51
|
Iatropoulos P, Noris M, Mele C, Piras R, Valoti E, Bresin E, Curreri M, Mondo E, Zito A, Gamba S, Bettoni S, Murer L, Fremeaux-Bacchi V, Vivarelli M, Emma F, Daina E, Remuzzi G. Complement gene variants determine the risk of immunoglobulin-associated MPGN and C3 glomerulopathy and predict long-term renal outcome. Mol Immunol 2016; 71:131-142. [DOI: 10.1016/j.molimm.2016.01.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/21/2016] [Accepted: 01/23/2016] [Indexed: 01/13/2023]
|
52
|
Genetic analysis and functional characterization of novel mutations in a series of patients with atypical hemolytic uremic syndrome. Mol Immunol 2016; 71:10-22. [DOI: 10.1016/j.molimm.2016.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/19/2015] [Accepted: 01/02/2016] [Indexed: 11/21/2022]
|
53
|
Savige J, Amos L, Ierino F, Mack HG, Symons RCA, Hughes P, Nicholls K, Colville D. Retinal disease in the C3 glomerulopathies and the risk of impaired vision. Ophthalmic Genet 2016; 37:369-376. [PMID: 26915021 DOI: 10.3109/13816810.2015.1101777] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Dense deposit disease and atypical hemolytic uremic syndrome are often caused by Complement Factor H (CFH) mutations. This study describes the retinal abnormalities in dense deposit disease and, for the first time, atypical haemolytic uremic syndrome. It also reviews our understanding of drusen pathogenesis and their relevance for glomerular disease. METHODS Six individuals with dense deposit disease and one with atypical haemolytic uremic syndrome were studied from 2 to 40 years after presentation. Five had renal transplants. All four who had genetic testing had CFH mutations. Individuals underwent ophthalmological review and retinal photography, and in some cases, optical coherence tomography, and further tests of retinal function. RESULTS All subjects with dense deposit disease had impaired night vision and retinal drusen or whitish-yellow deposits. Retinal atrophy, pigmentation, and hemorrhage were common. In late disease, peripheral vision was restricted, central vision was distorted, and there were scotoma from sub-retinal choroidal neovascular membranes and atypical serous retinopathy. Drusen were present but less prominent in the young person with atypical uremic syndrome due to a heterozygous CFH mutation. CONCLUSIONS Drusen are common in forms of C3 glomerulopathy caused by compound heterozygous or heterozygous CFH mutations. They are useful diagnostically but also impair vision. Drusen have an identical composition to glomerular deposits. They are also identical to the drusen of age-related macular degeneration, and may respond to the same treatments. Individuals with a C3 glomerulopathy should be assessed ophthalmologically at diagnosis, and monitored regularly for vision-threatening complications.
Collapse
Affiliation(s)
- J Savige
- a University of Melbourne Department of Medicine , Melbourne Health and Northern Health, Royal Melbourne Hospital , Parkville , Victoria , Australia.,b Department of Nephrology , Royal Melbourne Hospital , Parkville , Victoria , Australia
| | - L Amos
- a University of Melbourne Department of Medicine , Melbourne Health and Northern Health, Royal Melbourne Hospital , Parkville , Victoria , Australia
| | - Frank Ierino
- c Department of Nephrology , Austin Health , Heidelberg , Victoria , Australia
| | - H G Mack
- d University of Melbourne Department of Ophthalmology , Royal Victorian Eye and Ear Hospital , East Melbourne , Victoria , Australia
| | - R C Andrew Symons
- e Department of Ophthalmology , Royal Melbourne Hospital , Parkville Victoria , Australia.,f University of Melbourne Department of Surgery , Royal Melbourne Hospital , Parkville Victoria , Australia
| | - P Hughes
- b Department of Nephrology , Royal Melbourne Hospital , Parkville , Victoria , Australia
| | - K Nicholls
- b Department of Nephrology , Royal Melbourne Hospital , Parkville , Victoria , Australia
| | - D Colville
- a University of Melbourne Department of Medicine , Melbourne Health and Northern Health, Royal Melbourne Hospital , Parkville , Victoria , Australia
| |
Collapse
|
54
|
Muff-Luett M, Nester CM. The Genetics of Ultra-Rare Renal Disease. J Pediatr Genet 2016; 5:33-42. [PMID: 27617140 DOI: 10.1055/s-0036-1572515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/02/2015] [Indexed: 12/14/2022]
Abstract
The complement-mediated renal diseases are a group of ultra-rare renal diseases that disproportionately affect children and young adults and frequently lead to irreversible renal failure. Genetic mutations in alternate pathway of complement genes are pathomechanistically involved in a significant number of these unique diseases. Here, we review our current understanding of the role of genetics in the primary complement-mediated renal diseases affecting children, with a focus on atypical hemolytic uremic syndrome and C3 glomerulopathy. Also, included is a brief discussion of the related diseases whose relationship to complement abnormality has been suspected but not yet confirmed. Advances in genetics have transformed both treatment and outcomes in these historically difficult to treat, highly morbid diseases.
Collapse
Affiliation(s)
- Melissa Muff-Luett
- Division of Pediatric Nephrology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Carla M Nester
- Division of Pediatric Nephrology, Dialysis and Transplantation, Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States; Molecular Otolaryngology and Renal Research Laboratory, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
55
|
Sartain SE, Turner NA, Moake JL. TNF Regulates Essential Alternative Complement Pathway Components and Impairs Activation of Protein C in Human Glomerular Endothelial Cells. THE JOURNAL OF IMMUNOLOGY 2015; 196:832-45. [DOI: 10.4049/jimmunol.1500960] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 11/13/2015] [Indexed: 12/19/2022]
|
56
|
Anoosha P, Sakthivel R, Michael Gromiha M. Exploring preferred amino acid mutations in cancer genes: Applications to identify potential drug targets. Biochim Biophys Acta Mol Basis Dis 2015; 1862:155-65. [PMID: 26581171 DOI: 10.1016/j.bbadis.2015.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/24/2015] [Accepted: 11/11/2015] [Indexed: 12/25/2022]
Abstract
Somatic mutations developed with missense, silent, insertions and deletions have varying effects on the resulting protein and are one of the important reasons for cancer development. In this study, we have systematically analysed the effect of these mutations at protein level in 41 different cancer types from COSMIC database on different perspectives: (i) Preference of residues at the mutant positions, (ii) probability of substitutions, (iii) influence of neighbouring residues in driver and passenger mutations, (iv) distribution of driver and passenger mutations around hotspot site in five typical genes and (v) distribution of silent and missense substitutions. We observed that R→H substitution is dominant in drivers followed by R→Q and R→C whereas E→K has the highest preference in passenger mutations. A set of 17 mutations including R→Y, W→A and V→R are specific to driver mutations and 31 preferred substitutions are observed only in passenger mutations. These frequencies of driver mutations vary across different cancer types and are selective to specific tissues. Further, driver missense mutations are mainly surrounded with silent driver mutations whereas the passenger missense mutations are surrounded with silent passenger mutations. This study reveals the variation of mutations at protein level in different cancer types and their preferences in cancer genes and provides new insights for understanding cancer mutations and drug development.
Collapse
Affiliation(s)
- P Anoosha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of BioSciences, Indian Institute of Technology Madras, Chennai 600 036, Tamilnadu, India
| | - R Sakthivel
- Department of Biotechnology, Bhupat and Jyoti Mehta School of BioSciences, Indian Institute of Technology Madras, Chennai 600 036, Tamilnadu, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of BioSciences, Indian Institute of Technology Madras, Chennai 600 036, Tamilnadu, India.
| |
Collapse
|
57
|
Campistol JM, Arias M, Ariceta G, Blasco M, Espinosa L, Espinosa M, Grinyó JM, Macía M, Mendizábal S, Praga M, Román E, Torra R, Valdés F, Vilalta R, Rodríguez de Córdoba S. An update for atypical haemolytic uraemic syndrome: diagnosis and treatment. A consensus document. Nefrologia 2015; 35:421-47. [PMID: 26456110 DOI: 10.1016/j.nefro.2015.07.005] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/30/2015] [Accepted: 07/03/2015] [Indexed: 02/07/2023] Open
Abstract
Haemolytic uraemic syndrome (HUS) is a clinical entity defined as the triad of nonimmune haemolytic anaemia, thrombocytopenia, and acute renal failure, in which the underlying lesions are mediated by systemic thrombotic microangiopathy (TMA). Different causes can induce the TMA process that characterizes HUS. In this document we consider atypical HUS (aHUS) a sub-type of HUS in which the TMA phenomena are the consequence of the endotelial damage in the microvasculature of the kidneys and other organs due to a disregulation of the activity of the complement system. In recent years, a variety of aHUs-related mutations have been identified in genes of the the complement system, which can explain approximately 60% of the aHUS cases, and a number of mutations and polymorphisms have been functionally characterized. These findings have stablished that aHUS is a consequence of the insufficient regulation of the activiation of the complement on cell surfaces, leading to endotelial damage mediated by C5 and the complement terminal pathway. Eculizumab is a monoclonal antibody that inhibits the activation of C5 and blocks the generation of the pro-inflammatory molecule C5a and the formation of the cell membrane attack complex. In prospective studies in patients with aHUS, the use of Eculizumab has shown a fast and sustained interruption of the TMA process and it has been associated with significative long-term improvements in renal function, the interruption of plasma therapy and important reductions in the need of dialysis. According to the existing literature and the accumulated clinical experience, the Spanish aHUS Group published a consensus document with recommendations for the treatment of aHUs (Nefrologia 2013;33[1]:27-45). In the current online version of this document, we update the aetiological classification of TMAs, the pathophysiology of aHUS, its differential diagnosis and its therapeutic management.
