|
59
|
Garand M, Goodier M, Owolabi O, Donkor S, Kampmann B, Sutherland JS. Functional and Phenotypic Changes of Natural Killer Cells in Whole Blood during Mycobacterium tuberculosis Infection and Disease. Front Immunol 2018. [PMID: 29520269 PMCID: PMC5827559 DOI: 10.3389/fimmu.2018.00257] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Tuberculosis (TB) is still a global health concern, especially in resource-poor countries such as The Gambia. Defining protective immunity to TB is challenging: its pathogenesis is complex and involves several cellular components of the immune system. Recent works in vaccine development suggest important roles of the innate immunity in natural protection to TB, including natural killer (NK) cells. NK cells mediate cellular cytotoxicity and cytokine signaling in response to Mycobacterium tuberculosis (Mtb). NK cells can display specific memory-type markers to previous antigen exposure; thus, bridging innate and adaptive immunity. However, major knowledge gaps exist on the contribution of NK cells in protection against Mtb infection or TB. We performed a cross-sectional assessment of NK cells phenotype and function in four distinct groups of individuals: TB cases pre-treatment (n = 20) and post-treatment (n = 19), and household contacts with positive (n = 9) or negative (n = 18) tuberculin skin test (TST). While NK cells frequencies were similar between all groups, significant decreases in interferon-γ expression and degranulation were observed in NK cells from TB cases pre-treatment compared to post-treatment. Conversely, CD57 expression, a marker of advanced NK cells differentiation, was significantly lower in cases post-treatment compared to pre-treatment. Finally, NKG2C, an activation and imprinted-NK memory marker, was significantly increased in TST+ (latently infected) compared to TB cases pre-treatment and TST- (uninfected) individuals. The results of this study provide valuable insights into the role of NK cells in Mtb infection and TB disease, demonstrating potential markers for distinguishing between infection states and monitoring of TB treatment response.
Collapse
Affiliation(s)
- Mathieu Garand
- Vaccines and Immunity Theme, Medical Research Council Unit, Fajara, Gambia
| | - Martin Goodier
- London School of Hygiene and Tropical Medicine, Bloomsbury, London, United Kingdom
| | - Olumuyiwa Owolabi
- Vaccines and Immunity Theme, Medical Research Council Unit, Fajara, Gambia
| | - Simon Donkor
- Vaccines and Immunity Theme, Medical Research Council Unit, Fajara, Gambia
| | - Beate Kampmann
- Vaccines and Immunity Theme, Medical Research Council Unit, Fajara, Gambia
| | - Jayne S Sutherland
- Vaccines and Immunity Theme, Medical Research Council Unit, Fajara, Gambia
| |
Collapse
|
60
|
Ogura K, Sato-Matsushita M, Yamamoto S, Hori T, Sasahara M, Iwakura Y, Saiki I, Tahara H, Hayakawa Y. NK Cells Control Tumor-Promoting Function of Neutrophils in Mice. Cancer Immunol Res 2018; 6:348-357. [PMID: 29362222 DOI: 10.1158/2326-6066.cir-17-0204] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/21/2017] [Accepted: 01/09/2018] [Indexed: 11/16/2022]
Abstract
Although natural killer (NK) cells are recognized as direct antitumor effectors, the ability of NK cells to control cancer-associated inflammation, which facilitates tumor progression, remains unknown. In this study, we demonstrate that NK cells control tumor-promoting inflammation through functional modification of neutrophils. NK cells control the tumor-promoting function of neutrophils through an IFNγ-dependent mechanism. Tumor progression in an NK cell-depleted host is diminished when the IL17A-neutrophil axis is absent. In NK cell-depleted mice, neutrophils acquire a tumor-promoting phenotype, characterized by upregulation of VEGF-A expression, which promotes tumor growth and angiogenesis. A VEGFR inhibitor which preferentially suppressed tumor growth in NK cell-depleted mice was dependent on neutrophils. Furthermore, the systemic neutropenia caused by an antimetabolite treatment showed an anticancer effect only in mice lacking NK cells. Thus, NK cells likely control the tumor-promoting and angiogenic function of neutrophils. Cancer Immunol Res; 6(3); 348-57. ©2018 AACR.
Collapse
Affiliation(s)
- Keisuke Ogura
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Marimo Sato-Matsushita
- Department of Surgery and Bioengineering, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Seiji Yamamoto
- Department of Pathology, University of Toyama, Toyama, Japan
| | - Takashi Hori
- Department of Diagnostic Pathology, Toyama University Hospital, Toyama, Japan
| | | | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Ikuo Saiki
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Hideaki Tahara
- Department of Surgery and Bioengineering, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yoshihiro Hayakawa
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan.
| |
Collapse
|
61
|
Papazahariadou M, Athanasiadis GI, Papadopoulos E, Symeonidou I, Hatzistilianou M, Castellani ML, Bhattacharya K, Shanmugham LN, Conti P, Frydas S. Involvement of NK Cells against Tumors and Parasites. Int J Biol Markers 2018; 22:144-53. [PMID: 17549670 DOI: 10.1177/172460080702200208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Host resistance against pathogens depends on a complex interplay of innate and adaptive immune mechanisms. Acting as an early line of defence, the immune system includes activation of neutrophils, tissue macrophages, monocytes, dendritic cells, eosinophils and natural killer (NK) cells. NK cells are lymphoid cells that can be activated without previous stimulation and are therefore like macrophages in the first line of defence against tumor cells and a diverse range of pathogens. NK cells mediate significant activity and produce high levels of proinflammatory cytokines in response to infection. Their cytotoxicity production is induced principally by monocyte-, macrophage- and dendritic cell-derived cytokines, but their activation is also believed to be cytokine-mediated. Recognition of infection by NK cells is accomplished by numerous activating and inhibitory receptors on the NK cells’ surface that selectively trigger the cytolytic activity in a major histocompability complex-independent manner. NK cells have trypanocidal activity of fibroblast cells and mediate direct destruction of extracellular epimastigote and trypomastigote forms of T. cruzi and T. lewisi in vitro; moreover, they kill plasmodia-infected erythrocytes directly through cell-cell interaction. This review provides a more detailed analysis of how NK cells recognize and respond to parasites and how they mediate cytotoxicity against tumor cells. Also the unique role of NK cells in innate immunity to infection and the relationship between parasites and carcinogenesis are discussed.
Collapse
Affiliation(s)
- M Papazahariadou
- Laboratory of Parasitology, Veterinary Faculty, Aristotele University, Thessaloniki, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Rai AK, Thakur CP, Kumar P, Saini S, Kureel AK, Kumari S, Seth T, Mitra DK. Decrease in the Frequency of Circulating CD56 +CD161 + NK Cells in Human Visceral Leishmaniasis. Immunol Invest 2017; 47:125-134. [PMID: 29182405 DOI: 10.1080/08820139.2017.1402925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Natural Killer (NK) cell plays an important role in the innate immune system and is known to produce IFN-γ at an early stage of infection that is essential to eliminate intracellular infection like Leishmania spp. It is already established that Leishmania parasite inhibits the activity of NK cells, avoiding the encounter with the early innate immune response. This, in turn, favors establishment and further dissemination of the infection. METHODS In the present study, we have tried to measure the frequency of different phenotypic subsets of NK cells among visceral leishmaniasis (VL) patients. RESULTS We have phenotyped three distinct three distinct subsets (CD56-CD161+, CD56+CD161-, and CD56+CD161+) of NK (CD3-) cell using their specific markers CD161 and CD56. CONCLUSION Interestingly, we observed selective loss of CD56+CD161+ subset of circulating NK (CD3-) cells. Importantly, the other subsets (i.e., CD56-CD161+ and CD56+CD161-) of circulating NK cells remain unaffected as compared with healthy subjects.
Collapse
Affiliation(s)
- Ambak Kumar Rai
- a Department of Transplant Immunology and Immunogenetics , All India Institutes of Medical Sciences , New Delhi , India.,d Department of Biotechnology , Motilal Nehru National Institute of Technology , Allahabad , UP , India
| | | | - Prabin Kumar
- a Department of Transplant Immunology and Immunogenetics , All India Institutes of Medical Sciences , New Delhi , India
| | - Sheetal Saini
- d Department of Biotechnology , Motilal Nehru National Institute of Technology , Allahabad , UP , India
| | - Amit Kumar Kureel
- d Department of Biotechnology , Motilal Nehru National Institute of Technology , Allahabad , UP , India
| | - Smita Kumari
- d Department of Biotechnology , Motilal Nehru National Institute of Technology , Allahabad , UP , India
| | - Tulika Seth
- c Department of Hematology , All India Institutes of Medical Sciences , New Delhi , India
| | - Dipendra Kumar Mitra
- a Department of Transplant Immunology and Immunogenetics , All India Institutes of Medical Sciences , New Delhi , India
| |
Collapse
|
63
|
Campos TM, Costa R, Passos S, Carvalho LP. Cytotoxic activity in cutaneous leishmaniasis. Mem Inst Oswaldo Cruz 2017; 112:733-740. [PMID: 29091132 PMCID: PMC5661895 DOI: 10.1590/0074-02760170109] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/10/2017] [Indexed: 01/27/2023] Open
Abstract
Cutaneous leishmaniasis (CL) is a chronic disease caused by species of the protozoan Leishmania and characterised by the presence of ulcerated skin lesions. Both parasite and host factors affect the clinical presentation of the disease. The development of skin ulcers in CL is associated with an inflammatory response mediated by cells that control parasite growth but also contribute to pathogenesis. CD8+ T cells contribute to deleterious inflammatory responses in patients with CL through cytotoxic mechanisms. In addition, natural killer cells also limit Leishmania infections by production of interferon-γ and cytotoxicity. In this review, we focus on studies of cytotoxicity in CL and its contribution to the pathogenesis of this disease.
