51
|
McDonald-Hyman C, Muller JT, Loschi M, Thangavelu G, Saha A, Kumari S, Reichenbach DK, Smith MJ, Zhang G, Koehn BH, Lin J, Mitchell JS, Fife BT, Panoskaltsis-Mortari A, Feser CJ, Kirchmeier AK, Osborn MJ, Hippen KL, Kelekar A, Serody JS, Turka LA, Munn DH, Chi H, Neubert TA, Dustin ML, Blazar BR. The vimentin intermediate filament network restrains regulatory T cell suppression of graft-versus-host disease. J Clin Invest 2018; 128:4604-4621. [PMID: 30106752 PMCID: PMC6159973 DOI: 10.1172/jci95713] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/26/2018] [Indexed: 01/04/2023] Open
Abstract
Regulatory T cells (Tregs) are critical for maintaining immune homeostasis. However, current Treg immunotherapies do not optimally treat inflammatory diseases in patients. Understanding the cellular processes that control Treg function may allow for the augmentation of therapeutic efficacy. In contrast to activated conventional T cells, in which protein kinase C-θ (PKC-θ) localizes to the contact point between T cells and antigen-presenting cells, in human and mouse Tregs, PKC-θ localizes to the opposite end of the cell in the distal pole complex (DPC). Here, using a phosphoproteomic screen, we identified the intermediate filament vimentin as a PKC-θ phospho target and show that vimentin forms a DPC superstructure on which PKC-θ accumulates. Treatment of mouse Tregs with either a clinically relevant PKC-θ inhibitor or vimentin siRNA disrupted vimentin and enhanced Treg metabolic and suppressive activity. Moreover, vimentin-disrupted mouse Tregs were significantly better than controls at suppressing alloreactive T cell priming in graft-versus-host disease (GVHD) and GVHD lethality, using a complete MHC-mismatch mouse model of acute GVHD (C57BL/6 donor into BALB/c host). Interestingly, vimentin disruption augmented the suppressor function of PKC-θ-deficient mouse Tregs. This suggests that enhanced Treg activity after PKC-θ inhibition is secondary to effects on vimentin, not just PKC-θ kinase activity inhibition. Our data demonstrate that vimentin is a key metabolic and functional controller of Treg activity and provide proof of principle that disruption of vimentin is a feasible, translationally relevant method to enhance Treg potency.
Collapse
Affiliation(s)
- Cameron McDonald-Hyman
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - James T. Muller
- Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, NYU School of Medicine, New York, New York, USA
| | - Michael Loschi
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Govindarajan Thangavelu
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Asim Saha
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Sudha Kumari
- Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, NYU School of Medicine, New York, New York, USA
| | - Dawn K. Reichenbach
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Michelle J. Smith
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Guoan Zhang
- Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, NYU School of Medicine, New York, New York, USA
| | - Brent H. Koehn
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Jiqiang Lin
- Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, NYU School of Medicine, New York, New York, USA
| | - Jason S. Mitchell
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Division of Rheumatology, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Brian T. Fife
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Division of Rheumatology, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Angela Panoskaltsis-Mortari
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Colby J. Feser
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew Kemal Kirchmeier
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark J. Osborn
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Keli L. Hippen
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ameeta Kelekar
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jonathan S. Serody
- Lineberger Comprehensive Cancer Center, Division of Hematology/Oncology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Laurence A. Turka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David H. Munn
- Department of Pediatrics, Georgia Health Sciences University, Augusta, Georgia, USA
| | - Hongbo Chi
- Department of Immunology, Saint Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Thomas A. Neubert
- Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, NYU School of Medicine, New York, New York, USA
| | - Michael L. Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
52
|
Mapping Cellular Polarity Networks Using Mass Spectrometry-based Strategies. J Mol Biol 2018; 430:3545-3564. [DOI: 10.1016/j.jmb.2018.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 11/22/2022]
|
53
|
Chinn IK, Eckstein OS, Peckham-Gregory EC, Goldberg BR, Forbes LR, Nicholas SK, Mace EM, Vogel TP, Abhyankar HA, Diaz MI, Heslop HE, Krance RA, Martinez CA, Nguyen TC, Bashir DA, Goldman JR, Stray-Pedersen A, Pedroza LA, Poli MC, Aldave-Becerra JC, McGhee SA, Al-Herz W, Chamdin A, Coban-Akdemir ZH, Jhangiani SN, Muzny DM, Cao TN, Hong DN, Gibbs RA, Lupski JR, Orange JS, McClain KL, Allen CE. Genetic and mechanistic diversity in pediatric hemophagocytic lymphohistiocytosis. Blood 2018; 132:89-100. [PMID: 29632024 PMCID: PMC6034641 DOI: 10.1182/blood-2017-11-814244] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/03/2018] [Indexed: 11/20/2022] Open