Collapse
Affiliation(s)
| | - Manuel Arias
- Servicio de Nefrología, Hospital Universitario Marqués de Valdecilla, Santander, España
| | - Gema Ariceta
- Servicio de Nefrología Pediátrica, Hospital Universitari Materno-Infantil Vall d'Hebrón, Universidad Autónoma de Barcelona, Barcelona, España
| | - Miguel Blasco
- Servicio de Nefrología, Hospital Clínic, Barcelona, España
| | - Laura Espinosa
- Servicio de Nefrología Pediátrica, Hospital La Paz, Madrid, España
| | - Mario Espinosa
- Servicio de Nefrología, Hospital Universitario Reina Sofía, Córdoba, España
| | - Josep M Grinyó
- Servicio de Nefrología, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, España
| | - Manuel Macía
- Servicio de Nefrología, Hospital Virgen de la Candelaria, Santa Cruz de Tenerife, España
| | | | - Manuel Praga
- Servicio de Nefrología, Hospital Universitario 12 de Octubre, Madrid, España
| | - Elena Román
- Servicio de Nefrología Pediátrica, Hospital La Fe, Valencia, España
| | - Roser Torra
- Enfermedades Renales Hereditarias, Fundació Puigvert, Barcelona, España
| | - Francisco Valdés
- Servicio de Nefrología, Complejo Hospitalario A Coruña, A Coruña, España
| | - Ramón Vilalta
- Servicio de Nefrología Pediátrica, Hospital Universitari Materno-Infantil Vall d'Hebrón, Universidad Autónoma de Barcelona, Barcelona, España
| | | |
Collapse
|
58
|
Recalde S, Tortajada A, Subias M, Anter J, Blasco M, Maranta R, Coco R, Pinto S, Noris M, García-Layana A, Rodríguez de Córdoba S. Molecular Basis of Factor H R1210C Association with Ocular and Renal Diseases. J Am Soc Nephrol 2015; 27:1305-11. [PMID: 26376859 DOI: 10.1681/asn.2015050580] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/26/2015] [Indexed: 12/23/2022] Open
Abstract
The complement factor H (FH) mutation R1210C, which was described in association with atypical hemolytic uremic syndrome (aHUS), also confers high risk of age-related macular degeneration (AMD) and associates with C3 glomerulopathy (C3G). To reveal the molecular basis of these associations and to provide insight into what determines the disease phenotype in FH-R1210C carriers, we identified FH-R1210C carriers in our aHUS, C3G, and AMD cohorts. Disease status, determined in patients and relatives, revealed an absence of AMD phenotypes in the aHUS cohort and, vice versa, a lack of renal disease in the AMD cohort. These findings were consistent with differences in the R1210C-independent overall risk for aHUS and AMD between mutation carriers developing one pathology or the other. R1210C is an unusual mutation that generates covalent complexes between FH and HSA. Using purified FH proteins and surface plasmon resonance analyses, we demonstrated that formation of these FH-HSA complexes impairs accessibility to all FH functional domains. These data suggest that R1210C is a unique C-terminal FH mutation that behaves as a partial FH deficiency, predisposing individuals to diverse pathologies with distinct underlying pathogenic mechanisms; the final disease outcome is then determined by R1210C-independent genetic risk factors.
Collapse
Affiliation(s)
- Sergio Recalde
- Department of Ophthalmology, University Clinic of Navarra, Pamplona, Navarra, Spain
| | - Agustin Tortajada
- Department of Cellular and Molecular Medicine, Center for Biological Research and Center for Biomedical Network Research on Rare Diseases, Madrid, Spain
| | - Marta Subias
- Department of Cellular and Molecular Medicine, Center for Biological Research and Center for Biomedical Network Research on Rare Diseases, Madrid, Spain
| | - Jaouad Anter
- Department of Cellular and Molecular Medicine, Center for Biological Research and Center for Biomedical Network Research on Rare Diseases, Madrid, Spain
| | - Miquel Blasco
- Nephrology and Kidney Transplant Unit, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Ramona Maranta
- Mario Negri Institute for Pharmacology Research, Aldo and Cele Daccò Clinical Research Center for Rare Diseases, Ranica, Bergamo, Italy; and
| | - Rosa Coco
- Institute of Applied Ophthalmology, University of Valladolid, Valladolid, Spain
| | - Sheila Pinto
- Department of Cellular and Molecular Medicine, Center for Biological Research and Center for Biomedical Network Research on Rare Diseases, Madrid, Spain
| | - Marina Noris
- Mario Negri Institute for Pharmacology Research, Aldo and Cele Daccò Clinical Research Center for Rare Diseases, Ranica, Bergamo, Italy; and
| | | | - Santiago Rodríguez de Córdoba
- Department of Cellular and Molecular Medicine, Center for Biological Research and Center for Biomedical Network Research on Rare Diseases, Madrid, Spain;
| |
Collapse
|
59
|
De Vriese AS, Sethi S, Van Praet J, Nath KA, Fervenza FC. Kidney Disease Caused by Dysregulation of the Complement Alternative Pathway: An Etiologic Approach. J Am Soc Nephrol 2015; 26:2917-29. [PMID: 26185203 DOI: 10.1681/asn.2015020184] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Kidney diseases caused by genetic or acquired dysregulation of the complement alternative pathway (AP) are traditionally classified on the basis of clinical presentation (atypical hemolytic uremic syndrome as thrombotic microangiopathy), biopsy appearance (dense deposit disease and C3 GN), or clinical course (atypical postinfectious GN). Each is characterized by an inappropriate activation of the AP, eventuating in renal damage. The clinical diversity of these disorders highlights important differences in the triggers, the sites and intensity of involvement, and the outcome of the AP dysregulation. Nevertheless, we contend that these diseases should be grouped as disorders of the AP and classified on an etiologic basis. In this review, we define different pathophysiologic categories of AP dysfunction. The precise identification of the underlying abnormality is the key to predict the response to immune suppression, plasma infusion, and complement-inhibitory drugs and the outcome after transplantation. In a patient with presumed dysregulation of the AP, the collaboration of the clinician, the renal pathologist, and the biochemical and genetic laboratory is very much encouraged, because this enables the elucidation of both the underlying pathogenesis and the optimal therapeutic approach.
Collapse
Affiliation(s)
- An S De Vriese
- Division of Nephrology, AZ Sint-Jan Brugge-Oostende AV, Brugge, Belgium; and
| | | | - Jens Van Praet
- Division of Nephrology, AZ Sint-Jan Brugge-Oostende AV, Brugge, Belgium; and
| | - Karl A Nath
- Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Fernando C Fervenza
- Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
60
|
Complement factor H, FHR-3 and FHR-1 variants associate in an extended haplotype conferring increased risk of atypical hemolytic uremic syndrome. Mol Immunol 2015; 67:276-86. [PMID: 26163426 DOI: 10.1016/j.molimm.2015.06.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/05/2015] [Accepted: 06/10/2015] [Indexed: 12/31/2022]
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a severe thrombotic microangiopathy affecting the renal microvasculature and is associated with complement dysregulation caused by mutations or autoantibodies. Disease penetrance and severity is modulated by inheritance of "risk" polymorphisms in the complement genes MCP, CFH and CFHR1. We describe the prevalence of mutations, the frequency of risk polymorphisms and the occurrence of anti-FH autoantibodies in a Spanish aHUS cohort (n=367). We also report the identification of a polymorphism in CFHR3 (c.721C>T; rs379370) that is associated with increased risk of aHUS (OR=1.78; CI 1.22-2.59; p=0.002), and is most frequently included in an extended risk haplotype spanning the CFH-CFHR3-CFHR1 genes. This extended haplotype integrates polymorphisms in the promoter region of CFH and CFHR3, and is associated with poorer evolution of renal function and decreased FH levels. The CFH-CFHR3-CFHR1 aHUS-risk haplotype seems to be the same as was previously associated with protection against meningococcal infections, suggesting that the genetic variability in this region is limited to a few extended haplotypes, each with opposite effects in various human diseases. These results suggest that the combination of quantitative and qualitative variations in the complement proteins encoded by CFH, CFHR3 and CFHR1 genes is key for the association of these haplotypes with disease.
Collapse
|
61
|
Józsi M, Tortajada A, Uzonyi B, Goicoechea de Jorge E, Rodríguez de Córdoba S. Factor H-related proteins determine complement-activating surfaces. Trends Immunol 2015; 36:374-84. [DOI: 10.1016/j.it.2015.04.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/15/2015] [Accepted: 04/20/2015] [Indexed: 01/07/2023]
|
62
|
de Córdoba SR. Complement genetics and susceptibility to inflammatory disease. Lessons from genotype-phenotype correlations. Immunobiology 2015; 221:709-14. [PMID: 26004345 DOI: 10.1016/j.imbio.2015.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
Abstract
Different genome-wide linkage and association studies performed during the last 15 years have associated mutations and polymorphisms in complement genes with different diseases characterized by tissue damage and inflammation. These are complex disorders in which genetically susceptible individuals usually develop the pathology as a consequence of environmental triggers. Although complement dysregulation is a common feature of these pathologies, how the disease phenotype is determined is only partly understood. One way to advance understanding is to focus the research in the analysis of the peculiar genotype-phenotype correlations that characterize some of these diseases. I will review here how understanding the functional consequences of these disease-associated complement genetic variants is providing us with novel insights into the underpinning complement biology and a better knowledge of the pathogenic mechanisms underlying each of these pathologies. These advances have important therapeutic and diagnostic implications.
Collapse
|
63
|
Martínez-Barricarte R, Heurich M, López-Perrote A, Tortajada A, Pinto S, López-Trascasa M, Sánchez-Corral P, Morgan BP, Llorca O, Harris CL, Rodríguez de Córdoba S. The molecular and structural bases for the association of complement C3 mutations with atypical hemolytic uremic syndrome. Mol Immunol 2015; 66:263-73. [PMID: 25879158 PMCID: PMC4503813 DOI: 10.1016/j.molimm.2015.03.248] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/18/2015] [Accepted: 03/24/2015] [Indexed: 01/28/2023]
Abstract
Mutations in C3 have been associated with aHUS and other glomerulopathies. aHUS-associated C3 mutants R592W, R161W, and I1157T impair regulation by MCP, but not by FH. EM analysis provides the structural basis for the functional impairment of the R161W and I1157T mutants. Data supports aHUS-associated C3 mutations selectively affect complement regulation on surfaces.
Atypical hemolytic uremic syndrome (aHUS) associates with complement dysregulation caused by mutations and polymorphisms in complement activators and regulators. However, the reasons why some mutations in complement proteins predispose to aHUS are poorly understood. Here, we have investigated the functional consequences of three aHUS-associated mutations in C3, R592W, R161W and I1157T. First, we provide evidence that penetrance and disease severity for these mutations is modulated by inheritance of documented “risk” haplotypes as has been observed with mutations in other complement genes. Next, we show that all three mutations markedly reduce the efficiency of factor I-mediated C3b cleavage when catalyzed by membrane cofactor protein (MCP), but not when catalyzed by factor H. Biacore analysis showed that each mutant C3b bound sMCP (recombinant soluble MCP; CD46) at reduced affinity, providing a molecular basis for its reduced cofactor activity. Lastly, we show by electron microscopy structural analysis a displacement of the TED domain from the MG ring in C3b in two of the C3 mutants that explains these defects in regulation. As a whole our data suggest that aHUS-associated mutations in C3 selectively affect regulation of complement on surfaces and provide a structural framework to predict the functional consequences of the C3 genetic variants found in patients.
