51
|
Jones M, Chase J, Brinkmeier M, Xu J, Weinberg DN, Schira J, Friedman A, Malek S, Grembecka J, Cierpicki T, Dou Y, Camper SA, Maillard I. Ash1l controls quiescence and self-renewal potential in hematopoietic stem cells. J Clin Invest 2015; 125:2007-20. [PMID: 25866973 DOI: 10.1172/jci78124] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 03/12/2015] [Indexed: 12/26/2022] Open
Abstract
Rapidly cycling fetal and neonatal hematopoietic stem cells (HSCs) generate a pool of quiescent adult HSCs after establishing hematopoiesis in the bone marrow. We report an essential role for the trithorax group gene absent, small, or homeotic 1-like (Ash1l) at this developmental transition. Emergence and expansion of Ash1l-deficient fetal/neonatal HSCs were preserved; however, in young adult animals, HSCs were profoundly depleted. Ash1l-deficient adult HSCs had markedly decreased quiescence and reduced cyclin-dependent kinase inhibitor 1b/c (Cdkn1b/1c) expression and failed to establish long-term trilineage bone marrow hematopoiesis after transplantation to irradiated recipients. Wild-type HSCs could efficiently engraft when transferred to unirradiated, Ash1l-deficient recipients, indicating increased availability of functional HSC niches in these mice. Ash1l deficiency also decreased expression of multiple Hox genes in hematopoietic progenitors. Ash1l cooperated functionally with mixed-lineage leukemia 1 (Mll1), as combined loss of Ash1l and Mll1, but not isolated Ash1l or Mll1 deficiency, induced overt hematopoietic failure. Our results uncover a trithorax group gene network that controls quiescence, niche occupancy, and self-renewal potential in adult HSCs.
Collapse
|
52
|
Kang J, Malhotra N. Transcription factor networks directing the development, function, and evolution of innate lymphoid effectors. Annu Rev Immunol 2015; 33:505-38. [PMID: 25650177 PMCID: PMC4674156 DOI: 10.1146/annurev-immunol-032414-112025] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mammalian lymphoid immunity is mediated by fast and slow responders to pathogens. Fast innate lymphocytes are active within hours after infections in mucosal tissues. Slow adaptive lymphocytes are conventional T and B cells with clonal antigen receptors that function days after pathogen exposure. A transcription factor (TF) regulatory network guiding early T cell development is at the core of effector function diversification in all innate lymphocytes, and the kinetics of immune responses is set by developmental programming. Operational units within the innate lymphoid system are not classified by the types of pathogen-sensing machineries but rather by discrete effector functions programmed by regulatory TF networks. Based on the evolutionary history of TFs of the regulatory networks, fast effectors likely arose earlier in the evolution of animals to fortify body barriers, and in mammals they often develop in fetal ontogeny prior to the establishment of fully competent adaptive immunity.
Collapse
Affiliation(s)
- Joonsoo Kang
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655;
| | | |
Collapse
|
53
|
Gehre N, Nusser A, von Muenchow L, Tussiwand R, Engdahl C, Capoferri G, Bosco N, Ceredig R, Rolink AG. A stromal cell free culture system generates mouse pro-T cells that can reconstitute T-cell compartments in vivo. Eur J Immunol 2014; 45:932-42. [DOI: 10.1002/eji.201444681] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 10/10/2014] [Accepted: 11/14/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Nadine Gehre
- Developmental and Molecular Immunology; Department of Biomedicine; University of Basel, Basel; Switzerland
| | - Anja Nusser
- Developmental and Molecular Immunology; Department of Biomedicine; University of Basel, Basel; Switzerland
| | - Lilly von Muenchow
- Developmental and Molecular Immunology; Department of Biomedicine; University of Basel, Basel; Switzerland
| | - Roxane Tussiwand
- University of Washington, Department of Pathology and Immunology; St. Louis USA