Abstract
The HLH-2004 criteria are used to diagnose hemophagocytic lymphohistiocytosis (HLH), yet concern exists for their misapplication, resulting in suboptimal treatment of some patients. We sought to define the genomic spectrum and associated outcomes of a diverse cohort of children who met the HLH-2004 criteria. Genetic testing was performed clinically or through research-based whole-exome sequencing. Clinical metrics were analyzed with respect to genomic results. Of 122 subjects enrolled over the course of 17 years, 101 subjects received genetic testing. Biallelic familial HLH (fHLH) gene defects were identified in only 19 (19%) and correlated with presentation at younger than 1 year of age (P < .0001). Digenic fHLH variants were observed but lacked statistical support for disease association. In 28 (58%) of 48 subjects, research whole-exome sequencing analyses successfully identified likely molecular explanations, including underlying primary immunodeficiency diseases, dysregulated immune activation and proliferation disorders, and potentially novel genetic conditions. Two-thirds of patients identified by the HLH-2004 criteria had underlying etiologies for HLH, including genetic defects, autoimmunity, and malignancy. Overall survival was 45%, and increased mortality correlated with HLH triggered by infection or malignancy (P < .05). Differences in survival did not correlate with genetic profile or extent of therapy. HLH should be conceptualized as a phenotype of critical illness characterized by toxic activation of immune cells from different underlying mechanisms. In most patients with HLH, targeted sequencing of fHLH genes remains insufficient for identifying pathogenic mechanisms. Whole-exome sequencing, however, may identify specific therapeutic opportunities and affect hematopoietic stem cell transplantation options for these patients.
Collapse
Affiliation(s)
- Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Immunology/Allergy/Rheumatology and
| | - Olive S Eckstein
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology/Oncology, Texas Children's Hospital Cancer Center, Houston, TX
| | - Erin C Peckham-Gregory
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Division of Pediatric Hematology/Oncology, Texas Children's Hospital Cancer Center, Houston, TX
| | - Baruch R Goldberg
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Immunology/Allergy/Rheumatology and
| | - Lisa R Forbes
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Immunology/Allergy/Rheumatology and
| | - Sarah K Nicholas
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Immunology/Allergy/Rheumatology and
| | - Emily M Mace
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Immunology/Allergy/Rheumatology and
| | - Tiphanie P Vogel
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Immunology/Allergy/Rheumatology and
| | - Harshal A Abhyankar
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology/Oncology, Texas Children's Hospital Cancer Center, Houston, TX
| | - Maria I Diaz
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology/Oncology, Texas Children's Hospital Cancer Center, Houston, TX
| | - Helen E Heslop
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology/Oncology, Texas Children's Hospital Cancer Center, Houston, TX
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Robert A Krance
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology/Oncology, Texas Children's Hospital Cancer Center, Houston, TX
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Caridad A Martinez
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology/Oncology, Texas Children's Hospital Cancer Center, Houston, TX
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Trung C Nguyen
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Critical Care Medicine, Texas Children's Hospital, Houston, TX
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veteran Affairs Medical Center, Houston, TX
| | - Dalia A Bashir
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Critical Care Medicine, Texas Children's Hospital, Houston, TX
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veteran Affairs Medical Center, Houston, TX
| | - Jordana R Goldman
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Critical Care Medicine, Texas Children's Hospital, Houston, TX
| | - Asbjørg Stray-Pedersen
- Norwegian National Unit for Newborn Screening, Department of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Baylor-Hopkins Center for Mendelian Genomics, Houston, TX
| | - Luis A Pedroza
- Universidad San Francisco de Quito, Colegio de Ciencias de la Salud-Hospital de los Valles, Quito, Ecuador
| | - M Cecilia Poli
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Universidad del Desarrollo, Clinica Alemana de Santiago, Santiago, Chile
| | - Juan C Aldave-Becerra
- Division of Allergy and Immunology, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru
| | - Sean A McGhee
- Division of Immunology and Allergy, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA
| | - Waleed Al-Herz
- Department of Pediatrics, Kuwait University, Kuwait City, Kuwait
| | - Aghiad Chamdin
- Department of Pediatrics and Human Development, Michigan State University, Lansing, MI; and
| | - Zeynep H Coban-Akdemir
- Baylor-Hopkins Center for Mendelian Genomics, Houston, TX
- Department of Molecular and Human Genetics and
| | - Shalini N Jhangiani