Collapse
Affiliation(s)
- Rubén Martínez-Barricarte
- Centro Investigaciones Biológicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; Ciber de Enfermedades Raras, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Meike Heurich
- Institute of Infection & Immunity, School of Medicine, Cardiff University Heath Park, Cardiff CF14 4XN, United Kingdom
| | | | - Agustin Tortajada
- Centro Investigaciones Biológicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; Ciber de Enfermedades Raras, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Sheila Pinto
- Centro Investigaciones Biológicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; Ciber de Enfermedades Raras, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Margarita López-Trascasa
- Unidad de Inmunología, Hospital Universitario La Paz-IdiPAZ, and Ciber de Enfermedades Raras. Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Pilar Sánchez-Corral
- Unidad de Investigación, Hospital Universitario La Paz-IdiPAZ, and Ciber de Enfermedades Raras. Paseo de la Castellana 261, 28046 Madrid, Spain
| | - B Paul Morgan
- Institute of Infection & Immunity, School of Medicine, Cardiff University Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Oscar Llorca
- Centro Investigaciones Biológicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Claire L Harris
- Institute of Infection & Immunity, School of Medicine, Cardiff University Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Santiago Rodríguez de Córdoba
- Centro Investigaciones Biológicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; Ciber de Enfermedades Raras, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
64
|
Duvvari MR, Saksens NT, van de Ven JP, de Jong-Hesse Y, Schick T, Nillesen WM, Fauser S, Hoefsloot LH, Hoyng CB, de Jong EK, den Hollander AI. Analysis of rare variants in the CFH gene in patients with the cuticular drusen subtype of age-related macular degeneration. Mol Vis 2015; 21:285-92. [PMID: 25814826 PMCID: PMC4360166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 03/12/2015] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Age-related macular degeneration (AMD) and cuticular drusen (CD), a clinical subtype of AMD, have been linked to genetic variants in the complement factor H (CFH) gene. In this study, we aimed to investigate the frequency of rare variants in the CFH gene in 180 cases with CD. In addition, we aimed to determine the frequency of a previously reported rare, highly penetrant CFH variant (p.Arg1210Cys) in a Dutch-German non-CD-type AMD case-control cohort, and to describe the phenotype of patients carrying the p.Arg1210Cys variant. METHODS Study subjects were selected from the European Genetic Database (EUGENDA), a joint AMD database of the Radboud University Medical Centre and the University Hospital of Cologne, and graded at the Cologne Image Reading Centre and Laboratory (CIRCL). Additionally, two CD cases were recruited from the VU Medical Centre in Amsterdam. The CFH gene was analyzed in 180 CD cases with Sanger sequencing. All identified variants were analyzed for potential damaging effects with prediction software tools Sorting Intolerant from Tolerant (SIFT) and Polymorphism Phenotyping (PolyPhen). In addition, we genotyped the p.Arg1210Cys variant in 813 non-CD type AMD cases and 1175 controls. RESULTS Sequencing identified 11 rare, heterozygous missense variants, one frameshift variant, and one splice acceptor site variant in 16 CD cases. The p.Arg1210Cys variant was identified in two CD cases but was not identified in our Dutch-German non-CD-type AMD case-control cohort. CONCLUSIONS The present study identified the presence of rare variants in the CFH gene in 16 (8.8%) of 180 patients with the CD subtype of AMD. The carriers of rare CFH variants displayed a significantly earlier age at onset than non-carriers (p=0.016). The rare missense variant p.Arg1210Cys was identified in two CD cases, but was not detected in 813 non-CD type AMD cases or in the 1,175 controls of our Dutch-German cohort. The current study suggests that the p.Arg1210Cys variant may be restricted to a subset of patients with the CD subtype of AMD. Detailed clinical phenotyping, including fluorescein angiography, of patients with AMD carrying the p.Arg1210Cys variant in other cohorts is required to confirm this finding.
Collapse
Affiliation(s)
- Maheswara R. Duvvari
- Department of Ophthalmology, Radboud University Medical Centre, Nijmegen, the Netherlands,Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Nicole T.M. Saksens
- Department of Ophthalmology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | | | | | - Tina Schick
- Department of Ophthalmology, University Hospital of Cologne, Cologne, Germany
| | - Willy M. Nillesen
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Sascha Fauser
- Department of Ophthalmology, University Hospital of Cologne, Cologne, Germany
| | - Lies H. Hoefsloot
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands,Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Carel B. Hoyng
- Department of Ophthalmology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Eiko K. de Jong
- Department of Ophthalmology, Radboud University Medical Centre, Nijmegen, the Netherlands,Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Anneke I. den Hollander
- Department of Ophthalmology, Radboud University Medical Centre, Nijmegen, the Netherlands,Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
65
|
Maillard N, Wyatt RJ, Julian BA, Kiryluk K, Gharavi A, Fremeaux-Bacchi V, Novak J. Current Understanding of the Role of Complement in IgA Nephropathy. J Am Soc Nephrol 2015; 26:1503-12. [PMID: 25694468 DOI: 10.1681/asn.2014101000] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Complement activation has a role in the pathogenesis of IgA nephropathy, an autoimmune disease mediated by pathogenic immune complexes consisting of galactose-deficient IgA1 bound by antiglycan antibodies. Of three complement-activation pathways, the alternative and lectin pathways are involved in IgA nephropathy. IgA1 can activate both pathways in vitro, and pathway components are present in the mesangial immunodeposits, including properdin and factor H in the alternative pathway and mannan-binding lectin, mannan-binding lectin-associated serine proteases 1 and 2, and C4d in the lectin pathway. Genome-wide association studies identified deletion of complement factor H-related genes 1 and 3 as protective against the disease. Because the corresponding gene products compete with factor H in the regulation of the alternative pathway, it has been hypothesized that the absence of these genes could lead to more potent inhibition of complement by factor H. Complement activation can take place directly on IgA1-containing immune complexes in circulation and/or after their deposition in the mesangium. Notably, complement factors and their fragments may serve as biomarkers of IgA nephropathy in serum, urine, or renal tissue. A better understanding of the role of complement in IgA nephropathy may provide potential targets and rationale for development of complement-targeting therapy of the disease.
Collapse
Affiliation(s)
- Nicolas Maillard
- University of Alabama at Birmingham, Departments of Microbiology and Medicine, Birmingham, Alabama; Université Jean Monnet, Groupe sur l'immunité des Muqueuses et Agents Pathogènes, St. Etienne, Pôle de Recherche et d'Enseignement Supérieur, Université de Lyon, Lyon, France
| | - Robert J Wyatt
- University of Tennessee Health Science Center and Children's Foundation Research at the Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Bruce A Julian
- University of Alabama at Birmingham, Departments of Microbiology and Medicine, Birmingham, Alabama
| | - Krzysztof Kiryluk
- Columbia University, Department of Medicine, New York, New York; and
| | - Ali Gharavi
- Columbia University, Department of Medicine, New York, New York; and
| | - Veronique Fremeaux-Bacchi
- Unité Mixte de Recherche en Santé 1138, Team "Complement and Diseases," Cordeliers Research Center, Paris, France
| | - Jan Novak
- University of Alabama at Birmingham, Departments of Microbiology and Medicine, Birmingham, Alabama;
| |
Collapse
|
66
|
Syndrome hémolytique et urémique atypique : pour qui l’éculizumab ? MEDECINE INTENSIVE REANIMATION 2014. [DOI: 10.1007/s13546-014-0928-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
67
|
Yenerel MN. Atypical Hemolytic Uremic Syndrome: Differential Diagnosis from TTP/HUS and Management. Turk J Haematol 2014; 31:216-25. [PMID: 25319590 PMCID: PMC4287021 DOI: 10.4274/tjh.2013.0374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 07/09/2014] [Indexed: 01/17/2023] Open
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a rare form of thrombotic microangiopathy (TMA). It has an unfavorable outcome with death rates as high as 25% during the acute phase and up to 50% of cases progressing to end-stage renal failure. Uncontrolled complement activation through the alternative pathway is thought to be the main underlying pathopysiology of aHUS and corresponds to all the deleterious findings of the disease. Thrombotic thrombocytopenic purpura (TTP) and Shiga toxin-associated HUS are the 2 other important TMA diseases. Although differentiating HUS from TTP is relatively easy in children with a preceding diarrheal illness or invasive S. pneumoniae, differentiating aHUS from TTP or other microangiopathic disorders can present a major diagnostic challenge in adults. ADAMTS13 analysis is currently the most informative diagnostic test for differentiating TTP, congenital TTP, and aHUS. Today empiric plasma therapy still is recommended by expert opinion to be used as early as possible in any patient with symptoms of aHUS. The overall treatment goal remains restoration of a physiological balance between activation and control of the alternative complement pathway. So it is a reasonable approach to block the terminal complement complex with eculizumab in order to prevent further organ injury and increase the likelihood organ recovery. Persistence of hemolysis or lack of improvement of renal function after 3-5 daily plasmaphereses have to be regarded as the major criteria for uncontrolled TMA even if platelet count has normalized and as an indication to switch the treatment to eculizumab. Eculizumab has changed the future perspectives of patients with aHUS and both the FDA and the EMA have approved it as life-long treatment. However, there are still some unresolved issues about the follow-up such as the optimal duration of eculizumab treatment and whether it can be stopped or how to stop the therapy.
Collapse
Affiliation(s)
- Mustafa N Yenerel
- İstanbul University İstanbul Faculty of Medicine, Department of Internal Medicine, Division of Hematology, İstanbul, Turkey. E-ma-il:
| |
Collapse
|
68
|
Sánchez Chinchilla D, Pinto S, Hoppe B, Adragna M, Lopez L, Justa Roldan ML, Peña A, Lopez Trascasa M, Sánchez-Corral P, Rodríguez de Córdoba S. Complement mutations in diacylglycerol kinase-ε-associated atypical hemolytic uremic syndrome. Clin J Am Soc Nephrol 2014; 9:1611-9. [PMID: 25135762 DOI: 10.2215/cjn.01640214] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVES Atypical hemolytic uremic syndrome is characterized by vascular endothelial damage caused by complement dysregulation. Consistently, complement inhibition therapies are highly effective in most patients with atypical hemolytic uremic syndrome. Recently, it was shown that a significant percentage of patients with early-onset atypical hemolytic uremic syndrome carry mutations in diacylglycerol kinase-ε, an intracellular protein with no obvious role in complement. These data support an alternative, complement-independent mechanism leading to thrombotic microangiopathy that has implications for treatment of early-onset atypical hemolytic uremic syndrome. To get additional insights into this new form of atypical hemolytic uremic syndrome, the diacylglycerol kinase-ε gene in a cohort with atypical hemolytic uremic syndrome was analyzed. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Eighty-three patients with early-onset atypical hemolytic uremic syndrome (<2 years) enrolled in the Spanish atypical hemolytic uremic syndrome registry between 1999 and 2013 were screened for mutations in diacylglycerol kinase-ε. These patients were also fully characterized for mutations in the genes encoding factor H, membrane cofactor protein, factor I, C3, factor B, and thrombomodulin CFHRs copy number variations and rearrangements, and antifactor H antibodies. RESULTS Four patients carried mutations in diacylglycerol kinase-ε, one p.H536Qfs*16 homozygote and three compound heterozygotes (p.W322*/p.P498R, two patients; p.Q248H/p.G484Gfs*10, one patient). Three patients also carried heterozygous mutations in thrombomodulin or C3. Extensive plasma infusions controlled atypical hemolytic uremic syndrome recurrences and prevented renal failure in the two patients with diacylglycerol kinase-ε and thrombomodulin mutations. A positive response to plasma infusions and complement inhibition treatment was also observed in the patient with concurrent diacylglycerol kinase-ε and C3 mutations. CONCLUSIONS Data suggest that complement dysregulation influences the onset and disease severity in carriers of diacylglycerol kinase-ε mutations and that treatments on the basis of plasma infusions and complement inhibition are potentially useful in patients with combined diacylglycerol kinase-ε and complement mutations. A comprehensive understanding of the genetic component predisposing to atypical hemolytic uremic syndrome is, therefore, critical to guide an effective treatment.