| | - Corinne Engdahl
- Developmental and Molecular Immunology; Department of Biomedicine; University of Basel, Basel; Switzerland
| | - Giuseppina Capoferri
- Developmental and Molecular Immunology; Department of Biomedicine; University of Basel, Basel; Switzerland
| | - Nabil Bosco
- Developmental and Molecular Immunology; Department of Biomedicine; University of Basel, Basel; Switzerland
| | - Rhodri Ceredig
- Department of Biosciences; University of Galway; Galway; Ireland
| | - Antonius G. Rolink
- Developmental and Molecular Immunology; Department of Biomedicine; University of Basel, Basel; Switzerland
| |
Collapse
|
54
|
Yui MA, Rothenberg EV. Developmental gene networks: a triathlon on the course to T cell identity. Nat Rev Immunol 2014; 14:529-45. [PMID: 25060579 PMCID: PMC4153685 DOI: 10.1038/nri3702] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells acquire their ultimate identities by activating combinations of transcription factors that initiate and sustain expression of the appropriate cell type-specific genes. T cell development depends on the progression of progenitor cells through three major phases, each of which is associated with distinct transcription factor ensembles that control the recruitment of these cells to the thymus, their proliferation, lineage commitment and responsiveness to T cell receptor signals, all before the allocation of cells to particular effector programmes. All three phases are essential for proper T cell development, as are the mechanisms that determine the boundaries between each phase. Cells that fail to shut off one set of regulators before the next gene network phase is activated are predisposed to leukaemic transformation.
Collapse
Affiliation(s)
- Mary A Yui
- Division of Biology 156-29, California Institute of Technology, Pasadena, California 91125, USA
| | - Ellen V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
55
|
Teufel S, Grötsch B, Luther J, Derer A, Schinke T, Amling M, Schett G, Mielenz D, David JP. Inhibition of bone remodeling in young mice by bisphosphonate displaces the plasma cell niche into the spleen. THE JOURNAL OF IMMUNOLOGY 2014; 193:223-33. [PMID: 24899506 DOI: 10.4049/jimmunol.1302713] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The bone marrow provides niches for early B cell differentiation and long-lived plasma cells. Therefore, it has been hypothesized that perturbing bone homeostasis might impact B cell function and Ab production. This hypothesis is highly relevant for patients receiving long-term treatment with antiresorptive drugs. We therefore analyzed the humoral immune response of mice chronically treated with ibandronate, a commonly used bisphosphonate. We confirmed the increased bone mass caused by inhibition of osteoclast activity and also the strongly reduced bone formation because of decreased osteoblast numbers in response to ibandronate. Thus, bisphosphonate drastically inhibited bone remodeling. When ibandronate was injected into mice after a primary immunization to mimic common antiosteoporotic treatments, the generation of the various B cell populations, the response to booster immunization, and the generation of plasma cells were surprisingly normal. Mice also responded normally to immunization when ibandronate was applied to naive mice. However, there, ibandronate shunted the homing of bone marrow plasma cells. Interestingly, ibandronate reduced the numbers of megakaryocytes, a known component of the bone marrow plasma cell niche. In line with normal Ab responses, increased plasma cell populations associated with increased megakaryocyte numbers were then observed in the spleens of the ibandronate-treated mice. Thus, although inhibition of bone remodeling disturbed the bone marrow plasma cell niche, a compensatory niche may have been created by relocating the megakaryocytes into the spleen, thereby allowing normal B cell responses. Therefore, megakaryocytes may act as a key regulator of plasma cell niche plasticity.