- Department of Molecular and Human Genetics and
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Donna M Muzny
- Department of Molecular and Human Genetics and
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Tram N Cao
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Immunology/Allergy/Rheumatology and
| | - Diana N Hong
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Immunology/Allergy/Rheumatology and
| | - Richard A Gibbs
- Baylor-Hopkins Center for Mendelian Genomics, Houston, TX
- Department of Molecular and Human Genetics and
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - James R Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Baylor-Hopkins Center for Mendelian Genomics, Houston, TX
- Department of Molecular and Human Genetics and
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Jordan S Orange
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Immunology/Allergy/Rheumatology and
| | - Kenneth L McClain
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology/Oncology, Texas Children's Hospital Cancer Center, Houston, TX
| | - Carl E Allen
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology/Oncology, Texas Children's Hospital Cancer Center, Houston, TX
| |
Collapse
|
54
|
Nunes-Santos CDJ, Rosenzweig SD. Bacille Calmette-Guerin Complications in Newly Described Primary Immunodeficiency Diseases: 2010-2017. Front Immunol 2018; 9:1423. [PMID: 29988375 PMCID: PMC6023996 DOI: 10.3389/fimmu.2018.01423] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/07/2018] [Indexed: 12/25/2022] Open
Abstract
Bacille Calmette–Guerin (BCG) vaccine is widely used as a prevention strategy against tuberculosis. BCG is a live vaccine, usually given early in life in most countries. While safe to most recipients, it poses a risk to immunocompromised patients. Several primary immunodeficiency diseases (PIDD) have been classically associated with complications related to BCG vaccine. However, a number of new inborn errors of immunity have been described lately in which little is known about adverse reactions following BCG vaccination. The aim of this review is to summarize the existing data on BCG-related complications in patients diagnosed with PIDD described since 2010. When BCG vaccination status or complications were not specifically addressed in those manuscripts, we directly contacted the corresponding authors for further clarification. We also analyzed data on other mycobacterial infections in these patients. Based on our analysis, around 8% of patients with gain-of-function mutations in STAT1 had mycobacterial infections, including localized complications in 3 and disseminated disease in 4 out of 19 BCG-vaccinated patients. Localized BCG reactions were also frequent in activated PI3Kδ syndrome type 1 (3/10) and type 2 (2/18) vaccinated children. Also, of note, no BCG-related complications have been described in either CTLA4 or LRBA protein-deficient patients; and not enough information on BCG-vaccinated NFKB1 or NFKB2-deficient patients was available to drive any conclusions about these diseases. Despite the high prevalence of environmental mycobacterial infections in GATA2-deficient patients, only one case of BCG reaction has been reported in a patient who developed disseminated disease. In conclusion, BCG complications could be expected in some particular, recently described PIDD and it remains a preventable risk factor for pediatric PIDD patients.
Collapse
Affiliation(s)
- Cristiane de Jesus Nunes-Santos
- Faculdade de Medicina, Instituto da Crianca, Universidade de São Paulo, São Paulo, Brazil.,Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
55
|
Gao M, Wang K, Yang M, Meng F, Lu R, Zhuang H, Cheng G, Wang X. Transcriptome Analysis of Bronchoalveolar Lavage Fluid From Children With Mycoplasma pneumoniae Pneumonia Reveals Natural Killer and T Cell-Proliferation Responses. Front Immunol 2018; 9:1403. [PMID: 29967623 PMCID: PMC6015898 DOI: 10.3389/fimmu.2018.01403] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/06/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Mycoplasma pneumoniae pneumonia (MPP) is one of the most common community-acquired pneumonia; this study is to explore the immune-pathogenesis of children MPP. METHODS Next-generation transcriptome sequencing was performed on the bronchoalveolar lavage fluid cells from six children with MPP and three children with foreign body aspiration as control. Some of the results had been validated by quantitative real-time PCR in an expanded group of children. RESULTS Results revealed 810 differentially expressed genes in MPP group comparing to control group, of which 412 genes including RLTPR, CARD11 and RASAL3 were upregulated. These upregulated genes were mainly enriched in mononuclear cell proliferation and signaling biological processes. Kyoto encyclopedia of genes and genomes pathway analysis revealed that hematopoietic cell linage pathway, natural killer cell-mediated cytotoxicity pathway, and T cell receptor signaling pathway were significantly upregulated in MPP children. In addition, significant alternative splicing events were found in GNLY and SLC11A1 genes, which may cause the differential expressions of these genes. CONCLUSION Our results suggest that NK and CD8+ T cells are over activated and proliferated in MPP children; the upregulated IFNγ, PRF1, GZMB, FASL, and GNLY may play important roles in the pathogenesis of children MPP.
