51
|
Combined treatment using peripheral nerve graft and FGF-1: changes to the glial environment and differential macrophage reaction in a complete transected spinal cord. Neurosci Lett 2007; 433:163-9. [PMID: 18291581 DOI: 10.1016/j.neulet.2007.11.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 11/07/2007] [Accepted: 11/21/2007] [Indexed: 11/21/2022]
Abstract
We used a complete spinal cord transection model in which the T8 spinal segment was removed to study the effect of combined treatment of peripheral nerve graft and application of FGF-1 on the glial environment. The combined treatment resulted in reduced astrocytic glial scarring, reactive macrophage gliosis, and inhibitory proteoglycan in the back-degenerated white matter tract. While the macrophage activities in the back-degenerative tract were down-regulated, those in the grafted peripheral nerves and in the distal Wallerian degenerative tracts were not. We concluded that the combined treatment changed the glial environment in the back-degenerative tract, and differentially regulated the macrophage activities in the system, in favor of CNS regeneration.
Collapse
|
52
|
Lee YS, Lin CY, Caiozzo VJ, Robertson RT, Yu J, Lin VW. Repair of spinal cord transection and its effects on muscle mass and myosin heavy chain isoform phenotype. J Appl Physiol (1985) 2007; 103:1808-14. [PMID: 17717118 DOI: 10.1152/japplphysiol.00588.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A number of significant advances have been developed for treating spinal cord injury during the past two decades. The combination of peripheral nerve grafts and acidic fibroblast growth factor (hereafter referred to as PNG) has been shown to partially restore hindlimb function. However, very little is known about the effects of such treatments in restoring normal muscle phenotype. The primary goal of the current study was to test the hypothesis that PNG would completely or partially restore 1) muscle mass and muscle fiber cross-sectional area and 2) the slow myosin heavy chain phenotype of the soleus muscle. To test this hypothesis, we assigned female Sprague-Dawley rats to three groups: 1) sham control, 2) spinal cord transection (Tx), and 3) spinal cord transection plus PNG (Tx+PNG). Six months following spinal cord transection, the open-field test was performed to assess locomotor function, and then the soleus muscles were harvested and analyzed. SDS-PAGE for single muscle fiber was used to evaluate the myosin heavy chain (MHC) isoform expression pattern following the injury and treatment. Immunohistochemistry was used to identify serotonin (5-HT) fibers in the spinal cord. Compared with the Tx group, the Tx+PNG group showed 1) significantly improved Basso, Beattie, and Bresnahan scores (hindlimb locomotion test), 2) less muscle atrophy, 3) a higher percentage of slow type I fibers, and 4) 5-HT fibers distal to the lesion site. We conclude that the combined treatment of PNG is partially effective in restoring the muscle mass and slow phenotype of the soleus muscle in a T-8 spinal cord-transected rat model.
Collapse
MESH Headings
- Animals
- Body Weight
- Disease Models, Animal
- Female
- Fibroblast Growth Factor 1/pharmacology
- Fibroblast Growth Factor 1/therapeutic use
- Intercostal Nerves/transplantation
- Motor Activity/drug effects
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Slow-Twitch/drug effects
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/innervation
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Myosin Heavy Chains/metabolism
- Nerve Regeneration/drug effects
- Organ Size
- Phenotype
- Protein Isoforms/metabolism
- Rats
- Rats, Sprague-Dawley
- Recovery of Function
- Serotonin/metabolism
- Spinal Cord Injuries/drug therapy
- Spinal Cord Injuries/metabolism
- Spinal Cord Injuries/pathology
- Spinal Cord Injuries/physiopathology
- Spinal Cord Injuries/surgery
- Time Factors
Collapse
Affiliation(s)
- Yu-Shang Lee
- Department of Anatomy & Neurobiology, University of California, Irvine, CA, USA
| | | | | | | | | | | |
Collapse
|
53
|
Kuo HS, Tsai MJ, Huang MC, Huang WC, Lee MJ, Kuo WC, You LH, Szeto KC, Tsai IL, Chang WC, Chiu CW, Ma H, Chak KF, Cheng H. The combination of peripheral nerve grafts and acidic fibroblast growth factor enhances arginase I and polyamine spermine expression in transected rat spinal cords. Biochem Biophys Res Commun 2007; 357:1-7. [PMID: 17418108 DOI: 10.1016/j.bbrc.2007.02.167] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 02/27/2007] [Indexed: 11/23/2022]
Abstract
Treatment with a combination of peripheral nerve grafts and acidic fibroblast growth factor improves hind limb locomotor function after spinal cord transection. This study examined the effect of treatment on expression of arginase I (Arg I) and polyamines. Arg I expression was low in the spinal cords of normal rats but increased following spinal injury. Only fully repaired spinal cords expressed higher Arg I levels 6-14 days following repair. In 10-day repaired spinal cords, high Arg I immunoreactivity was detected in motoneurons and alternatively activated macrophages in the graft area and graft-stump edges, and high levels of the polyamine spermine were expressed by macrophages within the intercostal nerve graft. Thus, in addition to enhancing the expression of Arg I and spermine in repaired spinal cords, our treatment may recruit activated macrophages and create a more favorable environment for axonal regrowth.