Collapse
Affiliation(s)
- Stefan Teufel
- Department of Internal Medicine 3, Rheumatology and Immunology, University of Erlangen-Nuremberg, D-91054 Erlangen, Germany; Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany; and
| | - Bettina Grötsch
- Department of Internal Medicine 3, Rheumatology and Immunology, University of Erlangen-Nuremberg, D-91054 Erlangen, Germany
| | - Julia Luther
- Department of Internal Medicine 3, Rheumatology and Immunology, University of Erlangen-Nuremberg, D-91054 Erlangen, Germany; Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany; and
| | - Anja Derer
- Department of Internal Medicine 3, Rheumatology and Immunology, University of Erlangen-Nuremberg, D-91054 Erlangen, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany; and
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany; and
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, University of Erlangen-Nuremberg, D-91054 Erlangen, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Nikolaus-Fiebiger Center, Department of Internal Medicine 3, University of Erlangen-Nuremberg, D-91054 Erlangen, Germany
| | - Jean-Pierre David
- Department of Internal Medicine 3, Rheumatology and Immunology, University of Erlangen-Nuremberg, D-91054 Erlangen, Germany; Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany; and
| |
Collapse
|
56
|
Pachlopnik Schmid J, Güngör T, Seger R. Modern management of primary T-cell immunodeficiencies. Pediatr Allergy Immunol 2014; 25:300-13. [PMID: 24383740 DOI: 10.1111/pai.12179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2013] [Indexed: 02/01/2023]
Abstract
The study of human T-cell PIDs with Mendelian inheritance has enabled the molecular characterization of important key functions and pathways in T-cell biology. In most cases, T-cell PIDs become apparent as combined T- and B-cell deficiencies. Severe combined immunodeficiencies (SCIDs) are characterized by a complete lack of T-cell development and, in some cases, a developmental block in other lymphoid lineages and manifest within the first year of life. Combined immunodeficiency syndromes (CIDs) result from hypomorphic mutations in typical SCID associated genes or from partial defects of T-cell development and manifest later in childhood by increased susceptibility to infection often combined with disturbances in immune homeostasis, e.g., autoimmunity and increased incidence in lymphoproliferation. The discovery of mutations and characterization of the cellular changes that underlie lymphocyte defects and immune dysregulation have led to novel, specific, successful therapies for severe diseases which are often fatal if left untreated. Over the last few years, impressive progress has been made in understanding the disease mechanisms of T-cell immunodeficiencies and in improving the long-term outcomes of potentially curative treatments, including gene therapy.
Collapse
Affiliation(s)
- Jana Pachlopnik Schmid
- Division of Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Switzerland
| | | | | |
Collapse
|
57
|
Martins VC, Busch K, Juraeva D, Blum C, Ludwig C, Rasche V, Lasitschka F, Mastitsky SE, Brors B, Hielscher T, Fehling HJ, Rodewald HR. Cell competition is a tumour suppressor mechanism in the thymus. Nature 2014; 509:465-70. [PMID: 24828041 DOI: 10.1038/nature13317] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 04/10/2014] [Indexed: 02/06/2023]
Abstract
Cell competition is an emerging principle underlying selection for cellular fitness during development and disease. Competition may be relevant for cancer, but an experimental link between defects in competition and tumorigenesis is elusive. In the thymus, T lymphocytes develop from precursors that are constantly replaced by bone-marrow-derived progenitors. Here we show that in mice this turnover is regulated by natural cell competition between 'young' bone-marrow-derived and 'old' thymus-resident progenitors that, although genetically identical, execute differential gene expression programs. Disruption of cell competition leads to progenitor self-renewal, upregulation of Hmga1, transformation, and T-cell acute lymphoblastic leukaemia (T-ALL) resembling the human disease in pathology, genomic lesions, leukaemia-associated transcripts, and activating mutations in Notch1. Hence, cell competition is a tumour suppressor mechanism in the thymus. Failure to select fit progenitors through cell competition may explain leukaemia in X-linked severe combined immune deficiency patients who showed thymus-autonomous T-cell development after therapy with gene-corrected autologous progenitors.