Collapse
Affiliation(s)
- Man Gao
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Kuo Wang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Mingyue Yang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fanzheng Meng
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Ruihua Lu
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Huadong Zhuang
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Genhong Cheng
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
- Department of Microbiology Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
| | - Xiaosong Wang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
56
|
Staal J, Driege Y, Haegman M, Borghi A, Hulpiau P, Lievens L, Gul IS, Sundararaman S, Gonçalves A, Dhondt I, Pinzón JH, Braeckman BP, Technau U, Saeys Y, van Roy F, Beyaert R. Ancient Origin of the CARD-Coiled Coil/Bcl10/MALT1-Like Paracaspase Signaling Complex Indicates Unknown Critical Functions. Front Immunol 2018; 9:1136. [PMID: 29881386 PMCID: PMC5978004 DOI: 10.3389/fimmu.2018.01136] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022] Open
Abstract
The CARD–coiled coil (CC)/Bcl10/MALT1-like paracaspase (CBM) signaling complexes composed of a CARD–CC family member (CARD-9, -10, -11, or -14), Bcl10, and the type 1 paracaspase MALT1 (PCASP1) play a pivotal role in immunity, inflammation, and cancer. Targeting MALT1 proteolytic activity is of potential therapeutic interest. However, little is known about the evolutionary origin and the original functions of the CBM complex. Type 1 paracaspases originated before the last common ancestor of planulozoa (bilaterians and cnidarians). Notably in bilaterians, Ecdysozoa (e.g., nematodes and insects) lacks Bcl10, whereas other lineages have a Bcl10 homolog. A survey of invertebrate CARD–CC homologs revealed such homologs only in species with Bcl10, indicating an ancient common origin of the entire CBM complex. Furthermore, vertebrate-like Syk/Zap70 tyrosine kinase homologs with the ITAM-binding SH2 domain were only found in invertebrate organisms with CARD–CC/Bcl10, indicating that this pathway might be related to the original function of the CBM complex. Moreover, the type 1 paracaspase sequences from invertebrate organisms that have CARD–CC/Bcl10 are more similar to vertebrate paracaspases. Functional analysis of protein–protein interactions, NF-κB signaling, and CYLD cleavage for selected invertebrate type 1 paracaspase and Bcl10 homologs supports this scenario and indicates an ancient origin of the CARD–CC/Bcl10/paracaspase signaling complex. By contrast, many of the known MALT1-associated activities evolved fairly recently, indicating that unknown functions are at the basis of the protein conservation. As a proof-of-concept, we provide initial evidence for a CBM- and NF-κB-independent neuronal function of the Caenorhabditis elegans type 1 paracaspase malt-1. In conclusion, this study shows how evolutionary insights may point at alternative functions of MALT1.