Collapse
Affiliation(s)
- Huai-Sheng Kuo
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
Spinal cord injury (SCI) can lead to paraplegia or quadriplegia. Although there are no fully restorative treatments for SCI, various rehabilitative, cellular and molecular therapies have been tested in animal models. Many of these have reached, or are approaching, clinical trials. Here, we review these potential therapies, with an emphasis on the need for reproducible evidence of safety and efficacy. Individual therapies are unlikely to provide a panacea. Rather, we predict that combinations of strategies will lead to improvements in outcome after SCI. Basic scientific research should provide a rational basis for tailoring specific combinations of clinical therapies to different types of SCI.
Collapse
Affiliation(s)
- Sandrine Thuret
- Centre for the Cellular Basis of Behaviour, Institute of Psychiatry, King's College London, P.O. Box 39, 1-2 WW Ground, Denmark Hill, London SE5 8AF, UK
| | | | | |
Collapse
|
55
|
Abstract
The Schwann cell is one of the most widely studied cell types for repair of the spinal cord. These cells play a crucial role in endogenous repair of peripheral nerves due to their ability to dedifferentiate, migrate, proliferate, express growth promoting factors, and myelinate regenerating axons. Following trauma to the spinal cord, Schwann cells migrate from the periphery into the injury site, where they apparently participate in endogenous repair processes. For transplantation into the spinal cord, large numbers of Schwann cells are necessary to fill injury-induced cystic cavities. Several culture systems have been developed that provide large, highly purified populations of Schwann cells. Importantly, the development of in vitro systems to harvest human Schwann cells presents a unique opportunity for autologous transplantation in the clinic. In animal models of spinal cord injury (SCI), grafting Schwann cells or peripheral nerve into the lesion site has been shown to promote axonal regeneration and myelination. However, axons do not regenerate beyond the transplant due to the inhibitory nature of the glial scar surrounding the injury. To overcome the glial scar inhibition, additional approaches such as increasing the intrinsic capacity of axons to regenerate and/or removal of the inhibitory molecules associated with reactive astrocytes and/or oligodendrocyte myelin should be incorporated. Clearly, Schwann cells have great potential for repair of the injured spinal cord, but they need to be combined with other interventions to maximize axonal regeneration and functional recovery.
Collapse
Affiliation(s)
- Martin Oudega
- The Miami Project to Cure Paralysis and the Department of Neurological Surgery, University of Miami School of Medicine, Miami, Florida, USA.
