51
|
Mori K, Yanagisawa T, Fukuokaya W, Iwatani K, Matsukawa A, Katayama S, Pradere B, Laukhtina E, Rajwa P, Moschini M, Albisinni S, Krajewski W, Cimadamore A, Del Giudice F, Teoh J, Urabe F, Kimura S, Murakami M, Tsuzuki S, Miki J, Miki K, Shariat SF, Kimura T. Adjuvant immunotherapy in patients with renal cell carcinoma and urothelial carcinoma: A systematic review and network meta-analysis. Int J Urol 2024; 31:25-31. [PMID: 37840031 DOI: 10.1111/iju.15319] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023]
Abstract
Adjuvant immune checkpoint inhibitor therapies have radically altered the treatment landscape for renal cell carcinoma and urothelial carcinoma. However, studies have reported negative data regarding adjuvant immune checkpoint inhibitor therapies. Thus, this study aimed to assess the role of adjuvant immune checkpoint inhibitor therapy for both renal cell carcinoma and urothelial carcinoma. A systematic review and network meta-analysis were conducted in compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. Multiple databases were searched for articles published as of February 2023. Studies were deemed eligible if they evaluated disease-free survival in patients with renal cell carcinoma and urothelial carcinoma receiving adjuvant immune checkpoint inhibitor therapy. Five studies met the inclusion criteria. In a network meta-analysis, pembrolizumab was shown to be the most effective regimen for patients with renal cell carcinoma, whereas nivolumab was found to be the most effective regimen for patients with urothelial carcinoma. Additionally, these results were consistently observed in a sub-analysis of the T stage. The present analysis provides findings that support the usefulness of adjuvant nivolumab therapy in urothelial carcinoma and adjuvant pembrolizumab therapy in renal cell carcinoma, in agreement with the currently available guidelines. However, the caveat is that the randomized controlled trials included in this analysis differed in important respects despite being similar in study design. Therefore, with these differences in mind, care needs to be taken when selecting patients for these immune checkpoint inhibitor therapies to maximize their benefits.
Collapse
Affiliation(s)
- Keiichiro Mori
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Takafumi Yanagisawa
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Wataru Fukuokaya
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kosuke Iwatani
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Akihiro Matsukawa
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Satoshi Katayama
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Benjamin Pradere
- Department of Urology, La Croix du Sud Hospital, Quint Fonsegrives, France
| | - Ekaterina Laukhtina
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Pawel Rajwa
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Department of Urology, Medical University of Silesia, Zabrze, Poland
| | - Marco Moschini
- Department of Urology, San Raffaele Hospital and Scientific Institute, Milan, Italy
| | - Simone Albisinni
- Urology Unit, Department of Surgical Sciences, Tor Vergata University Hospital, University of Rome Tor Vergata, Rome, Italy
| | - Wojciech Krajewski
- Department of Minimally Invasive and Robotic Urology, Wrocław Medical University, Wrocław, Poland
| | - Alessia Cimadamore
- Department of Medical Area (DAME), Institute of Pathological Anatomy, University of Udine, Udine, Italy
| | - Francesco Del Giudice
- Department of Maternal-Infant and Urological Sciences, "Sapienza" University of Rome, Policlinico Umberto I Hospital, Rome, Italy
- Department of Urology, Stanford University School of Medicine, Stanford, California, USA
| | - Jeremy Teoh
- Department of Surgery, Faculty of Medicine, S.H. Ho Urology Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Fumihiko Urabe
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shoji Kimura
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Masaya Murakami
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shunsuke Tsuzuki
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Jun Miki
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kenta Miki
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shahrokh F Shariat
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
- Research Division of Urology, Department of Special Surgery, The University of Jordan, Amman, Jordan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Urology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Urology, Weill Cornell Medical College, New York, New York, USA
- Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria
| | - Takahiro Kimura
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
52
|
Wang Y, Zhou Y, Yang L, Lei L, He B, Cao J, Gao H. Challenges Coexist with Opportunities: Spatial Heterogeneity Expression of PD-L1 in Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303175. [PMID: 37934012 PMCID: PMC10767451 DOI: 10.1002/advs.202303175] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/28/2023] [Indexed: 11/08/2023]
Abstract
Cancer immunotherapy using anti-programmed death-ligand 1 (PD-L1) antibodies has been used in various clinical applications and achieved certain results. However, such limitations as autoimmunity, tumor hyperprogression, and overall low patient response rate impede its further clinical application. Mounting evidence has revealed that PD-L1 is not only present in tumor cell membrane but also in cytoplasm, exosome, or even nucleus. Among these, the dynamic and spatial heterogeneous expression of PD-L1 in tumors is mainly responsible for the unsatisfactory efficacy of PD-L1 antibodies. Hence, numerous studies focus on inhibiting or degrading PD-L1 to improve immune response, while a comprehensive understanding of the molecular mechanisms underlying spatial heterogeneity of PD-L1 can fundamentally transform the current status of PD-L1 antibodies in clinical development. Herein, the concept of spatial heterogeneous expression of PD-L1 is creatively introduced, encompassing the structure and biological functions of various kinds of PD-L1 (including mPD-L1, cPD-L1, nPD-L1, and exoPD-L1). Then an in-depth analysis of the regulatory mechanisms and potential therapeutic targets of PD-L1 is provided, seeking to offer a solid basis for future investigation. Moreover, the current status of agents is summarized, especially small molecular modulators development directed at these new targets, offering a novel perspective on potential PD-L1 therapeutics strategies.
Collapse
Affiliation(s)
- Yazhen Wang
- National Engineering Research Center for BiomaterialsCollege of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041P. R. China
| | - Yang Zhou
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041P. R. China
| | - Lianyi Yang
- National Engineering Research Center for BiomaterialsCollege of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
| | - Lei Lei
- National Engineering Research Center for BiomaterialsCollege of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
| | - Bin He
- National Engineering Research Center for BiomaterialsCollege of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
| | - Jun Cao
- National Engineering Research Center for BiomaterialsCollege of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
| | - Huile Gao
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041P. R. China
| |
Collapse
|
53
|
Wang K, Zhang X, Cheng Y, Qi Z, Ye K, Zhang K, Jiang S, Liu Y, Xiao Y, Wang T. Discovery of Novel PD-L1 Inhibitors That Induce the Dimerization, Internalization, and Degradation of PD-L1 Based on the Fragment Coupling Strategy. J Med Chem 2023; 66:16807-16827. [PMID: 38109261 DOI: 10.1021/acs.jmedchem.3c01534] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Tumor cells can evade immune surveillance through overexpressing programmed cell death-ligand 1 (PD-L1) to interact with programmed cell death-1 (PD-1). Besides, tumor-intrinsic PD-L1 is involved in tumor progression without interaction with PD-1, which provides more challenges for the discovery of PD-L1 inhibitors. Herein, we report the discovery of novel PD-L1 inhibitors using the fragment coupling strategy. Among them, B9 was found to inhibit the PD-1/PD-L1 interaction with the best IC50 value of 1.8 ± 0.7 nM. Beyond the blockade of the PD-1/PD-L1 axis, B9 promotes the dimerization, internalization, and degradation of PD-L1. Furthermore, B9 displayed high in vivo antitumor efficacy in the CT26 mouse model and activated the immune microenvironment and induced PD-L1 degradation of PD-L1 in the tumor. These results show that B9 is a promising lead PD-L1 inhibitor through the blockade of PD-1/PD-L1 interaction and functional inhibition of the PD-L1 signal pathway.
Collapse
Affiliation(s)
- Kaizhen Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangyu Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yao Cheng
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhihao Qi
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ke Ye
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kuojun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng Jiang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yibei Xiao
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tianyu Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
54
|
Larsen TV, Maansson CT, Daugaard TF, Andresen BS, Sorensen BS, Nielsen AL. Trans-Regulation of Alternative PD-L1 mRNA Processing by CDK12 in Non-Small-Cell Lung Cancer Cells. Cells 2023; 12:2844. [PMID: 38132164 PMCID: PMC10741404 DOI: 10.3390/cells12242844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/10/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Immunotherapy using checkpoint inhibitors targeting the interaction between PD-1 on T cells and PD-L1 on cancer cells has shown significant results in non-small-cell lung cancer (NSCLC). Not all patients respond to the therapy, and PD-L1 expression heterogeneity is proposed to be one determinant for this. The alternative processing of PD-L1 RNA, which depends on an alternative poly-A site in intron 4, generates a shorter mRNA variant (PD-L1v4) encoding soluble PD-L1 (sPD-L1), relative to the canonical PD-L1v1 mRNA encoding membrane-associated PD-L1 (mPD-L1). This study aimed to identify factors influencing the ratio between these two PD-L1 mRNAs in NSCLC cells. First, we verified the existence of the alternative PD-L1 RNA processing in NSCLC cells, and from in silico analyses, we identified a candidate list of regulatory factors. Examining selected candidates showed that CRISPR/Cas9-generated loss-of-function mutations in CDK12 increased the PD-L1v4/PD-L1v1 mRNA ratio and, accordingly, the sPD-L1/mPD-L1 balance. The CDK12/13 inhibitor THZ531 could also increase the PD-L1v4/PD-L1v1 mRNA ratio and impact the PD-L1 transcriptional response to IFN-γ stimulation. The fact that CDK12 regulates PD-L1 transcript variant formation in NSCLC cells is consistent with CDK12's role in promoting transcriptional elongation over intron-located poly-A sites. This study lays the groundwork for clinical investigations to delineate the implications of the CDK12-mediated balancing of sPD-L1 relative to mPD-L1 for immunotherapeutic responses in NSCLC.
Collapse
Affiliation(s)
- Trine V. Larsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.V.L.); (C.T.M.); (T.F.D.)
| | - Christoffer T. Maansson
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.V.L.); (C.T.M.); (T.F.D.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark;
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Tina F. Daugaard
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.V.L.); (C.T.M.); (T.F.D.)
| | - Brage S. Andresen
- Department of Biology and Molecular Biology, Southern University of Denmark, 5230 Odense, Denmark;
| | - Boe S. Sorensen
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark;
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Anders L. Nielsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.V.L.); (C.T.M.); (T.F.D.)
| |
Collapse
|
55
|
Hirata W, Itatani Y, Masui H, Kawada K, Mizuno R, Yamamoto T, Okamoto T, Ogawa R, Inamoto S, Maekawa H, Okamura R, Kiyasu Y, Hanada K, Okamoto M, Nishikawa Y, Sugimoto N, Tamura T, Hatano E, Sakai Y, Obama K. Downregulation of osteoprotegerin in colorectal cancer cells promotes liver metastasis via activating tumor-associated macrophage. Sci Rep 2023; 13:22217. [PMID: 38097649 PMCID: PMC10721637 DOI: 10.1038/s41598-023-49312-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
Osteoprotegerin (OPG) is a secreted cytokine that functions as a decoy receptor for receptor activator of nuclear factor kappa-B (RANK) ligand (RANKL). Anti-RANKL treatment for bone metastasis has been widely accepted for solid tumors. However, the mechanism of OPG-RANKL-RANK signaling in systemic colorectal cancer (CRC) metastasis remains unclear. In this study, we investigated the relevance and function of OPG expression in CRC liver metastasis. First, we performed in silico analysis using The Cancer Genome Atlas public database and found that lower OPG expression in CRC was associated with poor overall survival. Immunohistochemistry analyses using resected specimen from patients with CRC in our institute confirmed the result. Patient-matched primary CRC and liver metastases showed a significant downregulation of OPG expression in metastatic lesions. In CRC cell lines, OPG expression did not suppress cell proliferation and migration. However, OPG expression inhibited macrophage migration by suppressing the RANKL-RANK pathway. Moreover, in vivo mouse liver metastasis models showed that OPG expression in CRC cells suppressed liver metastases. In addition, treatment with an anti-RANKL neutralizing antibody also suppressed liver metastases. These results showed that downregulation of OPG expression in CRC cells promotes liver metastasis by activating tumor-associated macrophage, which can become a candidate for targeted therapy with anti-RANKL neutralizing antibody for CRC liver metastasis.
Collapse
Affiliation(s)
- Wataru Hirata
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshiro Itatani
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Hideyuki Masui
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kenji Kawada
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Surgery, Kurashiki Central Hospital, Okayama, 710-8602, Japan
| | - Rei Mizuno
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Surgery, NHO Kyoto Medical Center, Kyoto, 611-0041, Japan
| | - Takamasa Yamamoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takuya Okamoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ryotaro Ogawa
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Susumu Inamoto
- Department of Surgery, Japanese Red Cross Osaka Hospital, Osaka, 543-8555, Japan
| | - Hisatsugu Maekawa
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ryosuke Okamura
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshiyuki Kiyasu
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Keita Hanada
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Michio Okamoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yasuyo Nishikawa
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Naoko Sugimoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takuya Tamura
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Surgery, Japanese Red Cross Osaka Hospital, Osaka, 543-8555, Japan
| | - Kazutaka Obama
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
56
|
Hayashi F, Akagi K, Taniguchi H, Matsutake T, Kawahara H, Sekine I, Gyotoku H, Takemoto S, Soda H, Ashizawa K, Mukae H. TIM-3 expression induces resistance to PD-1 inhibitor in G-CSF-producing lung spindle cell carcinoma: A case report. Thorac Cancer 2023; 14:3556-3560. [PMID: 37926435 PMCID: PMC10733156 DOI: 10.1111/1759-7714.15149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023] Open
Abstract
Lung spindle cell carcinoma is an aggressive subtype of pleomorphic lung cancer resistant to cytotoxic chemotherapy. Programmed cell death-1 (PD-1) inhibitors have been reported to have clinical effects in patients with spindle cell carcinoma; however, the resistance mechanism to PD-1 inhibitors is yet to be fully elucidated. Herein, we report the case of an 88-year-old man with G-CSF-producing spindle cell carcinoma who acquired resistance to PD-1/PD-ligand 1 (L1) inhibitor in an early setting after a remarkable response. A histopathological review of the resistant specimen revealed a low count of CD8+ T cells and a predominant presence of M2 and TIM-3+ macrophages, indicating the presence of an immunosuppressive microenvironment. Our findings suggest a novel resistance mechanism to PD-1/PD-L1 inhibitors in G-CSF-producing spindle cell carcinoma.
