51
|
Meyer TJ, Tekin N, Hense P, Ehret-Kasemo T, Lodes N, Stöth M, Ickrath P, Gehrke T, Hagen R, Dembski S, Peer M, Steinke MR, Scherzad A, Hackenberg S. Evaluation of the cytotoxic and genotoxic potential of printer toner particles in a 3D air-liquid interface, primary cell-based nasal tissue model. Toxicol Lett 2023; 379:1-10. [PMID: 36907250 DOI: 10.1016/j.toxlet.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
Printer toner particles (TPs) are a common, potentially hazardous substance, with an unclear toxicological impact on the respiratory mucosa. Most of the airways surface is covered by a ciliated respiratory mucosa, therefore appropriate tissue models of the respiratory epithelium with a high in vivo correlation are necessary for in vitro evaluation of airborne pollutants toxicology and the impact on the functional integrity. The aim of this study is the evaluation of TPs toxicology in a human primary cell-based air-liquid-interface (ALI) model of respiratory mucosa. The TPs were analyzed and characterized by scanning electron microscopy, pyrolysis and X-ray fluorescence spectrometry. ALI models of 10 patients were created using the epithelial cells and fibroblasts derived from nasal mucosa samples. TPs were applied to the ALI models via a modified Vitrocell® cloud and submerged in the dosing 0.89 - 892.96 µg/ cm2. Particle exposure and intracellular distribution were evaluated by electron microscopy. The MTT assay and the comet assay were used to investigate cytotoxicity and genotoxicity, respectively. The used TPs showed an average particle size of 3 - 8 µm. Mainly carbon, hydrogen, silicon, nitrogen, tin, benzene and benzene derivates were detected as chemical ingredients. By histomorphology and electron microscopy we observed the development of a highly functional, pseudostratified epithelium with a continuous layer of cilia. Using electron microscopy, TPs could be detected on the cilia surface and also intracellularly. Cytotoxicity was detected from 9 µg/ cm2 and higher, but no genotoxicity after ALI and submerged exposure. The ALI with primary nasal cells represents a highly functional model of the respiratory epithelium in terms of histomorphology and mucociliary differentiation. The toxicological results indicate a weak TP-concentration-dependent cytotoxicity. AVAILABILITY OF DATA AND MATERIALS: The datasets used and analysed during the current study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Till Jasper Meyer
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany.
| | - Nursen Tekin
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Peter Hense
- Bochum University of Applied Sciences, Department Civil and Environmental Engineering, Am Hochschulcampus 1, 44801 Bochum, Germany
| | - Totta Ehret-Kasemo
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Nina Lodes
- University Hospital Würzburg, Chair of Tissue Engineering and Regenerative Medicine, Röntgenring 11, 97070 Würzburg, Germany
| | - Manuel Stöth
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Pascal Ickrath
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Thomas Gehrke
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Rudolf Hagen
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Sofia Dembski
- University Hospital Würzburg, Chair of Tissue Engineering and Regenerative Medicine, Röntgenring 11, 97070 Würzburg, Germany; Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany
| | - Michael Peer
- Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Institute Branch Sulzbach-Rosenberg, An der Maxhütte 1, 92237 Sulzbach-Rosenberg, Germany
| | - Maria R Steinke
- University Hospital Würzburg, Chair of Tissue Engineering and Regenerative Medicine, Röntgenring 11, 97070 Würzburg, Germany; Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany
| | - Agmal Scherzad
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Stephan Hackenberg
- RWTH Aachen University Hospital, Department of Otorhinolaryngology - Head and Neck Surgery, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
52
|
Silva S, Bicker J, Falcão A, Fortuna A. Air-liquid interface (ALI) impact on different respiratory cell cultures. Eur J Pharm Biopharm 2023; 184:62-82. [PMID: 36696943 DOI: 10.1016/j.ejpb.2023.01.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/24/2022] [Accepted: 01/19/2023] [Indexed: 01/23/2023]
Abstract
The intranasal route has been receiving greater attention from the scientific community not only for systemic drug delivery but also for the treatment of pulmonary and neurological diseases. Along with it, drug transport and permeability studies across the nasal mucosa have exponentially increased. Nevertheless, the translation of data from in vitro cell lines to in vivo studies is not always reliable, due to the difficulty in generating an in vitro model that resembles respiratory human physiology. Among all currently available methodologies, the air-liquid interface (ALI) method is advantageous to promote cell differentiation and optimize the morphological and histological characteristics of airway epithelium cells. Cells grown under ALI conditions, in alternative to submerged conditions, appear to provide relevant input for inhalation and pulmonary toxicology and complement in vivo experiments. Different methodologies and a variety of materials have been used to induce ALI conditions in primary cells and numerous cell lines. Until this day, with only exploratory results, no consensus has been reached regarding the validation of the ALI method, hampering data comparison. The present review describes the most adequate cell models of airway epithelium and how these models are differently affected by ALI conditions. It includes the evaluation of cellular features before and after ALI, and the application of the method in primary cell cultures, commercial 3D primary cells, cell lines and stem-cell derived models. A variety of these models have been recently applied for pharmacological studies against severe acute respiratory syndrome-coronavirus(-2) SARS-CoV(-2), namely primary cultures with alveolar type II epithelium cells and organotypic 3D models. The herein compiled data suggest that ALI conditions must be optimized bearing in mind the type of cells (nasal, bronchial, alveolar), their origin and the objective of the study.
Collapse
Affiliation(s)
- Soraia Silva
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
53
|
Carius P, Jungmann A, Bechtel M, Grißmer A, Boese A, Gasparoni G, Salhab A, Seipelt R, Urbschat K, Richter C, Meier C, Bojkova D, Cinatl J, Walter J, Schneider‐Daum N, Lehr C. A Monoclonal Human Alveolar Epithelial Cell Line ("Arlo") with Pronounced Barrier Function for Studying Drug Permeability and Viral Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207301. [PMID: 36748276 PMCID: PMC10015904 DOI: 10.1002/advs.202207301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Indexed: 06/18/2023]
Abstract
In the development of orally inhaled drug products preclinical animal models regularly fail to predict pharmacological as well as toxicological responses in humans. Models based on human cells and tissues are potential alternatives to animal experimentation allowing for the isolation of essential processes of human biology and making them accessible in vitro. Here, the generation of a novel monoclonal cell line "Arlo," derived from the polyclonal human alveolar epithelium lentivirus immortalized cell line hAELVi via single-cell printing, and its characterization as a model for the human alveolar epithelium as well as a building block for future complex in vitro models is described. "Arlo" is systematically compared in vitro to primary human alveolar epithelial cells (hAEpCs) as well as to the polyclonal hAELVi cell line. "Arlo" cells show enhanced barrier properties with high transepithelial electrical resistance (TEER) of ≈3000 Ω cm2 and a potential difference (PD) of ≈30 mV under air-liquid interface (ALI) conditions, that can be modulated. The cells grow in a polarized monolayer and express genes relevant to barrier integrity as well as homeostasis as is observed in hAEpCs. Successful productive infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a proof-of-principle study offers an additional, attractive application of "Arlo" beyond biopharmaceutical experimentation.
Collapse
Affiliation(s)
- Patrick Carius
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| | - Annemarie Jungmann
- Department of Genetics and EpigeneticsSaarland UniversityCampus A2 466123SaarbrückenGermany
| | - Marco Bechtel
- Institute of Medical VirologyUniversity Hospital FrankfurtPaul‐Ehrlich‐Str. 4060596Frankfurt am MainGermany
| | - Alexander Grißmer
- Department of Anatomy and Cellular BiologySaarland UniversityKirrberger StraßeBuilding 6166421Homburg SaarGermany
| | - Annette Boese
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
| | - Gilles Gasparoni
- Department of Genetics and EpigeneticsSaarland UniversityCampus A2 466123SaarbrückenGermany
| | - Abdulrahman Salhab
- Department of Genetics and EpigeneticsSaarland UniversityCampus A2 466123SaarbrückenGermany
| | - Ralf Seipelt
- Section of Thoracic Surgery of the Saar Lung CenterSHG Clinics VölklingenRichardstraße 5‐966333VölklingenGermany
| | - Klaus Urbschat
- Section of Thoracic Surgery of the Saar Lung CenterSHG Clinics VölklingenRichardstraße 5‐966333VölklingenGermany
| | - Clémentine Richter
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| | - Carola Meier
- Department of Anatomy and Cellular BiologySaarland UniversityKirrberger StraßeBuilding 6166421Homburg SaarGermany
| | - Denisa Bojkova
- Institute of Medical VirologyUniversity Hospital FrankfurtPaul‐Ehrlich‐Str. 4060596Frankfurt am MainGermany
| | - Jindrich Cinatl
- Institute of Medical VirologyUniversity Hospital FrankfurtPaul‐Ehrlich‐Str. 4060596Frankfurt am MainGermany
| | - Jörn Walter
- Department of Genetics and EpigeneticsSaarland UniversityCampus A2 466123SaarbrückenGermany
| | - Nicole Schneider‐Daum
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
| | - Claus‐Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| |
Collapse
|
54
|
Bessa MJ, Brandão F, Rosário F, Moreira L, Reis AT, Valdiglesias V, Laffon B, Fraga S, Teixeira JP. Assessing the in vitro toxicity of airborne (nano)particles to the human respiratory system: from basic to advanced models. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:67-96. [PMID: 36692141 DOI: 10.1080/10937404.2023.2166638] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Several studies have been conducted to address the potential adverse health risks attributed to exposure to nanoscale materials. While in vivo studies are fundamental for identifying the relationship between dose and occurrence of adverse effects, in vitro model systems provide important information regarding the mechanism(s) of action at the molecular level. With a special focus on exposure to inhaled (nano)particulate material toxicity assessment, this review provides an overview of the available human respiratory models and exposure systems for in vitro testing, advantages, limitations, and existing investigations using models of different complexity. A brief overview of the human respiratory system, pathway and fate of inhaled (nano)particles is also presented.
Collapse
Affiliation(s)
- Maria João Bessa
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Fátima Brandão
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Fernanda Rosário
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Luciana Moreira
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Ana Teresa Reis
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Vanessa Valdiglesias
- Departamento de Biología, Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía - CICA, A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Blanca Laffon
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
- Departamento de Psicología, Universidade da Coruña, Grupo DICOMOSA, Centro Interdisciplinar de Química e Bioloxía - CICA, A Coruña, Spain
| | - Sónia Fraga
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - João Paulo Teixeira
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| |
Collapse
|
55
|
Wang H, Yin F, Li Z, Su W, Li D. Advances of microfluidic lung chips for assessing atmospheric pollutants exposure. ENVIRONMENT INTERNATIONAL 2023; 172:107801. [PMID: 36774736 DOI: 10.1016/j.envint.2023.107801] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Atmospheric pollutants, including particulate matters, nanoparticles, bioaerosols, and some chemicals, have posed serious threats to the environment and the human's health. The lungs are the responsible organs for providing the interface betweenthecirculatory system and the external environment, where pollutant particles can deposit or penetrate into bloodstream circulation. Conventional studies to decipher the mechanismunderlying air pollution and human health are quite limited, due to the lack of reliable models that can reproduce in vivo features of lung tissues after pollutants exposure. In the past decade, advanced near-to-native lung chips, combining cell biology with bioengineered technology, present a new strategy for atmospheric pollutants assessment and narrow the gap between 2D cell culture and in vivo animal models. In this review, the key features of artificial lung chips and the cutting-edge technologies of the lung chip manufacture are introduced. The recent progresses of lung chip technologies for atmospheric pollutants exposure assessment are summarized and highlighted. We further discuss the current challenges and the future opportunities of the development of advanced lung chips and their potential utilities in atmospheric pollutants associated toxicity testing and drug screening.
Collapse
Affiliation(s)
- Hui Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangchao Yin
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Zhongyu Li
- College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Wentao Su
- Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034 Liaoning, China.
| | - Dong Li
- Medical School, Nantong University, Nantong 226001, China.
| |
Collapse
|
56
|
Hutter V, Hopper S, Skamarauskas J, Hoffman E. High content analysis of in vitro alveolar macrophage responses can provide mechanistic insight for inhaled product safety assessment. Toxicol In Vitro 2023; 86:105506. [PMID: 36330929 DOI: 10.1016/j.tiv.2022.105506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/11/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Assessing the safety of inhaled substances in the alveolar region of the lung requires an understanding of how the respired material interacts with both physical and immunological barriers. Human alveolar-like macrophages in vitro provide a platform to assess the immunological response in the airways and may better inform the understanding of a response to an inhaled challenge being adaptive or adverse. The aim of this study was to determine if a morphometric phenotyping approach could discriminate between different inhaled nicotine products and indicate the potential mechanism of toxicity of a substance. Cigarette smoke (CS) and e-liquids extracted into cell culture medium were applied to human alveolar-like macrophages in mono-culture (ImmuONE™) and co-culture (ImmuLUNG™) to test the hypothesis. Phenotype profiling of cell responses was highly reproducible and clearly distinguished the different responses to CS and e-liquids. Whilst the phenotypes of untreated macrophages were similar regardless of culture condition, macrophages cultured in the presence of epithelial cells were more sensitive to CS-induced changes related to cell size and vacuolation processes. This technique demonstrated phenotypical observations typical for CS exposure and indicative of the established mechanisms of toxicity. The technique provides a rapid screening approach to determine detailed immunological responses in the airways which can be linked to potentially adverse pathways and support inhalation safety assessment.