| | | |
Collapse
|
56
|
Lee YS, Lin CY, Robertson RT, Yu J, Deng X, Hsiao I, Lin VW. Re-growth of catecholaminergic fibers and protection of cholinergic spinal cord neurons in spinal repaired rats. Eur J Neurosci 2006; 23:693-702. [PMID: 16487151 DOI: 10.1111/j.1460-9568.2006.04598.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The extent of re-growth of catecholaminergic fibers, the survival of cholinergic neurons and the degree of autonomic dysreflexia were assessed in complete spinal cord-transected adult rats that received a repair treatment of peripheral nerve grafts and acidic fibroblast growth factor (aFGF). The rats were randomly divided into three groups: (1) sham control group (laminectomy only); (2) spinal cord transection at T8 (transected group); and (3) spinal cord transection at T8, followed by aFGF treatment and peripheral nerve graft (repaired group). The spinal cords and brains of all rats were collected at 6 months post-surgery. Immunohistochemistry for tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH), and fluoro-gold (FG) retrograde tracing were used to evaluate axon growth across the damage site, and immunocytochemistry for choline acetyl transferase (ChAT) was used to evaluate cholinergic neuronal cell survival following the injury and treatment. When comparing with the transected group, the repaired group showed: (1) lower elevation of mean arterial pressure during colorectal distension; (2) retrogradely labeled neurons in the hypothalamus, zona incerta, subcoeruleus nuclei and rostral ventrolateral medulla following application of FG below the repair site; (3) the presence of TH- and DBH-labeled axons below the lesion site; (4) higher numbers of ChAT-positive neurons in ventral horn and intermediolateral column near the lesion site. We conclude that peripheral nerve graft and aFGF treatments facilitate the re-growth of catecholaminergic fibers, also protect sympathetic preganglionic neurons and spinal motor neurons, and reduce autonomic dysfunction in a T-8 spinal cord-transected rat model.
Collapse
Affiliation(s)
- Yu-Shang Lee
- Department of Anatomy & Neurobiology, University of California, Irvine, USA
| | | | | | | | | | | | | |
Collapse
|
57
|
Schwab JM, Brechtel K, Mueller CA, Failli V, Kaps HP, Tuli SK, Schluesener HJ. Experimental strategies to promote spinal cord regeneration--an integrative perspective. Prog Neurobiol 2006; 78:91-116. [PMID: 16487649 DOI: 10.1016/j.pneurobio.2005.12.004] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 12/13/2005] [Accepted: 12/13/2005] [Indexed: 11/17/2022]
Abstract
Detailed pathophysiological findings of secondary damage phenomena after spinal cord injury (SCI) as well as the identification of inhibitory and neurotrophic proteins have yielded a plethora of experimental therapeutic approaches. Main targets are (i) to minimize secondary damage progression (neuroprotection), (ii) to foster axon conduction (neurorestoration) and (iii) to supply a permissive environment to promote axonal sprouting (neuroregenerative therapies). Pre-clinical studies have raised hope in functional recovery through the antagonism of growth inhibitors, application of growth factors, cell transplantation, and vaccination strategies. To date, even though based on successful pre-clinical animal studies, results of clinical trials are characterized by dampened effects attributable to difficulties in the study design (patient heterogeneity) and species differences. A combination of complementary therapeutic strategies might be considered pre-requisite for future synergistic approaches. Here, we line out pre-clinical interventions resulting in improved functional neurological outcome after spinal cord injury and track them on their intended way to bedside.