Collapse
Affiliation(s)
- Fumiko Hayashi
- Department of Respiratory MedicineNagasaki University HospitalNagasakiJapan
| | - Kazumasa Akagi
- Department of Respiratory MedicineNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
- Clinical Oncology CenterNagasaki University HospitalNagasakiJapan
| | - Hirokazu Taniguchi
- Department of Respiratory MedicineNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
- Clinical Oncology CenterNagasaki University HospitalNagasakiJapan
| | | | - Hiromi Kawahara
- Department of Internal MedicineKouseikai HospitalNagasakiJapan
| | - Ichiro Sekine
- Department of PathologyKouseikai HospitalNagasakiJapan
| | - Hiroshi Gyotoku
- Department of Respiratory MedicineNagasaki University HospitalNagasakiJapan
- Department of Respiratory MedicineNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Shinnosuke Takemoto
- Department of Respiratory MedicineNagasaki University HospitalNagasakiJapan
- Department of Respiratory MedicineNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Hiroshi Soda
- Department of Respiratory MedicineSasebo City General HospitalSaseboJapan
| | - Kazuto Ashizawa
- Clinical Oncology CenterNagasaki University HospitalNagasakiJapan
- Department of Clinical OncologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Hiroshi Mukae
- Department of Respiratory MedicineNagasaki University HospitalNagasakiJapan
- Department of Respiratory MedicineNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| |
Collapse
|
57
|
Carter R, Alanazi F, Sharp A, Roman J, Luchini A, Liotta L, Paige M, Brown AM, Haymond A. Identification of the functional PD-L1 interface region responsible for PD-1 binding and initiation of PD-1 signaling. J Biol Chem 2023; 299:105353. [PMID: 37858677 PMCID: PMC10663846 DOI: 10.1016/j.jbc.2023.105353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
The PD-1/PD-L1 checkpoint pathway is important for regulating immune responses and can be targeted by immunomodulatory drugs to treat a variety of immune disorders. However, the precise protein-protein interactions required for the initiation of PD-1/PD-L1 signaling are currently unknown. Previously, we designed a series of first-generation PD-1 targeting peptides based on the native interface region of programmed death ligand 1 (PD-L1) that effectively reduced PD-1/PD-L1 binding. In this work, we further characterized the previously identified lead peptide, MN1.1, to identify key PD-1 binding residues and design an optimized peptide, MN1.4. We show MN1.4 is significantly more stable than MN1.1 in serum and retains the ability to block PD-1/PD-L1 complex formation. We further characterized the immunomodulatory effects of MN1.4 treatment by measuring markers of T cell activation in a co-culture model with ovarian cancer cells and peripheral blood mononuclear cells. We found MN1.4 treatment reduced cytokine secretion and suppressed T cell responses in a similar manner as recombinant PD-L1. Therefore, the PD-L1 interface region used to design MN1.4 appeared sufficient to initiate PD-1 signaling and likely represents the minimum necessary region of PD-L1 required for PD-1 recognition. We propose a peptide agonist for PD-1, such as MN1.4, could have several applications for treating autoimmune disorders caused by PD-1 deficiencies such as type 1 diabetes, inflammatory arthritis, or autoimmune side effects arising from monoclonal antibody-based cancer immunotherapies.
Collapse
Affiliation(s)
- Rachel Carter
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA.
| | - Fatimah Alanazi
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA
| | - Amanda Sharp
- Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA
| | - Jessica Roman
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA
| | - Mikell Paige
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia, USA
| | - Anne M Brown
- Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA; Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA; Data Services, University Libraries, Virginia Tech, Blacksburg, Virginia, USA
| | - Amanda Haymond
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA
| |
Collapse
|
58
|
Aldea M, Vasseur D, Italiano A, Nikolaev SI. WGS/WES-RNAseq compared to targeted NGS in oncology: is there something to unlock? Ann Oncol 2023; 34:1090-1093. [PMID: 37816462 DOI: 10.1016/j.annonc.2023.09.3118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Affiliation(s)
- M Aldea
- Department of Medical Oncology, Gustave Roussy, Villejuif; Paris-Saclay University, Kremlin-Bicetre; Precision Medicine, Gustave Roussy, Villejuif
| | - D Vasseur
- Precision Medicine, Gustave Roussy, Villejuif; Department of Molecular Pathology, Gustave Roussy, Villejuif
| | - A Italiano
- Precision Medicine, Gustave Roussy, Villejuif; Drug Development Department, Gustave Roussy, Villejuif
| | | |
Collapse
|
59
|
Cikman DI, Esen F, Engin A, Turna A, Agkoc M, Yilmaz A, Saglam OF, Deniz G, Aktas EC. Mediastinal lymph node removal modulates natural killer cell exhaustion in patients with non-small cell lung cancer. Immunol Res 2023; 71:959-971. [PMID: 37583002 DOI: 10.1007/s12026-023-09410-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/28/2023] [Indexed: 08/17/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death globally. In this study, the effect of complete removal of mediastinal lymph nodes by video-assisted mediastinoscopic lymphadenectomy (VAMLA) on natural killer (NK) cell phenotype and functions in patients with NSCLC was evaluated. The study included 21 NSCLC patients (cIA-IVA) undergoing VAMLA staging and 33 healthy controls. Mononuclear cells were isolated from peripheral blood of all participants and mediastinal lymph nodes of the patients. NK cells were analyzed by flow cytometry to define NK subsets, expressions of PD-1, CTLA-4, activating/inhibitory receptors, granzyme A, and CD107a. The plasma levels of soluble PD-1, PDL-1, and CTLA-4 were measured by ELISA. Mediastinal lymph nodes of NSCLC patients had increased ratios of exhausted NK cells, increased expression of PD-1 and IL-10, and impaired cytotoxicity. Mediastinal lymph nodes removal increased CD56dimCD16bright cytotoxic effector phenotype and reduced exhausted NK cells. PD-1+ NK cells were significantly more abundant in patients' blood, and VAMLA significantly reduced their ratio as well. The ratio of IL-10 secreting regulatory NK cells was also reduced after VAMLA. Blood NK cells had increased cytotoxic functions and spontaneous IFN-γ secretion, and these NK cell functions were also recovered by VAMLA. Mediastinal lymph node removal reversed NK cell exhaustion, reduced regulatory NK cells, and improved antitumoral functions of NK cells. Tumor-draining lymph nodes may contribute to tumor evasion from antitumoral immune responses. The role of their removal needs to be further studied both to better understand this mechanism and as a potential immunotherapeutic approach.
Collapse
Affiliation(s)
- Duygu Ilke Cikman
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Fehim Esen
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
- Department of Ophthalmology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ayse Engin
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Akif Turna
- Department of Thoracic Surgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Melek Agkoc
- Department of Thoracic Surgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Abdullah Yilmaz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Omer Faruk Saglam
- Department of Thoracic Surgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gunnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Esin Cetin Aktas
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
60
|
Chmielewska I, Grenda A, Krawczyk P, Frąk M, Kuźnar Kamińska B, Mitura W, Milanowski J. The influence of plasma sPD-L1 concentration on the effectiveness of immunotherapy in advanced NSCLC patients. Cancer Immunol Immunother 2023; 72:4169-4177. [PMID: 37816808 PMCID: PMC10700455 DOI: 10.1007/s00262-023-03552-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023]
Abstract
INTRODUCTION PD-L1 (Programmed Cell Death Ligand 1) is currently the only recognised marker of response to immunotherapy with anti-PD-1 or anti-PD-L1 antibodies in patients with advanced non-small cell lung cancer (NSCLC). However, this marker is not perfect. Soluble PD-L1 (sPD-L1) may be a novel predictor of immunotherapy efficacy in NSCLC patients. MATERIAL AND METHODS We enrolled 120 patients (median age 68 ± 6.81 years, 70 males and 50 females) with locally advanced (stage IIIB; 10 patients) or advanced (stage IV; 110 patients) NSCLC. PD-L1 expression in tumour cells was assessed by immunohistochemistry (IHC) in 117 (97.5%) patients. The soluble PD-L1 concentration in plasma samples was measured using enzyme-linked immunosorbent assay (ELISA). The response to immunotherapy, progression-free survival (PFS), and overall survival (OS), calculated from the start of immunotherapy, were assessed in 119 patients. RESULTS Patients with disease control had significantly lower (p = 0.0006) concentrations of sPD-L1 in blood plasma than patients with progression during the first months of immunotherapy or chemoimmunotherapy Patients with ≥ 6 month progression-free survival had a significantly higher (p = 0.013) percentage of tumor cells with PD-L1 expression than patients with shorter PFS. Patients with ≥ 6 months OS had significantly lower (p = 0.0142) plasma sPD-L1 concentrations than those with shorter overall survival. The median PFS was significantly higher in patients with low sPD-L1 concentrations than in those with high concentrations of this protein (5.8 vs. 2.5 months, HR = 0.6021, p = 0.0156). Similarly, patients with low sPD-L1 levels had a significantly higher median overall survival than those with sPD-L1 levels above the median (16.5 vs. 7 months, HR = 0.5354, p = 0.0071). There was no significant correlation between the percentage of tumour cells expressing PD-L1 and the concentration of sPD-L1 in the blood plasma. CONCLUSION High sPD-L1 concentration is a negative predictor of immunotherapy efficacy in patients with NSCLC. It is worthwhile to determine sPD-L1 concentration to predict the risk of resistance to anti-PD-1 or anti-PD-L1 antibodies with greater certainty.
Collapse
Affiliation(s)
- Izabela Chmielewska
- Department of Pneumonology, Oncology and Allergology Medical, University of Lublin, Jaczewskiego 8, 20-954, Lublin, Poland
| | - Anna Grenda
- Department of Pneumonology, Oncology and Allergology Medical, University of Lublin, Jaczewskiego 8, 20-954, Lublin, Poland.
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology Medical, University of Lublin, Jaczewskiego 8, 20-954, Lublin, Poland
| | - Małgorzata Frąk
- Department of Pneumonology, Oncology and Allergology Medical, University of Lublin, Jaczewskiego 8, 20-954, Lublin, Poland
| | - Barbara Kuźnar Kamińska
- Department of Pulmonology, Allergology and Pulmonary Oncology, Poznan University of Medical Sciences, Poznań, Poland
| | - Weronika Mitura
- Department of Pneumonology, Oncology and Allergology Medical, University of Lublin, Jaczewskiego 8, 20-954, Lublin, Poland
| | - Janusz Milanowski
- Department of Pneumonology, Oncology and Allergology Medical, University of Lublin, Jaczewskiego 8, 20-954, Lublin, Poland
| |
Collapse
|
61
|
Li Y, Shen Z, Chai Z, Zhan Y, Zhang Y, Liu Z, Liu Y, Li Z, Lin M, Zhang Z, Liu W, Guan S, Zhang J, Qian J, Ding Y, Li G, Fang Y, Deng H. Targeting MS4A4A on tumour-associated macrophages restores CD8+ T-cell-mediated antitumour immunity. Gut 2023; 72:2307-2320. [PMID: 37507218 PMCID: PMC10715532 DOI: 10.1136/gutjnl-2022-329147] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
OBJECTIVE Checkpoint immunotherapy unleashes T-cell control of tumours but is suppressed by immunosuppressive myeloid cells. The transmembrane protein MS4A4A is selectively highly expressed in tumour-associated macrophages (TAMs). Here, we aimed to reveal the role of MS4A4A+ TAMs in regulating the immune escape of tumour cells and to develop novel therapeutic strategies targeting TAMs to enhance the efficacy of immune checkpoint inhibitor (ICI) in colorectal cancer. DESIGN The inhibitory effect of MS4A4A blockade alone or combined with ICI treatment on tumour growth was assessed using murine subcutaneous tumour or orthotopic transplanted models. The effect of MS4A4A blockade on the tumour immune microenvironment was assessed by flow cytometry and mass cytometry. RNA sequencing and western blot analysis were used to further explore the molecular mechanism by which MS4A4A promoted macrophages M2 polarisation. RESULTS MS4A4A is selectively expressed by TAMs in different types of tumours, and was associated with adverse clinical outcome in patients with cancer. In vivo inhibition of MS4A4A and anti-MS4A4A monoclonal antibody treatment both curb tumour growth and improve the effect of ICI therapy. MS4A4A blockade treatment reshaped the tumour immune microenvironment, resulting in reducing the infiltration of M2-TAMs and exhausted T cells, and increasing the infiltration of effector CD8+ T cells. Anti-MS4A4A plus anti-programmed cell death protein 1 (PD-1) therapy remained effective in large, treatment-resistant tumours and could induce complete regression when further combined with radiotherapy. Mechanistically, MS4A4A promoted M2 polarisation of macrophages by activating PI3K/AKT pathway and JAK/STAT6 pathway. CONCLUSION Targeting MS4A4A could enhance the ICI efficacy and represent a new anticancer immunotherapy.