Collapse
Affiliation(s)
- Taís M Campos
- Universidade Federal da Bahia, Serviço de Imunologia, Salvador, BA, Brasil.,Universidade Federal da Bahia, Faculdade de Medicina da Bahia, Programa de Pós-Graduação em Ciências da Saúde, Salvador, BA, Brasil
| | - Rúbia Costa
- Universidade Federal da Bahia, Serviço de Imunologia, Salvador, BA, Brasil.,Universidade Federal da Bahia, Faculdade de Medicina da Bahia, Programa de Pós-Graduação em Ciências da Saúde, Salvador, BA, Brasil
| | - Sara Passos
- Universidade Federal da Bahia, Serviço de Imunologia, Salvador, BA, Brasil.,Houston Methodist Research Institute, Department of Nanomedicine, Houston, TX, United States
| | - Lucas P Carvalho
- Universidade Federal da Bahia, Serviço de Imunologia, Salvador, BA, Brasil.,Universidade Federal da Bahia, Faculdade de Medicina da Bahia, Programa de Pós-Graduação em Ciências da Saúde, Salvador, BA, Brasil.,Instituto Nacional de Ciências e Tecnologia-Doenças Tropicais, Salvador, BA, Brasil.,Fundação Oswaldo Cruz-Fiocruz, Instituto Gonçalo Moniz, Laboratório Avançado de Saúde Pública, Salvador, BA, Brasil
| |
Collapse
|
64
|
Kumar R, Chauhan SB, Ng SS, Sundar S, Engwerda CR. Immune Checkpoint Targets for Host-Directed Therapy to Prevent and Treat Leishmaniasis. Front Immunol 2017; 8:1492. [PMID: 29167671 PMCID: PMC5682306 DOI: 10.3389/fimmu.2017.01492] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/23/2017] [Indexed: 12/15/2022] Open
Abstract
Leishmaniasis encompasses a group of diseases caused by protozoan parasites belonging to the genus Leishmania. These diseases range from life threatening visceral forms to self-healing cutaneous lesions, and each disease manifestations can progress to complications involving dissemination of parasites to skin or mucosal tissue. A feature of leishmaniasis is the key role host immune responses play in disease outcome. T cells are critical for controlling parasite growth. However, they can also contribute to disease onset and progression. For example, potent regulatory T cell responses can develop that suppress antiparasitic immunity. Alternatively, hyperactivated CD4+ or CD8+ T cells can be generated that cause damage to host tissues. There is no licensed human vaccine and drug treatment options are often limited and problematic. Hence, there is an urgent need for new strategies to improve the efficacy of current vaccine candidates and/or enhance both antiparasitic drug effectiveness and subsequent immunity in treated individuals. Here, we describe our current understanding about host immune responses contributing to disease protection and progression in the various forms of leishmaniasis. We also discuss how this knowledge may be used to develop new strategies for host-directed immune therapy to prevent or treat leishmaniasis. Given the major advances made in immune therapy in the cancer and autoimmune fields in recent years, there are significant opportunities to ride on the back of these successes in the infectious disease domain. Conversely, the rapid progress in our understanding about host immune responses during leishmaniasis is also providing opportunities to develop novel immunotherapy strategies that could have broad applications in diseases characterized by inflammation or immune dysfunction.
Collapse
Affiliation(s)
- Rajiv Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shashi Bhushan Chauhan
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Susanna S. Ng
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
65
|
Oliveira AC, Gomes-Neto JF, Barbosa CHD, Granato A, Reis BS, Santos BM, Fucs R, Canto FB, Nakaya HI, Nóbrega A, Bellio M. Crucial role for T cell-intrinsic IL-18R-MyD88 signaling in cognate immune response to intracellular parasite infection. eLife 2017; 6:30883. [PMID: 28895840 PMCID: PMC5629024 DOI: 10.7554/elife.30883] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/12/2017] [Indexed: 12/29/2022] Open
Abstract
MyD88 is the main adaptor molecule for TLR and IL-1R family members. Here, we demonstrated that T-cell intrinsic MyD88 signaling is required for proliferation, protection from apoptosis and expression of activation/memory genes during infection with the intracellular parasite Trypanosoma cruzi, as evidenced by transcriptome and cytometry analyses in mixed bone-marrow (BM) chimeras. The lack of direct IL-18R signaling in T cells, but not of IL-1R, phenocopied the absence of the MyD88 pathway, indicating that IL-18R is a critical MyD88-upstream pathway involved in the establishment of the Th1 response against an in vivo infection, a presently controvert subject. Accordingly, Il18r1−/− mice display lower levels of Th1 cells and are highly susceptible to infection, but can be rescued from mortality by the adoptive transfer of WT CD4+ T cells. Our findings establish the T-cell intrinsic IL-18R/MyD88 pathway as a crucial element for induction of cognate Th1 responses against an important human pathogen.
Collapse
Affiliation(s)
- Ana-Carolina Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Francisco Gomes-Neto
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Alessandra Granato
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Bruno Maia Santos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rita Fucs
- Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Fábio B Canto
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helder I Nakaya
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia de Vacinas, CNPq-MCT, Belo Horizonte, Brazil.,Department of Pathology, Emory University School of Medicine, Atlanta, United States
| | - Alberto Nóbrega
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Bellio
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia de Vacinas, CNPq-MCT, Belo Horizonte, Brazil
| |
Collapse
|
66
|
Wu Q, Shen Y, Tao Y, Wei J, Wang H, An P, Zhang Z, Gao H, Zhou T, Wang F, Min J. Hemojuvelin regulates the innate immune response to peritoneal bacterial infection in mice. Cell Discov 2017; 3:17028. [PMID: 28815056 PMCID: PMC5556331 DOI: 10.1038/celldisc.2017.28] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/13/2017] [Indexed: 12/20/2022] Open
Abstract
Hereditary hemochromatosis and iron imbalance are associated with susceptibility to bacterial infection; however, the underlying mechanisms are poorly understood. Here, we performed in vivo bacterial infection screening using several mouse models of hemochromatosis, including Hfe (Hfe−/−), hemojuvelin (Hjv−/−), and macrophage-specific ferroportin-1 (Fpn1fl/fl;LysM-Cre+) knockout mice. We found that Hjv−/− mice, but not Hfe−/− or Fpn1fl/fl;LysM-Cre+ mice, are highly susceptible to peritoneal infection by both Gram-negative and Gram-positive bacteria. Interestingly, phagocytic cells in the peritoneum of Hjv−/− mice have reduced bacterial clearance, IFN-γ secretion, and nitric oxide production; in contrast, both cell migration and phagocytosis are normal. Expressing Hjv in RAW264.7 cells increased the level of phosphorylated Stat1 and nitric oxide production. Moreover, macrophage-specific Hjv knockout mice are susceptible to bacterial infection. Finally, we found that Hjv facilitates the secretion of IFN-γ via the IL-12/Jak2/Stat4 signaling pathway. Together, these findings reveal a novel protective role of Hjv in the early stages of antimicrobial defense.