Collapse
Affiliation(s)
- V Hutter
- ImmuONE Ltd, Science Building, College Lane, Hatfield, Herts AL10 9AB, UK; Centre for Topical Drug Delivery and Toxicology, University of Hertfordshire, College Lane Campus, Hatfield, Herts AL10 9AB, UK.
| | - S Hopper
- Thornton & Ross Ltd, Linthwaite, Huddersfield HD7 5QH, UK; School of Clinical and Applied Sciences, Leeds Becket University, City Campus, Woodhouse Lane, Leeds LS1 3HE, UK
| | - J Skamarauskas
- Centre for Topical Drug Delivery and Toxicology, University of Hertfordshire, College Lane Campus, Hatfield, Herts AL10 9AB, UK
| | - E Hoffman
- ImmuONE Ltd, Science Building, College Lane, Hatfield, Herts AL10 9AB, UK
| |
Collapse
|
57
|
Busch M, Brouwer H, Aalderink G, Bredeck G, Kämpfer AAM, Schins RPF, Bouwmeester H. Investigating nanoplastics toxicity using advanced stem cell-based intestinal and lung in vitro models. FRONTIERS IN TOXICOLOGY 2023; 5:1112212. [PMID: 36777263 PMCID: PMC9911716 DOI: 10.3389/ftox.2023.1112212] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Plastic particles in the nanometer range-called nanoplastics-are environmental contaminants with growing public health concern. As plastic particles are present in water, soil, air and food, human exposure via intestine and lung is unavoidable, but possible health effects are still to be elucidated. To better understand the Mode of Action of plastic particles, it is key to use experimental models that best reflect human physiology. Novel assessment methods like advanced cell models and several alternative approaches are currently used and developed in the scientific community. So far, the use of cancer cell line-based models is the standard approach regarding in vitro nanotoxicology. However, among the many advantages of the use of cancer cell lines, there are also disadvantages that might favor other approaches. In this review, we compare cell line-based models with stem cell-based in vitro models of the human intestine and lung. In the context of nanoplastics research, we highlight the advantages that come with the use of stem cells. Further, the specific challenges of testing nanoplastics in vitro are discussed. Although the use of stem cell-based models can be demanding, we conclude that, depending on the research question, stem cells in combination with advanced exposure strategies might be a more suitable approach than cancer cell lines when it comes to toxicological investigation of nanoplastics.
Collapse
Affiliation(s)
- Mathias Busch
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Hugo Brouwer
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Germaine Aalderink
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Gerrit Bredeck
- IUF—Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | | | - Roel P. F. Schins
- IUF—Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands,*Correspondence: Hans Bouwmeester,
| |
Collapse
|
58
|
Elje E, Mariussen E, McFadden E, Dusinska M, Rundén-Pran E. Different Sensitivity of Advanced Bronchial and Alveolar Mono- and Coculture Models for Hazard Assessment of Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:407. [PMID: 36770370 PMCID: PMC9921680 DOI: 10.3390/nano13030407] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
For the next-generation risk assessment (NGRA) of chemicals and nanomaterials, new approach methodologies (NAMs) are needed for hazard assessment in compliance with the 3R's to reduce, replace and refine animal experiments. This study aimed to establish and characterize an advanced respiratory model consisting of human epithelial bronchial BEAS-2B cells cultivated at the air-liquid interface (ALI), both as monocultures and in cocultures with human endothelial EA.hy926 cells. The performance of the bronchial models was compared to a commonly used alveolar model consisting of A549 in monoculture and in coculture with EA.hy926 cells. The cells were exposed at the ALI to nanosilver (NM-300K) in the VITROCELL® Cloud. After 24 h, cellular viability (alamarBlue assay), inflammatory response (enzyme-linked immunosorbent assay), DNA damage (enzyme-modified comet assay), and chromosomal damage (cytokinesis-block micronucleus assay) were measured. Cytotoxicity and genotoxicity induced by NM-300K were dependent on both the cell types and model, where BEAS-2B in monocultures had the highest sensitivity in terms of cell viability and DNA strand breaks. This study indicates that the four ALI lung models have different sensitivities to NM-300K exposure and brings important knowledge for the further development of advanced 3D respiratory in vitro models for the most reliable human hazard assessment based on NAMs.
Collapse
Affiliation(s)
- Elisabeth Elje
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Espen Mariussen
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway
- Department of Air Quality and Noise, Norwegian Institute of Public Health, 0456 Oslo, Norway
| | - Erin McFadden
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway
| | - Maria Dusinska
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway
| | - Elise Rundén-Pran
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway
| |
Collapse
|
59
|
Friesen A, Fritsch-Decker S, Mülhopt S, Quarz C, Mahl J, Baumann W, Hauser M, Wexler M, Schlager C, Gutmann B, Krebs T, Goßmann AK, Weis F, Hufnagel M, Stapf D, Hartwig A, Weiss C. Comparing the Toxicological Responses of Pulmonary Air-Liquid Interface Models upon Exposure to Differentially Treated Carbon Fibers. Int J Mol Sci 2023; 24:ijms24031927. [PMID: 36768249 PMCID: PMC9915385 DOI: 10.3390/ijms24031927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
In recent years, the use of carbon fibers (CFs) in various sectors of industry has been increasing. Despite the similarity of CF degradation products to other toxicologically relevant materials such as asbestos fibers and carbon nanotubes, a detailed toxicological evaluation of this class of material has yet to be performed. In this work, we exposed advanced air-liquid interface cell culture models of the human lung to CF. To simulate different stresses applied to CF throughout their life cycle, they were either mechanically (mCF) or thermo-mechanically pre-treated (tmCF). Different aspects of inhalation toxicity as well as their possible time-dependency were monitored. mCFs were found to induce a moderate inflammatory response, whereas tmCF elicited stronger inflammatory as well as apoptotic effects. Furthermore, thermal treatment changed the surface properties of the CF resulting in a presumed adhesion of the cells to the fiber fragments and subsequent cell loss. Triple-cultures encompassing epithelial, macrophage, and fibroblast cells stood out with an exceptionally high inflammatory response. Only a weak genotoxic effect was detected in the form of DNA strand breaks in mono- and co-cultures, with triple-cultures presenting a possible secondary genotoxicity. This work establishes CF fragments as a potentially harmful material and emphasizes the necessity of further toxicological assessment of existing and upcoming advanced CF-containing materials.
Collapse
Affiliation(s)
- Alexandra Friesen
- Karlsruhe Institute of Technology (KIT), Institute of Applied Biosciences, Department of Food Chemistry and Toxicology, 76131 Karlsruhe, Germany
| | - Susanne Fritsch-Decker
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems, Biological Information Processing, 76344 Eggenstein-Leopoldshafen, Germany
| | - Sonja Mülhopt
- Karlsruhe Institute of Technology (KIT), Institute for Technical Chemistry, 76344 Eggenstein-Leopoldshafen, Germany
| | - Caroline Quarz
- Karlsruhe Institute of Technology (KIT), Institute of Applied Biosciences, Department of Food Chemistry and Toxicology, 76131 Karlsruhe, Germany
| | - Jonathan Mahl
- Karlsruhe Institute of Technology (KIT), Institute for Technical Chemistry, 76344 Eggenstein-Leopoldshafen, Germany
| | - Werner Baumann
- Karlsruhe Institute of Technology (KIT), Institute for Technical Chemistry, 76344 Eggenstein-Leopoldshafen, Germany
| | - Manuela Hauser
- Karlsruhe Institute of Technology (KIT), Institute for Technical Chemistry, 76344 Eggenstein-Leopoldshafen, Germany
| | - Manuela Wexler
- Karlsruhe Institute of Technology (KIT), Institute for Technical Chemistry, 76344 Eggenstein-Leopoldshafen, Germany
| | | | | | - Tobias Krebs
- Vitrocell Systems GmbH, 79183 Waldkirch, Germany
| | | | | | - Matthias Hufnagel
- Karlsruhe Institute of Technology (KIT), Institute of Applied Biosciences, Department of Food Chemistry and Toxicology, 76131 Karlsruhe, Germany
| | - Dieter Stapf
- Karlsruhe Institute of Technology (KIT), Institute for Technical Chemistry, 76344 Eggenstein-Leopoldshafen, Germany
| | - Andrea Hartwig
- Karlsruhe Institute of Technology (KIT), Institute of Applied Biosciences, Department of Food Chemistry and Toxicology, 76131 Karlsruhe, Germany
- Correspondence: (A.H.); (C.W.)
| | - Carsten Weiss
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems, Biological Information Processing, 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence: (A.H.); (C.W.)
| |
Collapse
|
60
|
Nguyen PK, Son Y, Petereit J, Khlystov A, Panella R. Modeling Human Lung Cells Exposure to Wildfire Uncovers Aberrant lncRNAs Signature. Biomolecules 2023; 13:155. [PMID: 36671540 PMCID: PMC9855943 DOI: 10.3390/biom13010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Emissions generated by wildfires are a growing threat to human health and are characterized by a unique chemical composition that is tightly dependent on geographic factors such as fuel type. Long noncoding RNAs (lncRNAs) are a class of RNA molecules proven to be critical to many biological processes, and their condition-specific expression patterns are emerging as prominent prognostic and diagnostic biomarkers for human disease. We utilized a new air-liquid interface (ALI) direct exposure system that we designed and validated in house to expose immortalized human tracheobronchial epithelial cells (AALE) to two unique wildfire smokes representative of geographic regions (Sierra Forest and Great Basin). We conducted an RNAseq analysis on the exposed cell cultures and proved through both principal component and differential expression analysis that each smoke has a unique effect on the LncRNA expression profiles of the exposed cells when compared to the control samples. Our study proves that there is a link between the geographic origin of wildfire smoke and the resulting LncRNA expression profile in exposed lung cells and also serves as a proof of concept for the in-house designed ALI exposure system. Our study serves as an introduction to the scientific community of how unique expression patterns of LncRNAs in patients with wildfire smoke-related disease can be utilized as prognostic and diagnostic tools, as the current roles of LncRNA expression profiles in wildfire smoke-related disease, other than this study, are completely uncharted.
Collapse
Affiliation(s)
- Piercen K. Nguyen
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA
| | - Yeongkwon Son
- Organic Analytical Laboratory, Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, USA
| | - Juli Petereit
- Nevada Bioinformatics Center, University of Nevada Reno, Reno, NV 89557, USA
| | - Andrey Khlystov
- Organic Analytical Laboratory, Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, USA
| | - Riccardo Panella
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark
| |
Collapse
|
61
|
Al-Jipouri A, Almurisi SH, Al-Japairai K, Bakar LM, Doolaanea AA. Liposomes or Extracellular Vesicles: A Comprehensive Comparison of Both Lipid Bilayer Vesicles for Pulmonary Drug Delivery. Polymers (Basel) 2023; 15:318. [PMID: 36679199 PMCID: PMC9866119 DOI: 10.3390/polym15020318] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
The rapid and non-invasive pulmonary drug delivery (PDD) has attracted great attention compared to the other routes. However, nanoparticle platforms, like liposomes (LPs) and extracellular vesicles (EVs), require extensive reformulation to suit the requirements of PDD. LPs are artificial vesicles composed of lipid bilayers capable of encapsulating hydrophilic and hydrophobic substances, whereas EVs are natural vesicles secreted by cells. Additionally, novel LPs-EVs hybrid vesicles may confer the best of both. The preparation methods of EVs are distinguished from LPs since they rely mainly on extraction and purification, whereas the LPs are synthesized from their basic ingredients. Similarly, drug loading methods into/onto EVs are distinguished whereby they are cell- or non-cell-based, whereas LPs are loaded via passive or active approaches. This review discusses the progress in LPs and EVs as well as hybrid vesicles with a special focus on PDD. It also provides a perspective comparison between LPs and EVs from various aspects (composition, preparation/extraction, drug loading, and large-scale manufacturing) as well as the future prospects for inhaled therapeutics. In addition, it discusses the challenges that may be encountered in scaling up the production and presents our view regarding the clinical translation of the laboratory findings into commercial products.
Collapse
Affiliation(s)
- Ali Al-Jipouri
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Samah Hamed Almurisi
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia
| | - Khater Al-Japairai
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Gambang 26300, Malaysia
| | - Latifah Munirah Bakar
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM) Selangor, Shah Alam 40450, Malaysia
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University College MAIWP International (UCMI), Kuala Lumpur 68100, Malaysia
| |
Collapse
|
62
|
Alternative lung cell model systems for toxicology testing strategies: Current knowledge and future outlook. Semin Cell Dev Biol 2023; 147:70-82. [PMID: 36599788 DOI: 10.1016/j.semcdb.2022.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023]
Abstract
Due to the current relevance of pulmonary toxicology (with focus upon air pollution and the inhalation of hazardous materials), it is important to further develop and implement physiologically relevant models of the entire respiratory tract. Lung model development has the aim to create human relevant systems that may replace animal use whilst balancing cost, laborious nature and regulatory ambition. There is an imperative need to move away from rodent models and implement models that mimic the holistic characteristics important in lung function. The purpose of this review is therefore, to describe and identify the various alternative models that are being applied towards assessing the pulmonary toxicology of inhaled substances, as well as the current and potential developments of various advanced models and how they may be applied towards toxicology testing strategies. These models aim to mimic various regions of the lung, as well as implementing different exposure methods with the addition of various physiologically relevent conditions (such as fluid-flow and dynamic movement). There is further progress in the type of models used with focus on the development of lung-on-a-chip technologies and bioprinting, as well as and the optimization of such models to fill current knowledge gaps within toxicology.