Collapse
Affiliation(s)
- Yongsheng Li
- Department of General Surgery, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Zhiyong Shen
- Department of General Surgery, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Zhen Chai
- Department of General Surgery, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Yizhi Zhan
- Department of General Surgery, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Yaowei Zhang
- Department of Radiation Oncology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Zhengyu Liu
- Department of General Surgery, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Yuechen Liu
- Department of General Surgery, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Zhenkang Li
- Department of General Surgery, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Mingdao Lin
- Department of General Surgery, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Zhanqiao Zhang
- Department of General Surgery, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Wei Liu
- Department of General Surgery, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Shenyuan Guan
- Department of General Surgery, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Jinchao Zhang
- Department of General Surgery, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Junying Qian
- Department of Radiation Oncology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Yi Ding
- Department of Radiation Oncology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Guoxin Li
- Department of General Surgery, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Yuan Fang
- Department of Radiation Oncology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Haijun Deng
- Department of General Surgery, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
62
|
Li Q, Chen C, Wu J, Poon LC, Wang CC, Li TC, Zhang T, Guo X, Song L, Wang X, Zhang Q, Ye Z, Yang Y, Lu J, Yao J, Ye D, Wang Y. Decreased serum soluble programmed cell death ligand-1 level as a potential biomarker for missed miscarriage. Hum Reprod 2023; 38:2128-2136. [PMID: 37671597 DOI: 10.1093/humrep/dead178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/15/2023] [Indexed: 09/07/2023] Open
Abstract
STUDY QUESTION Can maternal serum levels of soluble programmed cell death-1 (sPD-1) and its ligand (sPD-L1) serve as biomarkers for missed miscarriage (MM)? SUMMARY ANSWER Serum sPD-L1 levels are significantly decreased in MM patients and may serve as a potential predictive biomarker for miscarriage. WHAT IS KNOWN ALREADY Programmed cell death-1 (PD-1) and its ligand (PD-L1) comprise important immune inhibitory checkpoint signaling to maintain pregnancy. Their soluble forms are detectable in human circulation and are associated with immunosuppression. STUDY DESIGN, SIZE, DURATION Three independent cohorts attending tertiary referral hospitals were studied. The first (discovery) cohort was cross-sectional and included MM patients and healthy pregnant (HP) women matched on BMI. The second validation cohort contained MM patients and women with legally induced abortion (IA). The third prospective observational study recruited subjects requiring IVF treatment. PARTICIPANTS/MATERIALS, SETTING, METHODS In the discovery cohort, we enrolled 108 MM patients and 115 HP women who had a full-term pregnancy at 6-14 weeks of gestation. In the validation cohort, we recruited 25 MM patients and 25 women with IA. Blood samples were collected at the first prenatal visit for HP women or on the day of dilatation and curettage surgery (D&C) for MM and IA subjects to determine serum sPD-1 and sPD-L1 levels. Placenta samples were harvested during the D&C within the validation cohort to measure gene and protein expression. The prospective cohort collected serial blood samples weekly from 75 volunteers with embryo transfer (ET) after IVF. MAIN RESULTS AND THE ROLE OF CHANCE Circulating sPD-L1 levels were reduced by 50% in patients with MM (55.7 ± 16.04 pg/ml) compared to HP controls (106.7 ± 58.46 pg/ml, P < 0.001) and the difference remained significant after adjusting for maternal age and gestational age, whereas no significant differences in sPD-1 level were observed. Likewise, serum sPD-L1 was lower in MM patients than in IA subjects and accompanied by downregulated PD-L1-related gene expression levels in the placenta. In the IVF cohort, applying the changing rate of sPD-L1 level after ET achieved a predictive performance for miscarriage with receiver operating characteristics = 0.73 (95% CI: 0.57-0.88, P < 0.01). LIMITATIONS, REASONS FOR CAUTION The study was mainly confined to East Asian pregnant women. Further large prospective pregnancy cohorts are required to validate the predictive performance of sPD-L1 on miscarriage. WIDER IMPLICATIONS OF THE FINDINGS Reduced circulating sPD-L1 level and downregulated placental PD-L1 expression in miscarriage indicate that dysfunction in PD-L1 signals is a potential underlying mechanism for pregnancy loss. Our findings further extend the importance of the PD-L1 axis in pregnancy maintenance in early pregnancy. STUDY FUNDING/COMPETING INTEREST(S) This study was financially supported by grants from the Subject Innovation Team of Shaanxi University of Chinese Medicine (2019-Y502), General Research Fund (14122021), and Key Laboratory of Model Animal Phenotyping and Basic Research in Metabolic Diseases (2018KSYS003). The authors declare that they have no competing interests to be disclosed. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Qin Li
- The Second School of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Cuishan Chen
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiaming Wu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| | - Liona C Poon
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tin Chiu Li
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tao Zhang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xianghao Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Liang Song
- The Second School of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xia Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Qian Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ziying Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yongkang Yang
- The Second School of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jing Lu
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianyu Yao
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| | - Dewei Ye
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yao Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
63
|
Chivu-Economescu M, Herlea V, Dima S, Sorop A, Pechianu C, Procop A, Kitahara S, Necula L, Matei L, Dragu D, Neagu AI, Bleotu C, Diaconu CC, Popescu I, Duda DG. Soluble PD-L1 as a diagnostic and prognostic biomarker in resectable gastric cancer patients. Gastric Cancer 2023; 26:934-946. [PMID: 37668884 DOI: 10.1007/s10120-023-01429-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND In this study, we compared programmed death-ligand 1 (PD-L1) expression in primary tissue samples and its soluble form (sPD-L1) concentration in matched preoperative plasma samples from gastric cancer patients to understand the relationship between tissue and plasma PD-L1 expression and to determine its diagnostic and prognostic value. METHODS PD-L1 expression in tissue was assessed by immunohistochemistry and enzyme-linked immunosorbent assay (ELISA), and sPD-L1 concentration in plasma was quantified by ELISA. The levels of the CD274 gene, which encodes for PD-L1 protein, were examined as part of bulk tissue RNA-sequencing analyses. Additionally, we evaluated the association between sPD-L1 levels and various laboratory parameters, disease characteristics, and patient outcomes. RESULTS GC patients had significantly higher levels of sPD-L1 in their plasma (71.69 pg/mL) compared to healthy controls (35.34 pg/mL) (p < 0.0001). Moreover, sPD-L1 levels were significantly correlated with tissue PD-L1 protein, CD274 mRNA expression, larger tumor size, advanced tumor stage, and lymph node metastasis. Elevated sPD-L1 levels (> 103.5 ng/mL) were associated with poor overall survival (HR = 2.16, 95%CI 1.15-4.08, p = 0.017). Furthermore, intratumoral neutrophil and dendritic cell levels were directly correlated with plasma sPD-L1 concentration in the GC patients. CONCLUSIONS sPD-L1 was readily measurable in GC patients, and its level was associated with GC tissue PD-L1 expression, greater inflammatory cell infiltration, disease progression, and survival. Thus, sPD-L1 may be a useful minimally invasive diagnostic and prognostic biomarker in GC patients.
Collapse
Affiliation(s)
- Mihaela Chivu-Economescu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304, Bucharest, Romania
| | - Vlad Herlea
- Department of Pathology, Fundeni Clinical Institute, 022328, Bucharest, Romania
| | - Simona Dima
- Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, 022328, Bucharest, Romania
- Center of Excellence for Translational Medicine, Fundeni Clinical Institute, 022328, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, 050474, Bucharest, Romania
| | - Andrei Sorop
- Center of Excellence for Translational Medicine, Fundeni Clinical Institute, 022328, Bucharest, Romania
| | - Catalin Pechianu
- Department of Pathology, Fundeni Clinical Institute, 022328, Bucharest, Romania
| | - Alexandru Procop
- Department of Pathology, Fundeni Clinical Institute, 022328, Bucharest, Romania
| | - Shuji Kitahara
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Cox-724, 100 Blossom St., Boston, MA, 02114, USA
| | - Laura Necula
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304, Bucharest, Romania
| | - Lilia Matei
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304, Bucharest, Romania
| | - Denisa Dragu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304, Bucharest, Romania
| | - Ana-Iulia Neagu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304, Bucharest, Romania
| | - Coralia Bleotu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304, Bucharest, Romania
| | - Carmen C Diaconu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304, Bucharest, Romania
| | - Irinel Popescu
- Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, 022328, Bucharest, Romania
- Center of Excellence for Translational Medicine, Fundeni Clinical Institute, 022328, Bucharest, Romania
| | - Dan G Duda
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Cox-724, 100 Blossom St., Boston, MA, 02114, USA.
| |
Collapse
|
64
|
Lin X, Zong C, Zhang Z, Fang W, Xu P. Progresses in biomarkers for cancer immunotherapy. MedComm (Beijing) 2023; 4:e387. [PMID: 37799808 PMCID: PMC10547938 DOI: 10.1002/mco2.387] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023] Open
Abstract
Currently, checkpoint inhibitor-based immunotherapy has emerged as prevailing treatment modality for diverse cancers. However, immunotherapy as a first-line therapy has not consistently yielded durable responses. Moreover, the risk of immune-related adverse events increases with combination regimens. Thus, the development of predictive biomarkers is needed to optimize individuals benefit, minimize risk of toxicities, and guide combination approaches. The greatest focus has been on tumor programmed cell death-ligand 1 (PD-L1), microsatellite instability (MSI), and tumor mutational burden (TMB). However, there remains a subject of debate due to thresholds variability and significant heterogeneity. Major unmet challenges in immunotherapy are the discovery and validation of predictive biomarkers. Here, we show the status of tumor PD-L1, MSI, TMB, and emerging data on novel biomarker strategies with oncogenic signaling and epigenetic regulation. Considering the exploration of peripheral and intestinal immunity has served as noninvasive alternative in predicting immunotherapy, this review also summarizes current data in systemic immunity, encompassing solute PD-L1 and TMB, circulating tumor DNA and infiltrating lymphocytes, routine emerging inflammatory markers and cytokines, as well as gut microbiota. This review provides up-to-date information on the evolving field of currently available biomarkers in predicting immunotherapy. Future exploration of novel biomarkers is warranted.
Collapse
Affiliation(s)
- Xuwen Lin
- Department of Pulmonary and Critical Care MedicinePeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
- Department of Internal MedicineShantou University Medical CollegeShantouGuangdong ProvinceChina
| | - Chenyu Zong
- Department of Pulmonary and Critical Care MedicinePeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
- Department of Internal MedicineZunyi Medical UniversityZunyiGuizhou ProvinceChina
| | - Zhihan Zhang
- Department of Pulmonary and Critical Care MedicinePeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
| | - Weiyi Fang
- Cancer Research InstituteSchool of Basic Medical ScienceSouthern Medical UniversityGuangzhouGuangdong ProvinceChina
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdong ProvinceChina
| | - Ping Xu
- Department of Pulmonary and Critical Care MedicinePeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
- Department of Internal MedicineZunyi Medical UniversityZunyiGuizhou ProvinceChina
| |
Collapse
|
65
|
Yan Y, Ren Y, Bao Y, Wang Y. RNA splicing alterations in lung cancer pathogenesis and therapy. CANCER PATHOGENESIS AND THERAPY 2023; 1:272-283. [PMID: 38327600 PMCID: PMC10846331 DOI: 10.1016/j.cpt.2023.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 02/09/2024]
Abstract
RNA splicing alterations are widespread and play critical roles in cancer pathogenesis and therapy. Lung cancer is highly heterogeneous and causes the most cancer-related deaths worldwide. Large-scale multi-omics studies have not only characterized the mutational landscapes but also discovered a plethora of transcriptional and post-transcriptional changes in lung cancer. Such resources have greatly facilitated the development of new diagnostic markers and therapeutic options over the past two decades. Intriguingly, altered RNA splicing has emerged as an important molecular feature and therapeutic target of lung cancer. In this review, we provide a brief overview of splicing dysregulation in lung cancer and summarize the recent progress on key splicing events and splicing factors that contribute to lung cancer pathogenesis. Moreover, we describe the general strategies targeting splicing alterations in lung cancer and highlight the potential of combining splicing modulation with currently approved therapies to combat this deadly disease. This review provides new mechanistic and therapeutic insights into splicing dysregulation in cancer.
Collapse
Affiliation(s)
- Yueren Yan
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yunpeng Ren
- Department of Cellular and Genetic Medicine, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yufang Bao
- Department of Cellular and Genetic Medicine, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
66
|
Linnerbauer M, Beyer T, Nirschl L, Farrenkopf D, Lößlein L, Vandrey O, Peter A, Tsaktanis T, Kebir H, Laplaud D, Oellinger R, Engleitner T, Alvarez JI, Rad R, Korn T, Hemmer B, Quintana FJ, Rothhammer V. PD-L1 positive astrocytes attenuate inflammatory functions of PD-1 positive microglia in models of autoimmune neuroinflammation. Nat Commun 2023; 14:5555. [PMID: 37689786 PMCID: PMC10492803 DOI: 10.1038/s41467-023-40982-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/17/2023] [Indexed: 09/11/2023] Open
Abstract
Multiple Sclerosis (MS) is a chronic autoimmune inflammatory disorder of the central nervous system (CNS). Current therapies mainly target inflammatory processes during acute stages, but effective treatments for progressive MS are limited. In this context, astrocytes have gained increasing attention as they have the capacity to drive, but also suppress tissue-degeneration. Here we show that astrocytes upregulate the immunomodulatory checkpoint molecule PD-L1 during acute autoimmune CNS inflammation in response to aryl hydrocarbon receptor and interferon signaling. Using CRISPR-Cas9 genetic perturbation in combination with small-molecule and antibody-mediated inhibition of PD-L1 and PD-1 both in vivo and in vitro, we demonstrate that astrocytic PD-L1 and its interaction with microglial PD-1 is required for the attenuation of autoimmune CNS inflammation in acute and progressive stages in a mouse model of MS. Our findings suggest the glial PD-L1/PD-1 axis as a potential therapeutic target for both acute and progressive MS stages.