Collapse
Affiliation(s)
- Qian Wu
- The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Shen
- The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunlong Tao
- The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiayu Wei
- The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Wang
- The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Peng An
- The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhuzhen Zhang
- The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Gao
- The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tianhua Zhou
- The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fudi Wang
- The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
67
|
Resende M, Cardoso MS, Ribeiro AR, Flórido M, Borges M, Castro AG, Alves NL, Cooper AM, Appelberg R. Innate IFN-γ-Producing Cells Developing in the Absence of IL-2 Receptor Common γ-Chain. THE JOURNAL OF IMMUNOLOGY 2017; 199:1429-1439. [PMID: 28687660 DOI: 10.4049/jimmunol.1601701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 06/11/2017] [Indexed: 12/31/2022]
Abstract
IFN-γ is known to be predominantly produced by lymphoid cells such as certain subsets of T cells, NK cells, and other group 1 innate lymphoid cells. In this study, we used IFN-γ reporter mouse models to search for additional cells capable of secreting this cytokine. We identified a novel and rare population of nonconventional IFN-γ-producing cells of hematopoietic origin that were characterized by the expression of Thy1.2 and the lack of lymphoid, myeloid, and NK lineage markers. The expression of IFN-γ by this population was higher in the liver and lower in the spleen. Furthermore, these cells were present in mice lacking both the Rag2 and the common γ-chain (γc) genes (Rag2-/-γc-/-), indicating their innate nature and their γc cytokine independence. Rag2-/-γc-/- mice are as resistant to Mycobacterium avium as Rag2-/- mice, whereas Rag2-/- mice lacking IFN-γ are more susceptible than either Rag2-/- or Rag2-/-γc-/- These lineage-negative CD45+/Thy1.2+ cells are found within the mycobacterially induced granulomatous structure in the livers of infected Rag2-/-γc-/- animals and are adjacent to macrophages that expressed inducible NO synthase, suggesting a potential protective role for these IFN-γ-producing cells. Accordingly, Thy1.2-specific mAb administration to infected Rag2-/-γc-/- animals increased M. avium growth in the liver. Overall, our results demonstrate that a population of Thy1.2+ non-NK innate-like cells present in the liver expresses IFN-γ and can confer protection against M. avium infection in immunocompromised mice.
Collapse
Affiliation(s)
- Mariana Resende
- IBMC - Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; .,Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho and ICVS/3B's - PT Government Associate Laboratory, 4170 Braga/Guimarães, Portugal; and
| | - Marcos S Cardoso
- IBMC - Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana R Ribeiro
- IBMC - Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Manuela Flórido
- IBMC - Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Margarida Borges
- IBMC - Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - António Gil Castro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho and ICVS/3B's - PT Government Associate Laboratory, 4170 Braga/Guimarães, Portugal; and
| | - Nuno L Alves
- IBMC - Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | | | - Rui Appelberg
- IBMC - Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
68
|
Abstract
The leishmaniases are diseases caused by pathogenic protozoan parasites of the genus Leishmania. Infections are initiated when a sand fly vector inoculates Leishmania parasites into the skin of a mammalian host. Leishmania causes a spectrum of inflammatory cutaneous disease manifestations. The type of cutaneous pathology is determined in part by the infecting Leishmania species, but also by a combination of inflammatory and anti-inflammatory host immune response factors resulting in different clinical outcomes. This review discusses the distinct cutaneous syndromes described in humans, and current knowledge of the inflammatory responses associated with divergent cutaneous pathologic responses to different Leishmania species. The contribution of key hematopoietic cells in experimental cutaneous leishmaniasis in mouse models are also reviewed and compared with those observed during human infection. We hypothesize that local skin events influence the ensuing adaptive immune response to Leishmania spp. infections, and that the balance between inflammatory and regulatory factors induced by infection are critical for determining cutaneous pathology and outcome of infection.
Collapse
|
69
|
Zamora AE, Aguilar EG, Sungur CM, Khuat LT, Dunai C, Lochhead GR, Du J, Pomeroy C, Blazar BR, Longo DL, Venstrom JM, Baumgarth N, Murphy WJ. Licensing delineates helper and effector NK cell subsets during viral infection. JCI Insight 2017; 2:87032. [PMID: 28515356 DOI: 10.1172/jci.insight.87032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/18/2017] [Indexed: 11/17/2022] Open
Abstract
Natural killer (NK) cells can be divided into phenotypic subsets based on expression of receptors that bind self-MHC-I molecules, a concept termed licensing or education. Here we show NK cell subsets with different migratory, effector, and immunoregulatory functions in dendritic cell and antigen (ag)-specific CD8+ T cell responses during influenza and murine cytomegalovirus infections. Shortly after infection, unlicensed NK cells localized in draining lymph nodes and produced GM-CSF, which correlated with the expansion and activation of dendritic cells, and resulted in greater and sustained ag-specific T cell responses. In contrast, licensed NK cells preferentially migrated to infected tissues and produced IFN-γ. Importantly, human NK cell subsets exhibited similar phenotypic characteristics. Collectively, our studies demonstrate a critical demarcation between the functions of licensed and unlicensed NK cell subsets, with the former functioning as the classical effector subset and the latter as the stimulator of adaptive immunity helping to prime immune responses.
Collapse
Affiliation(s)
| | | | | | | | | | - G Raymond Lochhead
- Department of Internal Medicine, UC Davis School of Medicine, Sacramento, California, USA
| | - Juan Du
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Claire Pomeroy
- President of Lasker Foundation, Albert and Mary Lasker Foundation, New York City, New York, USA
| | - Bruce R Blazar
- Masonic Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dan L Longo
- National Institute on Aging, NIH, Baltimore, Maryland, USA
| | | | - Nicole Baumgarth
- Center for Comparative Medicine, UC Davis, Davis, California, USA
| | - William J Murphy
- Department of Dermatology.,Department of Internal Medicine, UC Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|
70
|
Gomes AHS, Martines RB, Kanamura CT, Barbo MLP, Iglezias SD, Lauletta Lindoso JA, Pereira-Chioccola VL. American cutaneous leishmaniasis: In situ immune response of patients with recent and late lesions. Parasite Immunol 2017; 39. [PMID: 28239875 DOI: 10.1111/pim.12423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/20/2017] [Indexed: 11/30/2022]
Abstract
TNF-α, IFN-γ, IL-10, IL-17, CD68 and CD57 were evaluated in biopsies of patients with American cutaneous leishmaniasis living in Sorocaba, Brazil. The analyses were performed considering the time of lesions from 23 patients with recent lesions (Group I) and 19 patients with late lesions (Group II). All patients were infected with Leishmania (Viannia) braziliensis. Immunostaining cells for CD68, CD57, TNF- α, IFN-γ, IL-10 and IL-17 were performed by immunohistochemistry. Except for CD68 and IL-17, the distribution of in situ for CD57, IL-10, TNF-α and IFN-γ showed that patients with recent lesions expressed higher levels than those with late lesions. The comparison of cytokine expression/group showed that IL-10 was significantly higher than IL-17 and IFN-γ (similar data were shown in IL-17 compared with TNF-α), suggesting an immunological balance between inflammatory-anti-inflammatory agents. This balance was similar for two groups of patients. In conclusion, these data suggested that (i) patients from Group I had recent lesions (in the beginning of chronic phase) compared to those from Group II and (ii) the modulation of inflammatory response in patients with recent American cutaneous leishmaniasis was correlated with IL-10 expression in skin lesions preventing the development of mucosal forms. The parasite treatment also prevented the evolution of severe forms.