Collapse
Affiliation(s)
- Jan M Schwab
- Institute of Brain Research, Calwer Str. 3, University of Tuebingen, Medical School, Calwerstr. 3, 72076 Tuebingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
58
|
Zakrzewska M, Krowarsch D, Wiedlocha A, Olsnes S, Otlewski J. Highly stable mutants of human fibroblast growth factor-1 exhibit prolonged biological action. J Mol Biol 2005; 352:860-75. [PMID: 16126225 DOI: 10.1016/j.jmb.2005.07.066] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 07/21/2005] [Accepted: 07/27/2005] [Indexed: 11/29/2022]
Abstract
Fibroblast growth factor 1 (FGF-1) shows strong angiogenic, osteogenic and tissue-injury repair properties that might be relevant to medical applications. Since FGF-1 is partially unfolded at physiological temperature we decided to increase significantly its conformational stability and test how such an improvement will affect its biological function. Using an homology approach and rational strategy we designed two new single FGF-1 mutations: Q40P and S47I that appeared to be the most strongly stabilizing substitutions among those reported so far, increasing the denaturation temperature by 7.8 deg. C and 9.0 deg. C, respectively. As our goal was to produce highly stable variants of the growth factor, we combined these two mutations with five previously described stabilizing substitutions. The multiple mutants showed denaturation temperatures up to 27 deg. C higher than the wild-type and exhibited full additivity of the mutational effects. All those mutants were biologically competent in several cell culture assays, maintaining typical FGF-1 activities, such as binding to specific cell surface receptors and activation of downstream signaling pathways. Thus, we demonstrate that the low denaturation temperature of wild-type FGF-1 is not related to its fundamental cellular functions, and that FGF-1 action is not affected by its stability. A more detailed analysis of the biological behavior of stable FGF-1 mutants revealed that, compared with the wild-type, their mitogenic properties, as probed by the DNA synthesis assay, were significantly increased in the absence of heparin, and that their half-lives were extensively prolonged. We found that the biological action of the mutants was dictated by their susceptibility to proteases, which strongly correlated with the stability. Mutants which were much more resistant to proteolytic degradation always displayed a significant improvement in the half-life and mitogenesis. Our results show that engineered stable growth factor variants exhibit enhanced and prolonged activity, which can be advantageous in terms of the potential therapeutic applications of FGF-1.
Collapse
Affiliation(s)
- Malgorzata Zakrzewska
- Protein Engineering Laboratory, Institute of Biochemistry and Molecular Biology, University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland
| | | | | | | | | |
Collapse
|
59
|
Abstract
There are currently no fully restorative therapies for human spinal cord injury (SCI). Here,we briefly review the different types of human SCI pathology as well as the most commonly used rodent and nonhuman primate models of SCI that are used to simulate these pathologies and to test potential therapies. We then discuss various high profile (sometimes controversial) experimental strategies that have reported CNS axon regeneration and functional recovery of limb movement using these animal models of SCI. We particularly focus upon strategies that have been tested both in rodents and in nonhuman primates, and highlight those which are currently transitioning to clinical tests or trials in humans. Finally we discuss ways in which animal studies might be improved and what the future may hold for physical therapists involved in rehabilitation of humans with SCI.
Collapse
Affiliation(s)
- Lawrence Moon
- The Miami Project to Cure Paralysis, Miami, FL, USA.
| | | |
Collapse
|
60
|
Abstract
Clinicians and scientists in the field of spinal cord injury research and medicine are poised to begin translating promising new experimental findings into treatments for people. Advances in experimental regeneration research have led to several transplantation strategies that promote axonal regrowth and partial functional recovery in animal models of injury. In this review, we summarize current knowledge regarding various invasive experimental treatments that have been or are now being applied clinically. Various questions about the timeliness, safety, and benefits of the procedures are under discussion within the spinal cord injury (SCI) research community. We also describe guidelines for carrying out optimal clinical trials and efforts to establish specific international guidelines to translate preclinical treatment strategies into clinical trials in SCI. The clinical trial process and the role that clinical professionals have in advising individuals regarding participation in experimental procedures also is discussed.
Collapse
Affiliation(s)
- Maria J Amador
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA.
| | | |
Collapse
|
61
|
Ramer LM, Ramer MS, Steeves JD. Setting the stage for functional repair of spinal cord injuries: a cast of thousands. Spinal Cord 2005; 43:134-61. [PMID: 15672094 DOI: 10.1038/sj.sc.3101715] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here we review mechanisms and molecules that necessitate protection and oppose axonal growth in the injured spinal cord, representing not only a cast of villains but also a company of therapeutic targets, many of which have yet to be fully exploited. We next discuss recent progress in the fields of bridging, overcoming conduction block and rehabilitation after spinal cord injury (SCI), where several treatments in each category have entered the spotlight, and some are being tested clinically. Finally, studies that combine treatments targeting different aspects of SCI are reviewed. Although experiments applying some treatments in combination have been completed, auditions for each part in the much-sought combination therapy are ongoing, and performers must demonstrate robust anatomical regeneration and/or significant return of function in animal models before being considered for a lead role.