Collapse
Affiliation(s)
- Daniel Sánchez Chinchilla
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain; Centro de Investigación Biomédica en Enfermedades Raras, Madrid, Spain
| | - Sheila Pinto
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain; Centro de Investigación Biomédica en Enfermedades Raras, Madrid, Spain
| | - Bernd Hoppe
- Department of Pediatrics, Division of Pediatric Nephrology, University of Bonn, Bonn, Germany
| | - Marta Adragna
- Department of Nephrology, Hospital de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Laura Lopez
- Department of Nephrology, Hospital de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Maria Luisa Justa Roldan
- Servicio de Nefrología Pediátrica, Hospital Universitario Infantil Miguel Servet, Zaragoza, Spain; and
| | | | - Margarita Lopez Trascasa
- Centro de Investigación Biomédica en Enfermedades Raras, Madrid, Spain; Unidad de Inmunología, and
| | - Pilar Sánchez-Corral
- Unidad de Investigación, Hospital Universitario La Paz/Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain Centro de Investigación Biomédica en Enfermedades Raras, Madrid, Spain
| | - Santiago Rodríguez de Córdoba
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain; Centro de Investigación Biomédica en Enfermedades Raras, Madrid, Spain
| |
Collapse
|
69
|
Valoti E, Alberti M, Tortajada A, Garcia-Fernandez J, Gastoldi S, Besso L, Bresin E, Remuzzi G, Rodriguez de Cordoba S, Noris M. A novel atypical hemolytic uremic syndrome-associated hybrid CFHR1/CFH gene encoding a fusion protein that antagonizes factor H-dependent complement regulation. J Am Soc Nephrol 2014; 26:209-19. [PMID: 24904082 DOI: 10.1681/asn.2013121339] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Genomic aberrations affecting the genes encoding factor H (FH) and the five FH-related proteins (FHRs) have been described in patients with atypical hemolytic uremic syndrome (aHUS), a rare condition characterized by microangiopathic hemolytic anemia, thrombocytopenia, and ARF. These genomic rearrangements occur through nonallelic homologous recombinations caused by the presence of repeated homologous sequences in CFH and CFHR1-R5 genes. In this study, we found heterozygous genomic rearrangements among CFH and CFHR genes in 4.5% of patients with aHUS. CFH/CFHR rearrangements were associated with poor clinical prognosis and high risk of post-transplant recurrence. Five patients carried known CFH/CFHR1 genes, but we found a duplication leading to a novel CFHR1/CFH hybrid gene in a family with two affected subjects. The resulting fusion protein contains the first four short consensus repeats of FHR1 and the terminal short consensus repeat 20 of FH. In an FH-dependent hemolysis assay, we showed that the hybrid protein causes sheep erythrocyte lysis. Functional analysis of the FHR1 fraction purified from serum of heterozygous carriers of the CFHR1/CFH hybrid gene indicated that the FHR1/FH hybrid protein acts as a competitive antagonist of FH. Furthermore, sera from carriers of the hybrid CFHR1/CFH gene induced more C5b-9 deposition on endothelial cells than control serum. These results suggest that this novel genomic hybrid mediates disease pathogenesis through dysregulation of complement at the endothelial cell surface. We recommend that genetic screening of aHUS includes analysis of CFH and CFHR rearrangements, particularly before a kidney transplant.
Collapse
Affiliation(s)
- Elisabetta Valoti
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Clinical Research Center for Rare Diseases "Aldo e Cele Daccò," and "Centro Anna Maria Astori" Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Marta Alberti
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Clinical Research Center for Rare Diseases "Aldo e Cele Daccò," and "Centro Anna Maria Astori" Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Agustin Tortajada
- Centro de Investigaciones Biològicas and Centro de Investigacion Biomédica en Enfermedades Rares, Madrid, Spain
| | - Jesus Garcia-Fernandez
- Centro de Investigaciones Biològicas and Centro de Investigacion Biomédica en Enfermedades Rares, Madrid, Spain
| | - Sara Gastoldi
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Clinical Research Center for Rare Diseases "Aldo e Cele Daccò," and "Centro Anna Maria Astori" Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Luca Besso
- Unit of Nephrology, Dialysis and Transplantation, Molinette Hospital, Turin, Italy; and
| | - Elena Bresin
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Clinical Research Center for Rare Diseases "Aldo e Cele Daccò," and "Centro Anna Maria Astori" Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Giuseppe Remuzzi
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Clinical Research Center for Rare Diseases "Aldo e Cele Daccò," and "Centro Anna Maria Astori" Science and Technology Park Kilometro Rosso, Bergamo, Italy; Unit of Nephrology and Dialysis, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | | | - Marina Noris
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Clinical Research Center for Rare Diseases "Aldo e Cele Daccò," and "Centro Anna Maria Astori" Science and Technology Park Kilometro Rosso, Bergamo, Italy;
| |
Collapse
|
70
|
Abstract
Hemolytic uremic syndrome (HUS) is a triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal failure. The atypical form of HUS is a disease characterized by complement overactivation. Inherited defects in complement genes and acquired autoantibodies against complement regulatory proteins have been described. Incomplete penetrance of mutations in all predisposing genes is reported, suggesting that a precipitating event or trigger is required to unmask the complement regulatory deficiency. The underlying genetic defect predicts the prognosis both in native kidneys and after renal transplantation. The successful trials of the complement inhibitor eculizumab in the treatment of atypical HUS will revolutionize disease management.
Collapse
Affiliation(s)
- David Kavanagh
- The Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.
| | | | | |
Collapse
|
71
|
An ELISA assay with two monoclonal antibodies allows the estimation of free factor H and identifies patients with acquired deficiency of this complement regulator. Mol Immunol 2013; 58:194-200. [PMID: 24378252 DOI: 10.1016/j.molimm.2013.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 02/02/2023]
Abstract
Complement factor H (FH) serum levels can be affected by the presence of immune complexes of FH with autoantibodies like in autoimmune forms of atypical haemolytic uraemic syndrome (aHUS) or with C3b in homozygous factor I (FI) deficiency. These complexes reduce the amount of free functional circulating FH. In this study we aimed to determine whether FH levels measurement is disturbed in some pathological conditions and to establish a method for quantifying free and total FH in serum. For that purpose, FH levels were measured in serum samples from aHUS patients having anti-FH autoantibodies or mutations in FH gene, in patients with homozygous FI deficiency, and in healthy controls. Two anti-FH monoclonal antibodies, OX24 and A229, recognizing different functional regions in FH, were used as capture antibodies in an ELISA assay. In the control group and in the group of patients with FH mutations, the FH levels obtained with the two monoclonal antibodies were similar. In patients with anti-FH autoantibodies or with homozygous FI deficiency, however, FH levels measured with both antibodies were significantly different. As these patients had complexes of FH with autoantibodies or C3b, we interpreted that OX24 was detecting total FH and A229 was recognising free FH. Therefore, quantification of FH in plasma using these two monoclonal antibodies provides not only total FH level but also gives an estimation of how much FH circulates free and is thus available to properly control complement activation.
Collapse
|
72
|
Hyvärinen S, Uchida K, Varjosalo M, Jokela R, Jokiranta TS. Recognition of malondialdehyde-modified proteins by the C terminus of complement factor H is mediated via the polyanion binding site and impaired by mutations found in atypical hemolytic uremic syndrome. J Biol Chem 2013; 289:4295-306. [PMID: 24344133 DOI: 10.1074/jbc.m113.527416] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a severe thrombotic microangiopathy characterized by uncontrolled complement activation against endothelial and blood cells. Mutations in the C-terminal target recognition domains 19-20 of complement regulator factor H (FH) are strongly associated with aHUS, but the mechanisms triggering disease onset have remained unresolved. Here we report that several aHUS-related mutations alter the binding of FH19-20 to proteins where lysines have reacted with malondialdehyde (MDA). Although FH19-20 did not interact with MDA-modified hexylamine, lysine-containing peptides, or a proteolytically degraded protein, it bound to MDA-modified polylysine. This suggests that FH19-20 recognizes only clustered MDA adducts. Binding of MDA-modified BSA to FH19-20 was ionic by nature, depended on positive residues of FH19-20, and competed with the polyanions heparin and DNA. This could not be explained with the mainly neutral adducts known to form in MDA modification. When positive charges of lysines were eliminated by acetic anhydride instead of MDA, the acetylated BSA started to bind FH19-20. Together, these results indicate that negative charges on the modified proteins dominate the interaction with FH19-20. This is beneficial for the physiological function of FH because by binding to the negative charges of the modified target, FH could prevent excess complement activation initiated by naturally occurring antibodies recognizing MDA epitopes with multiple different structures. We propose that oxidative stress leading to formation of MDA adducts is a common feature for triggers of aHUS and that failure of FH in protecting MDA-modified surfaces from complement activation is involved in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Satu Hyvärinen
- From the Department of Bacteriology and Immunology, Haartman Institute, and Research Programs Unit, Immunobiology, University of Helsinki, FIN-00290 Helsinki, Finland
| | | | | | | | | |
Collapse
|
73
|
Mechanism of inflammation in age-related macular degeneration: an up-to-date on genetic landmarks. Mediators Inflamm 2013; 2013:435607. [PMID: 24369445 PMCID: PMC3863457 DOI: 10.1155/2013/435607] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/28/2013] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of irreversible visual impairment among people over 50 years of age, accounting for up to 50% of all cases of legal blindness in Western countries. Although the aging represents the main determinant of AMD, it must be considered a multifaceted disease caused by interactions among environmental risk factors and genetic backgrounds. Mounting evidence and/or arguments document the crucial role of inflammation and immune-mediated processes in the pathogenesis of AMD. Proinflammatory effects secondary to chronic inflammation (e.g., alternative complement activation) and heterogeneous types of oxidative stress (e.g., impaired cholesterol homeostasis) can result in degenerative damages at the level of crucial macular structures, that is photoreceptors, retinal pigment epithelium, and Bruch's membrane. In the most recent years, the association of AMD with genes, directly or indirectly, involved in immunoinflammatory pathways is increasingly becoming an essential core for AMD knowledge. Starting from the key basic-research notions detectable at the root of AMD pathogenesis, the present up-to-date paper reviews the best-known and/or the most attractive genetic findings linked to the mechanisms of inflammation of this complex disease.