Collapse
|
63
|
Balážová K, Clevers H, Dost AFM. The role of macrophages in non-small cell lung cancer and advancements in 3D co-cultures. eLife 2023; 12:82998. [PMID: 36809334 PMCID: PMC9943070 DOI: 10.7554/elife.82998] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths worldwide. Traditional therapeutic approaches such as chemotherapy or radiotherapy have provided only a marginal improvement in the treatment of lung carcinomas. Inhibitors targeting specific genetic aberrations present in non-small cell lung cancer (NSCLC), the most common subtype (85%), have improved the prognostic outlook, but due to the complexity of the LC mutational spectrum, only a fraction of patients benefit from these targeted molecular therapies. More recently, the realization that the immune infiltrate surrounding solid tumors can foster tumor-promoting inflammation has led to the development and implementation of anticancer immunotherapies in the clinic. In NSCLC, one of the most abundant leukocyte infiltrates is macrophages. These highly plastic phagocytes, which are part of the cellular repertoire of the innate immunity, can have a pivotal role in early NSCLC establishment, malignant progression, and tumor invasion. Emerging macrophage-targeting therapies have been focused on the re-differentiation of the macrophages toward an antitumorigenic phenotype, depletion of tumor-promoting macrophage subtypes, or combination therapies combining traditional cytotoxic treatments with immunotherapeutic agents. The most extensively used models employed for the exploration of NSCLC biology and therapy have been 2D cell lines and murine models. However, studying cancer immunology requires appropriately complex models. 3D platforms, including organoid models, are quickly advancing powerful tools to study immune cell-epithelial cell interactions within the tumor microenvironment. Co-cultures of immune cells along with NSCLC organoids allow for an in vitro observation of the tumor microenvironment dynamics closely resembling in vivo settings. Ultimately, the implementation of 3D organoid technology into tumor microenvironment-modeling platforms might facilitate the exploration of macrophage-targeted therapies in NSCLC immunotherapeutic research, thus establishing a new frontier in NSCLC treatment.
Collapse
Affiliation(s)
- Katarína Balážová
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical Centre UtrechtUtrechtNetherlands,Oncode Institute, Hubrecht Institute-KNAWUtrechtNetherlands
| | - Hans Clevers
- Roche Pharma Research and early DevelopmentBaselSwitzerland
| | - Antonella FM Dost
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical Centre UtrechtUtrechtNetherlands,Oncode Institute, Hubrecht Institute-KNAWUtrechtNetherlands
| |
Collapse
|
64
|
Chary A. Culturing Human Lung Adenocarcinoma Cells in a Serum-Free Environment. Methods Mol Biol 2023; 2645:165-172. [PMID: 37202617 DOI: 10.1007/978-1-0716-3056-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The human lung adenocarcinoma cell line A549 is commonly used in cancer research as a model of malignant alveolar type II epithelial cells. A549 cells are frequently cultured in Ham's F12K (Kaighn's) or Dulbecco's Modified Eagle's Medium (DMEM), supplemented with glutamine and 10% fetal bovine serum (FBS). However, the use of FBS presents significant scientific concerns, such as the presence of undefined components and batch-to-batch variation leading to possible reproducibility issues in experiments and readouts. This chapter describes how to transition A549 cells to FBS-free medium and gives some insights on the further characterizations and functionality assays that would be necessary to perform for the validation of the cultured cells.
Collapse
Affiliation(s)
- Aline Chary
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
65
|
Rothen-Rutishauser B, Gibb M, He R, Petri-Fink A, Sayes CM. Human lung cell models to study aerosol delivery - considerations for model design and development. Eur J Pharm Sci 2023; 180:106337. [PMID: 36410570 DOI: 10.1016/j.ejps.2022.106337] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Human lung tissue models range from simple monolayer cultures to more advanced three-dimensional co-cultures. Each model system can address the interactions of different types of aerosols and the choice of the model and the mode of aerosol exposure depends on the relevant scenario, such as adverse outcomes and endpoints of interest. This review focuses on the functional, as well as structural, aspects of lung tissue from the upper airway to the distal alveolar compartments as this information is relevant for the design of a model as well as how the aerosol properties determine the interfacial properties with the respiratory wall. The most important aspects on how to design lung models are summarized with a focus on (i) choice of appropriate scaffold, (ii) selection of cell types for healthy and diseased lung models, (iii) use of culture condition and assembly, (iv) aerosol exposure methods, and (v) endpoints and verification process. Finally, remaining challenges and future directions in this field are discussed.
Collapse
Affiliation(s)
- Barbara Rothen-Rutishauser
- BioNanomaterials, Adolphe Merkle Institute, University Fribourg, Chemin des Verdiers 4 CH-1700, Fribourg, Switzerland.
| | - Matthew Gibb
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| | - Ruiwen He
- BioNanomaterials, Adolphe Merkle Institute, University Fribourg, Chemin des Verdiers 4 CH-1700, Fribourg, Switzerland
| | - Alke Petri-Fink
- BioNanomaterials, Adolphe Merkle Institute, University Fribourg, Chemin des Verdiers 4 CH-1700, Fribourg, Switzerland
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA.
| |
Collapse
|
66
|
Di Cristo L, Sabella S. Cell Cultures at the Air-Liquid Interface and Their Application in Cancer Research. Methods Mol Biol 2023; 2645:41-64. [PMID: 37202611 DOI: 10.1007/978-1-0716-3056-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Air-liquid interface (ALI) cell cultures are considered a valid tool for the replacement of animals in biomedical research. By mimicking crucial features of the human in vivo epithelial barriers (e.g., lung, intestine, and skin), ALI cell cultures enable proper structural architectures and differentiated functions of normal and diseased tissue barriers. Thereby, ALI models realistically resemble tissue conditions and provide in vivo-like responses. Since their implementation, they are routinely used in several applications, from toxicity testing to cancer research, receiving an appreciable level of acceptance (in some cases a regulatory acceptance) as attractive testing alternatives to animals. In this chapter, an overview of the ALI cell cultures will be presented together with their application in cancer cell culture, highlighting the potential advantages and disadvantages of the model.
Collapse
Affiliation(s)
- Luisana Di Cristo
- D3 PharmaChemistry, Nanoregulatory Group, Italian Institute of Technology, Genoa, Italy.
| | - Stefania Sabella
- D3 PharmaChemistry, Nanoregulatory Group, Italian Institute of Technology, Genoa, Italy
| |
Collapse
|
67
|
von Woedtke T, Gabriel G, Schaible UE, Bekeschus S. Oral SARS-CoV-2 reduction by local treatment: A plasma technology application? PLASMA PROCESSES AND POLYMERS (PRINT) 2022; 20:e2200196. [PMID: 36721423 PMCID: PMC9880686 DOI: 10.1002/ppap.202200196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/18/2023]
Abstract
The SARS-CoV-2 pandemic reemphasized the importance of and need for efficient hygiene and disinfection measures. The coronavirus' efficient spread capitalizes on its airborne transmission routes via virus aerosol release from human oral and nasopharyngeal cavities. Besides the upper respiratory tract, efficient viral replication has been described in the epithelium of these two body cavities. To this end, the idea emerged to employ plasma technology to locally reduce mucosal viral loads as an additional measure to reduce patient infectivity. We here outline conceptual ideas of such treatment concepts within what is known in the antiviral actions of plasma treatment so far.
Collapse
Affiliation(s)
- Thomas von Woedtke
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), a Member of the Leibniz Health Technologies Research AllianceGreifswaldGermany
- Institute for Hygiene and Environmental MedicineGreifswald University Medical CenterGreifswaldGermany
| | - Gülsah Gabriel
- Department of Viral Zoonoses—One HealthLeibniz Institute of Virology (LIV), A Member of the Leibniz Infections Research AllianceHamburgGermany
- Institute of VirologyUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Ulrich E. Schaible
- Department of Cellular MicrobiologyProgram Area Infections, Research Center Borstel, Leibniz Lung Center, A Member of the Leibniz Health Technologies and Leibniz Infections Research AlliancesParkalleeBorstelGermany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), a Member of the Leibniz Health Technologies Research AllianceGreifswaldGermany
| |
Collapse
|
68
|
Bigot P, Chesseron S, Saidi A, Sizaret D, Parent C, Petit-Courty A, Courty Y, Lecaille F, Lalmanach G. Cleavage of Occludin by Cigarette Smoke-Elicited Cathepsin S Increases Permeability of Lung Epithelial Cells. Antioxidants (Basel) 2022; 12:antiox12010005. [PMID: 36670867 PMCID: PMC9854811 DOI: 10.3390/antiox12010005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is an irreversible disease mainly caused by smoking. COPD is characterized by emphysema and chronic bronchitis associated with enhanced epithelial permeability. HYPOTHESIS Lung biopsies from smokers revealed a decreased expression level of occludin, which is a protein involved in the cohesion of epithelial tight junctions. Moreover, the occludin level correlated negatively with smoking history (pack-years), COPD grades, and cathepsin S (CatS) activity. Thus, we examined whether CatS could participate in the modulation of the integrity of human lung epithelial barriers. METHODS AND RESULTS Cigarette smoke extract (CSE) triggered the upregulation of CatS by THP-1 macrophages through the mTOR/TFEB signaling pathway. In a co-culture model, following the exposure of macrophages to CSE, an enhanced level of permeability of lung epithelial (16HBE and NHBE) cells towards FITC-Dextran was observed, which was associated with a decrease in occludin level. Similar results were obtained using 16HBE and NHBE cells cultured at the air-liquid interface. The treatment of THP-1 macrophages by CatS siRNAs or by a pharmacological inhibitor restored the barrier function of epithelial cells, suggesting that cigarette smoke-elicited CatS induced an alteration of epithelial integrity via the proteolytic injury of occludin. CONCLUSIONS Alongside its noteworthy resistance to oxidative stress induced by cigarette smoke oxidants and its deleterious elastin-degrading potency, CatS may also have a detrimental effect on the barrier function of epithelial cells through the cleavage of occludin. The obtained data emphasize the emerging role of CatS in smoking-related lung diseases and strengthen the relevance of targeting CatS in the treatment of emphysema and COPD.
Collapse
Affiliation(s)
- Paul Bigot
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Proteolytic Mechanisms in Inflammation”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
| | - Simon Chesseron
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Proteolytic Mechanisms in Inflammation”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
| | - Ahlame Saidi
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Proteolytic Mechanisms in Inflammation”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
| | - Damien Sizaret
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Pathological Anatomy and Cytology, The University Hospital Center of Tours, 37000 Tours, France
| | - Christelle Parent
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Aerosol therapy and Biotherapeutics for Respiratory Diseases”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
| | - Agnès Petit-Courty
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Proteolytic Mechanisms in Inflammation”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
| | - Yves Courty
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Proteolytic Mechanisms in Inflammation”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
| | - Fabien Lecaille
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Proteolytic Mechanisms in Inflammation”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
| | - Gilles Lalmanach
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Proteolytic Mechanisms in Inflammation”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
- Correspondence: ; Tel.: +33-2-47-36-61-51
| |
Collapse
|
69
|
Lung Organoids for Hazard Assessment of Nanomaterials. Int J Mol Sci 2022; 23:ijms232415666. [PMID: 36555307 PMCID: PMC9779559 DOI: 10.3390/ijms232415666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Lung epithelial organoids for the hazard assessment of inhaled nanomaterials offer a promising improvement to in vitro culture systems used so far. Organoids grow in three-dimensional (3D) spheres and can be derived from either induced pluripotent stem cells (iPSC) or primary lung tissue stem cells from either human or mouse. In this perspective we will highlight advantages and disadvantages of traditional culture systems frequently used for testing nanomaterials and compare them to lung epithelial organoids. We also discuss the differences between tissue and iPSC-derived organoids and give an outlook in which direction the whole field could possibly go with these versatile tools.
Collapse
|
70
|
Binder S, Rastak N, Karg E, Huber A, Kuhn E, Dragan GC, Monsé C, Breuer D, Di Bucchianico S, Delaval MN, Oeder S, Sklorz M, Zimmermann R. Construction of an In Vitro Air-Liquid Interface Exposure System to Assess the Toxicological Impact of Gas and Particle Phase of Semi-Volatile Organic Compounds. TOXICS 2022; 10:730. [PMID: 36548563 PMCID: PMC9782028 DOI: 10.3390/toxics10120730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Anthropogenic activities and industrialization render continuous human exposure to semi-volatile organic compounds (SVOCs) inevitable. Occupational monitoring and safety implementations consider the inhalation exposure of SVOCs as critically relevant. Due to the inherent properties of SVOCs as gas/particle mixtures, risk assessment strategies should consider particle size-segregated SVOC association and the relevance of released gas phase fractions. We constructed an in vitro air-liquid interface (ALI) exposure system to study the distinct toxic effects of the gas and particle phases of the model SVOC dibutyl phthalate (DBP) in A549 human lung epithelial cells. Cytotoxicity was evaluated and genotoxic effects were measured by the alkaline and enzyme versions of the comet assay. Deposited doses were assessed by model calculations and chemical analysis using liquid chromatography tandem mass spectrometry. The novel ALI exposure system was successfully implemented and revealed the distinct genotoxic effects of the gas and particle phases of DBP. The empirical measurements of cellular deposition and the model calculations of the DBP particle phase were concordant.The model SVOC DBP showed that inferred oxidative DNA damage may be attributed to particle-related effects. While pure gas phase exposure may follow a distinct mechanism of genotoxicity, the contribution of the gas phase to total aerosol was comparably low.