Collapse
Affiliation(s)
- A H S Gomes
- Laboratorio Regional de Sorocaba, Instituto Adolfo Lutz, Sao Paulo, Brazil
| | - R B Martines
- Centro de Patologia, Instituto Adolfo Lutz, Sao Paulo, Brazil
| | - C T Kanamura
- Centro de Patologia, Instituto Adolfo Lutz, Sao Paulo, Brazil
| | - M L P Barbo
- Departamento de Morfologia e Patologia, Faculdade de Ciências Médicas e Saúde, Pontifícia Universidade Católica, Sorocaba, São Paulo, Brazil
| | - S D Iglezias
- Centro de Patologia, Instituto Adolfo Lutz, Sao Paulo, Brazil
| | - J A Lauletta Lindoso
- Instituto de Infectologia Emilio Ribas, São Paulo, São Paulo, Brazil.,Laboratório de Soroepidemiologia (LIM-38) Hospital das Clínicas da Faculdade de Medicina da, Universidade de São Paulo, São Paulo, Brazil.,Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
71
|
Yoon W, Park YC, Kim J, Chae YS, Byeon JH, Min SH, Park S, Yoo Y, Park YK, Kim BM. Application of genetically engineered Salmonella typhimurium for interferon-gamma–induced therapy against melanoma. Eur J Cancer 2017; 70:48-61. [DOI: 10.1016/j.ejca.2016.10.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/30/2016] [Accepted: 10/07/2016] [Indexed: 01/01/2023]
|
72
|
Halliday A, Bates PA, Chance ML, Taylor MJ. Toll-like receptor 2 (TLR2) plays a role in controlling cutaneous leishmaniasis in vivo, but does not require activation by parasite lipophosphoglycan. Parasit Vectors 2016; 9:532. [PMID: 27716391 PMCID: PMC5053327 DOI: 10.1186/s13071-016-1807-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 09/21/2016] [Indexed: 01/27/2023] Open
Abstract
Background Leishmaniasis is a neglected tropical disease affecting millions of individuals worldwide. Despite several studies reporting involvement of the innate immune receptor Toll-like receptor 2 (TLR2) in the recognition of surface glycolipids from Leishmania parasites in vitro, the role of TLR2 and its co-receptors during cutaneous leishmaniasis infection in vivo is unknown. Methods To explore the role of TLR2 and its co-receptors in cutaneous leishmaniasis, mice deficient in either TLR2, 4, 1 or 6, or wild-type (WT) controls, were infected with either Leishmania major promastigotes, L. mexicana promastigotes, L. mexicana amastigotes, or LPG1−/−L. mexicana promastigotes. For each infection, lesion sizes were monitored and parasite burden was assessed at various time points. To assess immune responses, draining lymph node (DLN) cells were re-stimulated with parasite antigens and the production of cytokines and parasite-specific antibody isotypes in blood was determined by ELISA. Results Mice deficient in TLR2 and TLR4 presented with larger lesions and higher parasite burdens than WT controls. Mice lacking TLR2 co-receptors TLR1 or TLR6 did not show exacerbated infection, suggesting that TLR2 does not require either co-receptor in the recognition of Leishmania infection. Furthermore, it appears that lipophosphoglycan (LPG) is not the major mediator of TLR2 activation during infection with L. mexicana, as parasites lacking LPG (axenic amastigotes and LPG1−/− promastigotes) also resulted in exacerbated disease in TLR2−/− mice. Infected TLR2−/− mice show a skewed Th2 immune response to Leishmania parasites, as demonstrated by elevated IL-4, IL-13 and IL-10 production by DLN cells from L. mexicana infected mice in response to antigen. Furthermore, L. major infected TLR2−/− mice have elevated antigen-specific IgG1 antibodies. Conclusions TLR2 deficiency leads to exacerbation of disease and parasite burden through promotion of Th2 immunity. TLR2 activation in vivo occurs independently of parasite LPG, suggesting other parasite ligands are involved in TLR2 recognition of Leishmania. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1807-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alice Halliday
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Paul A Bates
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Furness Building, Lancaster University, Bailrigg, Lancaster, LA1 4YG, UK
| | - Michael L Chance
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Mark J Taylor
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
73
|
Mammalian Innate Immune Response to a Leishmania-Resident RNA Virus Increases Macrophage Survival to Promote Parasite Persistence. Cell Host Microbe 2016; 20:318-328. [PMID: 27593513 DOI: 10.1016/j.chom.2016.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/13/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
Abstract
Some strains of the protozoan parasite Leishmania guyanensis (L.g) harbor a viral endosymbiont called Leishmania RNA virus 1 (LRV1). LRV1 recognition by TLR-3 increases parasite burden and lesion swelling in vivo. However, the mechanisms by which anti-viral innate immune responses affect parasitic infection are largely unknown. Upon investigating the mammalian host's response to LRV1, we found that miR-155 was singularly and strongly upregulated in macrophages infected with LRV1+ L.g when compared to LRV1- L.g. LRV1-driven miR-155 expression was dependent on TLR-3/TRIF signaling. Furthermore, LRV1-induced TLR-3 activation promoted parasite persistence by enhancing macrophage survival through Akt activation in a manner partially dependent on miR-155. Pharmacological inhibition of Akt resulted in a decrease in LRV1-mediated macrophage survival and consequently decreased parasite persistence. Consistent with these data, miR-155-deficient mice showed a drastic decrease in LRV1-induced disease severity, and lesional macrophages from these mice displayed reduced levels of Akt phosphorylation.
Collapse
|
74
|
Séguin O, Descoteaux A. Leishmania, the phagosome, and host responses: The journey of a parasite. Cell Immunol 2016; 309:1-6. [PMID: 27531526 DOI: 10.1016/j.cellimm.2016.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/25/2016] [Accepted: 08/07/2016] [Indexed: 10/21/2022]
Abstract
Leishmania is the eukaryotic parasite responsible for leishmaniases, a spectrum of diseases that puts at risk roughly 350millions of people in 98 countries according to the Drugs for Neglected Diseases initiative (DNDi). This parasite has a complex life cycle composed of two distinct stages, the promastigote form found in the female sand-fly vector and the amastigote form that replicates in the mammalian host (Teixeira et al., 2013) [1]. To survive, the parasite interacts with its host immune system at multiple levels. In this review, we discuss the nature of those interactions, how they affect the host immune system, and how they affect parasite survival from the very beginning of the life cycle in the vector to its dissemination within the mammalian host.
Collapse
Affiliation(s)
- Olivier Séguin
- INRS-Institut Armand-Frappier and the Center for Host-Parasite Interactions, Laval, Canada
| | - Albert Descoteaux
- INRS-Institut Armand-Frappier and the Center for Host-Parasite Interactions, Laval, Canada.
| |
Collapse
|
75
|
Beck BR, Song JH, Park BS, Kim D, Kwak JH, Do HK, Kim AR, Kim WJ, Song SK. Distinct immune tones are established by Lactococcus lactis BFE920 and Lactobacillus plantarum FGL0001 in the gut of olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2016; 55:434-443. [PMID: 27320869 DOI: 10.1016/j.fsi.2016.06.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/12/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
The immune tone is defined as an immunological state during which the readiness for immune response is potentiated. The establishment of immune tone in the gut of olive flounder (Paralichthys olivaceus) was investigated by feeding Lactococcus lactis BFE920 (LL) or Lactobacillus plantarum FGL0001 (LP). LL-fed flounder showed significantly increased levels of regulatory genes (FOXP3, IL-10, and TGF-β1), CD18, and CD83 in the gut. In contrast, LP feeding drastically increased proinflammatory genes (T-bet, IL-1β, and IFN-γ) and CD18. This indicates that LL and LP establish different types of local immune tones in the gut through differential activation of innate immune cells: LL activates both macrophages and dendritic cells while LP activates macrophages only. Both of the immune tones required at least a total of 6 probiotic feeds during 72 h for a stable establishment. Once established, the type of immune tone remained steady even up to 30 days (a total of 60 feeds) probiotics feeding. The LL-induced regulatory immune tone enhanced the level of occludin, a tight junction molecule, significantly more than that observed with the proinflammatory immune tone established by LP feeding. Consequently, LL-fed fish showed considerably lower gut permeability than that of the LP-fed group. Furthermore, when orally challenged by Edwardsiella tarda, LL-fed flounder survived at a significantly higher rate than LP-fed fish. The data clearly demonstrate that individual probiotics establish distinct types of immune tone in the fish gut, which in turn influences the immunological status as well as the physiology of the gut. Selection of proper probiotics may be essential for optimal effects in aquaculture farming.
Collapse
Affiliation(s)
- Bo Ram Beck
- School of Life Science, Handong University, Pohang 791-708, Republic of Korea
| | - Joon Hyun Song
- School of Life Science, Handong University, Pohang 791-708, Republic of Korea
| | - Byung Sun Park
- School of Life Science, Handong University, Pohang 791-708, Republic of Korea
| | - Daniel Kim
- School of Life Science, Handong University, Pohang 791-708, Republic of Korea
| | - Jin-Hwan Kwak
- School of Life Science, Handong University, Pohang 791-708, Republic of Korea
| | - Hyung Ki Do
- School of Life Science, Handong University, Pohang 791-708, Republic of Korea
| | - Ah-Ram Kim
- School of Life Science, Handong University, Pohang 791-708, Republic of Korea
| | - Woo-Jin Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Seong Kyu Song
- School of Life Science, Handong University, Pohang 791-708, Republic of Korea.
| |
Collapse
|
76
|
Abstract
Cutaneous leishmaniasis is a major public health problem and causes a range of diseases from self-healing infections to chronic disfiguring disease. Currently, there is no vaccine for leishmaniasis, and drug therapy is often ineffective. Since the discovery of CD4(+) T helper 1 (TH1) cells and TH2 cells 30 years ago, studies of cutaneous leishmaniasis in mice have answered basic immunological questions concerning the development and maintenance of CD4(+) T cell subsets. However, new strategies for controlling the human disease have not been forthcoming. Nevertheless, advances in our knowledge of the cells that participate in protection against Leishmania infection and the cells that mediate increased pathology have highlighted new approaches for vaccine development and immunotherapy. In this Review, we discuss the early events associated with infection, the CD4(+) T cells that mediate protective immunity and the pathological role that CD8(+) T cells can have in cutaneous leishmaniasis.
Collapse
|
77
|
Glennie ND, Scott P. Memory T cells in cutaneous leishmaniasis. Cell Immunol 2016; 309:50-54. [PMID: 27493096 DOI: 10.1016/j.cellimm.2016.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/05/2016] [Accepted: 07/15/2016] [Indexed: 01/03/2023]
Abstract
Leishmania causes a spectrum of diseases that range from self-healing to fatal infections. Control of leishmania is dependent upon generating CD4+ Th1 cells that produce IFNγ, leading to macrophage activation and killing of the intracellular parasites. Following resolution of the disease, short-lived effector T cells, as well as long-lived central memory T cells and skin resident memory T cells, are retained and able to mediate immunity to a secondary infection. However, there is no vaccine for leishmaniasis, and the drugs used to treat the disease can be toxic and ineffective. While a live infection generates immunity, a successful vaccine will depend upon generating memory T cells that can be maintained without the continued presence of parasites. Since both central memory and skin resident memory T cells are long-lived, they may be the appropriate targets for a leishmaniasis vaccine.