Collapse
Affiliation(s)
- Jens Staal
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yasmine Driege
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mira Haegman
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Alice Borghi
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Paco Hulpiau
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Unit of Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
| | - Laurens Lievens
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ismail Sahin Gul
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Unit of Molecular Cell Biology, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
| | - Srividhya Sundararaman
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Unit of Molecular Cell Biology, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
| | - Amanda Gonçalves
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,VIB Bio Imaging Core Gent, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
| | - Ineke Dhondt
- Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Ghent, Belgium
| | - Jorge H Pinzón
- Department of Biology, University of Texas Arlington, Arlington, TX, United States
| | - Bart P Braeckman
- Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Ghent, Belgium
| | - Ulrich Technau
- Department of Molecular Evolution and Development, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Yvan Saeys
- Unit of Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Frans van Roy
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Unit of Molecular Cell Biology, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
57
|
Jung S, Gámez-Díaz L, Proietti M, Grimbacher B. "Immune TOR-opathies," a Novel Disease Entity in Clinical Immunology. Front Immunol 2018; 9:966. [PMID: 29867948 PMCID: PMC5954032 DOI: 10.3389/fimmu.2018.00966] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/18/2018] [Indexed: 12/30/2022] Open
Abstract
Primary immunodeficiencies (PIDs) represent a group of mostly monogenic disorders caused by loss- or gain-of-function mutations in over 340 known genes that lead to abnormalities in the development and/or the function of the immune system. However, mutations in different genes can affect the same cell-signaling pathway and result in overlapping clinical phenotypes. In particular, mutations in the genes encoding for members of the phosphoinositide3-kinase (PI3K)/AKT/mTOR/S6 kinase (S6K) signaling cascade or for molecules interacting with this pathway have been associated with different PIDs that are often characterized by the coexistence of both immune deficiency and autoimmunity. The serine/threonine kinase mechanistic/mammalian target of rapamycin (mTOR), which acts downstream of PI3K and AKT, is emerging as a key regulator of immune responses. It integrates a variety of signals from the microenvironment to control cell growth, proliferation, and metabolism. mTOR plays therefore a central role in the regulation of immune cells’ differentiation and functions. Here, we review the different PIDs that share an impairment of the PI3K/AKT/mTOR/S6K pathway and we propose to name them “immune TOR-opathies” by analogy with a group of neurological disorders that has been originally defined by PB Crino and that are due to aberrant mTOR signaling (1). A better understanding of the role played by this complex intracellular cascade in the pathophysiology of “immune TOR-opathies” is crucial to develop targeted therapies.
Collapse
Affiliation(s)
- Sophie Jung
- CNRS, UPR 3572 (I2CT), Institut de Biologie Moléculaire et Cellulaire (IBMC), Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Pôle de Médecine et de Chirurgie Bucco-Dentaires, Strasbourg - Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France.,Center for Chronic Immunodeficiency (CCI), Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Gámez-Díaz
- Center for Chronic Immunodeficiency (CCI), Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michele Proietti
- Center for Chronic Immunodeficiency (CCI), Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency (CCI), Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
58
|
Abstract
Proper regulation of the immune system is required for protection against pathogens and preventing autoimmune disorders. Inborn errors of the immune system due to inherited or de novo germline mutations can lead to the loss of protective immunity, aberrant immune homeostasis, and the development of autoimmune disease, or combinations of these. Forward genetic screens involving clinical material from patients with primary immunodeficiencies (PIDs) can vary in severity from life-threatening disease affecting multiple cell types and organs to relatively mild disease with susceptibility to a limited range of pathogens or mild autoimmune conditions. As central mediators of innate and adaptive immune responses, T cells are critical orchestrators and effectors of the immune response. As such, several PIDs result from loss of or altered T cell function. PID-associated functional defects range from complete absence of T cell development to uncontrolled effector cell activation. Furthermore, the gene products of known PID causal genes are involved in diverse molecular pathways ranging from T cell receptor signaling to regulators of protein glycosylation. Identification of the molecular and biochemical cause of PIDs can not only guide the course of treatment for patients, but also inform our understanding of the basic biology behind T cell function. In this chapter, we review PIDs with known genetic causes that intrinsically affect T cell function with particular focus on perturbations of biochemical pathways.
Collapse
Affiliation(s)
- William A Comrie
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States.
| |
Collapse
|
59
|
Lyons JJ, Milner JD. Primary atopic disorders. J Exp Med 2018; 215:1009-1022. [PMID: 29549114 PMCID: PMC5881472 DOI: 10.1084/jem.20172306] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/21/2018] [Accepted: 03/01/2018] [Indexed: 12/19/2022] Open
Abstract
Important insights from monogenic disorders into the immunopathogenesis of allergic diseases and reactions are discussed. Monogenic disorders have provided fundamental insights into human immunity and the pathogenesis of allergic diseases. The pathways identified as critical in the development of atopy range from focal defects in immune cells and epithelial barrier function to global changes in metabolism. A major goal of studying heritable single-gene disorders that lead to severe clinical allergic diseases is to identify fundamental pathways leading to hypersensitivity that can be targeted to provide novel therapeutic strategies for patients with allergic diseases, syndromic and nonsyndromic alike. Here, we review known single-gene disorders leading to severe allergic phenotypes in humans, discuss how the revealed pathways fit within our current understanding of the atopic diathesis, and propose how some pathways might be targeted for therapeutic benefit.