Collapse
Affiliation(s)
- Vera C Martins
- 1] Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany [2] Institute of Immunology, University of Ulm, D-89081 Ulm, Germany
| | - Katrin Busch
- Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Dilafruz Juraeva
- Division of Theoretical Bioinformatics, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Carmen Blum
- Institute of Immunology, University of Ulm, D-89081 Ulm, Germany
| | - Carolin Ludwig
- Institute of Immunology, University of Ulm, D-89081 Ulm, Germany
| | - Volker Rasche
- Core Facility Small Animal MRI, University of Ulm, D-89081 Ulm, Germany
| | - Felix Lasitschka
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Sergey E Mastitsky
- Division of Theoretical Bioinformatics, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Benedikt Brors
- Division of Theoretical Bioinformatics, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany
| |
Collapse
|
58
|
De Barros SC, Zimmermann VS, Taylor N. Concise review: hematopoietic stem cell transplantation: targeting the thymus. Stem Cells 2014; 31:1245-51. [PMID: 23554173 DOI: 10.1002/stem.1378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/15/2013] [Indexed: 12/28/2022]
Abstract
Allogeneic hematopoietic stem cell (HSC) transplantation can cure patients suffering from diverse genetic and acquired diseases as well as cancers. Nevertheless, under conditions where T-cell reconstitution is critical, the entry of donor progenitors into the thymus remains a major bottleneck. It is assumed that following the intravenous injection of HSC, they first home to the BM. More committed progenitors can then be exported to the thymus in response to a myriad of signals regulating thymus seeding. Notably although, the thymus is not continually receptive to the import of hematopoietic progenitors. Furthermore, as stem cells with self-renewing capacity do not take up residence in the thymus under physiological conditions, the periodic colonization of the thymus is essential for the sustained differentiation of T lymphocytes. As such, we and others have invested significant efforts into exploring avenues that might foster a long-term thymus-autonomous differentiation. Here, we review strategic approaches that have resulted in long-term T-cell differentiation in immunodeficient (SCID) mice, even across histocompatibility barriers. These include the forced thymic entry of BM precursors by their direct intrathymic injection as well as the transplantation of neonatal thymi. The capacity of the thymus to support hematopoietic progenitors with renewal potential will hopefully promote the development of new therapeutic strategies aimed at enhancing T-cell differentiation in patients undergoing HSC transplantation.
Collapse
Affiliation(s)
- Stéphanie C De Barros
- Institut de Génétique Moléculaire de Montpellier, Université Montpellier , Montpellier, France
| | | | | |
Collapse
|
59
|
Abstract
PURPOSE OF REVIEW In this article, we summarize the recent advances in treating primary immune deficiency (PID) disorders by stem cell transplantation (SCT); we have focused on articles published in the past 2 years since the last major review of SCT for PID. RECENT FINDINGS Analyses of the outcomes of SCT for PID by specific molecular defect have clarified which conditions are receptive to unconditioned transplants and which require more myeloablative conditioning. Improved outcomes for 'difficult' conditions [adenosine deaminase-severe combined immunodeficiency (ADA-SCID), major histocompatibility complex class II deficiency] and potential advantages of using cord blood as a stem cell source have also been described. Newborn screening for SCID identifies well babies with SCID: the optimal SCT protocol for such young infants remains to be determined. Reduced toxicity conditioning has been successfully used to treat conditions such as Wiskott-Aldrich syndrome and chronic granulomatous disease, offering curative engraftment with reduced transplant-related mortality. Similarly, treating children with familial hemophagocytic lymphohistiocytosis using reduced intensity conditioning SCT results in much improved outcomes. Advances in next generation sequencing have identified new diseases amenable to SCT, such as DOCK8 deficiency, resulting in improved quality of life and protection from malignancy. SUMMARY Recent studies suggest that further improvements in treating PID with SCT are possible with a greater understanding of the genetics and immunobiology of these diseases, facilitating the matching of donor type and conditioning regimens, or indeed alternative therapies (such as gene therapy) to specific PID disorders.
Collapse
|
60
|
Image-guided intrathymic injection of multipotent stem cells supports lifelong T-cell immunity and facilitates targeted immunotherapy. Blood 2014; 123:2797-805. [PMID: 24652996 DOI: 10.1182/blood-2013-10-535401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T-cell deficiency related to disease, medical treatment, or aging represents a major clinical challenge and is associated with significant morbidity and mortality in cancer and bone marrow transplantation recipients. This study describes several innovative and clinically relevant strategies to manipulate thymic function based on an interventional radiology technique for intrathymic injection of cells or drugs. We show that intrathymic injection of multipotent hematopoietic stem/progenitor cells into irradiated syngeneic or allogeneic young or aged recipients resulted in efficient and long-lasting generation of functional donor T cells. Persistence of intrathymic donor cells was associated with intrathymic presence of cells resembling long-term hematopoietic stem cells, suggesting a self-renewal capacity of the intrathymically injected cells. Furthermore, our approach enabled the induction of long-term antigen-specific T-cell-mediated antitumor immunity following intrathymic injection of progenitor cells harboring a transgenic T-cell receptor gene. The intrathymic injection of interleukin-7 prior to irradiation conferred radioprotection. In addition, thymopoiesis of aged mice improved with a single intrathymic administration of low-dose keratinocyte growth factor, an effect that was sustained even in the setting of radiation-induced injury. Taken together, we established a preclinical framework for the development of novel clinical protocols to establish lifelong antigen-specific T-cell immunity.