Collapse
Affiliation(s)
- Mathias Linnerbauer
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Tobias Beyer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Lucy Nirschl
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Daniel Farrenkopf
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Lena Lößlein
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Oliver Vandrey
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Anne Peter
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Thanos Tsaktanis
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hania Kebir
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Laplaud
- Nantes Université, INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064, Nantes, France
| | - Rupert Oellinger
- Institute of Molecular Oncology and Functional Genomics, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jorge Ivan Alvarez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Korn
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Veit Rothhammer
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany.
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
67
|
Sun J, Hu S, Li X. Meta-analysis of the prognostic value of soluble programmed death ligand-1 (sPD-L1) in cancers. Biomarkers 2023; 28:477-485. [PMID: 37017446 DOI: 10.1080/1354750x.2023.2198168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/26/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND The soluble programmed death ligand-1 (sPD-L1) and its prognostic role in cancers have been investigated in numerous studies. However, due to the inconsistency on some findings, this meta-analysis was performed to assess the prognostic value of sPD-L1 in patients with cancer. METHODS We searched the PubMed, Web of Science, MEDLINE, Wiley Online Library and ScienceDirect, and screened the studies for eligibility. Recurrence-free survival (RFS), progression-free survival (PFS) and disease-free survival (DFS) were for short term survival. The overall survival (OS) was for long term survival. RESULTS Forty studies with 4441 patients were included in this meta-analysis. Elevated sPD-L1 was associated with short OS [HR = 2.44 (2.03-2.94), p = 0.000]. Moreover, a high sPD-L1 was predictive of worse DFS/RFS/PFS [HR = 2.52 (1.83-3.44), p = 0.000]. In addition, high sPD-L1 was consistently correlated with poor OS in irrespective of study type, univariate and multivariate analysis, ethnicity, cut-off value of sPD-L1, sample and treatment. In the subgroup analysis, high sPD-L1 was correlated with poor OS in gastrointestinal cancer, lung cancer, hepatic cancer, oesophageal cancer and clear cell renal cell carcinoma. CONCLUSIONS The present meta-analysis showed that a high level of sPD-L1 was associated with worse prognosis in some types of cancer.
Collapse
Affiliation(s)
- Jinfan Sun
- Sinopharm Kunming Plasma-derived Biotherapies Co., Ltd, Kunming, China
| | - Shuenqin Hu
- Department of Gynecology and Obstetrics, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiuying Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
68
|
Qin S, Cao J, Ma X. Function and clinical application of exosome-how to improve tumor immunotherapy? Front Cell Dev Biol 2023; 11:1228624. [PMID: 37670933 PMCID: PMC10476872 DOI: 10.3389/fcell.2023.1228624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023] Open
Abstract
In recent years, immunotherapy has been increasingly used in clinical practice to treat tumors. However, immunotherapy's efficacy varies between tumor types and patient populations, and long-term drug resistance often occurs during treatment. Therefore, it is essential to explore the molecular mechanisms of immunotherapy to improve its efficacy. In this review, we focus on the significance of tumor-derived exosomes in the clinical treatment of tumors and how modifying these exosomes may enhance immune effectiveness. Specifically, we discuss exosome components, such as RNA, lipids, and proteins, and the role of membrane molecules on exosome surfaces. Additionally, we highlight the importance of engineered exosomes for tumor immunotherapy. Our goal is to propose new strategies to improve the efficacy of tumor immunotherapy.
Collapse
Affiliation(s)
- Siwen Qin
- Department of Pediatrics, The Fourth Hospital of China Medical University, Shenyang, China
| | - Jilong Cao
- Party Affairs and Administration Office, The Fourth Hospital of China Medical University, Shenyang, China
| | - Xiaoxue Ma
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
69
|
Li K, Cardenas-Lizana P, Kellner AV, Yuan Z, Ahn E, Lyu J, Li Z, Salaita K, Ahmed R, Zhu C. Mechanical force regulates ligand binding and function of PD-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.553152. [PMID: 37645980 PMCID: PMC10462004 DOI: 10.1101/2023.08.13.553152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Immune checkpoint blockade targeting PD-1 shows great success in cancer therapy. However, the mechanism of how ligand binding initiates PD-1 signaling remains unclear. As prognosis markers of multiple cancers, soluble PD-L1 is found in patient sera and can bind PD-1, but fails to suppress T cell function. This and our previous observations that T cells exert endogenous forces on PD-1-PD-L2 bonds prompt the hypothesis that mechanical force might be critical to PD-1 triggering, which is missing in the soluble ligand case due to the lack of mechanical support afforded by surface-anchored ligand. Here we show that PD-1 function is eliminated or reduced when mechanical support on ligand is removed or dampened, respectively. Force spectroscopic analysis reveals that PD-1 forms catch bonds with both PD-Ligands <7 pN where force prolongs bond lifetime, but slip bonds >8 pN where force accelerates dissociation. Steered molecular dynamics finds PD-1-PD-L2 complex very sensitive to force due to the two molecules' "side-to-side" binding via β sheets. Pulling causes relative rotation and translation between the two molecules by stretching and aligning the complex along the force direction, yielding new atomic contacts not observed in the crystal structure. Compared to wild-type, PD-1 mutants targeting the force-induced new interactions maintain the same binding affinity but display lower rupture force, shorter bond lifetime, reduced tension, and most importantly, impaired capacity to suppress T cell activation. Our results uncover a mechanism for cells to probe the mechanical support of PD-1-PD-Ligand bonds using endogenous forces to regulate PD-1 triggering.
Collapse
Affiliation(s)
- Kaitao Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Paul Cardenas-Lizana
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Anna V. Kellner
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Zhou Yuan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Eunseon Ahn
- Emory Vaccine Center, Emory University, Atlanta, GA 30322
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322
| | - Jintian Lyu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Zhenhai Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Khalid Salaita
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Department of Chemistry, Emory University, Atlanta, GA 30322
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University, Atlanta, GA 30322
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
70
|
Han N, Liu Z. Targeting alternative splicing in cancer immunotherapy. Front Cell Dev Biol 2023; 11:1232146. [PMID: 37635865 PMCID: PMC10450511 DOI: 10.3389/fcell.2023.1232146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Tumor immunotherapy has made great progress in cancer treatment but still faces several challenges, such as a limited number of targetable antigens and varying responses among patients. Alternative splicing (AS) is an essential process for the maturation of nearly all mammalian mRNAs. Recent studies show that AS contributes to expanding cancer-specific antigens and modulating immunogenicity, making it a promising solution to the above challenges. The organoid technology preserves the individual immune microenvironment and reduces the time/economic costs of the experiment model, facilitating the development of splicing-based immunotherapy. Here, we summarize three critical roles of AS in immunotherapy: resources for generating neoantigens, targets for immune-therapeutic modulation, and biomarkers to guide immunotherapy options. Subsequently, we highlight the benefits of adopting organoids to develop AS-based immunotherapies. Finally, we discuss the current challenges in studying AS-based immunotherapy in terms of existing bioinformatics algorithms and biological technologies.
Collapse
Affiliation(s)
- Nan Han
- Chinese Academy of Sciences Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoqi Liu
- Chinese Academy of Sciences Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
71
|
Maebele LT, Mulaudzi TV, Yasasve M, Dlamini Z, Damane BP. Immunomodulatory Gene-Splicing Dysregulation in Tumorigenesis: Unmasking the Complexity. Molecules 2023; 28:5984. [PMID: 37630236 PMCID: PMC10458946 DOI: 10.3390/molecules28165984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is a global health concern with rising incidence, morbidity, and mortality. The interaction between the tumor and immune cells within the tumor microenvironment is facilitated by signaling pathways driven by immunomodulatory proteins. Alternative splicing regulates the production of multiple immunomodulatory proteins with diverse functionality from a single mRNA transcript. Splicing factors are pivotal in modulating alternative splicing processes but are also subject to regulation. The dysregulation of alternative splicing may result from splicing factor (SF) abnormal expression levels and mutations in the cis and trans-acting elements and small nuclear RNA (snRNA) molecules. Aberrant splicing may generate abnormal mRNA transcripts encoding isoforms with altered functions that contribute to tumorigenesis or cancer progression. This review uncovers the complexity of immunomodulatory genes splicing dysregulation in oncogenesis. Identifying specific immunomodulatory splicing isoforms that contribute to cancer could be utilized to improve current immunotherapeutic drugs or develop novel therapeutic interventions for cancer.
Collapse
Affiliation(s)
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Madhavan Yasasve
- Department of Oral Medicine and Radiology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| |
Collapse
|
72
|
Pulanco MC, Madsen AT, Tanwar A, Corrigan DT, Zang X. Recent advancements in the B7/CD28 immune checkpoint families: new biology and clinical therapeutic strategies. Cell Mol Immunol 2023; 20:694-713. [PMID: 37069229 PMCID: PMC10310771 DOI: 10.1038/s41423-023-01019-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/25/2023] [Indexed: 04/19/2023] Open
Abstract
The B7/CD28 families of immune checkpoints play vital roles in negatively or positively regulating immune cells in homeostasis and various diseases. Recent basic and clinical studies have revealed novel biology of the B7/CD28 families and new therapeutics for cancer therapy. In this review, we discuss the newly discovered KIR3DL3/TMIGD2/HHLA2 pathways, PD-1/PD-L1 and B7-H3 as metabolic regulators, the glycobiology of PD-1/PD-L1, B7x (B7-H4) and B7-H3, and the recently characterized PD-L1/B7-1 cis-interaction. We also cover the tumor-intrinsic and -extrinsic resistance mechanisms to current anti-PD-1/PD-L1 and anti-CTLA-4 immunotherapies in clinical settings. Finally, we review new immunotherapies targeting B7-H3, B7x, PD-1/PD-L1, and CTLA-4 in current clinical trials.
Collapse
Affiliation(s)
- Marc C Pulanco
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Anne T Madsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
- Department of Urology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Ankit Tanwar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Devin T Corrigan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA.
- Department of Urology, Albert Einstein College of Medicine, New York, NY, 10461, USA.
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, 10461, USA.
| |
Collapse
|
73
|
Khazan N, Quarato ER, Singh NA, Snyder CWA, Moore T, Miller JP, Yasui M, Teramoto Y, Goto T, Reshi S, Hong J, Zhang N, Pandey D, Srivastava P, Morell A, Kawano H, Kawano Y, Conley T, Sahasrabudhe DM, Yano N, Miyamoto H, Aljitawi O, Liesveld J, Becker MW, Calvi LM, Zhovmer AS, Tabdanov ED, Dokholyan NV, Linehan DC, Hansen JN, Gerber SA, Sharon A, Khera MK, Jurutka PW, Rochel N, Kim KK, Rowswell-Turner RB, Singh RK, Moore RG. Vitamin D Receptor Antagonist MeTC7 Inhibits PD-L1. Cancers (Basel) 2023; 15:3432. [PMID: 37444542 PMCID: PMC10340436 DOI: 10.3390/cancers15133432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Small-molecule inhibitors of PD-L1 are postulated to control immune evasion in tumors similar to antibodies that target the PD-L1/PD-1 immune checkpoint axis. However, the identity of targetable PD-L1 inducers is required to develop small-molecule PD-L1 inhibitors. In this study, using chromatin immunoprecipitation (ChIP) assay and siRNA, we demonstrate that vitamin D/VDR regulates PD-L1 expression in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) cells. We have examined whether a VDR antagonist, MeTC7, can inhibit PD-L1. To ensure that MeTC7 inhibits VDR/PD-L1 without off-target effects, we examined competitive inhibition of VDR by MeTC7, utilizing ligand-dependent dimerization of VDR-RXR, RXR-RXR, and VDR-coactivators in a mammalian 2-hybrid (M2H) assay. MeTC7 inhibits VDR selectively, suppresses PD-L1 expression sparing PD-L2, and inhibits the cell viability, clonogenicity, and xenograft growth of AML cells. MeTC7 blocks AML/mesenchymal stem cells (MSCs) adhesion and increases the efferocytotic efficiency of THP-1 AML cells. Additionally, utilizing a syngeneic colorectal cancer model in which VDR/PD-L1 co-upregulation occurs in vivo under radiation therapy (RT), MeTC7 inhibits PD-L1 and enhances intra-tumoral CD8+T cells expressing lymphoid activation antigen-CD69. Taken together, MeTC7 is a promising small-molecule inhibitor of PD-L1 with clinical potential.