Collapse
Affiliation(s)
- Nelson D Glennie
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
78
|
Lage DP, Martins VT, Duarte MC, Costa LE, Tavares GDSV, Ramos FF, Chávez-Fumagalli MA, Menezes-Souza D, Roatt BM, Tavares CAP, Coelho EAF. Cross-protective efficacy of Leishmania infantum LiHyD protein against tegumentary leishmaniasis caused by Leishmania major and Leishmania braziliensis species. Acta Trop 2016; 158:220-230. [PMID: 26976272 DOI: 10.1016/j.actatropica.2016.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/25/2016] [Accepted: 03/10/2016] [Indexed: 11/19/2022]
Abstract
Vaccination can be considered the most cost-effective strategy to control neglected diseases, but nowadays there is not an effective vaccine available against leishmaniasis. In the present study, a vaccine based on the combination of the Leishmania-specific hypothetical protein (LiHyD) with saponin was tested in BALB/c mice against infection caused by Leishmania major and Leishmania braziliensis species. This antigen was firstly identified in Leishmania infantum and showed to be protective against infection of BALB/c mice using this parasite species. The immunogenicity of rLiHyD/saponin vaccine was evaluated, and the results showed that immunized mice produced high levels of IFN-γ, IL-12 and GM-CSF after in vitro stimulation with rLiHyD, as well as by using L. major or L. braziliensis protein extracts. After challenge, vaccinated animals showed significant reductions in the infected footpad swellings, as well as in the parasite burden in the infection site, liver, spleen, and infected paws draining lymph nodes, when compared to those that were inoculated with the vaccine diluent (saline) or immunized with saponin. The immunization of rLiHyD without adjuvant was not protective against both challenges. The partial protection obtained by the rLiHyD/saponin vaccine was associated with a parasite-specific IL-12-dependent IFN-γ secretion, which was produced mainly by CD4(+) T cells. In these animals, a decrease in the parasite-mediated IL-4 and IL-10 responses, associated with the presence of high levels of LiHyD- and parasite-specific IgG2a isotype antibodies, were also observed. The present study showed that a hypothetical protein that was firstly identified in L. infantum, when combined to a Th1 adjuvant, was able to confer a cross-protection against highly infective stationary-phase promastigotes of two Leishmania species causing tegumentary leishmaniasis.
Collapse
Affiliation(s)
- Daniela Pagliara Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vívian Tamietti Martins
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana Costa Duarte
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lourena Emanuele Costa
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele de Sousa Vieira Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Fonseca Ramos
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Menezes-Souza
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno Mendes Roatt
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Alberto Pereira Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
79
|
Lugthart G, Melsen JE, Vervat C, van Ostaijen-Ten Dam MM, Corver WE, Roelen DL, van Bergen J, van Tol MJD, Lankester AC, Schilham MW. Human Lymphoid Tissues Harbor a Distinct CD69+CXCR6+ NK Cell Population. THE JOURNAL OF IMMUNOLOGY 2016; 197:78-84. [PMID: 27226093 DOI: 10.4049/jimmunol.1502603] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/30/2016] [Indexed: 11/19/2022]
Abstract
Knowledge of human NK cells is based primarily on conventional CD56(bright) and CD56(dim) NK cells from blood. However, most cellular immune interactions occur in lymphoid organs. Based on the coexpression of CD69 and CXCR6, we identified a third major NK cell subset in lymphoid tissues. This population represents 30-60% of NK cells in marrow, spleen, and lymph node but is absent from blood. CD69(+)CXCR6(+) lymphoid tissue NK cells have an intermediate expression of CD56 and high expression of NKp46 and ICAM-1. In contrast to circulating NK cells, they have a bimodal expression of the activating receptor DNAX accessory molecule 1. CD69(+)CXCR6(+) NK cells do not express the early markers c-kit and IL-7Rα, nor killer cell Ig-like receptors or other late-differentiation markers. After cytokine stimulation, CD69(+)CXCR6(+) NK cells produce IFN-γ at levels comparable to CD56(dim) NK cells. They constitutively express perforin but require preactivation to express granzyme B and exert cytotoxicity. After hematopoietic stem cell transplantation, CD69(+)CXCR6(+) lymphoid tissue NK cells do not exhibit the hyperexpansion observed for both conventional NK cell populations. CD69(+)CXCR6(+) NK cells constitute a separate NK cell population with a distinct phenotype and function. The identification of this NK cell population in lymphoid tissues provides tools to further evaluate the cellular interactions and role of NK cells in human immunity.
Collapse
Affiliation(s)
- Gertjan Lugthart
- Department of Pediatrics, Leiden University Medical Center, Leiden 2300 RC, the Netherlands;
| | - Janine E Melsen
- Department of Pediatrics, Leiden University Medical Center, Leiden 2300 RC, the Netherlands
| | - Carly Vervat
- Department of Pediatrics, Leiden University Medical Center, Leiden 2300 RC, the Netherlands
| | | | - Willem E Corver
- Department of Pathology, Leiden University Medical Center, Leiden 2300 RC, the Netherlands; and
| | - Dave L Roelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2300 RC, the Netherlands
| | - Jeroen van Bergen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2300 RC, the Netherlands
| | - Maarten J D van Tol
- Department of Pediatrics, Leiden University Medical Center, Leiden 2300 RC, the Netherlands
| | - Arjan C Lankester
- Department of Pediatrics, Leiden University Medical Center, Leiden 2300 RC, the Netherlands
| | - Marco W Schilham
- Department of Pediatrics, Leiden University Medical Center, Leiden 2300 RC, the Netherlands
| |
Collapse
|
80
|
Li P, Lu G, Cui Y, Wu Z, Chen S, Li J, Wen X, Zhang H, Mu S, Zhang F, Li Y. Association of IL12A Expression Quantitative Trait Loci (eQTL) With Primary Biliary Cirrhosis in a Chinese Han Population. Medicine (Baltimore) 2016; 95:e3665. [PMID: 27175695 PMCID: PMC4902537 DOI: 10.1097/md.0000000000003665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Genome-wide association studies in European individuals have revealed that IL12A is strongly associated with primary biliary cirrhosis (PBC). However, this association was not detected in replicative studies conducted in Chinese Han and Japanese populations.To verify contributions of genetic variants of IL12A to the pathogenesis of PBC in Chinese populations, a replicative study of 22 single nucleotide polymorphisms (SNPs) around the IL12A gene locus was performed in a cohort of 586 PBC cases and 726 healthy controls. Three out of the 22 SNPs were significantly associated with PBC. The 2 SNPs with the most significant association signal were rs4679868 (P = 6.59E-05, odds ratio [OR] = 1.554 [1.253-1.927]) and rs6441286 (P = 8.00E-05, OR = 1.551 [1.250-1.924]). These 2 SNPs were strongly linked to each other (r = 0.981), and both were found to be significantly associated with PBC in European populations.An expression quantitative trait loci (eQTL) analysis was performed based on the observation that these 2 SNPs were located in proximity to 2 enhancers verified by luciferase reporter systems in the HEK293 cell line. The results of eQTL analysis, conducted using the publically accessible data, showed that the risk alleles of rs4679868 and rs6441286 were significantly associated with decreased expression of IL12A in lymphoblastoid cell lines derived from individuals of Chinese Han ancestry (P = 0.0031 for rs4679868 and P = 0.0073 for rs6441286). In addition, the risk alleles of the 2 SNPs were significantly associated with down-regulation of SCHIP1, a celiac disease susceptible gene, 91.5 kb upstream of IL12A.These results not only demonstrated that IL12A is associated with PBC in the Chinese Han population but also identified a potential mechanism for its involvement in the pathogenesis of PBC.
Collapse
Affiliation(s)
- Ping Li
- From the Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing (PL, GL, ZW, SC, JL, XW, HZ, FZ, YL) and Department of Blood Transfusion, Tangdu Hospital, The Fourth Military Medical University, Xi'an (GL, YC, MJ), China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
Diseases caused by Leishmania present a worldwide problem, and current therapeutic approaches are unable to achieve a sterile cure. Leishmania is able to persist in host cells by evading or exploiting host immune mechanisms. A thorough understanding of these mechanisms could lead to better strategies for effective management of Leishmania infections. Current research has focused on parasite modification of host cell signaling pathways, entry into phagocytic cells, and modulation of cytokine and chemokine profiles that alter immune cell activation and trafficking to sites of infection. Immuno-therapeutic approaches that target these mechanisms of immune evasion by Leishmania offer promising areas for preclinical and clinical research.