Collapse
|
61
|
Glauzy S, André-Schmutz I, Larghero J, Ezine S, de Latour RP, Moins-Teisserenc H, Servais S, Robin M, Socié G, Clave E, Toubert A. CXCR4-related increase of circulating human lymphoid progenitors after allogeneic hematopoietic stem cell transplantation. PLoS One 2014; 9:e91492. [PMID: 24621606 PMCID: PMC3951398 DOI: 10.1371/journal.pone.0091492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/10/2014] [Indexed: 01/05/2023] Open
Abstract
Immune recovery after profound lymphopenia is a major challenge in many clinical situations, such as allogeneic hematopoietic stem cell transplantation (allo-HSCT). Recovery depends, in a first step, on hematopoietic lymphoid progenitors production in the bone marrow (BM). In this study, we characterized CD34+Lin-CD10+ lymphoid progenitors in the peripheral blood of allo-HSCT patients. Our data demonstrate a strong recovery of this population 3 months after transplantation. This rebound was abolished in patients who developed acute graft-versus-host disease (aGVHD). A similar recovery profile was found for both CD24+ and CD24- progenitor subpopulations. CD34+lin-CD10+CD24- lymphoid progenitors sorted from allo-HSCT patients preserved their T cell potentiel according to in vitro T-cell differentiation assay and the expression profile of 22 genes involved in T-cell differentiation and homing. CD34+lin-CD10+CD24- cells from patients without aGVHD had reduced CXCR4 gene expression, consistent with an enhanced egress from the BM. CCR7 gene expression was reduced in patients after allo-HSCT, as were its ligands CCL21 and CCL19. This reduction was particularly marked in patients with aGVHD, suggesting a possible impact on thymic homing. Thus, the data presented here identify this population as an important early step in T cell reconstitution in humans and so, an important target when seeking to enhance immune reconstitution.
Collapse
Affiliation(s)
- Salomé Glauzy
- Univ Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
- INSERM UMR1160, Paris, France
- Laboratoire d'Immunologie et d'Histocompatibilité, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Isabelle André-Schmutz
- INSERM U768, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Jérôme Larghero
- Univ Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
- INSERM UMR1160, Paris, France
- Unité de Thérapie Cellulaire et CIC de Biothérapies, Hôpital Saint-Louis, AP-HP, Paris, France
| | | | - Régis Peffault de Latour
- Univ Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
- Service d'Hématologie-Greffe de Moelle, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Hélène Moins-Teisserenc
- Univ Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
- INSERM UMR1160, Paris, France
- Laboratoire d'Immunologie et d'Histocompatibilité, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Sophie Servais
- Service d'Hématologie-Greffe de Moelle, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Marie Robin
- Univ Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
- Service d'Hématologie-Greffe de Moelle, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Gérard Socié
- Univ Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
- INSERM UMR1160, Paris, France
- Service d'Hématologie-Greffe de Moelle, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Emmanuel Clave
- Univ Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
- INSERM UMR1160, Paris, France
- Laboratoire d'Immunologie et d'Histocompatibilité, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Antoine Toubert
- Univ Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
- INSERM UMR1160, Paris, France
- Laboratoire d'Immunologie et d'Histocompatibilité, Hôpital Saint-Louis, AP-HP, Paris, France
| |
Collapse
|
62
|
c-Myc inhibition prevents leukemia initiation in mice and impairs the growth of relapsed and induction failure pediatric T-ALL cells. Blood 2014; 123:1040-50. [PMID: 24394663 DOI: 10.1182/blood-2013-08-522698] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although prognosis has improved for children with T-cell acute lymphoblastic leukemia (T-ALL), 20% to 30% of patients undergo induction failure (IF) or relapse. Leukemia-initiating cells (LICs) are hypothesized to be resistant to chemotherapy and to mediate relapse. We and others have shown that Notch1 directly regulates c-Myc, a known regulator of quiescence in stem and progenitor populations, leading us to examine whether c-Myc inhibition results in efficient targeting of T-ALL-initiating cells. We demonstrate that c-Myc suppression by small hairpin RNA or pharmacologic approaches prevents leukemia initiation in mice by eliminating LIC activity. Consistent with its anti-LIC activity in mice, treatment with the BET bromodomain BRD4 inhibitor JQ1 reduces C-MYC expression and inhibits the growth of relapsed and IF pediatric T-ALL samples in vitro. These findings demonstrate a critical role for c-Myc in LIC maintenance and provide evidence that MYC inhibition may be an effective therapy for relapsed/IF T-ALL patients.