Collapse
Affiliation(s)
- Jonathan J Lyons
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
60
|
Stark BC, Lanier MH, Cooper JA. CARMIL family proteins as multidomain regulators of actin-based motility. Mol Biol Cell 2017; 28:1713-1723. [PMID: 28663287 PMCID: PMC5491179 DOI: 10.1091/mbc.e17-01-0019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 12/23/2022] Open
Abstract
CARMILs are large multidomain proteins that regulate the actin-binding activity of capping protein (CP), a major capper of actin filament barbed ends in cells. CARMILs bind directly to CP and induce a conformational change that allosterically decreases but does not abolish its actin-capping activity. The CP-binding domain of CARMIL consists of the CP-interaction (CPI) and CARMIL-specific interaction (CSI) motifs, which are arranged in tandem. Many cellular functions of CARMILs require the interaction with CP; however, a more surprising result is that the cellular function of CP in cells appears to require binding to a CARMIL or another protein with a CPI motif, suggesting that CPI-motif proteins target CP and modulate its actin-capping activity. Vertebrates have three highly conserved genes and expressed isoforms of CARMIL with distinct and overlapping localizations and functions in cells. Various domains of these CARMIL isoforms interact with plasma membranes, vimentin intermediate filaments, SH3-containing class I myosins, the dual-GEF Trio, and other adaptors and signaling molecules. These biochemical properties suggest that CARMILs play a variety of membrane-associated functions related to actin assembly and signaling. CARMIL mutations and variants have been implicated in several human diseases. We focus on roles for CARMILs in signaling in addition to their function as regulators of CP and actin.
Collapse
Affiliation(s)
- Benjamin C Stark
- Department of Biochemistry and Molecular Biophysics and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - M Hunter Lanier
- Department of Biochemistry and Molecular Biophysics and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - John A Cooper
- Department of Biochemistry and Molecular Biophysics and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
61
|
Zumerle S, Molon B, Viola A. Membrane Rafts in T Cell Activation: A Spotlight on CD28 Costimulation. Front Immunol 2017; 8:1467. [PMID: 29163534 PMCID: PMC5675840 DOI: 10.3389/fimmu.2017.01467] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/19/2017] [Indexed: 12/28/2022] Open
Abstract
Spatiotemporal compartmentalization of signaling pathways and second messengers is pivotal for cell biology and membrane rafts are, therefore, required for several lymphocyte functions. On the other hand, T cells have the specific necessity of tuning signaling amplification depending on the context in which the antigen is presented. In this review, we discuss of membrane rafts in the context of T cell signaling, focusing on CD28-mediated costimulation.
Collapse
Affiliation(s)
- Sara Zumerle
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Barbara Molon
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Pediatric Research Institute "Citta della Speranza", Padova, Italy
| |
Collapse
|
62
|
Chinen J, Badran YR, Geha RS, Chou JS, Fried AJ. Advances in basic and clinical immunology in 2016. J Allergy Clin Immunol 2017; 140:959-973. [DOI: 10.1016/j.jaci.2017.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/12/2017] [Accepted: 07/22/2017] [Indexed: 10/19/2022]
|
63
|
Abstract
T follicular helper (Tfh) cells are a distinct type of CD4+ T cell specialized in providing help to B cells during the germinal centre (GC) reaction. As such, they are critical determinants of the quality of an antibody response following antigen challenge. Excessive production of Tfh cells can result in autoimmunity whereas too few can result in inadequate protection from infection. Hence, their differentiation and maintenance must be tightly regulated to ensure appropriate but limited help to B cells. Unlike the majority of other CD4+ T-cell subsets, Tfh cell differentiation occurs in three phases defined by their anatomical location. During each phase of differentiation the emerging Tfh cells express distinct patterns of co-receptors, which work together with the T-cell receptor (TCR) to drive Tfh differentiation. These signals provided by both TCR and co-receptors during Tfh differentiation alter proliferation, survival, metabolism, cytokine production and transcription factor expression. This review will discuss how engagement of TCR and co-receptors work together to shape the formation and function of Tfh cells.