Collapse
|
82
|
Kawahara M, Hasegawa N, Takaku H. Murine Splenic Natural Killer Cells Do Not Develop Immunological Memory after Re-Encounter with Mycobacterium bovis BCG. PLoS One 2016; 11:e0152051. [PMID: 26999357 PMCID: PMC4801179 DOI: 10.1371/journal.pone.0152051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 03/08/2016] [Indexed: 12/20/2022] Open
Abstract
Several lines of evidence have recently suggested that natural killer (NK) cells develop immunological memory against viral infections. However, there is no apparent evidence that NK cells acquire specific memory against Mycobacterium bovis bacillus Calmette—Guérin (BCG), the only currently licensed vaccine for preventing tuberculosis. In the present study, we investigated whether murine splenic NK cells can be activated by BCG in a dendritic cell (DC)-independent or -dependent manner, and furthermore examined whether these NK cells acquire specific memory following BCG vaccination. NK cells isolated from spleens of BCG-immunized mice produced interferon (IFN)γ through direct BCG stimulation in the absence of antigen-presenting cells; however, NK cells from control animals similarly directly responded to BCG, and the response level was not statistically significant between the immunized and the naïve NK cells. When purified NK cells that had been exposed to BCG were cocultured with RAW murine macrophages infected with BCG, the antibacterial activity of the macrophages was strongly enhanced; however, its level was similar to that by naïve NK cells, which had not been exposed to BCG. When splenocytes harvested from BCG-immunized mice were stimulated with purified protein derivative (PPD) derived from Mycobacterium tuberculosis, a specific IFNγ response was clearly observed, mainly attributed to NK cells and memory CD4+ T cells. To investigate whether these NK cells as well as the T cells are activated by cell−cell interaction with DCs presenting mycobacterial antigens, NK cells isolated from BCG-immunized mice were cocultured with splenocytes harvested from naïve mice in the presence of PPD stimulation. However, no IFNγ response was found in the NK cells. These results suggest that murine splenic NK cells do not develop BCG-specific immunological memory in either a DC-independent or -dependent manner.
Collapse
Affiliation(s)
- Mamoru Kawahara
- Research and Development Department, Japan BCG Laboratory, Matsuyama, Kiyose, Tokyo, Japan
- Department of Life and Environmental Sciences, Chiba Institute of Technology, Tsudanuma, Narashino, Chiba, Japan
- * E-mail:
| | - Nozomi Hasegawa
- Department of Life and Environmental Sciences, Chiba Institute of Technology, Tsudanuma, Narashino, Chiba, Japan
| | - Hiroshi Takaku
- Department of Life and Environmental Sciences, Chiba Institute of Technology, Tsudanuma, Narashino, Chiba, Japan
- Research Institute, Chiba Institute of Technology, Tsudanuma, Narashino, Chiba, Japan
| |
Collapse
|
83
|
Gagliostro V, Seeger P, Garrafa E, Salvi V, Bresciani R, Bosisio D, Sozzani S. Pro-lymphangiogenic properties of IFN-γ-activated human dendritic cells. Immunol Lett 2016; 173:26-35. [PMID: 26987844 DOI: 10.1016/j.imlet.2016.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/11/2016] [Indexed: 12/30/2022]
Abstract
Dendritic cells (DCs) play a crucial role in the initiation of adaptive immune responses. In addition, through the release of pro- and anti-angiogenic mediators, DCs are key regulators of blood vessel remodeling, a process that characterizes inflammation. Less information is available on the role of DCs in lymphangiogenesis. This study reports that human DCs produce VEGF-C, a cytokine with potent pro-lymphangiogenic activity when stimulated with IFN-γ. DC-derived VEGF-C was biologically active, being able to promote tube-like structure formation in cultures of human lymphatic endothelial cells (LECs). DCs co-cultured with IL-15-activated NK cells produced high levels of VEGF-C, suggesting a role for NK-DC cross-talk in peripheral lymphoid and non-lymphoid tissues in inflammation-associated lymphangiogenesis. Induction of VEGF-C by IFN-γ was detected also in other myeloid cells, such as blood-purified CD1c(+) DCs, CD14(+) monocytes and in monocyte-derived macrophages. In all these cell types, VEGF-C was found associated with the cell membrane by low affinity, heparan sulphate-mediated, interactions. Therefore, human DCs should be considered as new players in inflammation-associated lymphangiogenesis.
Collapse
Affiliation(s)
- Vincenzo Gagliostro
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Pascal Seeger
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Emirena Garrafa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberto Bresciani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvano Sozzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Humanitas Clinical Research Center, Rozzano, Italy.
| |
Collapse
|
84
|
Hamidzadeh K, Mosser DM. Purinergic Signaling to Terminate TLR Responses in Macrophages. Front Immunol 2016; 7:74. [PMID: 26973651 PMCID: PMC4773587 DOI: 10.3389/fimmu.2016.00074] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/15/2016] [Indexed: 12/20/2022] Open
Abstract
Macrophages undergo profound physiological alterations when they encounter pathogen-associated molecular patterns (PAMPs). These alterations can result in the elaboration of cytokines and mediators that promote immune responses and contribute to the clearance of pathogens. These innate immune responses by myeloid cells are transient. The termination of these secretory responses is not due to the dilution of stimuli, but rather to the active downregulation of innate responses induced by the very PAMPs that initiated them. Here, we describe a purinergic autoregulatory program whereby TLR-stimulated macrophages control their activation state. In this program, TLR-stimulated macrophages undergo metabolic alterations that result in the production of ATP and its release through membrane pannexin channels. This purine nucleotide is rapidly hydrolyzed to adenosine by ectoenzymes on the macrophage surface, CD39 and CD73. Adenosine then signals through the P1 class of seven transmembrane receptors to induce a regulatory state that is characterized by the downregulation of inflammatory cytokines and the production of anti-inflammatory cytokines and growth factors. This purinergic autoregulatory system mitigates the collateral damage that would be caused by the prolonged activation of macrophages and rather allows the macrophage to maintain homeostasis. The transient activation of macrophages can be prolonged by treating macrophages with IFN-γ. IFN-γ-treated macrophages become less sensitive to the regulatory effects of adenosine, allowing them to sustain macrophage activation for the duration of an adaptive immune response.
Collapse
Affiliation(s)
- Kajal Hamidzadeh
- Department of Cell Biology and Molecular Genetics, The Maryland Pathogen Research Institute, University of Maryland , College Park, MD , USA
| | - David M Mosser
- Department of Cell Biology and Molecular Genetics, The Maryland Pathogen Research Institute, University of Maryland , College Park, MD , USA
| |
Collapse
|
85
|
Dam V, Sikder T, Santosa S. From neutrophils to macrophages: differences in regional adipose tissue depots. Obes Rev 2016; 17:1-17. [PMID: 26667065 DOI: 10.1111/obr.12335] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/01/2015] [Accepted: 09/23/2015] [Indexed: 12/27/2022]
Abstract
Currently, we do not fully understand the underlying mechanisms of how regional adiposity promotes metabolic dysregulation. As adipose tissue expands, there is an increase in chronic systemic low-grade inflammation due to greater infiltration of immune cells and production of cytokines. This chronic inflammation is thought to play a major role in the development of metabolic complications and disease such as insulin resistance and diabetes. We know that different adipose tissue depots contribute differently to the risk of metabolic disease. People who have an upper body fat distribution around the abdomen are at greater risk of disease than those who tend to store fat in their lower body around the hips and thighs. Thus, it is conceivable that adipose tissue depots contribute differently to the inflammatory milieu as a result of varied infiltration of immune cell types. In this review, we describe the role and function of major resident immune cells in the development of adipose tissue inflammation and discuss their regional differences in the context of metabolic disease risk. We find that although initial studies have found regional differences, a more comprehensive understanding of how immune cells interrupt adipose tissue homeostasis is needed.