Collapse
Affiliation(s)
- Stephanie Binder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, 18051 Rostock, Germany
| | - Narges Rastak
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, 18051 Rostock, Germany
| | - Erwin Karg
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Anja Huber
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Evelyn Kuhn
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - George C. Dragan
- Berufsgenossenschaft Handel und Warenlogistik (BGHW), 80639 Munich, Germany
| | - Christian Monsé
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA), 44789 Bochum, Germany
| | - Dietmar Breuer
- Institute of Occupational Safety of the German Social Accident Insurance (IFA), 53757 Sankt Augustin, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, 18051 Rostock, Germany
| | - Mathilde N. Delaval
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Martin Sklorz
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, 18051 Rostock, Germany
| |
Collapse
|
71
|
Bannuscher A, Schmid O, Drasler B, Rohrbasser A, Braakhuis HM, Meldrum K, Zwart EP, Gremmer ER, Birk B, Rissel M, Landsiedel R, Moschini E, Evans SJ, Kumar P, Orak S, Doryab A, Erdem JS, Serchi T, Vandebriel RJ, Cassee FR, Doak SH, Petri-Fink A, Zienolddiny S, Clift MJD, Rothen-Rutishauser B. An inter-laboratory effort to harmonize the cell-delivered in vitro dose of aerosolized materials. NANOIMPACT 2022; 28:100439. [PMID: 36402283 DOI: 10.1016/j.impact.2022.100439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Air-liquid interface (ALI) lung cell models cultured on permeable transwell inserts are increasingly used for respiratory hazard assessment requiring controlled aerosolization and deposition of any material on ALI cells. The approach presented herein aimed to assess the transwell insert-delivered dose of aerosolized materials using the VITROCELL® Cloud12 system, a commercially available aerosol-cell exposure system. An inter-laboratory comparison study was conducted with seven European partners having different levels of experience with the VITROCELL® Cloud12. A standard operating procedure (SOP) was developed and applied by all partners for aerosolized delivery of materials, i.e., a water-soluble molecular substance (fluorescence-spiked salt) and two poorly soluble particles, crystalline silica quartz (DQ12) and titanium dioxide nanoparticles (TiO2 NM-105). The material dose delivered to transwell inserts was quantified with spectrofluorometry (fluorescein) and with the quartz crystal microbalance (QCM) integrated in the VITROCELL® Cloud12 system. The shape and agglomeration state of the deposited particles were confirmed with transmission electron microscopy (TEM). Inter-laboratory comparison of the device-specific performance was conducted in two steps, first for molecular substances (fluorescein-spiked salt), and then for particles. Device- and/or handling-specific differences in aerosol deposition of VITROCELL® Cloud12 systems were characterized in terms of the so-called deposition factor (DF), which allows for prediction of the transwell insert-deposited particle dose from the particle concentration in the aerosolized suspension. Albeit DF varied between the different labs from 0.39 to 0.87 (mean (coefficient of variation (CV)): 0.64 (28%)), the QCM of each VITROCELL® Cloud 12 system accurately measured the respective transwell insert-deposited dose. Aerosolized delivery of DQ12 and TiO2 NM-105 particles showed good linearity (R2 > 0.95) between particle concentration of the aerosolized suspension and QCM-determined insert-delivered particle dose. The VITROCELL® Cloud 12 performance for DQ12 particles was identical to that for fluorescein-spiked salt, i.e., the ratio of measured and salt-predicted dose was 1.0 (29%). On the other hand, a ca. 2-fold reduced dose was observed for TiO2 NM-105 (0.54 (41%)), which was likely due to partial retention of TiO2 NM-105 agglomerates in the vibrating mesh nebulizer of the VITROCELL® Cloud12. This inter-laboratory comparison demonstrates that the QCM integrated in the VITROCELL® Cloud 12 is a reliable tool for dosimetry, which accounts for potential variations of the transwell insert-delivered dose due to device-, handling- and/or material-specific effects. With the detailed protocol presented herein, all seven partner laboratories were able to demonstrate dose-controlled aerosolization of material suspensions using the VITROCELL® Cloud12 exposure system at dose levels relevant for observing in vitro hazard responses. This is an important step towards regulatory approved implementation of ALI lung cell cultures for in vitro hazard assessment of aerosolized materials.
Collapse
Affiliation(s)
- Anne Bannuscher
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Otmar Schmid
- Comprehensive Pneumology Center (CPC-M), Helmholtz Zentrum München - Member of the German Center for Lung Research (DZL), Max-Lebsche-Platz 31, 81377 Munich, Germany; Institute of Lung Health and Immunity, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Barbara Drasler
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Alain Rohrbasser
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Hedwig M Braakhuis
- National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Kirsty Meldrum
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Medical School, Institute of Life Sciences, Centre for NanoHealth, Swansea University, Singleton Campus, Wales SA2 8PP, UK
| | - Edwin P Zwart
- National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Eric R Gremmer
- National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Barbara Birk
- BASF SE, Experimental Toxicology and Ecology, 67056 Ludwigshafen am Rhein, Germany
| | - Manuel Rissel
- BASF SE, Experimental Toxicology and Ecology, 67056 Ludwigshafen am Rhein, Germany
| | - Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, 67056 Ludwigshafen am Rhein, Germany; Free University of Berlin, Pharmacy, Pharmacology and Toxicology, 14195 Berlin, Germany
| | - Elisa Moschini
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L4422 Belvaux, Grand-Duchy of Luxembourg, Luxembourg
| | - Stephen J Evans
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Medical School, Institute of Life Sciences, Centre for NanoHealth, Swansea University, Singleton Campus, Wales SA2 8PP, UK
| | - Pramod Kumar
- Comprehensive Pneumology Center (CPC-M), Helmholtz Zentrum München - Member of the German Center for Lung Research (DZL), Max-Lebsche-Platz 31, 81377 Munich, Germany; Institute of Lung Health and Immunity, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Sezer Orak
- Comprehensive Pneumology Center (CPC-M), Helmholtz Zentrum München - Member of the German Center for Lung Research (DZL), Max-Lebsche-Platz 31, 81377 Munich, Germany; Institute of Lung Health and Immunity, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Ali Doryab
- Comprehensive Pneumology Center (CPC-M), Helmholtz Zentrum München - Member of the German Center for Lung Research (DZL), Max-Lebsche-Platz 31, 81377 Munich, Germany; Institute of Lung Health and Immunity, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | | | - Tommaso Serchi
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L4422 Belvaux, Grand-Duchy of Luxembourg, Luxembourg
| | - Rob J Vandebriel
- National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Flemming R Cassee
- National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720, BA, Bilthoven, the Netherlands; Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Shareen H Doak
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Medical School, Institute of Life Sciences, Centre for NanoHealth, Swansea University, Singleton Campus, Wales SA2 8PP, UK
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | | | - Martin J D Clift
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Medical School, Institute of Life Sciences, Centre for NanoHealth, Swansea University, Singleton Campus, Wales SA2 8PP, UK
| | | |
Collapse
|
72
|
Meldrum K, Moura JA, Doak SH, Clift MJD. Dynamic Fluid Flow Exacerbates the (Pro-)Inflammatory Effects of Aerosolised Engineered Nanomaterials In Vitro. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193431. [PMID: 36234557 PMCID: PMC9565225 DOI: 10.3390/nano12193431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 06/08/2023]
Abstract
The majority of in vitro studies focusing upon particle-lung cell interactions use static models at an air-liquid interface (ALI). Advancing the physiological characteristics of such systems allows for closer resemblance of the human lung, in turn promoting 3R strategies. PATROLS (EU Horizon 2020 No. 760813) aimed to use a well-characterised in vitro model of the human alveolar epithelial barrier to determine how fluid-flow dynamics would impact the outputs of the model following particle exposure. Using the QuasiVivoTM (Kirkstall Ltd., York, UK) system, fluid-flow conditions were applied to an A549 + dTHP-1 cell co-culture model cultured at the ALI. DQ12 and TiO2 (JRCNM01005a) were used as model particles to assess the in vitro systems' sensitivity. Using a quasi- and aerosol (VitroCell Cloud12, VitroCell Systems, Waldkirch, Germany) exposure approach, cell cultures were exposed over 24 h at IVIVE concentrations of 1 and 10 (DQ12) and 1.4 and 10.4 (TiO2) µg/cm2, respectively. We compared static and fluid flow conditions after both these exposure methods. The co-culture was subsequently assessed for its viability, membrane integrity and (pro-)inflammatory response (IL-8 and IL-6 production). The results suggested that the addition of fluid flow to this alveolar co-culture model can influence the viability, membrane integrity and inflammatory responses dependent on the particle type and exposure.
Collapse
|
73
|
Boodhia K, Andraos C, Wepener V, Gulumian M. P13-01 Distribution and uptake of gold nanoparticles under air-liquid interface and submerged conditions, investigated using the conventional inverted microscopy and CytoViva 3D technology. Toxicol Lett 2022. [DOI: 10.1016/j.toxlet.2022.07.540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
74
|
Gene Expression Profiling of Mono- and Co-Culture Models of the Respiratory Tract Exposed to Crystalline Quartz under Submerged and Air-Liquid Interface Conditions. Int J Mol Sci 2022; 23:ijms23147773. [PMID: 35887123 PMCID: PMC9324045 DOI: 10.3390/ijms23147773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
In vitro lung cell models like air-liquid interface (ALI) and 3D cell cultures have advanced greatly in recent years, being especially valuable for testing advanced materials (e.g., nanomaterials, fibrous substances) when considering inhalative exposure. Within this study, we established submerged and ALI cell culture models utilizing A549 cells as mono-cultures and co-cultures with differentiated THP-1 (dTHP-1), as well as mono-cultures of dTHP-1. After ALI and submerged exposures towards α-quartz particles (Min-U-Sil5), with depositions ranging from 15 to 60 µg/cm2, comparison was made with respect to their transcriptional cellular responses employing high-throughput RT-qPCR. A significant dose- and time-dependent induction of genes coding for inflammatory proteins, e.g., IL-1A, IL-1B, IL-6, IL-8, and CCL22, as well as genes associated with oxidative stress response such as SOD2, was observed, even more pronounced in co-cultures. Changes in the expression of similar genes were more pronounced under submerged conditions when compared to ALI exposure in the case of A549 mono-cultures. Hereby, the activation of the NF-κB signaling pathway and the NLRP3 inflammasome seem to play an important role. Regarding genotoxicity, neither DNA strand breaks in ALI cultivated cells nor a transcriptional response to DNA damage were observed. Altogether, the toxicological responses depended considerably on the cell culture model and exposure scenario, relevant to be considered to improve toxicological risk assessment.
Collapse
|
75
|
Herminghaus A, Kozlov AV, Szabó A, Hantos Z, Gylstorff S, Kuebart A, Aghapour M, Wissuwa B, Walles T, Walles H, Coldewey SM, Relja B. A Barrier to Defend - Models of Pulmonary Barrier to Study Acute Inflammatory Diseases. Front Immunol 2022; 13:895100. [PMID: 35874776 PMCID: PMC9300899 DOI: 10.3389/fimmu.2022.895100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Pulmonary diseases represent four out of ten most common causes for worldwide mortality. Thus, pulmonary infections with subsequent inflammatory responses represent a major public health concern. The pulmonary barrier is a vulnerable entry site for several stress factors, including pathogens such as viruses, and bacteria, but also environmental factors e.g. toxins, air pollutants, as well as allergens. These pathogens or pathogen-associated molecular pattern and inflammatory agents e.g. damage-associated molecular pattern cause significant disturbances in the pulmonary barrier. The physiological and biological functions, as well as the architecture and homeostatic maintenance of the pulmonary barrier are highly complex. The airway epithelium, denoting the first pulmonary barrier, encompasses cells releasing a plethora of chemokines and cytokines, and is further covered with a mucus layer containing antimicrobial peptides, which are responsible for the pathogen clearance. Submucosal antigen-presenting cells and neutrophilic granulocytes are also involved in the defense mechanisms and counterregulation of pulmonary infections, and thus may directly affect the pulmonary barrier function. The detailed understanding of the pulmonary barrier including its architecture and functions is crucial for the diagnosis, prognosis, and therapeutic treatment strategies of pulmonary diseases. Thus, considering multiple side effects and limited efficacy of current therapeutic treatment strategies in patients with inflammatory diseases make experimental in vitro and in vivo models necessary to improving clinical therapy options. This review describes existing models for studyying the pulmonary barrier function under acute inflammatory conditions, which are meant to improve the translational approaches for outcome predictions, patient monitoring, and treatment decision-making.
Collapse
Affiliation(s)
- Anna Herminghaus
- Department of Anaesthesiology, University of Duesseldorf, Duesseldorf, Germany
| | - Andrey V. Kozlov
- L Boltzmann Institute for Traumatology in Cooperation with AUVA and Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department of Human Pathology , IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Andrea Szabó
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Zoltán Hantos
- Department of Anaesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary
| | - Severin Gylstorff
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg, Germany
- Research Campus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany
| | - Anne Kuebart
- Department of Anaesthesiology, University of Duesseldorf, Duesseldorf, Germany
| | - Mahyar Aghapour
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Bianka Wissuwa
- Department of Anaesthesiology and Intensive Care Medicine, Septomics Research Centre, Centre for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Thorsten Walles
- Department of Thoracic Surgery, Magdeburg University Medicine, Magdeburg, Germany
| | - Heike Walles
- Research Campus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany
- Core Facility Tissue Engineering, Otto-von-Guericke-University, Magdeburg, Germany
| | - Sina M. Coldewey
- Department of Anaesthesiology and Intensive Care Medicine, Septomics Research Centre, Centre for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg, Germany
- Research Campus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany
- *Correspondence: Borna Relja,
| |
Collapse
|
76
|
Crooks I, Hollings M, Leverette R, Jordan K, Breheny D, Moore MM, Thorne D. A comparison of cigarette smoke test matrices and their responsiveness in the mouse lymphoma assay: A case study. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 879-880:503502. [PMID: 35914858 DOI: 10.1016/j.mrgentox.2022.503502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
No cigarette smoke test matrix is without limitation, due to the complexity of the starting aerosol and phase to phase dynamics. It is impossible to capture all chemicals at the same level of efficiency, therefore, any test matrix will inadvertently or by design fractionate the test aerosol. This case study examines how four different test matrices derived from cigarette smoke can be directly compared. The test matrices assessed were as follows, total particulate matter (TPM), gas vapour phase (GVP), a combination of TPM + GVP and whole aerosol (WA). Here we use an example assay, the mouse lymphoma assay (MLA) to demonstrate that data generated across four cigarette smoke test matrices can be compared. The results show that all test matrices were able to induce positive mutational events, but with clear differences in the biological activity (both potency and toxicity) between them. TPM was deemed the most potent test article and by extension, the particulate phase is interpreted as the main driver of genotoxic induced responses in the MLA. However, the results highlight that the vapour phase is also active. MLA appeared responsive to WA, with potentially lower potency, compared to TPM approaches. However, this observation is caveated in that the WA approaches used for comparison were made on a newly developed experimental method using dose calculations. The TPM + GVP matrix had comparable activity to TPM alone, but interestingly induced a greater number of mutational events at comparable relative total growth (RTG) and TPM-equivalent doses when compared to other test matrices. In conclusion, this case study highlights the importance of understanding test matrices in response to the biological assay being assessed and we note that not all test matrices are equal.