Collapse
|
63
|
Abstract
PURPOSE OF REVIEW Cells of the immune system are replaced in large numbers throughout life, and the underlying mechanisms have been extensively studied. Whereas the pace of discovery in this area is unprecedented, many questions remain, particularly with respect to lymphocyte formation. RECENT FINDINGS While transcription factors have long been a focus of investigation, microRNAs are also being implicated in lymphopoiesis. Lymphocytes are normally replaced in correct proportion to other blood cells, but ratios change dramatically during infections. Long-standing issues relating to T versus B lineage divergence remain but have been enriched with remarkable new findings about thymus seeding. There are indications that at least some age-related changes in lymphopoiesis may be reversible. Finally, knowledge obtained from studies of mice is slowly being extended to humans. SUMMARY We can now appreciate that new lymphoid progenitors are drawn from a heterogeneous collection of hematopoietic stem cells through asynchronous patterns of gene expression. Complex interactions then occur between the gene products, preparing lymphoid progenitors to respond to environmental cues. Whereas unique markers describe the process of lymphocyte formation in humans, fundamental information now available should suggest ways to promote rebound from chemotherapy or transplantation and reverse declines associated with aging.
Collapse
|
64
|
Abstract
PURPOSE OF REVIEW Maintenance of T-cell function and modulation of tolerance are critical issues in organ transplantation. The thymus is the primary organ for T-cell generation, and a preserved thymic function is essential for a self-tolerant diverse T-cell repertoire. Transplant procedures and related immunosuppressive drugs may hinder thymic integrity and function. We review here the recent advances in understanding the regulation of the unique thymic microenvironment with relevance for the field of transplantation. RECENT FINDINGS Recent studies have assigned a role for IL-22 in the regeneration of thymic epithelium, and for microRNAs in the modulation of its survival and function. The interplay of key molecules in the cross-talk between thymic epithelial cells and thymocytes was depicted, opening new perspectives for the in-vitro recapitulation of T-cell development and for thymic transplantation. Additionally, the thymus was shown to be able to sustain thymocyte progenitor renewal. SUMMARY These findings open new venues of research toward therapeutic interventions in the endogenous thymus to modulate or reconstitute the immune system; thymic transplantation; and the future development of artificial thymus, which would represent an important tool to achieve tolerance across the histocompatibility barriers.
Collapse
|
65
|
Manesso E, Chickarmane V, Kueh HY, Rothenberg EV, Peterson C. Computational modelling of T-cell formation kinetics: output regulated by initial proliferation-linked deferral of developmental competence. J R Soc Interface 2013; 10:20120774. [PMID: 23152106 DOI: 10.1098/rsif.2012.0774] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bone-marrow-derived progenitors must continually enter the thymus of an adult mouse to sustain T-cell homeostasis, yet only a few input cells per day are sufficient to support a yield of 5 × 10(7) immature T-cells per day and an eventual output of 1-2 × 10(6) mature cells per day. While substantial progress has been made to delineate the developmental pathway of T-cell lineage commitment, still little is known about the relationship between differentiation competence and the remarkable expansion of the earliest (DN1 stage) T-cell progenitors. To address this question, we developed computational models where the probability to progress to the next stage (DN2) is related to division number. To satisfy differentiation kinetics and overall cell yield data, our models require that adult DN1 cells divide multiple times before becoming competent to progress into DN2 stage. Our findings were subsequently tested by in vitro experiments, where putative early and later-stage DN1 progenitors from the thymus were purified and their progression into DN2 was measured. These experiments showed that the two DN1 sub-populations divided with similar rates, but progressed to the DN2 stage with different rates, thus providing experimental evidence that DN1 cells increase their commitment probability in a cell-intrinsic manner as they undergo cell division. Proliferation-linked shifts in eligibility of DN1 cells to undergo specification thus control kinetics of T-cell generation.