Collapse
|
74
|
Boon CJ, van de Ven JP, Hoyng CB, den Hollander AI, Klevering BJ. Cuticular drusen: Stars in the sky. Prog Retin Eye Res 2013; 37:90-113. [DOI: 10.1016/j.preteyeres.2013.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/14/2013] [Accepted: 08/19/2013] [Indexed: 12/24/2022]
|
75
|
Tortajada A, Yébenes H, Abarrategui-Garrido C, Anter J, García-Fernández JM, Martínez-Barricarte R, Alba-Domínguez M, Malik TH, Bedoya R, Cabrera Pérez R, López Trascasa M, Pickering MC, Harris CL, Sánchez-Corral P, Llorca O, Rodríguez de Córdoba S. C3 glomerulopathy-associated CFHR1 mutation alters FHR oligomerization and complement regulation. J Clin Invest 2013; 123:2434-46. [PMID: 23728178 DOI: 10.1172/jci68280] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/06/2013] [Indexed: 02/06/2023] Open
Abstract
C3 glomerulopathies (C3G) are a group of severe renal diseases with distinct patterns of glomerular inflammation and C3 deposition caused by complement dysregulation. Here we report the identification of a familial C3G-associated genomic mutation in the gene complement factor H–related 1 (CFHR1), which encodes FHR1. The mutation resulted in the duplication of the N-terminal short consensus repeats (SCRs) that are conserved in FHR2 and FHR5. We determined that native FHR1, FHR2, and FHR5 circulate in plasma as homo- and hetero-oligomeric complexes, the formation of which is likely mediated by the conserved N-terminal domain. In mutant FHR1, duplication of the N-terminal domain resulted in the formation of unusually large multimeric FHR complexes that exhibited increased avidity for the FHR1 ligands C3b, iC3b, and C3dg and enhanced competition with complement factor H (FH) in surface plasmon resonance (SPR) studies and hemolytic assays. These data revealed that FHR1, FHR2, and FHR5 organize a combinatorial repertoire of oligomeric complexes and demonstrated that changes in FHR oligomerization influence the regulation of complement activation. In summary, our identification and characterization of a unique CFHR1 mutation provides insights into the biology of the FHRs and contributes to our understanding of the pathogenic mechanisms underlying C3G.
Collapse
Affiliation(s)
- Agustín Tortajada
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Wong EKS, Goodship THJ, Kavanagh D. Complement therapy in atypical haemolytic uraemic syndrome (aHUS). Mol Immunol 2013; 56:199-212. [PMID: 23810412 PMCID: PMC3899040 DOI: 10.1016/j.molimm.2013.05.224] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 05/10/2013] [Indexed: 12/22/2022]
Abstract
Central to the pathogenesis of atypical haemolytic uraemic syndrome (aHUS) is over-activation of the alternative pathway of complement. Inherited defects in complement genes and autoantibodies against complement regulatory proteins have been described. The use of plasma exchange to replace non-functioning complement regulators and hyper-functional complement components in addition to the removal of CFH-autoantibodies made this the ‘gold-standard’ for management of aHUS. In the last 4 years the introduction of the complement inhibitor Eculizumab has revolutionised the management of aHUS. In this review we shall discuss the available literature on treatment strategies to date.
Collapse
Affiliation(s)
- Edwin K S Wong
- The Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | | |
Collapse
|
77
|
Mohlin FC, Mercier E, Fremeaux-Bacchi V, Liszewski MK, Atkinson JP, Gris JC, Blom AM. Analysis of genes coding for CD46, CD55, and C4b-binding protein in patients with idiopathic, recurrent, spontaneous pregnancy loss. Eur J Immunol 2013; 43:1617-29. [PMID: 23508668 DOI: 10.1002/eji.201243196] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/08/2013] [Accepted: 03/13/2013] [Indexed: 01/06/2023]
Abstract
Since a tightly regulated complement system is needed for a successful pregnancy, we hypothesized that alterations in complement inhibitors may be associated with idiopathic, recurrent miscarriage. We sequenced all exons coding for three complement inhibitors: C4b-binding protein (C4BP), CD46, and CD55 in 384 childless women with at least two miscarriages that could not be explained by known risk factors. Several alterations were found in C4BPA, of which the R120H, I126T, and the G423T mutations affected the expression level and/or the ability of recombinant C4BP to serve as cofactor for factor I. The only variant in C4BPB was located in the C-terminal part, and did not impair the polymerization of the molecule. Our results identify for the first time alterations in C4BP in women experiencing recurrent miscarriages. We also found four CD46 alterations in individual patients that were not found in healthy controls. One of the rare variants, P324L, showed decreased expression, whereas N213I resulted in deficient protein processing as well as an impaired cofactor activity in the degradation of both C4b and C3b. The identified alterations may result in in vivo consequences and contribute to the disorder but the degree of association must be evaluated in larger cohorts.
Collapse
Affiliation(s)
- Frida C Mohlin
- Department of Laboratory Medicine, Lund University, Malmö, Sweden
| | | | | | | | | | | | | |
Collapse
|
78
|
Complement dysregulation and disease: from genes and proteins to diagnostics and drugs. Immunobiology 2013; 217:1034-46. [PMID: 22964229 DOI: 10.1016/j.imbio.2012.07.021] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 07/20/2012] [Accepted: 07/21/2012] [Indexed: 12/21/2022]
Abstract
During the last decade, numerous studies have associated genetic variations in complement components and regulators with a number of chronic and infectious diseases. The functional characterization of these complement protein variants, in addition to recent structural advances in understanding of the assembly, activation and regulation of the AP C3 convertase, have provided important insights into the pathogenic mechanisms involved in some of these complement related disorders. This knowledge has identified potential targets for complement inhibitory therapies which are demonstrating efficacy and generating considerable expectation in changing the natural history of these diseases. Comprehensive understanding of the genetic and non-genetic risk factors contributing to these disorders will also result in targeting of the right patient groups in a stratified medicine approach through better diagnostics and individually tailored treatments, thereby improving management of patients.
Collapse
|
79
|
Bresin E, Rurali E, Caprioli J, Sanchez-Corral P, Fremeaux-Bacchi V, Rodriguez de Cordoba S, Pinto S, Goodship THJ, Alberti M, Ribes D, Valoti E, Remuzzi G, Noris M. Combined complement gene mutations in atypical hemolytic uremic syndrome influence clinical phenotype. J Am Soc Nephrol 2013; 24:475-86. [PMID: 23431077 DOI: 10.1681/asn.2012090884] [Citation(s) in RCA: 277] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Several abnormalities in complement genes reportedly contribute to atypical hemolytic uremic syndrome (aHUS), but incomplete penetrance suggests that additional factors are necessary for the disease to manifest. Here, we sought to describe genotype-phenotype correlations among patients with combined mutations, defined as mutations in more than one complement gene. We screened 795 patients with aHUS and identified single mutations in 41% and combined mutations in 3%. Only 8%-10% of patients with mutations in CFH, C3, or CFB had combined mutations, whereas approximately 25% of patients with mutations in MCP or CFI had combined mutations. The concomitant presence of CFH and MCP risk haplotypes significantly increased disease penetrance in combined mutated carriers, with 73% penetrance among carriers with two risk haplotypes compared with 36% penetrance among carriers with zero or one risk haplotype. Among patients with CFH or CFI mutations, the presence of mutations in other genes did not modify prognosis; in contrast, 50% of patients with combined MCP mutation developed end stage renal failure within 3 years from onset compared with 19% of patients with an isolated MCP mutation. Patients with combined mutations achieved remission with plasma treatment similar to patients with single mutations. Kidney transplant outcomes were worse, however, for patients with combined MCP mutation compared with an isolated MCP mutation. In summary, these data suggest that genotyping for the risk haplotypes in CFH and MCP may help predict the risk of developing aHUS in unaffected carriers of mutations. Furthermore, screening patients with aHUS for all known disease-associated genes may inform decisions about kidney transplantation.
Collapse
Affiliation(s)
- Elena Bresin
- Clinical Research Center for Rare Diseases, “Aldo e Cele Daccò,” Mario Negri Institute for Pharmacological Research, Ranica, Bergamo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Sofat R, Mangione PP, Gallimore JR, Hakobyan S, Hughes TR, Shah T, Goodship T, D'Aiuto F, Langenberg C, Wareham N, Morgan BP, Pepys MB, Hingorani AD. Distribution and determinants of circulating complement factor H concentration determined by a high-throughput immunonephelometric assay. J Immunol Methods 2013; 390:63-73. [PMID: 23376722 DOI: 10.1016/j.jim.2013.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/22/2013] [Accepted: 01/22/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND Research on complement factor H (fH) in human disease is hampered by lack of an assay suitable for use in large-scale epidemiological studies. We describe the development and validation of a high throughput nephelometric assay for fH. METHODS Reagents from a commercial radial immunodiffusion (RID) assay (The Binding Site) were adapted for use on the Siemens BNII high throughput nephelometric instrument. The assay was calibrated with a highly purified human fH preparation with rigorously determined concentration, and assay performance was comprehensively evaluated using samples from healthy human volunteers, with the commercial RID assay as a comparator. The distribution and determinants of circulating fH concentration in humans were then investigated in a large representative population sample. RESULTS The nephelometric assay had recovery close to 100%, was reproducible with intra- and inter-assay CV's of 11% and 5-15% respectively, and had a wider operating range than the RID assay. fH values were unaffected after multiple freeze-thaw cycles demonstrating that it is evidently a stable analyte for immunoassay. fH concentration was unaltered by an acute inflammatory stimulus. The population study showed that plasma fH concentration is associated with circulating lipids and indices of body fat. CONCLUSION We present the first high throughput assay for circulating fH; the assay is accurate and reliable with reproducible measures from stored samples. It has established the distribution of fH values at a population level and demonstrated important associations with circulating lipids and indices of body fat, thus providing an important reference for future clinical and epidemiological investigations.