Collapse
Affiliation(s)
- L M Ramer
- ICORD (International Collaboration on Repair Discoveries), The University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
62
|
Abstract
Basic science advances in spinal cord injury and regeneration research have led to a variety of novel experimental therapeutics designed to promote functionally effective axonal regrowth and sprouting. Among these interventions are cell-based approaches involving transplantation of neural and non-neural tissue elements that have potential for restoring damaged neural pathways or reconstructing intraspinal synaptic circuitries by either regeneration or neuronal/glial replacement. Notably, some of these strategies (e.g., grafts of peripheral nerve tissue, olfactory ensheathing glia, activated macrophages, marrow stromal cells, myelin-forming oligodendrocyte precursors or stem cells, and fetal spinal cord tissue) have already been translated to the clinical arena, whereas others have imminent likelihood of bench-to-bedside application. Although this progress has generated considerable enthusiasm about treating what once was thought to be a totally incurable condition, there are many issues to be considered relative to treatment safety and efficacy. The following review reflects on different experimental applications of intraspinal transplantation with consideration of the underlying pathological, pathophysiological, functional, and neuroplastic responses to spinal trauma that such treatments may target along with related issues of procedural and biological safety. The discussion then moves to an overview of ongoing and completed clinical trials to date. The pros and cons of these endeavors are considered, as well as what has been learned from them. Attention is primarily directed at preclinical animal modeling and the importance of patterning clinical trials, as much as possible, according to laboratory experiences.
Collapse
Affiliation(s)
- Paul J Reier
- College of Medicine and McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, USA.
| |
Collapse
|
63
|
Cellular transplantation strategies for spinal cord injury and translational neurobiology. Neurotherapeutics 2004. [DOI: 10.1007/bf03206629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
64
|
Schiaveto de Souza A, da Silva CA, Del Bel EA. Methodological evaluation to analyze functional recovery after sciatic nerve injury. J Neurotrauma 2004; 21:627-35. [PMID: 15165370 DOI: 10.1089/089771504774129955] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Basso, Bresnahan and Beattie (BBB) locomotor scale has not been tested to evaluate functional consequences of peripheral nerve lesions. Alternative methods to evaluate animal functional recovery after sciatic nerve injury are desirable. Male Wistar rats had a right sciatic nerve segment exposed and were divided in three experimental groups: Sham (wound open, 10 min), Sham-device (nerve segment between crushing device, 10 min), and Crush-force (nerve crushing load of 15,000 g/1,000 mm Hg/mm(2), 10 min). Animals were evaluated preoperatively, 1, 7, 14, 21, and 28 days after procedure by calculation of Sciatic Functional Index (SFI), BBB score and open arena exploratory activity. The primary findings of the present study were (1) the SFI calculated by either DeMedinaceli, Carlton and Goldberg, and Bain formulae were highly correlated; (2) the BBB score evaluation was highly correlated with the SFI; (3) the BBB motor scale was able to detect functional impairments not recognized by the SFI; and (4) open arena exploratory activity was a poor method to detect sciatic nerve impairment. In conclusion, the BBB prescribed functional deficits on the sham-device and crush-force groups even when the SFI indicated full recovery. This greater sensitivity may prove useful when comparing new therapeutic approaches to nerve regeneration.