Collapse
Affiliation(s)
- Erica Manesso
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
66
|
Fischer A, Hacein-Bey-Abina S, Cavazzana-Calvo M. Gene therapy of primary T cell immunodeficiencies. Gene 2013; 525:170-3. [PMID: 23583799 DOI: 10.1016/j.gene.2013.03.092] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 12/16/2022]
Abstract
Gene therapy of severe combined immunodeficiencies has been proven to be effective to provide sustained correction of the T cell immunodeficiencies. This has been achieved for 2 forms of SCID, i.e SCID-X1 (γc deficiency) and adenosine deaminase deficiency. Occurrence of gene toxicity generated by integration of first generation retroviral vectors, as observed in the SCID-X1 trials has led to replace these vectors by self inactivated (SIN) retro(or lenti) viruses that may provide equivalent efficacy with a better safety profile. Results of ongoing clinical studies in SCID as well as in other primary immunodeficiencies, such as the Wiskott Aldrich syndrome, will be thus very informative.
Collapse
|
67
|
Abstract
LIM-domain proteins are a large family of proteins that are emerging as key molecules in a wide variety of human cancers. In particular, all members of the human LIM-domain-only (LMO) proteins, LMO1-4, which are required for many developmental processes, are implicated in the onset or the progression of several cancers, including T cell leukaemia, breast cancer and neuroblastoma. These small proteins contain two protein-interacting LIM domains but little additional sequence, and they seem to function by nucleating the formation of new transcriptional complexes and/or by disrupting existing transcriptional complexes to modulate gene expression programmes. Through these activities, the LMO proteins have important cellular roles in processes that are relevant to cancer such as self-renewal, cell cycle regulation and metastasis. These functions highlight the therapeutic potential of targeting these proteins in cancer.
Collapse
Affiliation(s)
- Jacqueline M Matthews
- School of Molecular Bioscience, The University of Sydney, New South Wales 2006, Australia. jacqui.matthews@ sydney.edu.au
| | | | | | | |
Collapse
|
68
|
Intrathymic progenitor cell transplantation across histocompatibility barriers results in the persistence of early thymic progenitors and T-cell differentiation. Blood 2013; 121:2144-53. [PMID: 23305740 DOI: 10.1182/blood-2012-08-447417] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Donor hematopoietic stem cells (HSCs) can correct T-cell deficiencies in patients with severe combined immunodeficiency by replacing resident thymus cells. However, as those progenitors that naturally migrate to the thymus are not capable of supporting long-term thymopoiesis, a successful transplant is thought to require the ongoing migration of donor progenitors. We previously showed that the forced intrathymic administration of histocompatible HSCs can sustain long-term thymopoiesis in ZAP-70-immunodeficient mice. However, it is not known whether T-cell reconstitution across histocompatibility barriers is modulated by intrathymic vs intravenous administration of HSCs. In the absence of conditioning, long-term thymopoiesis by semiallogeneic progenitors was detected in mice transplanted via the intrathymic, but not the intravenous, route. In intrathymic-transplanted mice, ongoing thymopoiesis was associated with a 10-fold higher level of early thymic progenitors (ETPs). The enhanced reconstitution capacity of these intrathymic-derived ETPs was corroborated by their significantly augmented myeloid lineage potential compared with endogenous ETPs. Notably, though, myeloablative conditioning resulted in a reduced expansion of intrathymic-administered donor ETPs. Thus, in the absence of conditioning, the forced thymic entry of HSCs results in a sustained T-cell development across histocompatibility barriers, highlighting the capacity of the thymus to support cells with long-term renewal potential.