Collapse
Affiliation(s)
- Reecha Sofat
- Centre for Clinical Pharmacology, Division of Medicine, University College London, Rayne Building, 5 University Street, London, WC1E 6JJ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Hofer J, Janecke AR, Zimmerhackl LB, Riedl M, Rosales A, Giner T, Cortina G, Haindl CJ, Petzelberger B, Pawlik M, Jeller V, Vester U, Gadner B, van Husen M, Moritz ML, Würzner R, Jungraithmayr T. Complement factor H-related protein 1 deficiency and factor H antibodies in pediatric patients with atypical hemolytic uremic syndrome. Clin J Am Soc Nephrol 2012; 8:407-15. [PMID: 23243267 DOI: 10.2215/cjn.01260212] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND OBJECTIVES This study evaluated the relevance of complement factor H (CFH)-related protein (CFHR) 1 deficiency in pediatric patients with atypical hemolytic uremic syndrome (aHUS) by evaluating both the frequency of deletions in CFHR1 and the presence of complement factor H (CFH) antibodies. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS A total of 116 patients (mainly from central Europe) and 118 healthy blood donors were included from 2001 to 2012. The presence of CFHR1 gene deletions was determined in 90 pediatric patients with aHUS and 118 controls by an easy, fast, and cheap PCR assay; 100 patients with aHUS and 42 controls were tested for CFH antibodies by ELISA. Questionnaires were administered to evaluate the clinical and laboratory data. RESULTS Homozygous deletion in CFHR1 was detected in 32% of the patients with aHUS tested, compared with 2.5% of controls (P<0.001). CFH antibodies were present in 25% of the patients and none of the controls. CFH antibodies were detected in 82% of patients with homozygous CFHR1 gene deletion and in 6% of patients without. CFH antibody-positive patients with aHUS showed a significantly lower platelet nadir at disease onset and significantly less frequent involvement of the central nervous system than did antibody-negative patients. Antibody-positive patients also received plasma therapy more often. CONCLUSION Homozygous deletion in CFHR1 is strongly associated with occurrence of CFH antibodies in pediatric patients with aHUS. However, despite this apparent genetic disease predisposition, it cannot be considered an exclusive cause for aHUS. Initial presentation of Shiga toxin-negative HUS with severe thrombocytopenia and no central nervous system complications in pediatric patients is especially suspicious for CFH antibody aHUS.
Collapse
Affiliation(s)
- Johannes Hofer
- Department of Pediatrics I, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Buentello-Volante B, Rodriguez-Ruiz G, Miranda-Duarte A, Pompa-Mera EN, Graue-Wiechers F, Bekker-Méndez C, Ayala-Ramirez R, Quezada C, Rodríguez-Loaiza JL, Zenteno JC. Susceptibility to advanced age-related macular degeneration and alleles of complement factor H, complement factor B, complement component 2, complement component 3, and age-related maculopathy susceptibility 2 genes in a Mexican population. Mol Vis 2012; 18:2518-25. [PMID: 23112567 PMCID: PMC3482166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 10/09/2012] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To investigate the association of age-related macular degeneration (AMD)-high risk alleles of the complement factor H (CFH), complement factor B (CFB), complement component 2 (C2), complement component 3 (C3), and age-related maculopathy susceptibility 2 (ARMS2) genes in a Mexican population for the first time. METHODS Genotyping was performed for the Y402H variant of CFH, for the L9H, R32Q, and K565E variants of CFB, the E318D variant of C2, the A69S variant of ARMS2, and the R102G variant of C3 in 159 Mexican mestizo patients at advanced stages of AMD, i.e., CARMS (Clinical Age-Related Maculopathy Staging System) grade 4 or 5. The frequency of these variants was also investigated in a group of 152 control subjects without AMD. Genomic DNA was extracted from blood leukocytes, and genotyping was performed using PCR followed by direct sequencing. Allele-specific restriction enzyme digestion was used to detect the R102G polymorphism in C3. RESULTS There were significant differences in the allelic distribution between the two groups for CFH Y402H (p=1×10(-5)), ARMS A69S (p=4×10(-7)), and CFB R32Q (p=0.01). The odds ratios (95% confidence interval) obtained for the risk alleles of these three variants were 3.8 (2.4-5.9), 3.04 (2.2-4.3), and 2.5 (1.1-5.7), respectively. Haplotype analysis including the two most significantly associated alleles (CFH Y402H and ARMS A69S) indicated that the C-T combination conferred an odds ratio (95% confidence interval) of 6.9 (3.2-14.8). The exposed attributable risk for this particular haplotype was 85.5%. CONCLUSIONS This is the first case-control investigation of AMD-high risk alleles in a Latino population. Our results support that CFH, ARMS2, and CFB AMD-risk alleles are consistently associated with the disease, even in ethnic groups with a complex admixture of ancestral populations such as Mexican mestizos.
Collapse
Affiliation(s)
- Beatriz Buentello-Volante
- Department of Genetics and Research Unit, Institute of Ophthalmology “Conde de Valenciana” Mexico City, Mexico
| | - Gabriela Rodriguez-Ruiz
- Department of Genetics and Research Unit, Institute of Ophthalmology “Conde de Valenciana” Mexico City, Mexico
| | | | - Ericka N. Pompa-Mera
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología, Centro Médico Nacional La Raza, IMSS, Mexico City, Mexico
| | | | - Carolina Bekker-Méndez
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología, Centro Médico Nacional La Raza, IMSS, Mexico City, Mexico
| | - Raul Ayala-Ramirez
- Retina Department, Institute of Ophthalmology “Conde de Valenciana” Mexico City, Mexico
| | - Carlos Quezada
- Retina Department, Institute of Ophthalmology “Conde de Valenciana” Mexico City, Mexico
| | | | - Juan C. Zenteno
- Department of Genetics and Research Unit, Institute of Ophthalmology “Conde de Valenciana” Mexico City, Mexico,Faculty of Medicine, Department of Biochemistry, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
83
|
Kavanagh D, Pappworth IY, Anderson H, Hayes CM, Moore I, Hunze EM, Bennaceur K, Roversi P, Lea S, Strain L, Ward R, Plant N, Nailescu C, Goodship THJ, Marchbank KJ. Factor I autoantibodies in patients with atypical hemolytic uremic syndrome: disease-associated or an epiphenomenon? Clin J Am Soc Nephrol 2012; 7:417-26. [PMID: 22223611 PMCID: PMC3302670 DOI: 10.2215/cjn.05750611] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 12/01/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVES Atypical hemolytic uremic syndrome is a disease associated with mutations in the genes encoding the complement regulators factors H and I. In addition, factor H autoantibodies have been reported in ∼10% of patients with atypical hemolytic uremic syndrome. This study searched for the presence of factor I autoantibodies in atypical hemolytic uremic syndrome. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS This study screened 175 atypical hemolytic uremic syndrome patients for factor I autoantibodies using ELISA with confirmatory Western blotting. Functional studies using purified immunoglobulin from one patient were subsequently undertaken. RESULTS Factor I autoantibodies were detected in three patients. In one patient with a high titer of autoantibody, the titer was tracked over time and was found to have no association with disease activity. This study found evidence of an immune complex of antibody and factor I in this patient, but purified IgG, isolated from current serum samples, had only a minor effect on fluid phase and cell surface complement regulation. Genetic analysis of the three patients with factor I autoantibodies revealed that they had two copies of the genes encoding factor H-related proteins 1 and 3 and therefore, did not have a deletion commonly associated with factor H autoantibodies in atypical hemolytic uremic syndrome. Two patients, however, had functionally significant mutations in complement factor H. CONCLUSIONS These findings reinforce the concept of multiple concurrent risk factors being associated with atypical hemolytic uremic syndrome but question whether autoantibodies per se predispose to atypical hemolytic uremic syndrome.
Collapse
Affiliation(s)
- David Kavanagh
- Institutes of Cellular and Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Isabel Y. Pappworth
- Institutes of Cellular and Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Holly Anderson
- Institutes of Cellular and Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Christine M. Hayes
- Institutes of Cellular and Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Iain Moore
- Institutes of Cellular and Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Eva-Maria Hunze
- Institutes of Cellular and Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Karim Bennaceur
- Institutes of Cellular and Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Pietro Roversi
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Susan Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Roy Ward
- Department of Immunology, Newcastle-upon-Tyne Hospitals, National Health Service Foundation Trust, Newcastle-upon-Tyne, United Kingdom
| | - Nick Plant
- Nephrology Department, Royal Manchester Children’s Hospital, Manchester, United Kingdom; and
| | - Corina Nailescu
- Pediatric Nephrology & Hypertension Section, Indiana University, Indianapolis Indiana
| | - Timothy H. J. Goodship
- Institutes of Cellular and Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Kevin J. Marchbank
- Institutes of Cellular and Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
84
|
Zhang Y, Meyer NC, Wang K, Nishimura C, Frees K, Jones M, Katz LM, Sethi S, Smith RJ. Causes of alternative pathway dysregulation in dense deposit disease. Clin J Am Soc Nephrol 2012; 7:265-74. [PMID: 22223606 PMCID: PMC3280037 DOI: 10.2215/cjn.07900811] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 10/21/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVES This study was designed to investigate the causes of alternative pathway dysregulation in a cohort of patients with dense deposit disease (DDD). DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Thirty-two patients with biopsy-proven DDD underwent screening for C3 nephritic factors (C3Nefs), factor H autoantibodies (FHAAs), factor B autoantibodies (FBAAs), and genetic variants in CFH. C3Nefs were detected by: ELISA, C3 convertase surface assay (C3CSA), C3CSA with properdin (C3CSAP), two-dimensional immunoelectrophoresis (2DIEP), and immunofixation electrophoresis (IFE). FHAAs and FBAAs were detected by ELISA, and CFH variants were identified by Sanger sequencing. RESULTS Twenty-five patients (78%) were positive for C3Nefs. Three C3Nef-positive patients were also positive for FBAAs and one of these patients additionally carried two novel missense variants in CFH. Of the seven C3Nef-negative patients, one patient was positive for FHAAs and two patients carried CFH variants that may be causally related to their DDD phenotype. C3CASP was the most sensitive C3Nef-detection assay. C3CASP and IFE are complementary because C3CSAP measures the stabilizing properties of C3Nefs, whereas IFE measures their expected consequence-breakdown of C3b. CONCLUSIONS A test panel that includes C3CSAP, IFE, FHAAs, FBAAs, and genetic testing for CFH variants will identify a probable cause for alternative pathway dysregulation in approximately 90% of DDD patients. Dysregulation is most frequently due to C3Nefs, although some patients test positive for FHAAs, FBAAs, and CFH mutations. Defining the pathophysiology of DDD should facilitate the development of mechanism-directed therapies.
Collapse
Affiliation(s)
- Yuzhou Zhang
- Departments of Otolaryngology–Head & Neck Surgery and
| | | | - Kai Wang
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa
| | | | - Kathy Frees
- Departments of Otolaryngology–Head & Neck Surgery and
| | - Michael Jones
- Departments of Otolaryngology–Head & Neck Surgery and
| | - Louis M. Katz
- Mississippi Valley Regional Blood Center, Davenport, Iowa; and
| | - Sanjeev Sethi
- Division of Anatomic Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Richard J.H. Smith
- Departments of Otolaryngology–Head & Neck Surgery and
- Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
85
|
Ermini L, Goodship TH, Strain L, Weale ME, Sacks SH, Cordell HJ, Fremeaux-Bacchi V, Sheerin NS. Common genetic variants in complement genes other than CFH, CD46 and the CFHRs are not associated with aHUS. Mol Immunol 2012; 49:640-8. [PMID: 22153652 PMCID: PMC3438446 DOI: 10.1016/j.molimm.2011.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 11/10/2011] [Indexed: 01/15/2023]
Abstract
It is well established that common genetic variants in CFH, CD46 and the CFHRs are additional risk factors for the development of aHUS. To examine the hypothesis that common variants in other complement genes have a similar effect we genotyped 501 SNPs in 47 complement genes in 94 aHUS patients from Newcastle, 126 aHUS patients from Paris, 374 UK controls and 165 French controls. We replicated the associations in CFH, CD46 and the CFHRs but found no association with any other complement gene. The strongest associations replicated in both cohorts were found for four SNPs within CD46 (p-value<10(-3)) and five SNPs within CFH (p-value<5×10(-3)). Significant replicable associations with single SNPs in CFHR2, CFHR4 and an intergenic SNP (CR1-CD46) were also found. Analysis of the Paris cohort showed that the association with CD46 SNPs was only present in those patients with complement mutations. Haplotype analysis showed at-risk and protective haplotypes in both CD46 and CFH. The CD46 haplotype was only disease-associated in those patients with mutations.