Collapse
Affiliation(s)
- Louise M C Webb
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
| | - Michelle A Linterman
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
| |
Collapse
|
64
|
Genomic analysis of 220 CTCLs identifies a novel recurrent gain-of-function alteration in RLTPR (p.Q575E). Blood 2017; 130:1430-1440. [PMID: 28694326 PMCID: PMC5609333 DOI: 10.1182/blood-2017-02-768234] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/26/2017] [Indexed: 12/26/2022] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is an incurable non-Hodgkin lymphoma of the skin-homing T cell. In early-stage disease, lesions are limited to the skin, but in later-stage disease, the tumor cells can escape into the blood, the lymph nodes, and at times the visceral organs. To clarify the genomic basis of CTCL, we performed genomic analysis of 220 CTCLs. Our analyses identify 55 putative driver genes, including 17 genes not previously implicated in CTCL. These novel mutations are predicted to affect chromatin (BCOR, KDM6A, SMARCB1, TRRAP), immune surveillance (CD58, RFXAP), MAPK signaling (MAP2K1, NF1), NF-κB signaling (PRKCB, CSNK1A1), PI-3-kinase signaling (PIK3R1, VAV1), RHOA/cytoskeleton remodeling (ARHGEF3), RNA splicing (U2AF1), T-cell receptor signaling (PTPRN2, RLTPR), and T-cell differentiation (RARA). Our analyses identify recurrent mutations in 4 genes not previously identified in cancer. These include CK1α (encoded by CSNK1A1) (p.S27F; p.S27C), PTPRN2 (p.G526E), RARA (p.G303S), and RLTPR (p.Q575E). Last, we functionally validate CSNK1A1 and RLTPR as putative oncogenes. RLTPR encodes a recently described scaffolding protein in the T-cell receptor signaling pathway. We show that RLTPR (p.Q575E) increases binding of RLTPR to downstream components of the NF-κB signaling pathway, selectively upregulates the NF-κB pathway in activated T cells, and ultimately augments T-cell-receptor-dependent production of interleukin 2 by 34-fold. Collectively, our analysis provides novel insights into CTCL pathogenesis and elucidates the landscape of potentially targetable gene mutations.
Collapse
|
65
|
Nyman TA, Lorey MB, Cypryk W, Matikainen S. Mass spectrometry-based proteomic exploration of the human immune system: focus on the inflammasome, global protein secretion, and T cells. Expert Rev Proteomics 2017; 14:395-407. [PMID: 28406322 DOI: 10.1080/14789450.2017.1319768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The immune system is our defense system against microbial infections and tissue injury, and understanding how it works in detail is essential for developing drugs for different diseases. Mass spectrometry-based proteomics can provide in-depth information on the molecular mechanisms involved in immune responses. Areas covered: Summarized are the key immunology findings obtained with MS-based proteomics in the past five years, with a focus on inflammasome activation, global protein secretion, mucosal immunology, immunopeptidome and T cells. Special focus is on extracellular vesicle-mediated protein secretion and its role in immune responses. Expert commentary: Proteomics is an essential part of modern omics-scale immunology research. To date, MS-based proteomics has been used in immunology to study protein expression levels, their subcellular localization, secretion, post-translational modifications, and interactions in immune cells upon activation by different stimuli. These studies have made major contributions to understanding the molecular mechanisms involved in innate and adaptive immune responses. New developments in proteomics offer constantly novel possibilities for exploring the immune system. Examples of these techniques include mass cytometry and different MS-based imaging approaches which can be widely used in immunology.
Collapse
Affiliation(s)
- Tuula A Nyman
- a Department of Immunology , Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo , Oslo , Norway
| | - Martina B Lorey
- b Rheumatology , University of Helsinki and Helsinki University Hospital , Helsinki , Finland
| | - Wojciech Cypryk
- c Department of Bioorganic Chemistry , Center of Molecular and Macromolecular Studies , Lodz , Poland
| | - Sampsa Matikainen
- b Rheumatology , University of Helsinki and Helsinki University Hospital , Helsinki , Finland
| |
Collapse
|
66
|
Abstract
Signaling breakthroughs of 2016 clustered mainly in the areas of neuroscience, immunology, and metabolism, with excursions into plant hormone signaling and bacterial manipulation of host signaling pathways. Perhaps reflecting the growing maturity of the discipline of cell signaling, many of this year's breakthroughs have implications for the pathogenesis or treatment of human disease.