Collapse
Affiliation(s)
- Negar Khazan
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - Emily R. Quarato
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Niloy A. Singh
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - Cameron W. A. Snyder
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - Taylor Moore
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - John P. Miller
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Masato Yasui
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; (M.Y.)
| | - Yuki Teramoto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; (M.Y.)
| | - Takuro Goto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; (M.Y.)
| | - Sabeeha Reshi
- School of Mathematical and Natural Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Jennifer Hong
- School of Mathematical and Natural Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Naixin Zhang
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - Diya Pandey
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - Priyanka Srivastava
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - Alexandra Morell
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - Hiroki Kawano
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA (T.C.)
| | - Yuko Kawano
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA (T.C.)
| | - Thomas Conley
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA (T.C.)
| | - Deepak M. Sahasrabudhe
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA (T.C.)
| | - Naohiro Yano
- Division of Surgical Research, Rhode Island Hospital, Brown University, Providence, RI 02912, USA;
| | - Hiroshi Miyamoto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; (M.Y.)
| | - Omar Aljitawi
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA (T.C.)
| | - Jane Liesveld
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA (T.C.)
| | - Michael W. Becker
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA (T.C.)
| | - Laura M. Calvi
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA (T.C.)
| | - Alexander S. Zhovmer
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Erdem D. Tabdanov
- CytoMechanobiology Laboratory, Department of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Department of Biochemistry & Molecular Biology, Center for Translational Systems Research, Penn State College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA;
| | - David C. Linehan
- Division of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jeanne N. Hansen
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY 13346, USA
| | - Scott A. Gerber
- Division of Surgery and Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | - Peter W. Jurutka
- School of Mathematical and Natural Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
- School of Mathematical and Natural Sciences, Arizona State University, Health Futures Center, Phoenix, AZ 85054, USA
| | - Natacha Rochel
- Institute of Genetics and of Molecular and Cellular Biology, 67400 Illkirch-Graffenstaden, France
| | - Kyu Kwang Kim
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - Rachael B. Rowswell-Turner
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - Rakesh K. Singh
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - Richard G. Moore
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| |
Collapse
|
74
|
Kiriyama Y, Nochi H. Regulation of PD-L1 Expression by Nuclear Receptors. Int J Mol Sci 2023; 24:9891. [PMID: 37373038 DOI: 10.3390/ijms24129891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The suppression of excessive immune responses is necessary to prevent injury to the body, but it also allows cancer cells to escape immune responses and proliferate. Programmed cell death 1 (PD-1) is a co-inhibitory molecule that is present on T cells and is the receptor for programmed cell death ligand 1 (PD-L1). The binding of PD-1 to PD-L1 leads to the inhibition of the T cell receptor signaling cascade. PD-L1 has been found to be expressed in many types of cancers, such as lung, ovarian, and breast cancer, as well as glioblastoma. Furthermore, PD-L1 mRNA is widely expressed in normal peripheral tissues including the heart, skeletal muscle, placenta, lungs, thymus, spleen, kidney, and liver. The expression of PD-L1 is upregulated by proinflammatory cytokines and growth factors via a number of transcription factors. In addition, various nuclear receptors, such as androgen receptor, estrogen receptor, peroxisome-proliferator-activated receptor γ, and retinoic-acid-related orphan receptor γ, also regulate the expression of PD-L1. This review will focus on the current knowledge of the regulation of PD-L1 expression by nuclear receptors.
Collapse
Affiliation(s)
- Yoshimitsu Kiriyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 769-2193, Kagawa, Japan
- Institute of Neuroscience, Tokushima Bunri University, Tokushima 769-2193, Kagawa, Japan
| | - Hiromi Nochi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 769-2193, Kagawa, Japan
| |
Collapse
|
75
|
Shrestha M, Wang DY, Ben-David Y, Zacksenhaus E. CDK4/6 inhibitors and the pRB-E2F1 axis suppress PVR and PD-L1 expression in triple-negative breast cancer. Oncogenesis 2023; 12:29. [PMID: 37230983 DOI: 10.1038/s41389-023-00475-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Immune-checkpoint (IC) modulators like the poliovirus receptor (PVR) and programmed death ligand 1 (PD-L1) attenuate innate and adaptive immune responses and are potential therapeutic targets for diverse malignancies, including triple-negative breast cancer (TNBC). The retinoblastoma tumor suppressor, pRB, controls cell growth through E2F1-3 transcription factors, and its inactivation drives metastatic cancer, yet its effect on IC modulators is contentious. Here, we show that RB-loss and high E2F1/E2F2 signatures correlate with expression of PVR, CD274 (PD-L1 gene) and other IC modulators and that pRB represses whereas RB depletion and E2F1 induce PVR and CD274 in TNBC cells. Accordingly, the CDK4/6 inhibitor, palbociclib, suppresses both PVR and PD-L1 expression. Palbociclib also counteracts the effect of CDK4 on SPOP, leading to its depletion, but the overall effect of palbociclib is a net reduction in PD-L1 level. Hydrochloric acid, commonly used to solubilize palbociclib, counteracts its effect and induces PD-L1 expression. Remarkably, lactic acid, a by-product of glycolysis, also induces PD-L1 as well as PVR. Our results suggest a model in which CDK4/6 regulates PD-L1 turnover by promoting its transcription via pRB-E2F1 and degradation via SPOP and that the CDK4/6-pRB-E2F pathway couples cell proliferation with the induction of multiple innate and adaptive immunomodulators, with direct implications for cancer progression, anti-CDK4/6- and IC-therapies.
Collapse
Affiliation(s)
- Mariusz Shrestha
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada.
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, Rm. 5R406, Toronto, Ontario, M5G 1L7, Canada.
| | - Dong-Yu Wang
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, Rm. 5R406, Toronto, Ontario, M5G 1L7, Canada
| | - Yaacov Ben-David
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, 550014, Guiyang, Guizhou, China
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China
| | - Eldad Zacksenhaus
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada.
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, Rm. 5R406, Toronto, Ontario, M5G 1L7, Canada.
| |
Collapse
|
76
|
Ancel J, Dormoy V, Raby BN, Dalstein V, Durlach A, Dewolf M, Gilles C, Polette M, Deslée G. Soluble biomarkers to predict clinical outcomes in non-small cell lung cancer treated by immune checkpoints inhibitors. Front Immunol 2023; 14:1171649. [PMID: 37283751 PMCID: PMC10239865 DOI: 10.3389/fimmu.2023.1171649] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/11/2023] [Indexed: 06/08/2023] Open
Abstract
Lung cancer remains the first cause of cancer-related death despite many therapeutic innovations, including immune checkpoint inhibitors (ICI). ICI are now well used in daily practice at late metastatic stages and locally advanced stages after a chemo-radiation. ICI are also emerging in the peri-operative context. However, all patients do not benefit from ICI and even suffer from additional immune side effects. A current challenge remains to identify patients eligible for ICI and benefiting from these drugs. Currently, the prediction of ICI response is only supported by Programmed death-ligand 1 (PD-L1) tumor expression with perfectible results and limitations inherent to tumor-biopsy specimen analysis. Here, we reviewed alternative markers based on liquid biopsy and focused on the most promising biomarkers to modify clinical practice, including non-tumoral blood cell count such as absolute neutrophil counts, platelet to lymphocyte ratio, neutrophil to lymphocyte ratio, and derived neutrophil to lymphocyte ratio. We also discussed soluble-derived immune checkpoint-related products such as sPD-L1, circulating tumor cells (detection, count, and marker expression), and circulating tumor DNA-related products. Finally, we explored perspectives for liquid biopsies in the immune landscape and discussed how they could be implemented into lung cancer management with a potential biological-driven decision.
Collapse
Affiliation(s)
- Julien Ancel
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, Reims, France
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, Reims, France
| | - Valérian Dormoy
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, Reims, France
| | - Béatrice Nawrocki Raby
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, Reims, France
| | - Véronique Dalstein
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, Reims, France
- Department of Biopathology, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, Reims, France
| | - Anne Durlach
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, Reims, France
- Department of Biopathology, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, Reims, France
| | - Maxime Dewolf
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, Reims, France
| | - Christine Gilles
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Myriam Polette
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, Reims, France
- Department of Biopathology, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, Reims, France
| | - Gaëtan Deslée
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, Reims, France
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, Reims, France
| |
Collapse
|
77
|
Yan L, Sun Y, Guo J, Jia R. PD-L1 Exon 3 Is a Hidden Switch of Its Expression and Function in Oral Cancer Cells. Int J Mol Sci 2023; 24:ijms24098193. [PMID: 37175900 PMCID: PMC10178889 DOI: 10.3390/ijms24098193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The interaction between programmed cell death 1 ligand 1 (PD-L1) and programmed cell death protein 1 (PD-1) protects tumor cells from immune surveillance. PD-L1 exon 3 is a potential alternative exon and encodes an Ig variable (IgV) domain. Here, we found that a lack of exon 3 leads to the significant loss of cellular membrane locations and the dramatically reduced protein expression of PD-L1, indicating that PD-L1 exon 3 is essential for its protein expression and translocation to the cell membrane. Notably, oral cancer cells show almost no exon 3 skipping to ensure the expression of the full-length, functional PD-L1 protein. We discovered two key exonic splicing enhancers (ESEs) for exon 3 inclusion. Two efficient antisense oligonucleotides (ASOs) were identified to block these two ESEs, which can significantly trigger exon 3 skipping and decrease the production of full-length, functional PD-L1 on the surface of cancer cells. Treatment of oral cancer cells with these ASOs significantly enhanced immune cells' suppression of cancer cell proliferation. Surprisingly, these two ASOs also significantly inhibited cell growth and induced cell pyroptosis in oral cancer cells. Altogether, the results of our study demonstrate the pivotal roles of exon 3 in PD-L1 expression and provide a novel anti-PD-L1 method.
Collapse
Affiliation(s)
- Lingyan Yan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yanan Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jihua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
78
|
Zhang G, Lan B, Zhang X, Lin M, Liu Y, Chen J, Guo F. AR-A014418 regulates intronic polyadenylation and transcription of PD-L1 through inhibiting CDK12 and CDK13 in tumor cells. J Immunother Cancer 2023; 11:jitc-2022-006483. [PMID: 37164450 PMCID: PMC10174041 DOI: 10.1136/jitc-2022-006483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Immune checkpoint molecules, especially programmed death 1 (PD-1) and its ligand, programmed death ligand 1 (PD-L1), protect tumor cells from T cell-mediated killing. Immune checkpoint inhibitors, designed to restore the antitumor immunosurveillance, have exhibited significant clinical benefits for patients with certain cancer types. Nevertheless, the relatively low response rate and acquisition of resistance greatly limit their clinical applications. A deeper understanding of the regulatory mechanisms of PD-L1 protein expression and activity will help to develop more effective therapeutic strategies. METHODS The effects of AR-A014418 and THZ531 on PD-L1 expression were detected by western blot, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and flow cytometry. In vitro kinase assays with recombinant proteins were performed to confirm that AR-A014418 functioned as a CDK12 and CDK13 dual inhibitor. The roles of CDK12 and CDK13 in intronic polyadenylation (IPA) and transcription of PD-L1 were determined via RNA interference or protein overexpression. T-cell cytotoxicity assays were used to validate the activation of antitumor immunity by AR-A014418 and THZ531. RESULTS AR-A014418 inhibits CDK12 to enhance the IPA, and inhibits CDK13 to repress the transcription of PD-L1. IPA generates a secreted PD-L1 isoform (PD-L1-v4). The extent of IPA was not enough to reduce full-length PD-L1 expression obviously. Only the superposition of enhancing IPA and repressing transcription (dual inhibition of CDK12 and CDK13) dramatically suppresses full-length PD-L1 induction by interferon-γ. AR-A014418 and THZ531 could potentiate T-cell cytotoxicity against tumor cells. CONCLUSIONS Our work identifies a new regulatory pathway for PD-L1 expression and discovers CDK12 and CDK13 as promising drug targets for immune modulation and combined therapeutic strategies.
Collapse
Affiliation(s)
- Ganggang Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Lan
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Xin Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengyao Lin
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Liu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junsong Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
79
|
Tang Y, Chang Q, Chen G, Zhao X, Huang G, Wang T, Jia C, Lu L, Jin T, Yang S, Cao L, Zhang X. Tumor immunosuppression relief via acidity modulation combined PD-L1 siRNA for enhanced immunotherapy. BIOMATERIALS ADVANCES 2023; 150:213425. [PMID: 37084635 DOI: 10.1016/j.bioadv.2023.213425] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/23/2023]
Abstract
The efficacy of immune checkpoint therapy is limited by the immunosuppressive tumor microenvironment (TME), and lactate, the most universal component of TME, has been rediscovered that plays important roles in the regulation of metabolic pathways, angiogenesis, and immunosuppression. Here, a therapeutic strategy of acidity modulation combined with programmed death ligand-1 (PD-L1) siRNA (siPD-L1) is proposed to synergistically enhance tumor immunotherapy. The lactate oxidase (LOx) is encapsulated into the hollow Prussian blue (HPB) nanoparticles (NPs) prepared by hydrochloric acid etching followed by the modification with polyethyleneimine (PEI) and polyethylene glycol (PEG) via sulfur bonds (HPB-S-PP@LOx), siPD-L1 is loaded via electrostatic adsorption to obtain HPB-S-PP@LOx/siPD-L1. The obtained co-delivery NPs can accumulate in tumor tissue with stable systemic circulation, and simultaneous release of LOx and siPD-L1 in intracellular high glutathione (GSH) environment after uptake by tumor cells without being destroyed by lysosome. Moreover, LOx can catalyze the decomposition of lactate in the hypoxic tumor tissue with the aid of oxygen release by the HPB-S-PP nano-vector. The results show that the acidic TME regulation via lactate consumption can improve the immunosuppressive TME, including revitalizing the exhausted CD8+ T cells and decreasing the proportion of immunosuppressive Tregs, and synergistically elevating the therapeutic effect of PD1/PD-L1 blockade therapy via siPD-L1. This work provides a novel insight for tumor immunotherapy and explores a promising therapy for triple-negative breast cancer.