Collapse
Affiliation(s)
- Luca Ermini
- Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Timothy H.J. Goodship
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Lisa Strain
- Northern Molecular Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, United Kingdom
| | - Michael E. Weale
- Department of Medical and Molecular Genetics, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Steven H. Sacks
- MRC Centre for Transplantation, King's College London, School of Medicine at Guy's, King's and St. Thomas’ Hospitals, London, United Kingdom
| | - Heather J. Cordell
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Veronique Fremeaux-Bacchi
- Assistance Publique-Hopitaux de Paris, Hôpital Européen Georges-Pompidou, Service d‘Immunologie Biologique, Paris, France
| | - Neil S. Sheerin
- Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
86
|
Leban N, Abarrategui-Garrido C, Fariza-Requejo E, Amiñoso-Carbonero C, Pinto S, Chibani JB, Khelil AH, Sánchez-Corral P. Factor H and CFHR1 polymorphisms associated with atypical Haemolytic Uraemic Syndrome (aHUS) are differently expressed in Tunisian and in Caucasian populations. Int J Immunogenet 2011; 39:110-3. [DOI: 10.1111/j.1744-313x.2011.01071.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
87
|
Kim JJ, Goodship THJ, Tizard J, Inward C. Plasma therapy for atypical haemolytic uraemic syndrome associated with heterozygous factor H mutations. Pediatr Nephrol 2011; 26:2073-6. [PMID: 21717289 DOI: 10.1007/s00467-011-1944-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 06/03/2011] [Accepted: 06/06/2011] [Indexed: 11/30/2022]
Abstract
Atypical haemolytic uraemic syndrome (aHUS) is frequently associated with mutations in the gene encoding complement factor H (CFH). The clinical response to plasma therapy in aHUS is variable. We present here our experience of plasma therapy in three aHUS patients with CFH mutations. Three children presented aged 4, 22 and 6 months (patients 1-3 respectively) in acute kidney injury requiring dialysis. Plasma therapy consisting of plasma filtration (patient 1) or plasma exchange (PEX; patients 2 and 3) was commenced early following presentation. This resulted in aHUS remission and cessation of dialysis after 2 weeks, 9 days and 2 weeks respectively. Relapses were common and associated with increasing the interval between PEX, but all responded to intensification of PEX therapy. Patient 1 recovered 50% of renal function after first presentation. She had four relapses and started peritoneal dialysis 41 months after presentation. Mutation screening of CFH showed a missense mutation (c.3546 G > T, p.Arg1182Ser) in exon 23. PEX in patient 2 was slowly tapered over 4 months to fortnightly sessions, but she relapsed when PEX was extended to every 4 weeks. Renal function remained normal 12 months post-presentation. Mutation screening of CFH showed a mutation in exon 23 (c.3590 T > C, p.Val1197Ala) and two additional sequence variants in exons 3 and 4. Patient 3 had two relapses associated with intercurrent illnesses concurrent with reducing PEX to weekly doses. Renal function was normal 5 months post-presentation. All three patients showed a good response to PEX with improved renal function both initially and following a relapse. Further research is necessary to determine the best maintenance strategy to delay or prevent end-stage kidney disease.
Collapse
|
88
|
Fraczek LA, Martin CB, Martin BK. c-Jun and c-Fos regulate the complement factor H promoter in murine astrocytes. Mol Immunol 2011; 49:201-10. [PMID: 21920606 DOI: 10.1016/j.molimm.2011.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/08/2011] [Accepted: 08/18/2011] [Indexed: 11/24/2022]
Abstract
The complement system is a critical component of innate immunity that requires regulation to avoid inappropriate activation. This regulation is provided by many proteins, including complement factor H (CFH), a critical regulator of the alternative pathway of complement activation. Given its regulatory function, mutations in CFH have been implicated in diseases such as age-related macular degeneration and membranoproliferative glomerulonephritis, and central nervous system diseases such as Alzheimer's disease, Parkinson's disease, and a demyelinating murine model, experimental autoimmune encephalomyelitis (EAE). There have been few investigations on the transcriptional regulation of CFH in the brain and CNS. Our studies show that CFH mRNA is present in several CNS cell types. The murine CFH (mCFH) promoter was cloned and examined through truncation constructs and we show that specific regions throughout the promoter contain enhancers and repressors that are positively regulated by inflammatory cytokines in astrocytes. Database mining of these regions indicated transcription factor binding sites conserved between different species, which led to the investigation of specific transcription factor binding interactions in a 241 base pair (bp) region at -416 bp to -175 bp that showed the strongest activity. Through supershift analysis, it was determined that c-Jun and c-Fos interact with the CFH promoter in astrocytes in this region. These results suggest a relationship between cell cycle and complement regulation, and how these transcription factors and CFH affect disease will be a valuable area of investigation.
Collapse
Affiliation(s)
- Laura A Fraczek
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242, United States
| | | | | |
Collapse
|
89
|
Koskinen AR, Tukiainen E, Arola J, Nordin A, Höckerstedt HK, Nilsson B, Isoniemi H, Jokiranta TS. Complement activation during liver transplantation-special emphasis on patients with atypical hemolytic uremic syndrome. Am J Transplant 2011; 11:1885-95. [PMID: 21812916 DOI: 10.1111/j.1600-6143.2011.03612.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a thrombotic microangiopathy often caused by mutations in complement factor H (CFH), the main regulator of alternative complement pathway. Because CFH is produced mainly by the liver, combined liver-kidney transplantation is a reasonable option in treatment of patients with severe aHUS. We studied complement activation by monitoring activation markers during liver transplantation in two aHUS patients treated extensively with plasma exchange and nine other liver transplantation patients. After the reperfusion, a clear increase in all the activation markers except C4d was observed indicating that the activation occurs mainly through the alternative pathway. Concentration of SC5b-9 was higher in the hepatic than the portal vein indicating complement activation in the graft. Preoperatively and early during the operation, the aHUS patients showed highest C3d concentrations but otherwise their activation markers were similar to the other patients. In the other patients, correlation was found between perioperative SC5b-9 concentration and postoperative alanine aminotransferase and histological changes. This study explains why supply of normal CFH by extensive plasma exchange is beneficial before combined liver-kidney transplantation of aHUS patients. Also the results suggest that perioperative inhibition of the terminal complement cascade might be beneficial if enhanced complement activation is expected.
Collapse
Affiliation(s)
- A R Koskinen
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Tortajada A, Pinto S, Martínez-Ara J, López-Trascasa M, Sánchez-Corral P, de Córdoba SR. Complement factor H variants I890 and L1007 while commonly associated with atypical hemolytic uremic syndrome are polymorphisms with no functional significance. Kidney Int 2011; 81:56-63. [PMID: 21881555 DOI: 10.1038/ki.2011.291] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mutations and polymorphisms in the gene-encoding factor H (CFH) are associated with atypical hemolytic uremic syndrome, dense deposit disease, and age-related macular degeneration. Many of these CFH genetic variations disrupt the regulatory role of factor H, supporting the concept that dysregulation of complement is a unifying pathogenic feature of these disorders. Evidence of a causal relationship with the disease is, however, not available for all CFH genetic variations found in patients, which is a potential cause of misinterpretations with important consequences for the patients and their relatives. CFH I890 and L1007 are two genetic variations repeatedly associated with atypical hemolytic uremic syndrome and also found in patients with dense deposit disease and age-related macular degeneration. Here we report an extensive genetic and functional analysis of these CFH variants. Our results indicate that I890 and L1007 segregate together as part of a distinct and relatively infrequent CFH haplotype in Caucasians. Extensive analysis of the S890/V1007 (control) and I890/L1007 (disease-associated) factor H protein variants failed to provide evidence that these amino acid changes have functional implications. Thus, the presence of the I890 and L1007 variants in healthy individuals and their high frequency in sub-Saharan African and African-American populations strongly suggest that I890 and L1007 are rare factor H polymorphisms unrelated to disease.
Collapse
Affiliation(s)
- Agustín Tortajada
- Departamento de Medicina Celular y Molecular, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
91
|
Johnson S, Waters A. Is complement a culprit in infection-induced forms of haemolytic uraemic syndrome? Immunobiology 2011; 217:235-43. [PMID: 21852019 DOI: 10.1016/j.imbio.2011.07.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 06/30/2011] [Accepted: 07/18/2011] [Indexed: 12/25/2022]
Abstract
Haemolytic uraemic syndrome (HUS) accounts for the most common cause of childhood acute renal failure. Characterized by the classical triad of a microangiopathic haemolytic anaemia, thrombocytopaenia and acute renal failure, HUS occurs as a result of Shiga-toxin producing microbes in 90% of cases. The remaining 10% of cases represent a heterogeneous subgroup in which inherited and acquired forms of complement dysregulation have been described in up to 60%. Emerging evidence suggests that microbes associated with HUS exhibit interaction with the complement system. With the advent of improved genetic diagnosis, it is likely that certain cases of infection-induced HUS may be attributed to underlying defects in complement components. This review summarises the interplay between complement and infection in the pathogenesis of HUS.
Collapse
Affiliation(s)
- Sally Johnson
- Department of Paediatric Nephrology, Great North Children's Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle Upon Tyne, UK.
| | | |
Collapse
|
92
|
Poolpol K, Gadner B, Neururer S, Mellmann A, Karch H, Orth D, Würzner R. Do complement factor H 402Y and C7 M allotypes predispose to (typical) haemolytic uraemic syndrome? Int J Immunogenet 2011; 38:383-7. [PMID: 21649859 DOI: 10.1111/j.1744-313x.2011.01017.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Typical haemolytic uraemic syndrome (HUS) is mainly caused by infections with enterohaemorrhagic Escherichia coli, whereas in atypical, nonbacteria-associated HUS, complement plays a dominant role. Recently, complement has also been shown to be involved in typical HUS. In this study, mostly weakly significant associations with homozygosities of complement allotype C7 M and inversely with factor H 402H were found, suggesting that 402Y and C7 M allotypes predispose to (typical) haemolytic uraemic syndrome.