Collapse
Affiliation(s)
- V Dam
- Department of Exercise Science, Concordia University, Montreal, QC, Canada.,Nutrition, Obesity, and Metabolism Lab, PERFORM Centre, Concordia University, Montreal, QC, Canada
| | - T Sikder
- Department of Exercise Science, Concordia University, Montreal, QC, Canada.,Nutrition, Obesity, and Metabolism Lab, PERFORM Centre, Concordia University, Montreal, QC, Canada
| | - S Santosa
- Department of Exercise Science, Concordia University, Montreal, QC, Canada.,Nutrition, Obesity, and Metabolism Lab, PERFORM Centre, Concordia University, Montreal, QC, Canada
| |
Collapse
|
86
|
Lopes MEM, Carneiro MBH, dos Santos LM, Vieira LQ. Indigenous microbiota and Leishmaniasis. Parasite Immunol 2015; 38:37-44. [DOI: 10.1111/pim.12279] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/17/2015] [Indexed: 12/14/2022]
Affiliation(s)
- M. E. M. Lopes
- Departamento de Bioquímica e Imunologia; ICB; Universidade Federal de Minas Gerais; Belo Horizonte MG Brazil
| | - M. B. H. Carneiro
- Departamento de Bioquímica e Imunologia; ICB; Universidade Federal de Minas Gerais; Belo Horizonte MG Brazil
| | - L. M. dos Santos
- Departamento de Bioquímica e Imunologia; ICB; Universidade Federal de Minas Gerais; Belo Horizonte MG Brazil
| | - L. Q. Vieira
- Departamento de Bioquímica e Imunologia; ICB; Universidade Federal de Minas Gerais; Belo Horizonte MG Brazil
| |
Collapse
|
87
|
Berberine is a dopamine D1- and D2-like receptor antagonist and ameliorates experimentally induced colitis by suppressing innate and adaptive immune responses. J Neuroimmunol 2015; 289:43-55. [DOI: 10.1016/j.jneuroim.2015.10.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 09/24/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022]
|
88
|
Cohen HB, Ward A, Hamidzadeh K, Ravid K, Mosser DM. IFN-γ Prevents Adenosine Receptor (A2bR) Upregulation To Sustain the Macrophage Activation Response. THE JOURNAL OF IMMUNOLOGY 2015; 195:3828-37. [PMID: 26355158 DOI: 10.4049/jimmunol.1501139] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/04/2015] [Indexed: 12/23/2022]
Abstract
The priming of macrophages with IFN-γ prior to TLR stimulation results in enhanced and prolonged inflammatory cytokine production. In this study, we demonstrate that, following TLR stimulation, macrophages upregulate the adenosine 2b receptor (A2bR) to enhance their sensitivity to immunosuppressive extracellular adenosine. This upregulation of A2bR leads to the induction of macrophages with an immunoregulatory phenotype and the downregulation of inflammation. IFN-γ priming of macrophages selectively prevents the induction of the A2bR in macrophages to mitigate sensitivity to adenosine and to prevent this regulatory transition. IFN-γ-mediated A2bR blockade leads to a prolonged production of TNF-α and IL-12 in response to TLR ligation. The pharmacologic inhibition or the genetic deletion of the A2bR results in a hyperinflammatory response to TLR ligation, similar to IFN-γ treatment of macrophages. Conversely, the overexpression of A2bR on macrophages blunts the IFN-γ effects and promotes the development of immunoregulatory macrophages. Thus, we propose a novel mechanism whereby IFN-γ contributes to host defense by desensitizing macrophages to the immunoregulatory effects of adenosine. This mechanism overcomes the transient nature of TLR activation, and prolongs the antimicrobial state of the classically activated macrophage. This study may offer promising new targets to improve the clinical outcome of inflammatory diseases in which macrophage activation is dysregulated.
Collapse
Affiliation(s)
- Heather B Cohen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; Maryland Pathogen Research Institute, College Park, MD 20742; and
| | - Amanda Ward
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; Maryland Pathogen Research Institute, College Park, MD 20742; and
| | - Kajal Hamidzadeh
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; Maryland Pathogen Research Institute, College Park, MD 20742; and
| | - Katya Ravid
- School of Medicine, Boston University, Boston, MA 02118
| | - David M Mosser
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; Maryland Pathogen Research Institute, College Park, MD 20742; and
| |
Collapse
|
89
|
Abstract
Leishmania spp. are parasitic protozoa endemic in tropical and subtropical regions and the causative agent of leishmaniasis, a collection of syndromes whose clinical manifestations vary according to host and pathogen factors. Leishmania spp. are inoculated into the mammalian host by the bite of an infected sand fly, whereupon they are taken up by phagocytosis, convert into the replicative amastigote stage within macrophages, reproduce, spread to new macrophages and cause disease manifestations. A curative response against leishmaniasis depends in the classical activation of macrophages and the IL-12-dependent onset of an adaptive type 1 response characterized by the production of IFN-γ. Emerging evidence suggests that neutrophils, dendritic cells and other immune cells can serve as either temporary or stable hosts for Leishmania spp. Furthermore, it is becoming apparent that the initial interactions of the parasite with resident or early recruited immune cells can shape both the macrophage response and the type of adaptive immune response being induced. In this review, we compile a growing number of studies demonstrating how the earliest interactions of Leishmania spp. with eosinophils and mast cells influence the macrophage response to infection and the development of the adaptive immune response, hence, determining the ultimate outcome of infection.
Collapse
|
90
|
Novais FO, Scott P. CD8+ T cells in cutaneous leishmaniasis: the good, the bad, and the ugly. Semin Immunopathol 2015; 37:251-9. [PMID: 25800274 DOI: 10.1007/s00281-015-0475-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/25/2015] [Indexed: 11/30/2022]
Abstract
CD8(+) T lymphocytes are components of the adaptive immune response and play an important role in protection against many viral and bacterial infections. However, their role in parasitic infections is less well understood. In leishmaniasis, a disease caused by intracellular protozoan parasites of the genus Leishmania, CD8(+) T cells have been shown to be protective. However, increasing evidence indicates that CD8(+) T cells may also exacerbate disease. In this review, we will describe the situations where CD8(+) T cells are either good or bad for the outcome of the infection and attempt to reconcile the dual role played by CD8(+) T cells in cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Fernanda O Novais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Room 346 Hill Pavilion, 380 S. University Avenue, Philadelphia, PA, 19104-4539, USA,
| | | |
Collapse
|
91
|
Deauvieau F, Fenis A, Dalençon F, Burdin N, Vivier E, Kerdiles Y. Lessons from NK Cell Deficiencies in the Mouse. Curr Top Microbiol Immunol 2015; 395:173-90. [PMID: 26385768 DOI: 10.1007/82_2015_473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since their discovery in the late 1970s, in vivo studies on mouse natural killer (NK) cell almost entirely relied on the use of depleting antibodies and were associated with significant limitations. More recently, large-scale gene-expression analyses allowed the identification of NKp46 as one of the best markers of NK cells across mammalian species. Since then, NKp46 has been shown to be expressed on other subsets of innate lymphoid cells (ILCs) such as the closely related ILC1 and the mucosa-associated NCR(+) ILC3. Based on this marker, several mouse models specifically targeting NKp46-expressing cell have recently been produced. Here, we review recent advances in the generation of models of deficiency in NKp46-expressing cells and their use to address the role of NK cells in immunity, notably on the regulation of adaptive immune responses.
Collapse
Affiliation(s)
- Florence Deauvieau
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Aurore Fenis
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | | | - Nicolas Burdin
- SANOFI-Pasteur, Campus Merieux, 69280, Marcy l'Etoile, France
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France.,Service d'Immunologie, Hôpital de la Conception, Assistance Publique - Hôpitaux de Marseille, 13385, Marseille, France
| | - Yann Kerdiles
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France.
| |
Collapse
|
92
|
Kedzierski L, Evans KJ. Immune responses during cutaneous and visceral leishmaniasis. Parasitology 2014; 141:1544-1562. [PMID: 25075460 DOI: 10.1017/s003118201400095x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Leishmania are protozoan parasites spread by a sandfly insect vector and causing a spectrum of diseases collectively known as leishmaniasis. The disease is a significant health problem in many parts of the world, resulting in an estimated 1·3 million new cases and 30 000 deaths annually. Current treatment is based on chemotherapy, which is difficult to administer, expensive and becoming ineffective in several endemic regions. To date there is no vaccine against leishmaniasis, although extensive evidence from studies in animal models indicates that solid protection can be achieved upon immunization. This review focuses on immune responses to Leishmania in both cutaneous and visceral forms of the disease, pointing to the complexity of the immune response and to a range of evasive mechanisms utilized by the parasite to bypass those responses. The amalgam of innate and acquired immunity combined with the paucity of data on the human immune response is one of the major problems currently hampering vaccine development and implementation.