Collapse
Affiliation(s)
- Ian Crooks
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - Michael Hollings
- Labcorp Early Development Laboratories Ltd., Harrogate, North Yorkshire HG3 1PY, UK
| | - Robert Leverette
- Reynolds American Inc, 950 Reynolds Blvd., Winston-Salem, NC 27105, USA
| | - Kristen Jordan
- Reynolds American Inc, 950 Reynolds Blvd., Winston-Salem, NC 27105, USA
| | - Damien Breheny
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | | | - David Thorne
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK.
| |
Collapse
|
77
|
Chary A, Groff K, Stucki AO, Contal S, Stoffels C, Cambier S, Sharma M, Gutleb AC, Clippinger AJ. Maximizing the relevance and reproducibility of A549 cell culture using FBS-free media. Toxicol In Vitro 2022; 83:105423. [PMID: 35753526 DOI: 10.1016/j.tiv.2022.105423] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
Scientists are using in vitro methods to answer important research questions and implementing strategies to maximize the reliability and human relevance of these methods. One strategy is to replace the use of fetal bovine serum (FBS)-an undefined and variable mixture of biomolecules-in cell culture media with chemically defined or xeno-free medium. In this study, A549 cells, a human lung alveolar-like cell line commonly used in respiratory research, were transitioned from a culture medium containing FBS to media without FBS. A successful transition was determined based on analysis of cell morphology and functionality. Following transition to commercially available CnT-Prime Airway (CELLnTEC) or X-VIVO™ 10 (Lonza) medium, the cells were characterized by microscopic evaluation and calculation of doubling time. Their genotype, morphology, and functionality were assessed by monitoring the expression of gene markers for lung cell types, surfactant production, cytokine release, the presence of multilamellar bodies, and cell viability following sodium dodecyl sulphate exposure. Our results showed that A549 cells successfully transitioned to FBS-free media under submerged and air-liquid-interface conditions. Cells grown in X-VIVO™ 10 medium mimicked cellular characteristics of FBS-supplemented media while those grown in CnT-Prime Airway medium demonstrated characteristics possibly more reflective of normal human alveolar epithelial cells.
Collapse
Affiliation(s)
- Aline Chary
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg.
| | - Katherine Groff
- PETA Science Consortium International e.V., Friolzheimer Str. 3, 70499 Stuttgart, Germany.
| | - Andreas O Stucki
- PETA Science Consortium International e.V., Friolzheimer Str. 3, 70499 Stuttgart, Germany.
| | - Servane Contal
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg.
| | - Charlotte Stoffels
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg; University of Luxembourg, 2 Av. de l'Universite, 4365 Esch-sur-Alzette, Luxembourg.
| | - Sébastien Cambier
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg.
| | - Monita Sharma
- PETA Science Consortium International e.V., Friolzheimer Str. 3, 70499 Stuttgart, Germany.
| | - Arno C Gutleb
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg.
| | - Amy J Clippinger
- PETA Science Consortium International e.V., Friolzheimer Str. 3, 70499 Stuttgart, Germany.
| |
Collapse
|
78
|
Comparing α-Quartz-Induced Cytotoxicity and Interleukin-8 Release in Pulmonary Mono- and Co-Cultures Exposed under Submerged and Air-Liquid Interface Conditions. Int J Mol Sci 2022; 23:ijms23126412. [PMID: 35742856 PMCID: PMC9224477 DOI: 10.3390/ijms23126412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023] Open
Abstract
The occupational exposure to particles such as crystalline quartz and its impact on the respiratory tract have been studied extensively in recent years. For hazard assessment, the development of physiologically more relevant in-vitro models, i.e., air-liquid interface (ALI) cell cultures, has greatly progressed. Within this study, pulmonary culture models employing A549 and differentiated THP-1 cells as mono-and co-cultures were investigated. The different cultures were exposed to α-quartz particles (Min-U-Sil5) with doses ranging from 15 to 66 µg/cm2 under submerged and ALI conditions and cytotoxicity as well as cytokine release were analyzed. No cytotoxicity was observed after ALI exposure. Contrarily, Min-U-Sil5 was cytotoxic at the highest dose in both submerged mono- and co-cultures. A concentration-dependent release of interleukin-8 was shown for both exposure types, which was overall stronger in co-cultures. Our findings showed considerable differences in the toxicological responses between ALI and submerged exposure and between mono- and co-cultures. A substantial influence of the presence or absence of serum in cell culture media was noted as well. Within this study, the submerged culture was revealed to be more sensitive. This shows the importance of considering different culture and exposure models and highlights the relevance of communication between different cell types for toxicological investigations.
Collapse
|
79
|
Farcas MT, McKinney W, Coyle J, Orandle M, Mandler WK, Stefaniak AB, Bowers L, Battelli L, Richardson D, Hammer MA, Friend SA, Service S, Kashon M, Qi C, Hammond DR, Thomas TA, Matheson J, Qian Y. Evaluation of Pulmonary Effects of 3-D Printer Emissions From Acrylonitrile Butadiene Styrene Using an Air-Liquid Interface Model of Primary Normal Human-Derived Bronchial Epithelial Cells. Int J Toxicol 2022; 41:312-328. [PMID: 35586871 DOI: 10.1177/10915818221093605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated the inhalation toxicity of the emissions from 3-D printing with acrylonitrile butadiene styrene (ABS) filament using an air-liquid interface (ALI) in vitro model. Primary normal human-derived bronchial epithelial cells (NHBEs) were exposed to ABS filament emissions in an ALI for 4 hours. The mean and mode diameters of ABS emitted particles in the medium were 175 ± 24 and 153 ± 15 nm, respectively. The average particle deposition per surface area of the epithelium was 2.29 × 107 ± 1.47 × 107 particle/cm2, equivalent to an estimated average particle mass of 0.144 ± 0.042 μg/cm2. Results showed exposure of NHBEs to ABS emissions did not significantly affect epithelium integrity, ciliation, mucus production, nor induce cytotoxicity. At 24 hours after the exposure, significant increases in the pro-inflammatory markers IL-12p70, IL-13, IL-15, IFN-γ, TNF-α, IL-17A, VEGF, MCP-1, and MIP-1α were noted in the basolateral cell culture medium of ABS-exposed cells compared to non-exposed chamber control cells. Results obtained from this study correspond with those from our previous in vivo studies, indicating that the increase in inflammatory mediators occur without associated membrane damage. The combination of the exposure chamber and the ALI-based model is promising for assessing 3-D printer emission-induced toxicity.
Collapse
Affiliation(s)
- Mariana T Farcas
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA.,Department of Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Walter McKinney
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jayme Coyle
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Marlene Orandle
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - W Kyle Mandler
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Aleksandr B Stefaniak
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA.,Department of Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Lauren Bowers
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA.,Department of Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Lori Battelli
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Diana Richardson
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mary A Hammer
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Sherri A Friend
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Samantha Service
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Michael Kashon
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Chaolong Qi
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Duane R Hammond
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Treye A Thomas
- Respiratory Health Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Joanna Matheson
- Respiratory Health Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Yong Qian
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
80
|
Jagiello K, Ciura K. In vitro to in vivo extrapolation to support the development of the next generation risk assessment (NGRA) strategy for nanomaterials. NANOSCALE 2022; 14:6735-6742. [PMID: 35446334 DOI: 10.1039/d2nr00664b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is growing interest in developing novel strategies to support assessment of human health risks due to chemicals. Regulatory and decision-making agencies have recommended that non-animal-based alternatives should be applied whenever possible instead of experimentation on living animals. These alternative methods are beneficial because they are ethical, inexpensive, and rapid. Herein, we review recent activities aimed at developing in vitro to in vivo extrapolation (IVIVE) models as a part of the Next Generation Risk Assessment (NGRA) of nanomaterials. In this context, we show the adverse outcome pathway (AOP)-based methodology for the identification of mechanistically relevant events serving as biomarkers for the targeted selection of in vitro assays. Considered events need to be biologically plausible, regulatory relevant, and crucial for the examination of occurrence of adverse outcomes. The promising advantages of using high-throughout-based omics data are highlighted. Furthermore, the application of 3D in vitro models and nano genome atlases to study nanoparticle toxicity is briefly summarized. Additionally, the challenges related to the extrapolation of in vitro doses into in vivo-relevant responses are presented. We also discuss the limitations of models applied thus far to study the fate of chemicals in the human body, which exist due to the lack of available knowledge regarding transformations of nanomaterials occurring in biological systems.
Collapse
Affiliation(s)
- Karolina Jagiello
- QSAR Lab Ltd., Trzy Lipy 3, 80-172 Gdansk, Poland.
- University of Gdansk, Faculty of Chemistry, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Krzesimir Ciura
- QSAR Lab Ltd., Trzy Lipy 3, 80-172 Gdansk, Poland.
- Medical University of Gdansk, Faculty of Pharmacy, Department of Physical Chemistry, J. Hallera Avenue 107, 80-416, Gdansk, Poland
| |
Collapse
|
81
|
Marrocco A, Singh D, Christiani DC, Demokritou P. E-Cigarette (E-Cig) Liquid Composition and Operational Voltage Define the In Vitro Toxicity of Δ8Tetrahydrocannabinol/Vitamin E Acetate (Δ8THC/VEA) E-Cig Aerosols. Toxicol Sci 2022; 187:279-297. [PMID: 35478015 PMCID: PMC9154258 DOI: 10.1093/toxsci/kfac047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The 2019 United States outbreak of E-cigarette (e-cig), or Vaping, Associated Acute Lung Injury (EVALI) has been linked to presence of vitamin E acetate (VEA) in Δ8tetrahydrocannabinol (Δ8THC)-containing e-liquids, as supported by VEA detection in patient biological samples. However, the pathogenesis of EVALI and the complex physicochemical properties of e-cig emissions remain unclear, raising concerns on health risks of vaping. This study investigates the effect of Δ8THC/VEA e-liquids and e-cig operational voltage on in vitro toxicity of e-cig aerosols. A novel E-cigExposure Generation System platform was used to generate and characterize e-cig aerosols from a panel of Δ8THC/VEA or nicotine-based e-liquids at 3.7 or 5 V. Human lung Calu-3 cells and THP-1 monocytes were exposed to cell culture media conditioned with collected e-cig aerosol condensate at doses of 85 and 257 puffs/m2 lung surface for 24 h, whereafter specific toxicological endpoints were assessed (including cytotoxicity, metabolic activity, reactive oxygen species generation, apoptosis, and inflammatory cytokines). Higher concentrations of gaseous volatile organic compounds were emitted from Δ8THC/VEA compared with nicotine-based e-liquids, especially at 5 V. Emitted PM2.5 concentrations in aerosol were higher for Δ8THC/VEA at 5 V and averagely for nicotine-based e-liquids at 3.7 V. Overall, aerosols from nicotine-based e-liquids showed higher bioactivity than Δ8THC/VEA aerosols in THP-1 cells, with no apparent differences in Calu-3 cells. Importantly, presence of VEA in Δ8THC and menthol flavoring in nicotine-based e-liquids increased cytotoxicity of aerosols across both cell lines, especially at 5 V. This study systematically investigates the physicochemical and toxicological properties of a model of Δ8THC/VEA and nicotine e-cigarette condensate exposure demonstrating that pyrolysis of these mixtures can generate hazardous toxicants whose synergistic actions potentially drive acute lung injury upon inhalation.
Collapse
Affiliation(s)
- Antonella Marrocco
- To whom correspondence should be addressed at Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Building 1, Room 1310, Boston, MA 02115, USA. E-mail:
| | - Dilpreet Singh
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, USA
| | - David C Christiani
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, USA
| | - Philip Demokritou
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, USA,Department of Environmental and Population Health Bio-Sciences, Environmental Occupational Health Sciences Institute, School of Public Health, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
82
|
Forest V. Experimental and Computational Nanotoxicology-Complementary Approaches for Nanomaterial Hazard Assessment. NANOMATERIALS 2022; 12:nano12081346. [PMID: 35458054 PMCID: PMC9031966 DOI: 10.3390/nano12081346] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/25/2022]
Abstract
The growing development and applications of nanomaterials lead to an increasing release of these materials in the environment. The adverse effects they may elicit on ecosystems or human health are not always fully characterized. Such potential toxicity must be carefully assessed with the underlying mechanisms elucidated. To that purpose, different approaches can be used. First, experimental toxicology consisting of conducting in vitro or in vivo experiments (including clinical studies) can be used to evaluate the nanomaterial hazard. It can rely on variable models (more or less complex), allowing the investigation of different biological endpoints. The respective advantages and limitations of in vitro and in vivo models are discussed as well as some issues associated with experimental nanotoxicology. Perspectives of future developments in the field are also proposed. Second, computational nanotoxicology, i.e., in silico approaches, can be used to predict nanomaterial toxicity. In this context, we describe the general principles, advantages, and limitations especially of quantitative structure–activity relationship (QSAR) models and grouping/read-across approaches. The aim of this review is to provide an overview of these different approaches based on examples and highlight their complementarity.