Collapse
|
65
|
Cheng H, Liao KK, Liao SF, Chuang TY, Shih YH. Spinal cord repair with acidic fibroblast growth factor as a treatment for a patient with chronic paraplegia. Spine (Phila Pa 1976) 2004; 29:E284-8. [PMID: 15247588 DOI: 10.1097/01.brs.0000131217.61390.2c] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN We present a case of a patient with chronic paraplegia with a complete spinal cord gap resulting from a stabbing injury 4 years ago recovering after an innovative surgical strategy. OBJECTIVES To demonstrate the clinical outcome of surgical repair with sural nerve graft with fibrin glue containing acidic fibroblast growth factor in a patient with chronic spinal cord injury. SUMMARY OF BACKGROUND DATA Spinal cord injury usually causes permanent disability, and there had been not effective surgical technique to obtain satisfactory functional motor recovery, particularly in chronic patients. Previous studies have revealed that acidic fibroblast growth factor could promote axonal regeneration and reduce neuronal death in adult rats with spinal cord injury. METHODS The spinal cord gap at T11 level was bridged with 4 sural nerve grafts that redirected specific pathways from white to gray matter. The grafted area was stabilized with fibrin glue containing acidic fibroblast growth factor. RESULTS Before the operation, the paraplegia was identified as ASIA-C, with a motor score for the right and left legs of 12 and 0, respectively, a pinprick score of 77, and 77 on a light touch of left side limbs. His functional status improved from being wheelchair-bound to being able to ambulate independently with a walker 2-and-a-half years after surgery. At this stage, paraplegia was ASIA-D, with motor scores for the right and left legs of 15 and 12, respectively, 86 for a pinprick, and 86 for a light touch of left side limbs. CONCLUSIONS This case demonstrated significant motor recovery attained in a patient with chronic paraplegia following a repair surgery with nerve graft and growth factor.
Collapse
Affiliation(s)
- Henrich Cheng
- Department of Neurosurgery, Taipei Veterans General Hospital and National Yang-Ming University School of Medicine, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
66
|
Fraidakis MJ, Spenger C, Olson L. Partial recovery after treatment of chronic paraplegia in rat. Exp Neurol 2004; 188:33-42. [PMID: 15191800 DOI: 10.1016/j.expneurol.2004.01.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Accepted: 01/30/2004] [Indexed: 11/15/2022]
Abstract
While acute spinal cord injury has been the object of intensive research, chronic spinal cord injury has received less attention although most clinical cases of spinal cord injury become chronic. We attempted to surgically "repair" chronic and acute spinal cord injury in a complete transection rat model using a multiple peripheral nerve grafting protocol. The lesion extent was assessed by magnetic resonance imaging (MRI) before the repair procedure. Rats were treated immediately after injury or at 2, 4, or 8 months postinjury. Standard behavioral methods were used to evaluate functional recovery. Two novel tests, the Bipedal Test and the Head-scratch test, were also employed to evaluate hindpaw positioning, interlimb coordination, and stepping rhythmicity, and to indicate rostrocaudal pathway regeneration. MRI helped guide the treatment procedure that was applied to animals with chronic injury. Treated animals demonstrated significant motor recovery. Axonal regeneration resultant to treatment was demonstrated histologically. The results suggest that not only acute but also chronic total paraplegia can be reversed to a moderate degree in rats with regard to hindlimb motor function.
Collapse
Affiliation(s)
- Matthew J Fraidakis
- Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
67
|
Rosenzweig ES, McDonald JW. Rodent models for treatment of spinal cord injury: research trends and progress toward useful repair. Curr Opin Neurol 2004; 17:121-31. [PMID: 15021237 DOI: 10.1097/00019052-200404000-00007] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE OF REVIEW In this review, we have documented some current research trends in rodent models of spinal cord injury. We have also catalogued the treatments used in studies published between October 2002 and November 2003, with special attention given to studies in which treatments were delayed for at least 4 days after injury. RECENT FINDINGS Most spinal cord injury studies are performed with one of three general injury models: transection, compression, or contusion. Although most treatments are begun immediately after injury, a growing number of studies have used delayed interventions. Mice and the genetic tools they offer are gaining in popularity. Some researchers are setting their sights beyond locomotion, to issues more pressing for people with spinal cord injury (especially bladder function and pain). SUMMARY Delayed treatment protocols may extend the window of opportunity for treatment of spinal cord injury, whereas continued progress in the prevention of secondary cell death will reduce the severity of new cases. The use of mice will hopefully accelerate progress towards useful regeneration in humans. Researchers must improve cross-study comparability to allow balanced decisions about potentially useful treatments.