Collapse
Affiliation(s)
- Lukasz Kedzierski
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Krystal J Evans
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, Victoria, Australia
| |
Collapse
|
93
|
Shih HY, Sciumè G, Poholek AC, Vahedi G, Hirahara K, Villarino AV, Bonelli M, Bosselut R, Kanno Y, Muljo SA, O'Shea JJ. Transcriptional and epigenetic networks of helper T and innate lymphoid cells. Immunol Rev 2014; 261:23-49. [PMID: 25123275 PMCID: PMC4321863 DOI: 10.1111/imr.12208] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery of the specification of CD4(+) helper T cells to discrete effector 'lineages' represented a watershed event in conceptualizing mechanisms of host defense and immunoregulation. However, our appreciation for the actual complexity of helper T-cell subsets continues unabated. Just as the Sami language of Scandinavia has 1000 different words for reindeer, immunologists recognize the range of fates available for a CD4(+) T cell is numerous and may be underestimated. Added to the crowded scene for helper T-cell subsets is the continuously growing family of innate lymphoid cells (ILCs), endowed with common effector responses and the previously defined 'master regulators' for CD4(+) helper T-cell subsets are also shared by ILC subsets. Within the context of this extraordinary complexity are concomitant advances in the understanding of transcriptomes and epigenomes. So what do terms like 'lineage commitment' and helper T-cell 'specification' mean in the early 21st century? How do we put all of this together in a coherent conceptual framework? It would be arrogant to assume that we have a sophisticated enough understanding to seriously answer these questions. Instead, we review the current status of the flexibility of helper T-cell responses in relation to their genetic regulatory networks and epigenetic landscapes. Recent data have provided major surprises as to what master regulators can or cannot do, how they interact with other transcription factors and impact global genome-wide changes, and how all these factors come together to influence helper cell function.
Collapse
Affiliation(s)
- Han-Yu Shih
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
Innate lymphocytes - including natural killer cells and the recently discovered innate lymphoid cells - have crucial roles during infection, tissue injury and inflammation. Innate signals regulate the activation and homeostasis of innate lymphocytes. The contribution of the adaptive immune system to the coordination of innate lymphocyte responses is less well understood. In this Opinion article, we review our current understanding of the interactions between adaptive and innate lymphocytes, and propose a model in which T cells of the adaptive immune system function as antigen-specific sensors for the activation of innate lymphocytes to amplify and instruct local immune responses. We highlight the potential roles of regulatory and helper T cells in these processes, and discuss major questions in the emerging area of crosstalk between adaptive and innate lymphocytes.
Collapse
|
95
|
Singh OP, Sundar S. Immunotherapy and targeted therapies in treatment of visceral leishmaniasis: current status and future prospects. Front Immunol 2014; 5:296. [PMID: 25183962 PMCID: PMC4135235 DOI: 10.3389/fimmu.2014.00296] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 06/07/2014] [Indexed: 11/13/2022] Open
Abstract
Visceral leishmaniasis (VL) is a vector-borne chronic infectious disease caused by the protozoan parasite Leishmania donovani or Leishmania infantum. VL is a serious public health problem, causing high morbidity and mortality in the developing world with an estimated 0.2-0.4 million new cases each year. In the absence of a vaccine, chemotherapy remains the favored option for disease control, but is limited by a narrow therapeutic index, significant toxicities, and frequently acquired resistance. Improved understanding of VL pathogenesis offers the development and deployment of immune based treatment options either alone or in combination with chemotherapy. Modulations of host immune response include the inhibition of molecular pathways that are crucial for parasite growth and maintenance; and stimulation of host effectors immune responses that restore the impaired effector functions. In this review, we highlight the challenges in treatment of VL with a particular emphasis on immunotherapy and targeted therapies to improve clinical outcomes.
Collapse
Affiliation(s)
- Om Prakash Singh
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University , Varanasi , Uttar Pradesh, India
| | - Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University , Varanasi , Uttar Pradesh, India
| |
Collapse
|
96
|
Redpath SA, Fonseca NM, Perona-Wright G. Protection and pathology during parasite infection: IL-10 strikes the balance. Parasite Immunol 2014; 36:233-52. [PMID: 24666543 DOI: 10.1111/pim.12113] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/18/2014] [Indexed: 12/16/2022]
Abstract
The host response to infection requires an immune response to be strong enough to control the pathogen but also restrained, to minimize immune-mediated pathology. The conflicting pressures of immune activation and immune suppression are particularly apparent in parasite infections, where co-evolution of host and pathogen has selected many different compromises between protection and pathology. Cytokine signals are critical determinants of both protective immunity and immunopathology, and, in this review, we focus on the regulatory cytokine IL-10 and its role in protozoan and helminth infections. We discuss the sources and targets of IL-10 during parasite infection, the signals that initiate and reinforce its action, and its impact on the invading parasite, on the host tissue, and on coincident immune responses.
Collapse
Affiliation(s)
- S A Redpath
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
97
|
Manna PP, Hira SK, Basu A, Bandyopadhyay S. Cellular therapy by allogeneic macrophages against visceral leishmaniasis: role of TNF-α. Cell Immunol 2014; 290:152-63. [PMID: 24996013 DOI: 10.1016/j.cellimm.2014.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 05/28/2014] [Accepted: 06/04/2014] [Indexed: 11/30/2022]
Abstract
Tumor necrosis factor α (TNF-α) is an essential player in infection with Leishmania, controlling inflammatory lesion and parasite killing. We recently have shown the leishmanicidal activity of transmembrane form of TNF (mTNF) derived from allogeneic natural killer (NK) cells in experimental visceral leishmaniasis. Allogeneic macrophages and human monocytes derived mTNF has significantly higher antileishmanial activity compared to allogeneic NK cells. Unlike NK cells, syngeneic macrophages also possess antileishmanial activity, although degree of activity is significantly less compared to allogeneic macrophages. Cellular therapy by intravenous transfer of allogeneic macrophages enhances leishmanicidal effect against the established infection in susceptible animal by reducing the splenic parasite burden to 28.3 ± 4.71 × 10(5) compared to 256.00 ± 17.36 × 10(5) in control group. In vivo treatment with anti-mouse TNF-α reduces the therapeutic efficacy of the allogeneic macrophages by increasing the parasite load in spleen of infected mice. These results demonstrated that allogeneic and xenogeneic macrophages induce cytokine mediated protective mechanism against infected macrophages via TNF-α in vitro and, possibly in vivo. The macrophage mediated protective role in absence of T cell help demonstrate an unique property of the mononuclear phagocytes in controlling infection and inflammation in visceral leishmaniasis, despite being acts as a host cell for the same parasite.
Collapse
Affiliation(s)
| | - Sumit Kumar Hira
- Immunobiology Laboratory, Banaras Hindu University, Varanasi 221005, India
| | - Anirban Basu
- National Brain Research Centre, Gurgaon, Haryana 122051, India
| | | |
Collapse
|
98
|
Mitchell AJ, Roediger B, Weninger W. Monocyte homeostasis and the plasticity of inflammatory monocytes. Cell Immunol 2014; 291:22-31. [PMID: 24962351 DOI: 10.1016/j.cellimm.2014.05.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 05/27/2014] [Indexed: 12/13/2022]
Abstract
Monocytes are mononuclear myeloid cells that develop in the bone marrow and circulate within the bloodstream. Although they have long been argued to play a role in the repopulation of tissue-resident macrophages, this has been questioned by numerous recent studies, which has forced a reappraisal of their biology. Here we discuss monocyte development, as well as the homeostatic control of monocyte subpopulations within the blood. We also outline the known functions of monocyte subsets. Finally, we highlight the plastic nature of monocytes, which are capable of a remarkable range of phenotypic and functional changes that depend on signals from local microenvironments.
Collapse
Affiliation(s)
| | - Ben Roediger
- The Centenary Institute, Newtown, NSW 2042, Australia.
| | - Wolfgang Weninger
- The Centenary Institute, Newtown, NSW 2042, Australia; Discipline of Dermatology, University of Sydney, NSW, Australia; Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
| |
Collapse
|
99
|
Effects of novel isoform-selective phosphoinositide 3-kinase inhibitors on natural killer cell function. PLoS One 2014; 9:e99486. [PMID: 24915189 PMCID: PMC4051752 DOI: 10.1371/journal.pone.0099486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/15/2014] [Indexed: 01/23/2023] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) are promising targets for therapeutic development in cancer. The class I PI3K isoform p110α has received considerable attention in oncology because the gene encoding p110α (PIK3CA) is frequently mutated in human cancer. However, little is known about the function of p110α in lymphocyte populations that modulate tumorigenesis. We used recently developed investigational inhibitors to compare the function of p110α and other isoforms in natural killer (NK) cells, a key cell type for immunosurveillance and tumor immunotherapy. Inhibitors of all class I isoforms (pan-PI3K) significantly impaired NK cell-mediated cytotoxicity and antibody-dependent cellular cytotoxicity against tumor cells, whereas p110α-selective inhibitors had no effect. In NK cells stimulated through NKG2D, p110α inhibition modestly reduced PI3K signaling output as measured by AKT phosphorylation. Production of IFN-γ and NK cell-derived chemokines was blocked by a pan-PI3K inhibitor and partially reduced by a p110δinhibitor, with lesser effects of p110α inhibitors. Oral administration of mice with MLN1117, a p110α inhibitor in oncology clinical trials, had negligible effects on NK subset maturation or terminal subset commitment. Collectively, these results support the targeting of PIK3CA mutant tumors with selective p110α inhibitors to preserve NK cell function.
Collapse
|
100
|
Cellular Immune Responses to Xenografts. Xenotransplantation 2014. [DOI: 10.1128/9781555818043.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|