Collapse
Affiliation(s)
- Valérie Forest
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, Etablissement Français du Sang, INSERM, U1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| |
Collapse
|
83
|
Unveiling the Toxicity of Fine and Nano-Sized Airborne Particles Generated from Industrial Thermal Spraying Processes in Human Alveolar Epithelial Cells. Int J Mol Sci 2022; 23:ijms23084278. [PMID: 35457096 PMCID: PMC9025379 DOI: 10.3390/ijms23084278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 02/04/2023] Open
Abstract
High-energy industrial processes have been associated with particle release into workplace air that can adversely affect workers’ health. The present study assessed the toxicity of incidental fine (PGFP) and nanoparticles (PGNP) emitted from atmospheric plasma (APS) and high-velocity oxy-fuel (HVOF) thermal spraying. Lactate dehydrogenase (LDH) release, 2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate (WST-1) metabolisation, intracellular reactive oxygen species (ROS) levels, cell cycle changes, histone H2AX phosphorylation (γ-H2AX) and DNA damage were evaluated in human alveolar epithelial cells at 24 h after exposure. Overall, HVOF particles were the most cytotoxic to human alveolar cells, with cell viability half-maximal inhibitory concentration (IC50) values of 20.18 µg/cm2 and 1.79 µg/cm2 for PGFP and PGNP, respectively. Only the highest tested concentration of APS-PGFP caused a slight decrease in cell viability. Particle uptake, cell cycle arrest at S + G2/M and γ-H2AX augmentation were observed after exposure to all tested particles. However, higher levels of γ-H2AX were found in cells exposed to APS-derived particles (~16%), while cells exposed to HVOF particles exhibited increased levels of oxidative damage (~17% tail intensity) and ROS (~184%). Accordingly, APS and HVOF particles seem to exert their genotoxic effects by different mechanisms, highlighting that the health risks of these process-generated particles at industrial settings should not be underestimated.
Collapse
|
84
|
Smart DE, Bozhilova S, Miazzi F, Haswell LE, Gaca MD, Thorne D, Breheny D. Application of ToxTracker for the toxicological assessment of tobacco and nicotine delivery products. Toxicol Lett 2022; 358:59-68. [PMID: 35065211 DOI: 10.1016/j.toxlet.2022.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 12/15/2022]
Abstract
Consumer demands and innovation have led to an increasingly diverse range of nicotine delivery systems, driven by a desire to reduce risk associated with traditional combustible cigarettes. This speed of change provides a mandate for rapid new product assessment. We have used the validated technology ToxTracker®, to assess biomarkers of DNA damage, protein misfolding, oxidative and cellular stress, across the categories of cigarette (1R6F), tobacco heating product (THP 1.4) and electronic cigarette (ePen 3). In addition, we compared the commonly used test matrices for tobacco and nicotine products; whole aerosol aqueous extracts (AqE) and gas vapour phase (GVP), determining their suitability across the product categories. We demonstrated a significant reduction in oxidative stress and cytotoxicity for THP 1.4 over cigarette, further reduced for ePen 3, when assessed by both dilution and nicotine dosimetry. We also identified that while the extraction matrices AqE and GVP from combustible products were equivalent in the induced responses, this was not true of the other category examples, moreover THP 1.4 GVP demonstrates a >50 % reduction in both toxicity and cytotoxicity endpoints over AqE. This indicates that unlike cigarette, the active components or toxicants for THP and electronic cigarette are associated with the aerosol fraction of these categories.
Collapse
Affiliation(s)
- David E Smart
- British American Tobacco, Scientific Research, Waterhouse Way, Southampton, SO15 8TL, UK.
| | - Stela Bozhilova
- British American Tobacco, Scientific Research, Waterhouse Way, Southampton, SO15 8TL, UK
| | - Fabio Miazzi
- British American Tobacco, Scientific Research, Waterhouse Way, Southampton, SO15 8TL, UK
| | - Linsey E Haswell
- British American Tobacco, Scientific Research, Waterhouse Way, Southampton, SO15 8TL, UK
| | - Marianna D Gaca
- British American Tobacco, Scientific Research, Waterhouse Way, Southampton, SO15 8TL, UK
| | - David Thorne
- British American Tobacco, Scientific Research, Waterhouse Way, Southampton, SO15 8TL, UK
| | - Damien Breheny
- British American Tobacco, Scientific Research, Waterhouse Way, Southampton, SO15 8TL, UK
| |
Collapse
|
85
|
Meldrum K, Evans SJ, Vogel U, Tran L, Doak SH, Clift MJD. The influence of exposure approaches to in vitro lung epithelial barrier models to assess engineered nanomaterial hazard. Nanotoxicology 2022; 16:114-134. [PMID: 35343373 DOI: 10.1080/17435390.2022.2051627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Exposure to engineered nanomaterials (ENM) poses a potential health risk to humans through long-term, repetitive low-dose exposures. Currently, this is not commonplace within in vitro lung cell cultures. Therefore, the purpose of this study was to consider the optimal exposure approach toward determining the stability, sensitivity and validity of using in vitro lung cell mono- and co-cultures to determine ENM hazard. A range of exposure scenarios were conducted with DQ12 (previously established as a positive particle control) (historic and re-activated), TiO2 (JRC NM-105) and BaSO4 (JRC NM-220) on both monocultures of A549 cells as well as co-cultures of A549 cells and differentiated THP-1 cells. Cell cultures were exposed to either a single, or a repeated exposure over 24, 48- or 72-hours at in vivo extrapolated concentrations of 0-5.2 µg/cm2, 0-6 µg/cm2 and 0-1µg/cm2. The focus of this study was the pro-inflammatory, cytotoxic and genotoxic response elicited by these ENMs. Exposure to DQ12 caused pro-inflammatory responses after 48 hours repeat exposures, as well as increases in micronucleus frequency. Neither TiO2 nor BaSO4 elicited a pro-inflammatory response at this time point. However, there was induction of IL-6 after 24 hours TiO2 exposure. In conclusion, it is important to consider the appropriateness of the positive control implemented, the cell culture model, the time of exposure as well as the type of exposure (bolus or fractionated) before establishing if an in vitro model is appropriate to determine the level of response to the specific ENM of interest.
Collapse
Affiliation(s)
- Kirsty Meldrum
- In Vitro Toxicology Group, Swansea University, Swansea, UK
| | | | - Ulla Vogel
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Lang Tran
- Institute of Occupational Medicine (IOM), Edinburgh, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Swansea University, Swansea, UK
| | | |
Collapse
|
86
|
Zhang J, Doshi U, Wolz RL, Kosachevsky P, Oldham MJ, Gillman IG, Lee KM. Fit-for-purpose characterization of air-liquid-interface (ALI) in vitro exposure systems for e-vapor aerosol. Toxicol In Vitro 2022; 82:105352. [PMID: 35341918 DOI: 10.1016/j.tiv.2022.105352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 11/28/2022]
Abstract
Air-liquid-interface (ALI) exposure systems deliver aerosol to the apical surface of cells which mimics the in vivo inhalation exposure conditions. It is necessary, however, to quantify the delivered amount of aerosol for ALI-based in vitro toxicity assessment. In this study, we evaluated two commercially available ALI exposure systems, a Vitrocell® Ames 48 (Ames 48) and a Vitrocell® 24/48 (VC 24/48), and the Vitrocell® VC1/7 smoking machine using a cig-a-like cartridge-based e-vapor device with a prototype formulation (containing 4% nicotine by weight). We characterized aerosol particle-size distribution, aerosol mass, and major chemical components (nicotine, propylene glycol, and glycerol) at the generation source and verified the repeatability of the aerosol generation. We determined aerosol delivery at the ALI by gravimetric analysis of mass collected on Cambridge filter pads and analytical quantitation of the buffer medium which showed that both aerosol mass and nicotine to an exposure insert linearly increased up to 400 puffs. The delivered aerosol mass covered a wide range of 0.8-3.4 mg per insert in the Ames 48 with variability (relative standard deviation, RSD) up to 12% and 1.1-6.4 mg per insert in the VC 24/48 with variability up to 15%. The delivered nicotine ranged approximately up to 200 μg per insert in both exposure systems. These results provided operation and aerosol delivery information of these ALI exposure systems for subsequent in vitro testing of e-vapor aerosols.
Collapse
Affiliation(s)
- J Zhang
- Altria Client Services LLC, Richmond, VA, United States of America.
| | - U Doshi
- Altria Client Services LLC, Richmond, VA, United States of America
| | - R L Wolz
- Enthalpy Analytical, Richmond, VA, United States of America
| | - P Kosachevsky
- Enthalpy Analytical, Richmond, VA, United States of America
| | - M J Oldham
- Altria Client Services LLC, Richmond, VA, United States of America
| | - I G Gillman
- Enthalpy Analytical, Richmond, VA, United States of America; Enthalpy Analytical, Richmond, VA, United States of America
| | - K M Lee
- Altria Client Services LLC, Richmond, VA, United States of America
| |
Collapse
|
87
|
Nof E, Zidan H, Artzy-Schnirman A, Mouhadeb O, Beckerman M, Bhardwaj S, Elias-Kirma S, Gur D, Beth-Din A, Levenberg S, Korin N, Ordentlich A, Sznitman J. Human Multi-Compartment Airways-on-Chip Platform for Emulating Respiratory Airborne Transmission: From Nose to Pulmonary Acini. Front Physiol 2022; 13:853317. [PMID: 35350687 PMCID: PMC8957966 DOI: 10.3389/fphys.2022.853317] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
The past decade has witnessed tremendous endeavors to deliver novel preclinical in vitro lung models for pulmonary research endpoints, including foremost with the advent of organ- and lung-on-chips. With growing interest in aerosol transmission and infection of respiratory viruses within a host, most notably the SARS-CoV-2 virus amidst the global COVID-19 pandemic, the importance of crosstalk between the different lung regions (i.e., extra-thoracic, conductive and respiratory), with distinct cellular makeups and physiology, are acknowledged to play an important role in the progression of the disease from the initial onset of infection. In the present Methods article, we designed and fabricated to the best of our knowledge the first multi-compartment human airway-on-chip platform to serve as a preclinical in vitro benchmark underlining regional lung crosstalk for viral infection pathways. Combining microfabrication and 3D printing techniques, our platform mimics key elements of the respiratory system spanning (i) nasal passages that serve as the alleged origin of infections, (ii) the mid-bronchial airway region and (iii) the deep acinar region, distinct with alveolated airways. Crosstalk between the three components was exemplified in various assays. First, viral-load (including SARS-CoV-2) injected into the apical partition of the nasal compartment was detected in distal bronchial and acinar components upon applying physiological airflow across the connected compartment models. Secondly, nebulized viral-like dsRNA, poly I:C aerosols were administered to the nasal apical compartment, transmitted to downstream compartments via respiratory airflows and leading to an elevation in inflammatory cytokine levels secreted by distinct epithelial cells in each respective compartment. Overall, our assays establish an in vitro methodology that supports the hypothesis for viral-laden airflow mediated transmission through the respiratory system cellular landscape. With a keen eye for broader end user applications, we share detailed methodologies for fabricating, assembling, calibrating, and using our multi-compartment platform, including open-source fabrication files. Our platform serves as an early proof-of-concept that can be readily designed and adapted to specific preclinical pulmonary research endpoints.
Collapse
Affiliation(s)
- Eliram Nof
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Hikaia Zidan
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Arbel Artzy-Schnirman
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Odelia Mouhadeb
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Margarita Beckerman
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Saurabh Bhardwaj
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Shani Elias-Kirma
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Didi Gur
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Adi Beth-Din
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Netanel Korin
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Arie Ordentlich
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
88
|
Guénette J, Breznan D, Thomson EM. Establishing an air-liquid interface exposure system for exposure of lung cells to gases. Inhal Toxicol 2022; 34:80-89. [PMID: 35212581 DOI: 10.1080/08958378.2022.2039332] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Growing interest in non-animal-based models has led to the development of devices to expose cells to airborne substances. Cells/tissues grown at the air-liquid interface (ALI) are more representative of lung cells/tissues in vivo compared to submerged cell cultures. Additionally, airborne exposures should allow for closer modeling of human lung toxicity. However, such exposures present technical challenges, including maintaining optimal cell health, and establishing consistent exposure monitoring and control. We aimed to establish a reliable system and procedures for cell exposures to gases at the ALI. METHODS We tested and adapted a horizontal-flow ALI-exposure system to verify and optimize temperature, humidity/condensation, and control of atmosphere delivery. We measured temperature and relative humidity (RH) throughout the system, including at the outlet (surrogate measures) and at the well, and evaluated viability of lung epithelial A549 cells under control conditions. Exposure stability, dosimetry, and toxicity were tested using ozone. RESULTS Temperatures measured directly above wells vs. outflow differed; using above-well temperature enabled determination of near-well RH. Under optimized conditions, the viability of A549 cells exposed to clean air (2 h) in the ALI system was unchanged from incubator-grown cells. In-well ozone levels, determined through reaction with potassium indigotrisulfonate, confirmed dosing. Cells exposed to 200 ppb ozone at the ALI presented reduced viability, while submerged cells did not. CONCLUSION Our results emphasize the importance of monitoring near-well conditions rather than relying on surrogate measures. Rigorous assessment of ALI exposure conditions led to procedures for reproducible exposure of cells to gases.