Collapse
Affiliation(s)
- Ephron S Rosenzweig
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA.
| | | |
Collapse
|
68
|
Patist CM, Mulder MB, Gautier SE, Maquet V, Jérôme R, Oudega M. Freeze-dried poly(d,l-lactic acid) macroporous guidance scaffolds impregnated with brain-derived neurotrophic factor in the transected adult rat thoracic spinal cord. Biomaterials 2004; 25:1569-82. [PMID: 14697859 DOI: 10.1016/s0142-9612(03)00503-9] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The effects of poly(D,L-lactic acid) macroporous guidance scaffolds (foams) with or without brain-derived neurotrophic factor (BDNF) on tissue sparing, neuronal survival, axonal regeneration, and behavioral improvements of the hindlimbs following implantation in the transected adult rat thoracic spinal cord were studied. The foams were embedded in fibrin glue containing acidic-fibroblast growth factor. One group of animals received fibrin glue with acidic-fibroblast growth factor only. The foams were prepared by a thermally induced polymer-solvent phase separation process and contained longitudinally oriented macropores connected to each other by a network of micropores. Both foams and fibrin only resulted in a similar gliotic and inflammatory response in the cord-implant interfaces. With BDNF foam, up to 20% more NeuN-positive cells in the spinal nervous tissue close to the rostral but not caudal spinal cord-implant interface survived than with control foam or fibrin only at 4 and 8 weeks after implantation. Semithin plastic sections and electron microcopy revealed that cells and axons more rapidly invaded BDNF foam than control foam. Also, BDNF foam contained almost twice as many blood vessels than control foam at 8 weeks after implantation. Tissue sparing was similar in all three implantation paradigms; approximately 42% of tissue was spared in the rostral cord and approximately 37% in the caudal cord at 8 weeks post grafting. The number of myelinated and unmyelinated axons was low and not different between the two types of foams. Many more axons were found in the fibrin only graft. Serotonergic axons were not found in any of the implants and none of the axons regenerated into the caudal spinal cord. The behavioral improvements in the hindlimbs were similar in all groups. These findings indicated that foam is well tolerated within the injured spinal cord and that the addition of BDNF promotes cell survival and angiogenesis. However, the overall axonal regeneration response is low. Future research should explore the use of poly(D,L-lactic acid) foams, with or without axonal growth-promoting factors, seeded with Schwann cells to enhance the axonal regeneration and myelination response.
Collapse
Affiliation(s)
- Carla M Patist
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, PO Box 016960, R-48, Miami, FL 33136, USA
| | | | | | | | | | | |
Collapse
|
69
|
Lee YS, Lin CY, Robertson RT, Hsiao I, Lin VW. Motor Recovery and Anatomical Evidence of Axonal Regrowth in Spinal Cord-Repaired Adult Rats. J Neuropathol Exp Neurol 2004; 63:233-45. [PMID: 15055447 DOI: 10.1093/jnen/63.3.223-a] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Behavioral assessments of hindlimb motor recovery and anatomical assessments of extended axons of long spinal tracts were conducted in adult rats following complete spinal cord transection. Rats were randomly divided into 3 groups: 1) sham control group (laminectomy only; n = 12); 2) transection-only group, spinal cord transection at T8 (n = 20); and 3) experimental treatment group, spinal cord transection at T8, with peripheral nerve grafts (PNG) and application of acidic fibroblast growth factor (aFGF) (n = 14). The locomotor behavior and stepping of all rats were analyzed over a 6-month survival time using the Basso, Beattie, Bresnahan (BBB) open field locomotor test and the contact placing test. Immunohistochemistry for serotonin (5-HT), anterograde tracing with biotinylated dextran amine (BDA), and retrograde tracing with fluoro-gold were used to evaluate the presence of axons below the damage site following treatment. When compared with the transection-only group, the nerve graft with the aFGF group showed 1) significant improvement in hindlimb locomotion and stepping, 2) the presence of 5-HT-labeled axons below the lesion site at lumbar cord level (these were interpreted as regenerated axons from the raphe nuclei), 3) the presence of anterograde BDA labeling of corticospinal tract axons at the graft site and below, and 4) fluoro-gold retrograde labeling of neuron populations in motor cortex and in red nucleus, reticulospinal nuclei, raphe nuclei, and vestibular nuclei. We conclude that peripheral nerve grafts and aFGF treatments facilitate the regrowth of the spinal axons and improve hindlimb function in a T-8 spinal cord-transected rat model.