Collapse
Affiliation(s)
- Yan Tang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; School of Pharmacy, Yancheng Teachers' University, Yancheng 224002, China
| | - Qingcheng Chang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Gang Chen
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Xiaomei Zhao
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Gui Huang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Tong Wang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Changhao Jia
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Linghong Lu
- Children's Hospital of Wujiang District, Suzhou 215200, China
| | - Taiwei Jin
- Children's Hospital of Wujiang District, Suzhou 215200, China
| | - Shudi Yang
- Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China
| | - Li Cao
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Xuenong Zhang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
80
|
Yi L, Wang X, Fu S, Yan Z, Ma T, Li S, Wei P, Zhang H, Wang J. Association between response to anti-PD-1 treatment and blood soluble PD-L1 and IL-8 changes in patients with NSCLC. Discov Oncol 2023; 14:35. [PMID: 36991160 PMCID: PMC10060455 DOI: 10.1007/s12672-023-00641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
In this study, we explored the dynamic changes in blood sPD-L1 and its clinical value during anti-PD-1 immunotherapy in non-small cell lung cancer (NSCLC) patients. First, we established a sandwich ELISA for functional sPD-L1 that can bind to PD-1 and has biological functions. By monitoring functional sPD-L1 in 39 NSCLC patients treated with anti-PD-1 antibodies, we found a positive correlation between baseline sPD-L1 and tissue PD-L1 (P = 0.0376, r = 0.3581), with patients with lymph node metastasis having higher sPD-L1 levels (P = 0.0037) than those without lymph node metastasis. Although baseline functional sPD-L1 and PFS did not correlate significantly in this study, changes in sPD-L1 in patients with different clinical responses showed different trends. Blood sPD-L1 increased in 93% of patients after two cycles of anti-PD-1 treatment (P = 0.0054); sPD-L1 in nonresponsive patients continued to increase (P = 0.0181), but sPD-L1 started to decline in responsive patients. Blood IL-8 levels were associated with tumor load, and when combined with IL-8, the evaluation accuracy of sPD-L1 improved to 86.4%. This study preliminarily shows that the combination of sPD-L1 and IL-8 is a convenient and effective method for monitoring and evaluating the effectiveness of anti-PD-1 immunotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Ling Yi
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xiaojue Wang
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Siyun Fu
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zhuohong Yan
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Tianyu Ma
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Siqi Li
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Panjian Wei
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hongtao Zhang
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China.
| | - Jinghui Wang
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
81
|
He H, He X, Zhou M, Tang Y, Dai L, Xie Z, Wang Y, Xie C. Role of sPD-1 and sPD-Ls in the pathogenesis of connective tissue disease. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:444-454. [PMID: 37164928 PMCID: PMC10930081 DOI: 10.11817/j.issn.1672-7347.2023.220263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Indexed: 05/12/2023]
Abstract
Membrane-bound programmed cell death-1 (mPD-1) and membrane-bound programmed cell death-ligands (mPD-Ls) have soluble forms, which are soluble programmed cell death-1 (sPD-1) and soluble programmed cell death-ligands (sPD-Ls) [including soluble programmed cell death-ligand 1 (sPD-L1) and soluble programmed cell death-ligand 2 (sPD-L2)]. sPD-1 and sPD-L2 are mainly produced by alternative splicing isoforms of PD-1 mRNA, while sPD-L1 is produced by matrix metalloproteinases (MMPs) cutting membrane-bound programmed cell death-ligand 1 (mPD-L1). sPD-1 and sPD-Ls play an important role in autoimmune regulation via blocking the mPD-1 /mPD-L1 pathway, while connective tissue disease (CTD) is a kind of disease caused by autoimmune reaction, and abnormal function of mPD-1/mPD-L1 can occur in the occurrence and development of many autoimmune diseases. Therefore, sPD-1 and sPD-Ls play an important role in the pathogenesis of CTD caused by autoimmune reaction via blocking the mPD-1 /mPD-L1 pathway. It is of great practical significance to understand clinical value of sPD-1 and sPD-Ls in various CTDs for improving the quality of life of patients and the underlying mechanism.
Collapse
Affiliation(s)
- Haohua He
- Department of Rheumatology and Immunology, First Affiliated Hospital of Bengbu Medical College, Bengbu Anbui 233099.
| | - Xiaoyu He
- Department of Rheumatology and Immunology, First Affiliated Hospital of Bengbu Medical College, Bengbu Anbui 233099
| | - Mingjun Zhou
- Department of Clinical Medicine, Bengbu Medical College, Bengbu Anbui 233030
| | - Yingkai Tang
- Department of Human Anatomy, Bengbu Medical College, Bengbu Anbui 233030
| | - Li Dai
- Department of Rheumatology and Immunology, First Affiliated Hospital of Bengbu Medical College, Bengbu Anbui 233099
| | - Zhuobei Xie
- Department of Rheumatology and Immunology, First Affiliated Hospital of Bengbu Medical College, Bengbu Anbui 233099
| | - Yuanyuan Wang
- Department of Histology and Embryology, Bengbu Medical College, Bengbu Anbui 233030.
- Micromorphology Experiment Center, Bengbu Medical College, Bengbu Anbui 233030.
| | - Changhao Xie
- Department of Rheumatology and Immunology, First Affiliated Hospital of Bengbu Medical College, Bengbu Anbui 233099.
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu Anbui 233030, China.
| |
Collapse
|
82
|
Ochman B, Mielcarska S, Kula A, Dawidowicz M, Robotycka J, Piecuch J, Szrot M, Dzięgielewska-Gęsiak S, Muc-Wierzgoń M, Waniczek D, Świętochowska E. Do Elevated YKL-40 Levels Drive the Immunosuppressive Tumor Microenvironment in Colorectal Cancer? Assessment of the Association of the Expression of YKL-40, MMP-8, IL17A, and PD-L1 with Coexisting Type 2 Diabetes, Obesity, and Active Smoking. Curr Issues Mol Biol 2023; 45:2781-2797. [PMID: 37185706 PMCID: PMC10136442 DOI: 10.3390/cimb45040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The influence of chitinase-3-like protein 1 (YKL-40 or CHI3L1) expression on the immunological properties of the tumor microenvironment, which may affect the effectiveness of immunotherapy, is currently not sufficiently understood in colorectal cancer (CRC). The aim of this study was to investigate the relationship between YKL-40 expression and the immunological properties of the tumor microenvironment in CRC. We performed in silico analysis, including analysis of immune cell infiltration scores and the immune landscape depending on YKL-40 expression, gene set enrichment analysis (GSEA), and analysis of three Gene Expression Omnibus (GEO) datasets. In 48 CRC tissue homogenates and the surgical margin, we analyzed the expression of YKL-40, MMP8, IL17A, and PD-L1. Moreover, we analyzed the expression of YKL-40 in tissue homogenates retrieved from patients with coexisting diabetes, obesity, and smoking. The expression of YKL-40 was significantly higher in CRC tumor tissue compared to healthy tissue and correlated with MMP-8, IL17A, and PD-L1 expression. In silico analysis revealed an association of YKL-40 with disease recurrence, and GSEA revealed a potential link between elevated YKL-40 expression and immunosuppressive properties of the tumor microenvironment in CRC.
Collapse
|
83
|
Cagnet L, Neyrinck-Leglantier D, Tamagne M, Berradhia L, Khelfa M, Cleophax S, Pirenne F, Vingert B. CD27+ microparticle interactions and immunoregulation of CD4+ T lymphocytes. Front Immunol 2023; 14:1043255. [PMID: 36969173 PMCID: PMC10034125 DOI: 10.3389/fimmu.2023.1043255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
IntroductionAplasia and hematological malignancies are treated with platelet transfusions, which can have major immunomodulatory effects. Platelet concentrates (PCs) contain many immunomodulatory elements, including the platelets themselves, residual leukocytes, extracellular vesicles, such as microparticles (MPs), cytokines and other soluble elements. Two of these components, MPs and a soluble form of CD27 (sCD27), have been shown to play a particularly important role in immune system modulation. The loss of CD27 expression is an irreversible marker of terminal effector CD3+ T-lymphocyte (TL) differentiation, and the CD27+ MPs present in PCs may maintain CD27 expression on the surface of TLs, and, thus, the activation of these cells.MethodsIn this study, we phenotyped the CD27-expressing MPs present in PCs by microscale flow cytometry and investigated the interaction of these particles with CD4+ TLs. We cocultured MPs and PBMCs and determined the origin of the CD27 expressed on the surface of CD4+ TLs with the aid of two fluorochromes (BV510 for CD27 originating from MPs and BV786 for cellular CD27).ResultsWe showed that the binding of CD27- expressing MPs involved the CD70 molecule, which was also present on these MPs. Finally, the maintenance of CD27 expression on the surface of TLs by sorted CD27+ MPs led to activation levels lower than those observed with other types of MPs.DiscussionThese results for CD27-expressing MPs and their CD70-mediated targeting open up new possibilities for immunotherapy based on the use of MPs to maintain a phenotype or to target immune cells, for example. Moreover, decreasing the levels of CD27-expressing MPs in transfused platelets might also increase the chances of success for anti-CD27 monoclonal immunotherapy.
Collapse
Affiliation(s)
- Léonie Cagnet
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- Etablissement Français du Sang, Ivry sur Seine, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Déborah Neyrinck-Leglantier
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- Etablissement Français du Sang, Ivry sur Seine, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Marie Tamagne
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- Etablissement Français du Sang, Ivry sur Seine, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Lylia Berradhia
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- Etablissement Français du Sang, Ivry sur Seine, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Mehdi Khelfa
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- Etablissement Français du Sang, Ivry sur Seine, France
- Laboratory of Excellence GR-Ex, Paris, France
| | | | - France Pirenne
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- Etablissement Français du Sang, Ivry sur Seine, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Benoît Vingert
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- Etablissement Français du Sang, Ivry sur Seine, France
- Laboratory of Excellence GR-Ex, Paris, France
- *Correspondence: Benoît Vingert,
| |
Collapse
|
84
|
Kawashima S, Togashi Y. Resistance to immune checkpoint inhibitors and the tumor microenvironment. Exp Dermatol 2023; 32:240-249. [PMID: 36437644 DOI: 10.1111/exd.14716] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have contributed significantly to the treatment of various types of cancer, including skin cancer. However, not all patients respond; some patients do not respond at all (primary resistance), while others experience recurrence after the initial response (acquired resistance). Therefore, overcoming ICI resistance is an urgent priority. Numerous ICI resistance mechanisms have been reported. They are seemingly quite complex, varying from patient to patient. However, most involve T-cell activation processes, especially in the tumor microenvironment (TME). ICIs exert their effects in the TME by reactivating suppressed T cells through inhibition of immune checkpoint molecules, such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed cell death protein 1 (PD-1). Thus, this review focuses on the resistance mechanisms based on the T-cell activation process. Here, we classify the main mechanisms of ICI resistance into three categories based on (1) antigen recognition, (2) T-cell migration and infiltration, and (3) effector functions of T cells. By identifying and understanding these resistance mechanisms individually, including unknown mechanisms, we seek to contribute to the development of novel treatments to overcome ICI resistance.
Collapse
Affiliation(s)
- Shusuke Kawashima
- Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Chiba Cancer Center, Research Institute, Chiba, Japan
| | - Yosuke Togashi
- Chiba Cancer Center, Research Institute, Chiba, Japan
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
85
|
Wang Q, Shao X, Zhang Y, Zhu M, Wang FXC, Mu J, Li J, Yao H, Chen K. Role of tumor microenvironment in cancer progression and therapeutic strategy. Cancer Med 2023. [PMID: 36807772 DOI: 10.1002/cam4.5698] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 02/23/2023] Open
Abstract
Cancer is now considered a tumor microenvironment (TME) disease, although it was originally thought to be a cell and gene expression disorder. Over the past 20 years, significant advances have been made in understanding the complexity of the TME and its impact on responses to various anticancer therapies, including immunotherapies. Cancer immunotherapy can recognize and kill cancer cells by regulating the body's immune system. It has achieved good therapeutic effects in various solid tumors and hematological malignancies. Recently, blocking of programmed death-1 (PD-1), programmed death-1 ligand-1 (PD-L1), and programmed death Ligand-2 (PD-L2), the construction of antigen chimeric T cells (CAR-T) and tumor vaccines have become popular immunotherapies Tumorigenesis, progression, and metastasis are closely related to TME. Therefore, we review the characteristics of various cells and molecules in the TME, the interaction between PD-1 and TME, and promising cancer immunotherapy therapeutics.
Collapse
Affiliation(s)
- Qingjing Wang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xueting Shao
- Institute of Pharmaceutical Biotechnology & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuxuan Zhang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Miaojin Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Frederick X C Wang
- The EnMed Program at Houston Methodist Hospital, Texas A&M University College of Medicine and College of Engineering, Houston, Texas, USA
| | - Jianjian Mu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiaxuan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
86
|
Zhou K, Li S, Zhao Y, Cheng K. Mechanisms of drug resistance to immune checkpoint inhibitors in non-small cell lung cancer. Front Immunol 2023; 14:1127071. [PMID: 36845142 PMCID: PMC9944349 DOI: 10.3389/fimmu.2023.1127071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) in the form of anti-CTLA-4 and anti-PD-1/PD-L1 have become the frontier of cancer treatment and successfully prolonged the survival of patients with advanced non-small cell lung cancer (NSCLC). But the efficacy varies among different patient population, and many patients succumb to disease progression after an initial response to ICIs. Current research highlights the heterogeneity of resistance mechanisms and the critical role of tumor microenvironment (TME) in ICIs resistance. In this review, we discussed the mechanisms of ICIs resistance in NSCLC, and proposed strategies to overcome resistance.