Collapse
|
67
|
Wang Y, Ma CS, Ling Y, Bousfiha A, Camcioglu Y, Jacquot S, Payne K, Crestani E, Roncagalli R, Belkadi A, Kerner G, Lorenzo L, Deswarte C, Chrabieh M, Patin E, Vincent QB, Müller-Fleckenstein I, Fleckenstein B, Ailal F, Quintana-Murci L, Fraitag S, Alyanakian MA, Leruez-Ville M, Picard C, Puel A, Bustamante J, Boisson-Dupuis S, Malissen M, Malissen B, Abel L, Hovnanian A, Notarangelo LD, Jouanguy E, Tangye SG, Béziat V, Casanova JL. Dual T cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med 2016; 213:2413-2435. [PMID: 27647349 PMCID: PMC5068239 DOI: 10.1084/jem.20160576] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/17/2016] [Indexed: 12/24/2022] Open
Abstract
In two complementary papers, Casanova, Malissen, and collaborators report the discovery of human RLTPR deficiency, the first primary immunodeficiency of the human CD28 pathway in T cells. Together, the two studies highlight the important and largely (but not completely) overlapping roles of RLTPR in T and B cells of humans and mice. Combined immunodeficiency (CID) refers to inborn errors of human T cells that also affect B cells because of the T cell deficit or an additional B cell–intrinsic deficit. In this study, we report six patients from three unrelated families with biallelic loss-of-function mutations in RLTPR, the mouse orthologue of which is essential for CD28 signaling. The patients have cutaneous and pulmonary allergy, as well as a variety of bacterial and fungal infectious diseases, including invasive tuberculosis and mucocutaneous candidiasis. Proportions of circulating regulatory T cells and memory CD4+ T cells are reduced. Their CD4+ T cells do not respond to CD28 stimulation. Their CD4+ T cells exhibit a "Th2" cell bias ex vivo and when cultured in vitro, contrasting with the paucity of "Th1," "Th17," and T follicular helper cells. The patients also display few memory B cells and poor antibody responses. This B cell phenotype does not result solely from the T cell deficiency, as the patients’ B cells fail to activate NF-κB upon B cell receptor (BCR) stimulation. Human RLTPR deficiency is a CID affecting at least the CD28-responsive pathway in T cells and the BCR-responsive pathway in B cells.
Collapse
Affiliation(s)
- Yi Wang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, NSW 2010, Australia
| | - Yun Ling
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Aziz Bousfiha
- Clinical Immunology Unit, Casablanca Children's Hospital, Ibn Rochd Medical School, King Hassan II University, Casablanca 20100, Morocco
| | - Yildiz Camcioglu
- Division of Infectious Diseases, Clinical Immunology, and Allergy, Department of Pediatrics, Cerrahpaşa Medical Faculty, Istanbul University, 34452 Istanbul, Turkey
| | - Serge Jacquot
- Immunology Unit, Rouen University Hospital, 76031 Rouen, France.,Institut National de la Santé et de la Recherche Médicale U905, Institute for Research and Innovation in Biomedicine, Rouen Normandy University, 76183 Rouen, France
| | - Kathryn Payne
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Elena Crestani
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115
| | | | - Aziz Belkadi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Gaspard Kerner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Maya Chrabieh
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, 75015 Paris, France.,Centre National de la Recherche Scientifique URA 3012, 75015 Paris, France
| | - Quentin B Vincent
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Ingrid Müller-Fleckenstein
- Institute of Clinical and Molecular Virology, University of Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Bernhard Fleckenstein
- Institute of Clinical and Molecular Virology, University of Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Fatima Ailal
- Clinical Immunology Unit, Casablanca Children's Hospital, Ibn Rochd Medical School, King Hassan II University, Casablanca 20100, Morocco
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, 75015 Paris, France.,Centre National de la Recherche Scientifique URA 3012, 75015 Paris, France
| | - Sylvie Fraitag
- Department of Pathology, Necker Hospital for Sick Children, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France
| | - Marie-Alexandra Alyanakian
- Immunology Unit, Necker Hospital for Sick Children, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France
| | - Marianne Leruez-Ville
- Virology Laboratory, Paris Descartes University, Sorbonne Paris Cité-EA 36-20, Necker Hospital for Sick Children, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France
| | - Capucine Picard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France.,Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France.,Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Marie Malissen
- Center for Immunology Marseille-Luminy, 13288 Marseille, France
| | | | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Alain Hovnanian
- Laboratory of Genetic Skin Diseases: from Disease Mechanism to Therapies, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Luigi D Notarangelo
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, NSW 2010, Australia
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France .,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065.,Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| |
Collapse
|