Collapse
Affiliation(s)
- K Poolpol
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Austria
| | | | | | | | | | | | | |
Collapse
|
93
|
Fujimura Y, Matsumoto M, Yagi H. [IV. Others: 1. Hemolytic uremic syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP)]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2011; 100:1296-1307. [PMID: 21702147 DOI: 10.2169/naika.100.1296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
94
|
|
95
|
Schmidt CQ, Slingsby FC, Richards A, Barlow PN. Production of biologically active complement factor H in therapeutically useful quantities. Protein Expr Purif 2011; 76:254-63. [PMID: 21146613 PMCID: PMC4067574 DOI: 10.1016/j.pep.2010.12.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 12/06/2010] [Accepted: 12/06/2010] [Indexed: 01/13/2023]
Abstract
Human complement factor H (FH), an abundant 155-kDa plasma glycoprotein with 40 disulphide bonds, regulates the alternative-pathway complement cascade. Mutations and single nucleotide polymorphisms in the FH gene predispose to development of age-related macular degeneration, atypical haemolytic uraemic syndrome and dense deposit disease. Supplementation with FH variants protective against disease is an enticing therapeutic prospect. Current sources of therapeutic FH are restricted to human blood plasma highlighting a need for recombinant material. Previously FH expression in cultured plant, mammalian or insect cells yielded protein amounts inadequate for full characterisation, and orders of magnitude below therapeutic usefulness. Here, the V62,Y402 variant of FH has been produced recombinantly (rFH) in Pichia pastoris cells. Codon-optimisation proved essential whilst exploitation of the yeast mating α-factor peptide ensured secretion. We thereby produced multiple 10s-of-milligram of rFH. Following endoglycosidase H digestion of N-linked glycans, rFH (with eight residual N-acetylglucosamine moieties) was purified on heparin-affinity resin and anion-exchange chromatography. Full-length rFH was verified by mass spectrometry and Western blot using monoclonal antibodies to the C-terminus. Recombinant FH is a single non-aggregated species (by dynamic light scattering) and fully functional in biochemical and biological assays. An additional version of rFH was produced in which eight N-glycosylation sequons were ablated by Asn-Gln substitutions resulting in a glycan-devoid product. Successful production of rFH in this potentially very highly expressing system makes production of therapeutically useful quantities economically viable. Furthermore, ease of genetic manipulation in P. pastoris would allow production of engineered FH versions with enhanced pharmacokinetic and pharmacodynamic properties.
Collapse
Affiliation(s)
- Christoph Q Schmidt
- School of Chemistry and School of Biological Sciences, The University of Edinburgh, Edinburgh, UK.
| | | | | | | |
Collapse
|
96
|
Morgan HP, Schmidt CQ, Guariento M, Blaum BS, Gillespie D, Herbert AP, Kavanagh D, Mertens HDT, Svergun DI, Johansson CM, Uhrín D, Barlow PN, Hannan JP. Structural basis for engagement by complement factor H of C3b on a self surface. Nat Struct Mol Biol 2011; 18:463-70. [PMID: 21317894 PMCID: PMC3512577 DOI: 10.1038/nsmb.2018] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 01/14/2011] [Indexed: 12/15/2022]
Abstract
Complement factor H (FH) attenuates C3b molecules tethered by their thioester domains to self surfaces and thereby protects host tissues. Factor H is a cofactor for initial C3b proteolysis that ultimately yields a surface-attached fragment (C3d) corresponding to the thioester domain. We used NMR and X-ray crystallography to study the C3d-FH19-20 complex in atomic detail and identify glycosaminoglycan-binding residues in factor H module 20 of the C3d-FH19-20 complex. Mutagenesis justified the merging of the C3d-FH19-20 structure with an existing C3b-FH1-4 crystal structure. We concatenated the merged structure with the available FH6-8 crystal structure and new SAXS-derived FH1-4, FH8-15 and FH15-19 envelopes. The combined data are consistent with a bent-back factor H molecule that binds through its termini to two sites on one C3b molecule and simultaneously to adjacent polyanionic host-surface markers.
Collapse
Affiliation(s)
- Hugh P Morgan
- Institute of Structural and Molecular Biology, School of Biological Sciences, King's Buildings, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Schejbel L, Schmidt IM, Kirchhoff M, Andersen CB, Marquart HV, Zipfel P, Garred P. Complement factor H deficiency and endocapillary glomerulonephritis due to paternal isodisomy and a novel factor H mutation. Genes Immun 2011; 12:90-9. [PMID: 21270828 DOI: 10.1038/gene.2010.63] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Complement factor H (CFH) is a regulator of the alternative complement activation pathway. Mutations in the CFH gene are associated with atypical hemolytic uremic syndrome, membranoproliferative glomerulonephritis type II and C3 glomerulonephritis. Here, we report a 6-month-old CFH-deficient child presenting with endocapillary glomerulonephritis rather than membranoproliferative glomerulonephritis (MPGN) or C3 glomerulonephritis. Sequence analyses showed homozygosity for a novel CFH missense mutation (Pro139Ser) associated with severely decreased CFH plasma concentration (<6%) but normal mRNA splicing and expression. The father was heterozygous carrier of the mutation, but the mother was a non-carrier. Thus, a large deletion in the maternal CFH locus or uniparental isodisomy was suspected. Polymorphic markers across chromosome 1 showed homozygosity for the paternal allele in all markers and a lack of the maternal allele in six informative markers. This combined with a comparative genomic hybridization assay demonstrated paternal isodisomy. Uniparental isodisomy increases the risk of homozygous variations in other genes on the affected chromosome. Therefore, we analyzed other susceptibility genes on chromosome 1 and found no sequence variation in membrane cofactor protein, but homozygosity for the common deletion of CFH-related proteins 1 and 3, which may contribute to the early onset of disease.
Collapse
Affiliation(s)
- L Schejbel
- Department of Clinical Immunology, Laboratory of Molecular Medicine, Rigshospitalet, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
98
|
Pechtl IC, Kavanagh D, McIntosh N, Harris CL, Barlow PN. Disease-associated N-terminal complement factor H mutations perturb cofactor and decay-accelerating activities. J Biol Chem 2011; 286:11082-90. [PMID: 21270465 PMCID: PMC3064162 DOI: 10.1074/jbc.m110.211839] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many mutations associated with atypical hemolytic uremic syndrome (aHUS) lie within complement control protein modules 19-20 at the C terminus of the complement regulator factor H (FH). This region mediates preferential action of FH on self, as opposed to foreign, membranes and surfaces. Hence, speculation on disease mechanisms has focused on deficiencies in regulation of complement activation on glomerular capillary beds. Here, we investigate the consequences of aHUS-linked mutations (R53H and R78G) within the FH N-terminal complement control protein module that also carries the I62V variation linked to dense-deposit disease and age-related macular degeneration. This module contributes to a four-module C3b-binding site (FH1-4) needed for complement regulation and sufficient for fluid-phase regulatory activity. Recombinant FH1-4(V62) and FH1-4(I62) bind immobilized C3b with similar affinities (K(D) = 10-14 μM), whereas FH1-4(I62) is slightly more effective than FH1-4(V62) as cofactor for factor I-mediated cleavage of C3b. The mutant (R53H)FH1-4(V62) binds to C3b with comparable affinity (K(D) ∼12 μM) yet has decreased cofactor activities both in fluid phase and on surface-bound C3b, and exhibits only weak decay-accelerating activity for C3 convertase (C3bBb). The other mutant, (R78G)FH1-4(V62), binds poorly to immobilized C3b (K(D) >35 μM) and is severely functionally compromised, having decreased cofactor and decay-accelerating activities. Our data support causal links between these mutations and disease; they demonstrate that mutations affecting the N-terminal activities of FH, not just those in the C terminus, can predispose to aHUS. These observations reinforce the notion that deficiency in any one of several FH functional properties can contribute to the pathogenesis of this disease.
Collapse
Affiliation(s)
- Isabell C Pechtl
- School of Chemistry, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
99
|
Roumenina LT, Loirat C, Dragon-Durey MA, Halbwachs-Mecarelli L, Sautes-Fridman C, Fremeaux-Bacchi V. Alternative complement pathway assessment in patients with atypical HUS. J Immunol Methods 2011; 365:8-26. [PMID: 21215749 DOI: 10.1016/j.jim.2010.12.020] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/31/2010] [Accepted: 12/30/2010] [Indexed: 01/02/2023]
Abstract
The atypical Hemolytic Uremic Syndrome (aHUS) is a rare thrombotic microangiopathy leading to end stage renal disease in approximately 60% of patients. Over the last decade, a clear link has been demonstrated between this disease and defective complement regulation. The hallmark of the aHUS is the association with mutations in complement alternative pathway genes. Endothelial damage is related to complement dysregulation, but the exact mechanism is just starting to be elucidated. Screening for and characterization of mutations in the components of the C3 convertase (C3 and FB) or its regulators (FH, FI, MCP, and Thrombomodulin) or anti-FH antibodies has become an indispensable part of the disease's diagnostic. This review will initially summarize current knowledge on the understanding of complement activation and regulation, followed by a description on the genetic analysis as well as the methods used for complement protein quantification. Another part of this review will focus on the mechanisms of action of aHUS-associated mutations. We will emphasize on when and why some mutations lead to protein deficiency, while others result in - to dysfunctional but normally expressed proteins. Finally, we will discuss how the therapy of aHUS patients can be modified according to the functional consequences of each particular genetic defect.
Collapse
|
100
|
Waters AM, Licht C. aHUS caused by complement dysregulation: new therapies on the horizon. Pediatr Nephrol 2011; 26:41-57. [PMID: 20556434 PMCID: PMC2991208 DOI: 10.1007/s00467-010-1556-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/23/2010] [Accepted: 04/26/2010] [Indexed: 12/19/2022]
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a heterogeneous disease that is caused by defective complement regulation in over 50% of cases. Mutations have been identified in genes encoding both complement regulators [complement factor H (CFH), complement factor I (CFI), complement factor H-related proteins (CFHR), and membrane cofactor protein (MCP)], as well as complement activators [complement factor B (CFB) and C3]. More recently, mutations have also been identified in thrombomodulin (THBD), an anticoagulant glycoprotein that plays a role in the inactivation of C3a and C5a. Inhibitory autoantibodies to CFH account for an additional 5-10% of cases and can occur in isolation or in association with mutations in CFH, CFI, CFHR 1, 3, 4, and MCP. Plasma therapies are considered the mainstay of therapy in aHUS secondary to defective complement regulation and may be administered as plasma infusions or plasma exchange. However, in certain cases, despite initiation of plasma therapy, renal function continues to deteriorate with progression to end-stage renal disease and renal transplantation. Recently, eculizumab, a humanized monoclonal antibody against C5, has been described as an effective therapeutic strategy in the management of refractory aHUS that has failed to respond to plasma therapy. Clinical trials are now underway to further evaluate the efficacy of eculizumab in the management of both plasma-sensitive and plasma-resistant aHUS.
Collapse
Affiliation(s)
- Aoife M Waters
- Department of Nephrology, Great Ormond Street Hospital, London, WC1N 3JH, UK.
| | | |
Collapse
|