Collapse
Affiliation(s)
- Kexun Zhou
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, China
- Abdominal Oncology Ward, Division of Radiation Oncology, Cancer Center, State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shuo Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Lung Cancer Center, West China Hospital Sichuan University, Chengdu, China
| | - Yi Zhao
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Ke Cheng
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, China
- Abdominal Oncology Ward, Division of Radiation Oncology, Cancer Center, State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
87
|
He Y, Zhang X, Zhu M, He W, Hua H, Ye F, Zhou X, Chen N, Li Y, Zhong W, Wu G, Cai H, Jiang W. Soluble PD-L1: a potential dynamic predictive biomarker for immunotherapy in patients with proficient mismatch repair colorectal cancer. J Transl Med 2023; 21:25. [PMID: 36639643 PMCID: PMC9837921 DOI: 10.1186/s12967-023-03879-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Circulating soluble programmed death ligand 1 (sPD-L1) can negatively regulate T-cell function and serve as a prognostic or predictive marker in a variety of cancers. However, rare studies have evaluated the potential roles of sPD-L1, and no study has estimated its predictive value for the efficacy of immune treatment in colorectal cancer (CRC). METHODS Plasma samples from 192 CRC patients were used to estimate correlations between clinicopathological features and sPD-L1, secreted PD-L1 (secPD-L1) and exosomal PD-L1 (exoPD-L1). Baseline and posttreatment sPD-L1 levels were also investigated in 55 patients with metastatic CRC (mCRC) treated with chemotherapy ± targeted therapy and 40 patients with proficient mismatch repair (pMMR) mCRC treated with combination immunotherapy. Both sPD-L1 and secPD-L1 were quantified by enzyme-linked immunosorbent assay, while exoPD-L1 was analyzed using flow cytometry. RESULTS secPD-L1 was the major component and positively correlated with sPD-L1 in CRC, while exoPD-L1 was almost undetectable. Higher levels of sPD-L1 were detected in patients with distant metastasis, especially those with distant lymph node metastasis and tissue combined positive score (CPS) instead of tumor proportion score (TPS). Chemotherapy or targeted therapy did not significantly impact sPD-L1 concentration. Progressive disease on combination immunotherapy was associated with an increase in sPD-L1 level, whereas no significant change was observed in patients with durable clinical benefit. CONCLUSION sPD-L1 mainly consisted of secPD-L1, and its level was higher in patients with distant metastasis, especially distant lymph node metastasis and positive CPS. sPD-L1 is a potential dynamic marker to identify rapid progression on combination immunotherapy and avoid ineffective treatment for pMMR CRC.
Collapse
Affiliation(s)
- Yinjun He
- grid.13402.340000 0004 1759 700XDepartment of Colorectal Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XCollege of Medicine, Zhejiang University, Hangzhou, China
| | - Xiang Zhang
- grid.417234.70000 0004 1808 3203General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China ,grid.412643.60000 0004 1757 2902The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ming Zhu
- grid.13402.340000 0004 1759 700XCollege of Medicine, Zhejiang University, Hangzhou, China
| | - Wenguang He
- grid.13402.340000 0004 1759 700XDepartment of Radiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanju Hua
- grid.13402.340000 0004 1759 700XDepartment of Colorectal Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Ye
- grid.13402.340000 0004 1759 700XDepartment of Colorectal Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xile Zhou
- grid.13402.340000 0004 1759 700XDepartment of Colorectal Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Chen
- Department of Colorectal Surgery, Yuyao Hospital of Traditional Chinese Medicine, Ningbo, China
| | - Yandong Li
- grid.13402.340000 0004 1759 700XDepartment of Colorectal Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weixiang Zhong
- grid.13402.340000 0004 1759 700XDepartment of Pathology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guosheng Wu
- grid.13402.340000 0004 1759 700XDepartment of Colorectal Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Cai
- grid.417234.70000 0004 1808 3203General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China ,grid.412643.60000 0004 1757 2902The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Weiqin Jiang
- grid.13402.340000 0004 1759 700XDepartment of Colorectal Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
88
|
Yang H, Miao Y, Yu Z, Wei M, Jiao X. Cell adhesion molecules and immunotherapy in advanced non-small cell lung cancer: Current process and potential application. Front Oncol 2023; 13:1107631. [PMID: 36895477 PMCID: PMC9989313 DOI: 10.3389/fonc.2023.1107631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
Advanced non-small cell lung cancer (NSCLC) is a severe disease and still has high mortality rate after conventional treatment (e.g., surgical resection, chemotherapy, radiotherapy and targeted therapy). In NSCLC patients, cancer cells can induce immunosuppression, growth and metastasis by modulating cell adhesion molecules of both cancer cells and immune cells. Therefore, immunotherapy is increasingly concerned due to its promising anti-tumor effect and broader indication, which targets cell adhesion molecules to reverse the process. Among these therapies, immune checkpoint inhibitors (mainly anti-PD-(L)1 and anti-CTLA-4) are most successful and have been adapted as first or second line therapy in advanced NSCLC. However, drug resistance and immune-related adverse reactions restrict its further application. Further understanding of mechanism, adequate biomarkers and novel therapies are necessary to improve therapeutic effect and alleviate adverse effect.
Collapse
Affiliation(s)
- Hongjian Yang
- Innovative Institute, China Medical University, Shenyang, China
| | - Yuxi Miao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Shenyang, China
| | - Xue Jiao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, China
| |
Collapse
|
89
|
Xia W, He L, Bao J, Qi Y, Zhang JZH. Insights into small molecule inhibitor bindings to PD-L1 with residue-specific binding free energy calculation. J Biomol Struct Dyn 2022; 40:12277-12285. [PMID: 34486939 DOI: 10.1080/07391102.2021.1971558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Targeting the immunological checkpoint PD-1/PD-L1 with antibodies has shown opportunities to improve cancer treatment in recent years. However, antibody therapy is a double-edged sword with high cost, low patient tolerance, lack of oral bioavailability, and a reaction to most solid tumors that prevents the adoption of antibodies. Advancement of small-molecule PD-1/PD-L1 inhibitors that could overwhelm these drawbacks is sluggish because of the poor pharmacodynamic properties and shallow pocket of the PD-1/PD-L1 binding interface. Recently, a number of compounds have been discovered to bind the PD-L1/PD-L1 dimer interface, providing an excellent alternative to inhibit the interaction between PD-1/PD-L1 and small molecules. Quantitative characterization of PD-L1 interactions with these inhibitors will advance the design of novel and efficient inhibitors in the future. Here, the binding free energies of 35 PD-L1 dimer inhibitors have been calculated using the alanine-scanning-interaction-entropy (AS-IE) method. Hotspot residues on PD-L1 and potential modification groups on the inhibitors were identified. The experimental results for the AS-IE method were better correlated than the classical MM/GBSA method. These results may set the stage for the design the more powerful PD-L1 inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wei Xia
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Liping He
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jingxiao Bao
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yifei Qi
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China
| | - John Z H Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China.,Department of Chemistry, New York University, New York, NY, USA
| |
Collapse
|
90
|
Chen X, Li J, Zhang R, Zhang Y, Wang X, Leung EL, Ma L, Wong VKW, Liu L, Neher E, Yu H. Suppression of PD-L1 release from small extracellular vesicles promotes systemic anti-tumor immunity by targeting ORAI1 calcium channels. J Extracell Vesicles 2022; 11:e12279. [PMID: 36482876 PMCID: PMC9732629 DOI: 10.1002/jev2.12279] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/28/2022] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
Blockade of immune checkpoints as a strategy of cancer cells to overcome the immune response has received ample attention in cancer research recently. In particular, expression of PD-L1 by various cancer cells has become a paradigm in this respect. Delivery of PD-L1 to its site of action occurs either by local diffusion, or else by transport via small extracellular vesicles (sEVs, commonly referred to as exosomes). Many steps of sEVs formation, their packaging with PD-L1 and their release into the extracellular space have been studied in detail. The likely dependence of release on Ca2+ -signaling, however, has received little attention. This is surprising, since the intracellular Ca2+ -concentration is known as a prominent regulator of many secretory processes. Here, we report on the roles of three Ca2+ -dependent proteins in regulating release of PD-L1-containing sEVs, as well as on the growth of tumors in mouse models. We show that sEVs release in cancer cell lines is Ca2+ -dependent and the knockdown of the gene coding the Ca2+ -channel protein ORAI1 reduces Ca2+ -signals and release of sEVs. Consequently, the T cell response is reinvigorated and tumor progression in mouse models is retarded. Furthermore, analysis of protein expression patterns in samples from human cancer tissue shows that the ORAI1 gene is significantly upregulated. Such upregulation is identified as an unfavorable prognostic factor for survival of patients with non-small-cell lung cancer. We show that reduced Ca2+ -signaling after knockdown of ORAI1 gene also compromises the activity of melanophilin and Synaptotagmin-like protein 2, two proteins, which are important for correct localization of secretory organelles within cancer cells and their transport to sites of exocytosis. Thus, the Ca2+ -channel ORAI1 and Ca2+ -dependent proteins of the secretion pathway emerge as important targets for understanding and manipulating immune checkpoint blockade by PD-L1.
Collapse
Affiliation(s)
- Xi Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Jiaqi Li
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Ren Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Yao Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Xiaoxuan Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Elaine Lai‐Han Leung
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Lijuan Ma
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Liang Liu
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Erwin Neher
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina,Emeritus Laboratory of Membrane BiophysicsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Haijie Yu
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| |
Collapse
|
91
|
Scirocchi F, Strigari L, Di Filippo A, Napoletano C, Pace A, Rahimi H, Botticelli A, Rughetti A, Nuti M, Zizzari IG. Soluble PD-L1 as a Prognostic Factor for Immunotherapy Treatment in Solid Tumors: Systematic Review and Meta-Analysis. Int J Mol Sci 2022; 23:ijms232214496. [PMID: 36430974 PMCID: PMC9696773 DOI: 10.3390/ijms232214496] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Blocking the Programmed Cell Death Protein 1 (PD-1)/programmed death ligand-1 (PD-L1) axis has demonstrated great efficacy in cancer immunotherapy treatment and remains the central modality of immune targeting. To support the rational and tailored use of these drugs, it is important to identify reliable biomarkers related to survival. The role of the soluble form of the PD-L1 (sPD-L1) as a prognostic biomarker related to survival in solid cancer patients treated with immunotherapy has not yet been consistently evaluated. A systematic literature search of original articles in PubMed, MEDLINE and Scopus was conducted. Studies reporting hazard ratios (HRs) with a 95% confidence interval (CI) or Kaplan−Meier curves or individual patient data for overall survival (OS) or progression-free survival (PFS) associated with baseline levels of sPD-L1 in cancer patients undergoing immunotherapy treatment were considered eligible. Twelve studies involving 1076 patients and different tumor types treated with immunotherapy were included in the analysis. High blood levels of sPD-L1 correlated with poorer OS and PFS in cancer patients treated with immunotherapy (HR = 1.49, 95%CI: 1.15, 1.93, p < 0.01, I2 = 77% for OS; HR = 1.59, 95%CI: 1.20, 2.12, p < 0.01, I2 = 82% for PFS). A subgroup analysis highlighted that high levels of sPD-L1 were associated with worse survival in patients affected by NSCLC (HR = 1.81 95%CI: 1.09−3.00, p = 0.02, I2 = 83% for OS; HR = 2.18, 95%CI: 1.27−3.76, p < 0.01, I2 = 88% for PFS). An HR > 1 indicated that patients with low levels of sPD-L1 have the highest rates of OS/PFS. In this meta-analysis, we clarified the role of sPD-L1 in different solid cancers treated exclusively with Immune checkpoint inhibitors (ICIs). sPD-L1 could represent a non-invasive biomarker that is easily dosable in the blood of patients. The pooled data from the selected studies showed that a high circulating concentration of sPD-L1 in cancer patients correlates with worse survival, suggesting that it may be a helpful prognostic biomarker for the selection of cancer patients before immunotherapy, thus improving the efficacy of ICIs and avoiding unnecessary treatment.
Collapse
Affiliation(s)
- Fabio Scirocchi
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Alessandra Di Filippo
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Chiara Napoletano
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Angelica Pace
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Hassan Rahimi
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Andrea Botticelli
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Aurelia Rughetti
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Marianna Nuti
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Ilaria Grazia Zizzari
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
- Correspondence: ; Tel.: +39-0649973025
| |
Collapse
|
92
|
Richaud AD, Zaghouani M, Zhao G, Wangpaichitr M, Savaraj N, Roche SP. Exploiting the Innate Plasticity of the Programmed Cell Death-1 (PD1) Receptor to Design Pembrolizumab H3 Loop Mimics. Chembiochem 2022; 23:e202200449. [PMID: 36082509 PMCID: PMC10029098 DOI: 10.1002/cbic.202200449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/07/2022] [Indexed: 11/08/2022]
Abstract
Checkpoint blockade of the immunoreceptor programmed cell death-1 (PD1) with its ligand-1 (PDL1) by monoclonal antibodies such as pembrolizumab provided compelling clinical results in various cancer types, yet the molecular mechanism by which this drug blocks the PD1/PDL1 interface remains unclear. To address this question, we examined the conformational motion of PD1 associated with the binding of pembrolizumab. Our results revealed that the innate plasticity of both C'D and FG loops is crucial to form a deep binding groove (371 Å3 ) across several distant epitopes of PD1. This analysis ultimately provided a rational-design to create pembrolizumab H3 loop mimics [RDYRFDMGFD] into β-hairpin scaffolds. As a result, a 20-residue long β-hairpin peptide 1 e was identified as a first-in-class potent PD1-inhibitor (EC50 of 0.29 μM; Ki of 41 nM).