Collapse
Affiliation(s)
- Josée Guénette
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada, K1A 0K9
| | - Dalibor Breznan
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada, K1A 0K9
| | - Errol M Thomson
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada, K1A 0K9.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada, K1H 8M5
| |
Collapse
|
89
|
Offer S, Hartner E, Di Bucchianico S, Bisig C, Bauer S, Pantzke J, Zimmermann EJ, Cao X, Binder S, Kuhn E, Huber A, Jeong S, Käfer U, Martens P, Mesceriakovas A, Bendl J, Brejcha R, Buchholz A, Gat D, Hohaus T, Rastak N, Jakobi G, Kalberer M, Kanashova T, Hu Y, Ogris C, Marsico A, Theis F, Pardo M, Gröger T, Oeder S, Orasche J, Paul A, Ziehm T, Zhang ZH, Adam T, Sippula O, Sklorz M, Schnelle-Kreis J, Czech H, Kiendler-Scharr A, Rudich Y, Zimmermann R. Effect of Atmospheric Aging on Soot Particle Toxicity in Lung Cell Models at the Air–Liquid Interface: Differential Toxicological Impacts of Biogenic and Anthropogenic Secondary Organic Aerosols (SOAs). ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:27003. [PMID: 35112925 PMCID: PMC8812555 DOI: 10.1289/ehp9413] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background: Secondary organic aerosols (SOAs) formed from anthropogenic or biogenic gaseous precursors in the atmosphere substantially contribute to the ambient fine particulate matter [PM ≤2.5μm in aerodynamic diameter (PM2.5)] burden, which has been associated with adverse human health effects. However, there is only limited evidence on their differential toxicological impact. Objectives: We aimed to discriminate toxicological effects of aerosols generated by atmospheric aging on combustion soot particles (SPs) of gaseous biogenic (β-pinene) or anthropogenic (naphthalene) precursors in two different lung cell models exposed at the air–liquid interface (ALI). Methods: Mono- or cocultures of lung epithelial cells (A549) and endothelial cells (EA.hy926) were exposed at the ALI for 4 h to different aerosol concentrations of a photochemically aged mixture of primary combustion SP and β-pinene (SOAβPIN-SP) or naphthalene (SOANAP-SP). The internally mixed soot/SOA particles were comprehensively characterized in terms of their physical and chemical properties. We conducted toxicity tests to determine cytotoxicity, intracellular oxidative stress, primary and secondary genotoxicity, as well as inflammatory and angiogenic effects. Results: We observed considerable toxicity-related outcomes in cells treated with either SOA type. Greater adverse effects were measured for SOANAP-SP compared with SOAβPIN-SP in both cell models, whereas the nano-sized soot cores alone showed only minor effects. At the functional level, we found that SOANAP-SP augmented the secretion of malondialdehyde and interleukin-8 and may have induced the activation of endothelial cells in the coculture system. This activation was confirmed by comet assay, suggesting secondary genotoxicity and greater angiogenic potential. Chemical characterization of PM revealed distinct qualitative differences in the composition of the two secondary aerosol types. Discussion: In this study using A549 and EA.hy926 cells exposed at ALI, SOA compounds had greater toxicity than primary SPs. Photochemical aging of naphthalene was associated with the formation of more oxidized, more aromatic SOAs with a higher oxidative potential and toxicity compared with β-pinene. Thus, we conclude that the influence of atmospheric chemistry on the chemical PM composition plays a crucial role for the adverse health outcome of emissions. https://doi.org/10.1289/EHP9413
Collapse
Affiliation(s)
- Svenja Offer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Elena Hartner
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christoph Bisig
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stefanie Bauer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jana Pantzke
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Elias J. Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Xin Cao
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Stefanie Binder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Evelyn Kuhn
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anja Huber
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Seongho Jeong
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Uwe Käfer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Patrick Martens
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Arunas Mesceriakovas
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jan Bendl
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute for Chemistry and Environmental Engineering, University of the Bundeswehr Munich, Neubiberg, Germany
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ramona Brejcha
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Angela Buchholz
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Daniella Gat
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Thorsten Hohaus
- Institute of Energy and Climate Research, Troposphere, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Narges Rastak
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gert Jakobi
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Markus Kalberer
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | | | - Yue Hu
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christoph Ogris
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Annalisa Marsico
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Fabian Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michal Pardo
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Thomas Gröger
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jürgen Orasche
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andreas Paul
- Institute of Energy and Climate Research, Troposphere, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Till Ziehm
- Institute of Energy and Climate Research, Troposphere, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Zhi-Hui Zhang
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Thomas Adam
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute for Chemistry and Environmental Engineering, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Olli Sippula
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Martin Sklorz
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jürgen Schnelle-Kreis
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Hendryk Czech
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Astrid Kiendler-Scharr
- Institute of Energy and Climate Research, Troposphere, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| |
Collapse
|
90
|
Automation and Standardization-A Coupled Approach towards Reproducible Sample Preparation Protocols for Nanomaterial Analysis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030985. [PMID: 35164246 PMCID: PMC8838799 DOI: 10.3390/molecules27030985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
Whereas the characterization of nanomaterials using different analytical techniques is often highly automated and standardized, the sample preparation that precedes it causes a bottleneck in nanomaterial analysis as it is performed manually. Usually, this pretreatment depends on the skills and experience of the analysts. Furthermore, adequate reporting of the sample preparation is often missing. In this overview, some solutions for techniques widely used in nano-analytics to overcome this problem are discussed. Two examples of sample preparation optimization by automation are presented, which demonstrate that this approach is leading to increased analytical confidence. Our first example is motivated by the need to exclude human bias and focuses on the development of automation in sample introduction. To this end, a robotic system has been developed, which can prepare stable and homogeneous nanomaterial suspensions amenable to a variety of well-established analytical methods, such as dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), field-flow fractionation (FFF) or single-particle inductively coupled mass spectrometry (sp-ICP-MS). Our second example addresses biological samples, such as cells exposed to nanomaterials, which are still challenging for reliable analysis. An air-liquid interface has been developed for the exposure of biological samples to nanomaterial-containing aerosols. The system exposes transmission electron microscopy (TEM) grids under reproducible conditions, whilst also allowing characterization of aerosol composition with mass spectrometry. Such an approach enables correlative measurements combining biological with physicochemical analysis. These case studies demonstrate that standardization and automation of sample preparation setups, combined with appropriate measurement processes and data reduction are crucial steps towards more reliable and reproducible data.
Collapse
|
91
|
Unravelling the molecular mechanisms underlying chronic respiratory diseases for the development of novel therapeutics via in vitro experimental models. Eur J Pharmacol 2022; 919:174821. [DOI: 10.1016/j.ejphar.2022.174821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
|
92
|
Cerimi K, Jäckel U, Meyer V, Daher U, Reinert J, Klar S. In Vitro Systems for Toxicity Evaluation of Microbial Volatile Organic Compounds on Humans: Current Status and Trends. J Fungi (Basel) 2022; 8:75. [PMID: 35050015 PMCID: PMC8780961 DOI: 10.3390/jof8010075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Microbial volatile organic compounds (mVOC) are metabolic products and by-products of bacteria and fungi. They play an important role in the biosphere: They are responsible for inter- and intra-species communication and can positively or negatively affect growth in plants. But they can also cause discomfort and disease symptoms in humans. Although a link between mVOCs and respiratory health symptoms in humans has been demonstrated by numerous studies, standardized test systems for evaluating the toxicity of mVOCs are currently not available. Also, mVOCs are not considered systematically at regulatory level. We therefore performed a literature survey of existing in vitro exposure systems and lung models in order to summarize the state-of-the-art and discuss their suitability for understanding the potential toxic effects of mVOCs on human health. We present a review of submerged cultivation, air-liquid-interface (ALI), spheroids and organoids as well as multi-organ approaches and compare their advantages and disadvantages. Furthermore, we discuss the limitations of mVOC fingerprinting. However, given the most recent developments in the field, we expect that there will soon be adequate models of the human respiratory tract and its response to mVOCs.
Collapse
Affiliation(s)
- Kustrim Cerimi
- Unit 4.7 Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstraße 40–42, 10317 Berlin, Germany; (U.J.); (J.R.); (S.K.)
| | - Udo Jäckel
- Unit 4.7 Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstraße 40–42, 10317 Berlin, Germany; (U.J.); (J.R.); (S.K.)
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
| | - Ugarit Daher
- BIH Center for Regenerative Therapies (BCRT), BIH Stem Cell Core Facility, Berlin Institute of Health, Charité—Universitätsmedizin, 13353 Berlin, Germany;
| | - Jessica Reinert
- Unit 4.7 Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstraße 40–42, 10317 Berlin, Germany; (U.J.); (J.R.); (S.K.)
| | - Stefanie Klar
- Unit 4.7 Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstraße 40–42, 10317 Berlin, Germany; (U.J.); (J.R.); (S.K.)
| |
Collapse
|
93
|
Bishop E, Terry A, East N, Breheny D, Gaca M, Thorne D. A 3D in vitro comparison of two undiluted e-cigarette aerosol generating systems. Toxicol Lett 2022; 358:69-79. [PMID: 35032609 DOI: 10.1016/j.toxlet.2022.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 11/19/2021] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
Abstract
In vitro studies play an important role in supporting the toxicological assessment of e-cigarettes, with many current methods reliant on sophisticated in vitro exposure systems designed for conventional cigarette testing. In this study, we have compared two distinct systems; the modified Vitrocell VC10 and Borgwaldt LM4E designed to deliver undiluted e-cigarette aerosol. We assessed the cytotoxicity response of 3D reconstituted lung tissue (MucilAir) exposed to undiluted aerosol from ePen3 (closed modular e-cigarette) using these two exposure systems. As the induced cytotoxicity profiles were comparable, we then compared these responses against historical eBox (open modular e-cigarette) and 3R4F reference cigarette data to show evolution of product technology. This latter approach was deemed possible by monitoring intrinsic donor-to-donor control variability over a three-year period, bridging between exposure systems and observed biological responses. Despite the differences in the technology, on a puff-by-puff basis these machines gave remarkably similar cytotoxicity profiles for ePen3, as determined by MTT, and consistency of pre-cytotoxicity markers: transepithelial electrical resistance (TEER), cilia beat frequency and cilia active area. When responses are compared as a function of exposed nicotine concentration, we see differences due to the dynamics of the exposure systems. The parity of responses between the systems in generated undiluted aerosol has allowed us to compare back to previously published eBox data, irrespective of aerosol generating system and MucilAir donor, showing how evolution from open systems to podmod e-cigarette design can make a step change in the cytotoxicity profile of the product.
Collapse
Affiliation(s)
- E Bishop
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK.
| | - A Terry
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - N East
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - D Breheny
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - M Gaca
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - D Thorne
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| |
Collapse
|
94
|
Elberskirch L, Binder K, Riefler N, Sofranko A, Liebing J, Minella CB, Mädler L, Razum M, van Thriel C, Unfried K, Schins RPF, Kraegeloh A. Digital research data: from analysis of existing standards to a scientific foundation for a modular metadata schema in nanosafety. Part Fibre Toxicol 2022; 19:1. [PMID: 34983569 PMCID: PMC8728981 DOI: 10.1186/s12989-021-00442-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Assessing the safety of engineered nanomaterials (ENMs) is an interdisciplinary and complex process producing huge amounts of information and data. To make such data and metadata reusable for researchers, manufacturers, and regulatory authorities, there is an urgent need to record and provide this information in a structured, harmonized, and digitized way. RESULTS This study aimed to identify appropriate description standards and quality criteria for the special use in nanosafety. There are many existing standards and guidelines designed for collecting data and metadata, ranging from regulatory guidelines to specific databases. Most of them are incomplete or not specifically designed for ENM research. However, by merging the content of several existing standards and guidelines, a basic catalogue of descriptive information and quality criteria was generated. In an iterative process, our interdisciplinary team identified deficits and added missing information into a comprehensive schema. Subsequently, this overview was externally evaluated by a panel of experts during a workshop. This whole process resulted in a minimum information table (MIT), specifying necessary minimum information to be provided along with experimental results on effects of ENMs in the biological context in a flexible and modular manner. The MIT is divided into six modules: general information, material information, biological model information, exposure information, endpoint read out information and analysis and statistics. These modules are further partitioned into module subdivisions serving to include more detailed information. A comparison with existing ontologies, which also aim to electronically collect data and metadata on nanosafety studies, showed that the newly developed MIT exhibits a higher level of detail compared to those existing schemas, making it more usable to prevent gaps in the communication of information. CONCLUSION Implementing the requirements of the MIT into e.g., electronic lab notebooks (ELNs) would make the collection of all necessary data and metadata a daily routine and thereby would improve the reproducibility and reusability of experiments. Furthermore, this approach is particularly beneficial regarding the rapidly expanding developments and applications of novel non-animal alternative testing methods.
Collapse
Affiliation(s)
- Linda Elberskirch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Kunigunde Binder
- FIZ Karlsruhe - Leibniz Institute for Information Infrastructure, Hermann-von-Helmholtz-Platz 1, 76133, Eggenstein-Leopoldshafen, Germany
| | - Norbert Riefler
- IWT - Leibniz-Institut für Werkstofforientierte Technologien, Badgasteiner Str. 3, 28359, Bremen, Germany
| | - Adriana Sofranko
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Julia Liebing
- IfADo - Leibniz Research Centre for Working Environment and Human Factors, Ardeystraße 67, 44139, Dortmund, Germany
| | - Christian Bonatto Minella
- FIZ Karlsruhe - Leibniz Institute for Information Infrastructure, Hermann-von-Helmholtz-Platz 1, 76133, Eggenstein-Leopoldshafen, Germany
| | - Lutz Mädler
- IWT - Leibniz-Institut für Werkstofforientierte Technologien, Badgasteiner Str. 3, 28359, Bremen, Germany
| | - Matthias Razum
- FIZ Karlsruhe - Leibniz Institute for Information Infrastructure, Hermann-von-Helmholtz-Platz 1, 76133, Eggenstein-Leopoldshafen, Germany
| | - Christoph van Thriel
- IfADo - Leibniz Research Centre for Working Environment and Human Factors, Ardeystraße 67, 44139, Dortmund, Germany
| | - Klaus Unfried
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Annette Kraegeloh
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany.
| |
Collapse
|
95
|
Forest V, Mercier C, Pourchez J. Considerations on dosimetry for in vitro assessment of e-cigarette toxicity. Respir Res 2022; 23:358. [PMID: 36528600 PMCID: PMC9758947 DOI: 10.1186/s12931-022-02286-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Electronic cigarettes (or e-cigarettes) can be used as smoking cessation aid. Some studies tend to show that they are less hazardous than tobacco cigarettes, even if it does not mean they are completely safe. The huge variation in study designs assessing in vitro toxicity of e-cigarettes aerosol makes it difficult to make comparisons and draw robust and irrefutable conclusions. In this paper, we review this heterogeneity (in terms of e-cigarette products, biological models, and exposure conditions) with a special focus on the wide disparity in the doses used as well as in the way they are expressed. Finally, we discuss the major issue of dosimetry and show how dosimetry tools enable to align data between different exposure systems or data from different laboratories and therefore allow comparisons to help further exploring the risk potential of e-cigarettes.