Collapse
|
69
|
Boehm T. Self-renewal of thymocytes in the absence of competitive precursor replenishment. ACTA ACUST UNITED AC 2013; 209:1397-400. [PMID: 22851642 PMCID: PMC3420333 DOI: 10.1084/jem.20121412] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Soon after transplantation of wild-type thymi into immunodeficient mice lacking functional T cell receptors, productive T cell development in the donor thymus ceases. This observation underlies one of the central dogmas of T cell biology: because thymocytes are seemingly short-lived, intrathymic T cell development depends on continuous import of lymphoid progenitors from the bone marrow. New work reinterprets the outcome of this classical experiment as being the result of competition for intrathymic niches specifically supporting the DN3 stage of early T cell development. Surprisingly, when this niche space is uncontested by immigrating host progenitors, development of T cells in the thymus grafts continues. These new findings suggest that early thymocytes do indeed have substantial self-renewing potential.
Collapse
Affiliation(s)
- Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany.
| |
Collapse
|
70
|
Abstract
The continuous production of T lymphocytes requires that hematopoietic progenitors developing in the bone marrow migrate to the thymus. Rare progenitors egress from the bone marrow into the circulation, then traffic via the blood to the thymus. It is now evident that thymic settling is tightly regulated by selectin ligands, chemokine receptors, and integrins, among other factors. Identification of these signals has enabled progress in identifying specific populations of hematopoietic progenitors that can settle the thymus. Understanding the nature of progenitor cells and the molecular mechanisms involved in thymic settling may allow for therapeutic manipulation of this process, and improve regeneration of the T lineage in patients with impaired T cell numbers.
Collapse
Affiliation(s)
- Shirley L Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 264 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, USA
| | | |
Collapse
|
71
|
Cavazzana-Calvo M, André-Schmutz I, Fischer A. Haematopoietic stem cell transplantation for SCID patients: where do we stand? Br J Haematol 2012; 160:146-52. [DOI: 10.1111/bjh.12119] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/22/2012] [Indexed: 12/22/2022]
|
72
|
Leavy O. Self-renewing thymocytes. Nat Rev Immunol 2012. [DOI: 10.1038/nri3276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
73
|
Martins VC, Ruggiero E, Schlenner SM, Madan V, Schmidt M, Fink PJ, von Kalle C, Rodewald HR. Thymus-autonomous T cell development in the absence of progenitor import. ACTA ACUST UNITED AC 2012; 209:1409-17. [PMID: 22778389 PMCID: PMC3420332 DOI: 10.1084/jem.20120846] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To be added Thymus function is thought to depend on a steady supply of T cell progenitors from the bone marrow. The notion that the thymus lacks progenitors with self-renewal capacity is based on thymus transplantation experiments in which host-derived thymocytes replaced thymus-resident cells within 4 wk. Thymus grafting into T cell–deficient mice resulted in a wave of T cell export from the thymus, followed by colonization of the thymus by host-derived progenitors, and cessation of T cell development. Compound Rag2−/−γc−/−KitW/Wv mutants lack competitive hematopoietic stem cells (HSCs) and are devoid of T cell progenitors. In this study, using this strain as recipients for wild-type thymus grafts, we noticed thymus-autonomous T cell development lasting several months. However, we found no evidence for export of donor HSCs from thymus to bone marrow. A diverse T cell antigen receptor repertoire in progenitor-deprived thymus grafts implied that many thymocytes were capable of self-renewal. Although the process was most efficient in Rag2−/−γc−/−KitW/Wv hosts, γc-mediated signals alone played a key role in the competition between thymus-resident and bone marrow–derived progenitors. Hence, the turnover of each generation of thymocytes is not only based on short life span but is also driven via expulsion of resident thymocytes by fresh progenitors entering the thymus.
Collapse
Affiliation(s)
- Vera C Martins
- Institute for Immunology, University of Ulm, D-89081 Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|