Collapse
Affiliation(s)
- Yu-Shang Lee
- Department of Anatomy, College of Medicine, University of California, Irvine, Irvine, California, USA
| | | | | | | | | |
Collapse
|
70
|
Lee YS, Sindhu RK, Lin CY, Ehdaie A, Lin VW, Vaziri ND. Effects of nerve graft on nitric oxide synthase, NAD(P)H oxidase, and antioxidant enzymes in chronic spinal cord injury. Free Radic Biol Med 2004; 36:330-9. [PMID: 15036352 DOI: 10.1016/j.freeradbiomed.2003.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Revised: 10/15/2003] [Accepted: 11/06/2003] [Indexed: 11/29/2022]
Abstract
Oxidative stress and nitrosative stress play important roles in the pathogenesis of secondary spinal cord injury. Recently, we demonstrated that peripheral nerve grafts (PNG) with acidic fibroblast growth factor (aFGF) partially restore hind limb locomotion in adult rats with completely transected spinal cords. This study investigated the protein abundances of the superoxide (O2*)-generating enzyme nicotinamide adenine dinucleotide (phosphate) oxidase (NAD(P)H oxidase; gp91phox subunit), nitric oxide synthases (NOS), antioxidant enzymes, superoxide dismutases (Cu Zn SOD, Mn SOD), catalase, and glutathione peroxidase (GPX) as well as nitrotyrosine in the spinal cord tissue 4 months after spinal cord transection in rats with and without PNG and aFGF. The protein abundances of the gp91phox subunit of NAD(P)H oxidase, Mn SOD, catalase, GPX, eNOS, and nitrotyrosine were significantly upregulated, whereas Cu Zn SOD and nNOS were unchanged in the injury group compared to the sham controls. The nerve graft with aFGF treated group showed significantly better hind limb locomotion recovery than the injury group. Although the protein abundances of gp91phox, nitrotyrosine, and Cu Zn SOD were similar in the treated group (nerve graft with aFGF) compared to the injury group, Mn SOD, GPX, catalase, and eNOS protein abundances were significantly higher, whereas nNOS was markedly lower in the treated group. We conclude that the combination of nerve graft and aFGF enhances the local antioxidant defense system after spinal cord transection in rats.
Collapse
Affiliation(s)
- Yu-Shang Lee
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA 92697-4066, USA
| | | | | | | | | | | |
Collapse
|
71
|
Bertelli JA, Ghizoni MF. Brachial plexus avulsion injury repairs with nerve transfers and nerve grafts directly implanted into the spinal cord yield partial recovery of shoulder and elbow movements. Neurosurgery 2003; 52:1385-9; discussion 1389-90. [PMID: 12762883 DOI: 10.1227/01.neu.0000065134.21334.d7] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2002] [Accepted: 02/12/2003] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Complete avulsion of the brachial plexus is a devastating injury that primarily affects young adults. The current treatment is based on nerve transfers, which yield very limited recovery. In this study, brachial plexus injuries were repaired with nerve transfers and nerve grafts directly implanted into the spinal cord. METHODS Eight patients with complete brachial plexus avulsion injuries were surgically treated. Roots or target nerves of the brachial plexus were repaired with peripheral nerve grafts directly implanted into the spinal cord and with extraplexal nerve transfers. RESULTS Muscle reinnervation was observed for six patients who received spinal implants. Among those patients, one recovered M4 muscle power. Reinnervation was observed only in proximal upper limb muscles. CONCLUSION Muscle reinnervation through nerve grafts directly implanted into the spinal cord was demonstrated. It seems that the combination of intra- and extradural neurotizations improves the proximal muscle function results. However, the extent of this improvement is limited and, in our opinion, does not justify the use of spinal implants.
Collapse
Affiliation(s)
- Jayme Augusto Bertelli
- Hospital Governador Celso Ramos, Praça Getulio Vargas 322, Florianópolis, Santa Catarina 88020030, Brazil.
| | | |
Collapse
|
72
|
|