Collapse
Affiliation(s)
- Valérie Forest
- grid.7429.80000000121866389Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, 158 Cours Fauriel, CS 62362, 42023 Saint-Etienne Cedex 2, France
| | - Clément Mercier
- grid.7429.80000000121866389Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, 158 Cours Fauriel, CS 62362, 42023 Saint-Etienne Cedex 2, France
| | - Jérémie Pourchez
- grid.7429.80000000121866389Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, 158 Cours Fauriel, CS 62362, 42023 Saint-Etienne Cedex 2, France
| |
Collapse
|
96
|
Martikainen MV, Aakko-Saksa P, van den Broek L, Cassee FR, Carare RO, Chew S, Dinnyes A, Giugno R, Kanninen KM, Malm T, Muala A, Nedergaard M, Oudin A, Oyola P, Pfeiffer TV, Rönkkö T, Saarikoski S, Sandström T, Schins RPF, Topinka J, Yang M, Zeng X, Westerink RHS, Jalava PI. TUBE Project: Transport-Derived Ultrafines and the Brain Effects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:311. [PMID: 35010571 PMCID: PMC8751045 DOI: 10.3390/ijerph19010311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
The adverse effects of air pollutants on the respiratory and cardiovascular systems are unquestionable. However, in recent years, indications of effects beyond these organ systems have become more evident. Traffic-related air pollution has been linked with neurological diseases, exacerbated cognitive dysfunction, and Alzheimer's disease. However, the exact air pollutant compositions and exposure scenarios leading to these adverse health effects are not known. Although several components of air pollution may be at play, recent experimental studies point to a key role of ultrafine particles (UFPs). While the importance of UFPs has been recognized, almost nothing is known about the smallest fraction of UFPs, and only >23 nm emissions are regulated in the EU. Moreover, the role of the semivolatile fraction of the emissions has been neglected. The Transport-Derived Ultrafines and the Brain Effects (TUBE) project will increase knowledge on harmful ultrafine air pollutants, as well as semivolatile compounds related to adverse health effects. By including all the major current combustion and emission control technologies, the TUBE project aims to provide new information on the adverse health effects of current traffic, as well as information for decision makers to develop more effective emission legislation. Most importantly, the TUBE project will include adverse health effects beyond the respiratory system; TUBE will assess how air pollution affects the brain and how air pollution particles might be removed from the brain. The purpose of this report is to describe the TUBE project, its background, and its goals.
Collapse
Affiliation(s)
- Maria-Viola Martikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, 70210 Kuopio, Finland; (M.Y.); (P.I.J.)
| | - Päivi Aakko-Saksa
- VTT Technical Research Centre of Finland Ltd., 02044 Espoo, Finland;
| | | | - Flemming R. Cassee
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands;
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3508 TD Utrecht, The Netherlands;
| | - Roxana O. Carare
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
| | - Sweelin Chew
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (S.C.); (K.M.K.); (T.M.)
| | | | - Rosalba Giugno
- Computer Science Department, University of Verona, 37129 Verona, Italy;
| | - Katja M. Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (S.C.); (K.M.K.); (T.M.)
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (S.C.); (K.M.K.); (T.M.)
| | - Ala Muala
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå University, 901 87 Umea, Sweden; (A.M.); (A.O.); (T.S.)
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå University, 901 87 Umea, Sweden; (A.M.); (A.O.); (T.S.)
| | - Pedro Oyola
- Centro Mario Molina Chile, Strategic Studies Department, Santiago 602, Chile;
| | | | - Topi Rönkkö
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland;
| | - Sanna Saarikoski
- Atmospheric Composition Research, Finnish Meteorological Institute, 00101 Helsinki, Finland;
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå University, 901 87 Umea, Sweden; (A.M.); (A.O.); (T.S.)
| | - Roel P. F. Schins
- IUF—Leibniz Research Institute for Environmental Medicine, 40225 Dusseldorf, Germany;
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic;
| | - Mo Yang
- Department of Environmental and Biological Sciences, University of Eastern Finland, 70210 Kuopio, Finland; (M.Y.); (P.I.J.)
| | - Xiaowen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China;
| | - Remco H. S. Westerink
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3508 TD Utrecht, The Netherlands;
| | - Pasi I. Jalava
- Department of Environmental and Biological Sciences, University of Eastern Finland, 70210 Kuopio, Finland; (M.Y.); (P.I.J.)
| |
Collapse
|
97
|
Metz JK, Hittinger M, Lehr CM. In vitro tools for orally inhaled drug products-state of the art for their application in pharmaceutical research and industry and regulatory challenges. IN VITRO MODELS 2021; 1:29-40. [PMID: 38624975 PMCID: PMC8688684 DOI: 10.1007/s44164-021-00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/02/2021] [Accepted: 09/26/2021] [Indexed: 11/25/2022]
Abstract
The drug development process is a lengthy and expensive challenge for all involved players. Experience with the COVID-19 pandemic underlines the need for a rapid and effective approval for treatment options. As essential prerequisites for successful drug approval, a combination of high-quality studies and reliable research must be included. To this day, mainly in vivo data are requested and collected for assessing safety and efficacy and are therefore decisive for the pre-clinical evaluation of the respective drug. This review aims to summarize the current state of the art for safety and efficacy studies in pharmaceutical research and industry to address the relevant regulatory challenges and to provide an outlook on implementing more in vitro methods as alternative to animal testing. While the public demand for alternative methods is becoming louder, first examples have meanwhile found acceptance in relevant guidelines, e.g. the OECD guidelines for skin sensitizer. Besides ethically driven developments, also the rather low throughput and relatively high costs of animal experiments are forcing the industry towards the implementation of alternative methods. In this context, the development of orally inhaled drug products is particularly challenging due to the complexity of the lung as biological barrier and route of administration. The replacement of animal experiments with focus on the lungs requires special designed tools to achieve predictive data. New in vitro test systems of increasing complexity are presented in this review. Limits and advantages are discussed to provide some perspective for a future in vitro testing strategy for orally inhaled drug products. Graphical abstract
Collapse
Affiliation(s)
- Julia Katharina Metz
- Department of Drug Delivery, PharmBioTec Research & Development GmbH, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), 66123 Saarbrücken, Germany
| | - Marius Hittinger
- Department of Drug Delivery, PharmBioTec Research & Development GmbH, 66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), 66123 Saarbrücken, Germany
| |
Collapse
|
98
|
Murugadoss S, Mülhopt S, Diabaté S, Ghosh M, Paur HR, Stapf D, Weiss C, Hoet PH. Agglomeration State of Titanium-Dioxide (TiO 2) Nanomaterials Influences the Dose Deposition and Cytotoxic Responses in Human Bronchial Epithelial Cells at the Air-Liquid Interface. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3226. [PMID: 34947575 PMCID: PMC8703437 DOI: 10.3390/nano11123226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022]
Abstract
Extensive production and use of nanomaterials (NMs), such as titanium dioxide (TiO2), raises concern regarding their potential adverse effects to humans. While considerable efforts have been made to assess the safety of TiO2 NMs using in vitro and in vivo studies, results obtained to date are unreliable, possibly due to the dynamic agglomeration behavior of TiO2 NMs. Moreover, agglomerates are of prime importance in occupational exposure scenarios, but their toxicological relevance remains poorly understood. Therefore, the aim of this study was to investigate the potential pulmonary effects induced by TiO2 agglomerates of different sizes at the air-liquid interface (ALI), which is more realistic in terms of inhalation exposure, and compare it to results previously obtained under submerged conditions. A nano-TiO2 (17 nm) and a non-nano TiO2 (117 nm) was selected for this study. Stable stock dispersions of small agglomerates and their respective larger counterparts of each TiO2 particles were prepared, and human bronchial epithelial (HBE) cells were exposed to different doses of aerosolized TiO2 agglomerates at the ALI. At the end of 4h exposure, cytotoxicity, glutathione depletion, and DNA damage were evaluated. Our results indicate that dose deposition and the toxic potential in HBE cells are influenced by agglomeration and exposure via the ALI induces different cellular responses than in submerged systems. We conclude that the agglomeration state is crucial in the assessment of pulmonary effects of NMs.
Collapse
Affiliation(s)
- Sivakumar Murugadoss
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium; (M.G.); (P.H.H.)
| | - Sonja Mülhopt
- Institute for Technical Chemistry, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany; (H.-R.P.); (D.S.)
| | - Silvia Diabaté
- Institute of Biological and Chemical Systems—Biological Information Processing, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany; (S.D.); (C.W.)
| | - Manosij Ghosh
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium; (M.G.); (P.H.H.)
| | - Hanns-Rudolf Paur
- Institute for Technical Chemistry, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany; (H.-R.P.); (D.S.)
| | - Dieter Stapf
- Institute for Technical Chemistry, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany; (H.-R.P.); (D.S.)
| | - Carsten Weiss
- Institute of Biological and Chemical Systems—Biological Information Processing, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany; (S.D.); (C.W.)
| | - Peter H. Hoet
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium; (M.G.); (P.H.H.)
| |
Collapse
|
99
|
In Vitro Toxicity of Industrially Relevant Engineered Nanoparticles in Human Alveolar Epithelial Cells: Air-Liquid Interface versus Submerged Cultures. NANOMATERIALS 2021; 11:nano11123225. [PMID: 34947574 PMCID: PMC8703991 DOI: 10.3390/nano11123225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
Diverse industries have already incorporated within their production processes engineered nanoparticles (ENP), increasing the potential risk of worker inhalation exposure. In vitro models have been widely used to investigate ENP toxicity. Air-liquid interface (ALI) cell cultures have been emerging as a valuable alternative to submerged cultures as they are more representative of the inhalation exposure to airborne nano-sized particles. We compared the in vitro toxicity of four ENP used as raw materials in the advanced ceramics sector in human alveolar epithelial-like cells cultured under submerged or ALI conditions. Submerged cultures were exposed to ENP liquid suspensions or to aerosolised ENP at ALI. Toxicity was assessed by determining LDH release, WST-1 metabolisation and DNA damage. Overall, cells were more sensitive to ENP cytotoxic effects when cultured and exposed under ALI. No significant cytotoxicity was observed after 24 h exposure to ENP liquid suspensions, although aerosolised ENP clearly affected cell viability and LDH release. In general, all ENP increased primary DNA damage regardless of the exposure mode, where an increase in DNA strand-breaks was only detected under submerged conditions. Our data show that at relevant occupational concentrations, the selected ENP exert mild toxicity to alveolar epithelial cells and exposure at ALI might be the most suitable choice when assessing ENP toxicity in respiratory models under realistic exposure conditions.
Collapse
|
100
|
Carius P, Dubois A, Ajdarirad M, Artzy-Schnirman A, Sznitman J, Schneider-Daum N, Lehr CM. PerfuPul-A Versatile Perfusable Platform to Assess Permeability and Barrier Function of Air Exposed Pulmonary Epithelia. Front Bioeng Biotechnol 2021; 9:743236. [PMID: 34692661 PMCID: PMC8526933 DOI: 10.3389/fbioe.2021.743236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Complex in vitro models, especially those based on human cells and tissues, may successfully reduce or even replace animal models within pre-clinical development of orally inhaled drug products. Microfluidic lung-on-chips are regarded as especially promising models since they allow the culture of lung specific cell types under physiological stimuli including perfusion and air-liquid interface (ALI) conditions within a precisely controlled in vitro environment. Currently, though, such models are not available to a broad user community given their need for sophisticated microfabrication techniques. They further require systematic comparison to well-based filter supports, in analogy to traditional Transwells®. We here present a versatile perfusable platform that combines the advantages of well-based filter supports with the benefits of perfusion, to assess barrier permeability of and aerosol deposition on ALI cultured pulmonary epithelial cells. The platform as well as the required technical accessories can be reproduced via a detailed step-by-step protocol and implemented in typical bio-/pharmaceutical laboratories without specific expertise in microfabrication methods nor the need to buy costly specialized equipment. Calu-3 cells cultured under liquid covered conditions (LCC) inside the platform showed similar development of transepithelial electrical resistance (TEER) over a period of 14 days as cells cultured on a traditional Transwell®. By using a customized deposition chamber, fluorescein sodium was nebulized via a clinically relevant Aerogen® Solo nebulizer onto Calu-3 cells cultured under ALI conditions within the platform. This not only allowed to analyze the transport of fluorescein sodium after ALI deposition under perfusion, but also to compare it to transport under traditional static conditions.
Collapse
Affiliation(s)
- Patrick Carius
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.,Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Aurélie Dubois
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Morvarid Ajdarirad
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.,Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Arbel Artzy-Schnirman
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nicole Schneider-Daum
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.,Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| |
Collapse
|