Collapse
Affiliation(s)
- Alexis D Richaud
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Mehdi Zaghouani
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Guangkuan Zhao
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | | - Niramol Savaraj
- Miller School of Medicine, University of Miami, Miami, FL 33458, USA
| | - Stéphane P Roche
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
- Center for Molecular Biology and Biotechnology, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
93
|
Chen J, Yang J, Wang W, Guo D, Zhang C, Wang S, Lu X, Huang X, Wang P, Zhang G, Zhang J, Wang J, Cai Z. Tumor extracellular vesicles mediate anti-PD-L1 therapy resistance by decoying anti-PD-L1. Cell Mol Immunol 2022; 19:1290-1301. [PMID: 36220994 PMCID: PMC9622748 DOI: 10.1038/s41423-022-00926-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
PD-L1+ tumor-derived extracellular vesicles (TEVs) cause systemic immunosuppression and possibly resistance to anti-PD-L1 antibody (αPD-L1) blockade. However, whether and how PD-L1+ TEVs mediate αPD-L1 therapy resistance is unknown. Here, we show that PD-L1+ TEVs substantially decoy αPD-L1 and that TEV-bound αPD-L1 is more rapidly cleared by macrophages, causing insufficient blockade of tumor PD-L1 and subsequent αPD-L1 therapy resistance. Inhibition of endogenous production of TEVs by Rab27a or Coro1a knockout reverses αPD-L1 therapy resistance. Either an increased αPD-L1 dose or macrophage depletion mediated by the clinical drug pexidartinib abolishes αPD-L1 therapy resistance. Moreover, in the treatment cycle with the same total treatment dose of αPD-L1, high-dose and low-frequency treatment had better antitumor effects than low-dose and high-frequency treatment, induced stronger antitumor immune memory, and eliminated αPD-L1 therapy resistance. Notably, in humanized immune system mice with human xenograft tumors, both increased αPD-L1 dose and high-dose and low-frequency treatment enhanced the antitumor effects of αPD-L1. Furthermore, increased doses of αPD-L1 and αPD-1 had comparable antitumor effects, but αPD-L1 amplified fewer PD-1+ Treg cells, which are responsible for tumor hyperprogression. Altogether, our results reveal a TEV-mediated mechanism of αPD-L1-specific therapy resistance, thus providing promising strategies to improve αPD-L1 efficacy.
Collapse
Affiliation(s)
- Jiming Chen
- Institute of Immunology, and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Jie Yang
- Institute of Immunology, and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Wenhui Wang
- Institute of Immunology, and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Danfeng Guo
- Henan Key Laboratory for Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Chengyan Zhang
- Institute of Immunology, and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Shibo Wang
- Institute of Immunology, and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Xinliang Lu
- Institute of Immunology, and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Xiaofang Huang
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 250063, Jinan, China
| | - Pingli Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Gensheng Zhang
- Department of Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Jing Zhang
- Department of Pathology, Zhejiang University First Affiliated Hospital and School of Medicine, 310002, Hangzhou, China
| | - Jianli Wang
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, 310006, Hangzhou, China
| | - Zhijian Cai
- Institute of Immunology, and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| |
Collapse
|
94
|
Harkus U, Wankell M, Palamuthusingam P, McFarlane C, Hebbard L. Immune checkpoint inhibitors in HCC: Cellular, molecular and systemic data. Semin Cancer Biol 2022; 86:799-815. [PMID: 35065242 DOI: 10.1016/j.semcancer.2022.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer related deaths in the world, and for patients with advanced disease there are few therapeutic options available. The complex immunological microenvironment of HCC and the success of immunotherapy in several types of tumours, has raised the prospect of potential benefit for immune based therapies, such as immune checkpoint inhibitors (ICIs), in HCC. This has led to significant breakthrough research, numerous clinical trials and the rapid approval of multiple systemic drugs for HCC by regulatory bodies worldwide. Although some patients responded well to ICIs, many have failed to achieve significant benefit, while others showed unexpected and paradoxical deterioration. The aim of this review is to discuss the pathophysiology of HCC, the tumour microenvironment, key clinical trials evaluating ICIs in HCC, various resistance mechanisms to ICIs, and possible ways to overcome these impediments to improve patient outcomes.
Collapse
Affiliation(s)
- Uasim Harkus
- Townsville University Hospital, Townsville, Queensland 4811, Australia
| | - Miriam Wankell
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland 4811, Australia
| | - Pranavan Palamuthusingam
- College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia; Townsville University Hospital, Townsville, Queensland 4811, Australia; Mater Hospital, Townsville, Queensland 4811, Australia
| | - Craig McFarlane
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland 4811, Australia
| | - Lionel Hebbard
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland 4811, Australia; Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales 2145, Australia.
| |
Collapse
|
95
|
Nagasaki J, Ishino T, Togashi Y. Mechanisms of resistance to immune checkpoint inhibitors. Cancer Sci 2022; 113:3303-3312. [PMID: 35848888 PMCID: PMC9530865 DOI: 10.1111/cas.15497] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are effective for various types of cancer, and their application has led to paradigm shifts in cancer treatment. While many patients can obtain clinical benefits from ICI treatment, a large number of patients are primarily resistant to such treatment or acquire resistance after an initial response. Thus, elucidating the resistance mechanisms is warranted to improve the clinical outcomes of ICI treatment. ICIs exert their antitumor effects by activating T cells in the tumor microenvironment. There are various resistance mechanisms, such as insufficient antigen recognition by T cells, impaired T-cell migration and/or infiltration, and reduced T-cell cytotoxicity, most of which are related to the T-cell activation process. Thus, we classify them into three main mechanisms: resistance mechanisms related to antigen recognition, T-cell migration and/or infiltration, and effector functions of T cells. In this review, we summarize these mechanisms of resistance to ICIs related to the T-cell activation process and progress in the development of novel therapies that can overcome resistance.
Collapse
Affiliation(s)
- Joji Nagasaki
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
- Department of Hematology, Graduate School of MedicineOsaka Metropolitan UniversityOsakaJapan
| | - Takamasa Ishino
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
- Department of Gastroenterology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Yosuke Togashi
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| |
Collapse
|
96
|
Mortezaee K, Majidpoor J. Extracellular vesicle-based checkpoint regulation and immune state in cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:225. [PMID: 36175741 DOI: 10.1007/s12032-022-01837-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/28/2022] [Indexed: 10/14/2022]
Abstract
Tumor cells exploit several mechanisms for hijacking an immunosuppressive tumor ecosystem in order to evade immune surveillance and to progress toward metastasis. Equipment of extracellular vesicles (EVs) with checkpoints is an example of cancer control over anti-tumor responses from immune system. Programmed death-ligand 1 (PD-L1) is a checkpoint highly expressed in a tumor at progressive stage. Interactions between PD-L1 with its receptor programmed death-1 receptor (PD-1) expressed on T cells will block the effector function of CD8+ T cells, known as one of the most important defensive cells against cancer. Evaluation of circulatory exosomal PD-L1 can be a prognostic biomarker in tumor diagnosis and responses to the immune checkpoint inhibitor (ICI) therapy, and can be considered as a tool in clinical practice for exploiting personalized therapy. Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is also a checkpoint that its engagement with CD80/CD86 expressed on antigen-presenting cells (APCs), such as dendritic cells (DCs) hamper the priming phase of CD4+ and CD8+ T cells. Harvesting EVs from tumor and their modification with desired anti-checkpoint antibodies can be a promising strategy in cancer immunotherapy. The aim of this review is to discuss about EV roles in checkpoint regulation, cancer diagnosis and ICI responses, and to survey possible application of such vesicles in cancer immunotherapy.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
97
|
Madureira AC. Programmed Cell Death-Ligand-1 expression in Bladder Schistosomal Squamous Cell Carcinoma – There’s room for Immune Checkpoint Blockage? Front Immunol 2022; 13:955000. [PMID: 36148227 PMCID: PMC9486959 DOI: 10.3389/fimmu.2022.955000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Schistosoma haematobium, the causative agent of urogenital schistosomiasis, is a carcinogen type 1 since 1994. It is strongly associated with bladder squamous-cell carcinoma in endemic regions, where it accounts for 53-69% of bladder-carcinoma cases. This histological subtype is associated with chronic inflammation being more aggressive and resistant to conventional chemo and radiotherapy. Immune-Checkpoint-Blockage (ICB) therapies targeting the Programmed-Cell-Death-Protein-1(PD-1)/Programmed-Cell-Death-Ligand-1(PD-L1) axis showed considerable success in treating advanced bladder urothelial carcinoma. PD-L1 is induced by inflammatory stimuli and expressed in immune and tumor cells. The binding of PD-L1 with PD-1 modulates immune response leading to T-cell exhaustion. PD-L1 presents in several isoforms and its expression is dynamic and can serve as a companion marker for patients’ eligibility, allowing the identification of positive tumors that are more likely to respond to ICB therapy. The high PD-L1 expression in bladder-urothelial-carcinoma and squamous-cell carcinoma may affect further ICB-therapy application and outcomes. In general, divergent histologies are ineligible for therapy. These treatments are expensive and prone to auto-immune side effects and resistance. Thus, biomarkers capable of predicting therapy response are needed. Also, the PD-L1 expression assessment still needs refinement. Studies focused on squamous cell differentiation associated with S. haematobium remain scarce. Furthermore, in low and middle-income-regions, where schistosomiasis is endemic, SCC biomarkers are needed. This mini-review provides an overview of the current literature regarding PD-L1 expression in bladder-squamous-cell-carcinoma and schistosomiasis. It aims to pinpoint future directions, controversies, challenges, and the importance of PD-L1 as a biomarker for diagnosis, disease aggressiveness, and ICB-therapy prognosis in bladder-schistosomal-squamous-cell carcinoma.
Collapse
|
98
|
Zhao X, Bao Y, Meng B, Xu Z, Li S, Wang X, Hou R, Ma W, Liu D, Zheng J, Shi M. From rough to precise: PD-L1 evaluation for predicting the efficacy of PD-1/PD-L1 blockades. Front Immunol 2022; 13:920021. [PMID: 35990664 PMCID: PMC9382880 DOI: 10.3389/fimmu.2022.920021] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Developing biomarkers for accurately predicting the efficacy of immune checkpoint inhibitor (ICI) therapies is conducive to avoiding unwanted side effects and economic burden. At the moment, the quantification of programmed cell death ligand 1 (PD-L1) in tumor tissues is clinically used as one of the combined diagnostic assays of response to anti-PD-1/PD-L1 therapy. However, the current assays for evaluating PD-L1 remain imperfect. Recent studies are promoting the methodologies of PD-L1 evaluation from rough to precise. Standardization of PD-L1 immunohistochemistry tests is being promoted by using optimized reagents, platforms, and cutoff values. Combining novel in vivo probes with PET or SPECT will probably be of benefit to map the spatio-temporal heterogeneity of PD-L1 expression. The dynamic change of PD-L1 in the circulatory system can also be realized by liquid biopsy. Consider PD-L1 expressed on non-tumor (immune and non-immune) cells, and optimized combination detection indexes are further improving the accuracy of PD-L1 in predicting the efficacy of ICIs. The combinations of artificial intelligence with novel technologies are conducive to the intelligence of PD-L1 as a predictive biomarker. In this review, we will provide an overview of the recent progress in this rapidly growing area and discuss the clinical and technical challenges.
Collapse
Affiliation(s)
- Xuan Zhao
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Yulin Bao
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Bi Meng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Zijian Xu
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Sijin Li
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Xu Wang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Rui Hou
- College of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Wen Ma
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Dan Liu
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Dan Liu, ; Junnian Zheng, ; Ming Shi,
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Dan Liu, ; Junnian Zheng, ; Ming Shi,
| | - Ming Shi
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Dan Liu, ; Junnian Zheng, ; Ming Shi,
| |
Collapse
|
99
|
Sun J, Li X, Chen P, Gao Y. From Anti-HER-2 to Anti-HER-2-CAR-T Cells: An Evolutionary Immunotherapy Approach for Gastric Cancer. J Inflamm Res 2022; 15:4061-4085. [PMID: 35873388 PMCID: PMC9304417 DOI: 10.2147/jir.s368138] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Current Therapeutic modalities provide no survival advantage to gastric cancer (GC) patients. Targeting the human epidermal growth factor receptor-2 (HER-2) is a viable therapeutic strategy against advanced HER-2 positive GC. Antibody-drug conjugates, small-molecule tyrosine kinase inhibitors (TKIs), and bispecific antibodies are emerging as novel drug forms that may abrogate the resistance to HER-2-specific drugs and monoclonal antibodies. Chimeric antigen receptor-modified T cells (CAR-T) targeting HER-2 have shown considerable therapeutic potential in GC and other solid tumors. However, due to the high heterogeneity along with the complex tumor microenvironment (TME) of GC that often leads to immune escape, the immunological treatment of GC still faces many challenges. Here, we reviewed and discussed the current progress in the research of anti-HER-2-CAR-T cell immunotherapy against GC.
Collapse
Affiliation(s)
- Jiangang Sun
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Xiaojing Li
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Peng Chen
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Yongshun Gao
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| |
Collapse
|
100
|
Serum immune modulators associated with immune-related toxicities and efficacy of atezolizumab in patients with non-small cell lung cancer. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04193-w. [PMID: 35834011 DOI: 10.1007/s00432-022-04193-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE Identifying patients at high risk of immune-related adverse events (irAEs) that impede the achievement of durable efficacy of programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) blockade therapy is important in improving their management. Identification of a novel predictive factor of therapeutic benefit is also important in improving patient selection for treatment with PD-1/PD-L1 inhibitors. Further determinants driving response and linking with irAEs are urgently required. METHODS To address these unmet needs in the field, we explored whether 27 soluble checkpoint proteins and immunomodulatory proteins in serum at the therapy baseline and after week 3 were associated with irAE onset and therapeutic efficacy using MILLIPLEX Human Immuno-Oncology Checkpoint Protein Panel assays in a prospective, multicenter cohort of 81 patients with non-small cell lung cancer (NSCLC) receiving atezolizumab monotherapy. RESULTS By competing-risks regression analysis, we identified that high levels of B cell-activating factor (BAFF) at baseline were a significant and strong risk factor of irAEs (hazard ratio, 5.61; 95% confidence interval, 2.43-12.96; P < 0.0001). We also identified that increased inducible T cell co-stimulator (ICOS) during the first therapeutic cycle was an independent factor associated with prolonged progression-free survival and overall survival. CONCLUSION These findings are in keeping with the reported mechanistic basis of these molecules and may provide potential guidance for clinical decision-making to improve patient care. Further validation studies are warranted. Trial registration UMIN000035616 (January 28, 2019).
Collapse
|