51
|
Wang L, Wang X, Wang CC. Protein disulfide-isomerase, a folding catalyst and a redox-regulated chaperone. Free Radic Biol Med 2015; 83:305-13. [PMID: 25697778 DOI: 10.1016/j.freeradbiomed.2015.02.007] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/04/2015] [Accepted: 02/07/2015] [Indexed: 01/08/2023]
Abstract
Protein disulfide-isomerase (PDI) was the first protein-folding catalyst to be characterized, half a century ago. It plays critical roles in a variety of physiological events by displaying oxidoreductase and redox-regulated chaperone activities. This review provides a brief history of the identification of PDI as both an enzyme and a molecular chaperone and of the recent advances in studies on the structure and dynamics of PDI, the substrate binding and release, and the cooperation with its partners to catalyze oxidative protein folding and maintain ER redox homeostasis. In this review, we highlight the structural features of PDI, including the high interdomain flexibility, the multiple binding sites, the two synergic active sites, and the redox-dependent conformational changes.
Collapse
Affiliation(s)
- Lei Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xi Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chih-chen Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
52
|
Szarka A, Bánhegyi G. Oxidative folding: recent developments. Biomol Concepts 2015; 2:379-90. [PMID: 25962043 DOI: 10.1515/bmc.2011.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/21/2011] [Indexed: 01/29/2023] Open
Abstract
Disulfide bond formation in proteins is an effective tool of both structure stabilization and redox regulation. The prokaryotic periplasm and the endoplasmic reticulum of eukaryotes were long considered as the only compartments for enzyme mediated formation of stable disulfide bonds. Recently, the mitochondrial intermembrane space has emerged as the third protein-oxidizing compartment. The classic view on the mechanism of oxidative folding in the endoplasmic reticulum has also been reshaped by new observations. Moreover, besides the structure stabilizing function, reversible disulfide bridge formation in some proteins of the endoplasmic reticulum, seems to play a regulatory role. This review briefly summarizes the present knowledge of the redox systems supporting oxidative folding, emphasizing recent developments.
Collapse
|
53
|
Kukita K, Tamura Y, Tanaka T, Kajiwara T, Kutomi G, Saito K, Okuya K, Takaya A, Kanaseki T, Tsukahara T, Hirohashi Y, Torigoe T, Furuhata T, Hirata K, Sato N. Cancer-Associated Oxidase ERO1-α Regulates the Expression of MHC Class I Molecule via Oxidative Folding. THE JOURNAL OF IMMUNOLOGY 2015; 194:4988-96. [PMID: 25870246 DOI: 10.4049/jimmunol.1303228] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/23/2015] [Indexed: 12/13/2022]
Abstract
ERO1-α is an oxidizing enzyme that exists in the endoplasmic reticulum and is induced under hypoxia. It reoxidizes the reduced form of protein disulfide isomerase that has oxidized target proteins. We found that ERO1-α is overexpressed in a variety of tumor types. MHC class I H chain (HC) has two disulfide bonds in the α2 and α3 domains. MHC class I HC folding is linked to the assembly of MHC class I molecules because only fully disulfide-bonded class I HCs efficiently assemble with β2-microglobulin. In this study, we show that ERO1-α associates with protein disulfide isomerase, calnexin, and immature MHC class I before being incorporated into the TAP-1-associated peptide-loading complex. Importantly, ERO1-α regulates the redox state as well as cell surface expression of MHC class I, leading to alteration of susceptibility by CD8(+) T cells. Similarly, the ERO1-α expression within cancer cells was associated with the expression level of MHC class I in colon cancer tissues. Thus, the cancer-associated ERO1-α regulates the expression of the MHC class I molecule via oxidative folding.
Collapse
Affiliation(s)
- Kazuharu Kukita
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; and Department of Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Yasuaki Tamura
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; and
| | - Tsutomu Tanaka
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; and
| | - Toshimitsu Kajiwara
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; and
| | - Goro Kutomi
- Department of Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Keita Saito
- Department of Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Koichi Okuya
- Department of Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Akari Takaya
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; and
| | - Takayuki Kanaseki
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; and
| | - Tomohide Tsukahara
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; and
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; and
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; and
| | - Tomohisa Furuhata
- Department of Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Koichi Hirata
- Department of Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; and
| |
Collapse
|
54
|
Hudson DA, Gannon SA, Thorpe C. Oxidative protein folding: from thiol-disulfide exchange reactions to the redox poise of the endoplasmic reticulum. Free Radic Biol Med 2015; 80:171-82. [PMID: 25091901 PMCID: PMC4312752 DOI: 10.1016/j.freeradbiomed.2014.07.037] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/23/2014] [Indexed: 12/21/2022]
Abstract
This review examines oxidative protein folding within the mammalian endoplasmic reticulum (ER) from an enzymological perspective. In protein disulfide isomerase-first (PDI-first) pathways of oxidative protein folding, PDI is the immediate oxidant of reduced client proteins and then addresses disulfide mispairings in a second isomerization phase. In PDI-second pathways the initial oxidation is PDI-independent. Evidence for the rapid reduction of PDI by reduced glutathione is presented in the context of PDI-first pathways. Strategies and challenges are discussed for determination of the concentrations of reduced and oxidized glutathione and of the ratios of PDI(red):PDI(ox). The preponderance of evidence suggests that the mammalian ER is more reducing than first envisaged. The average redox state of major PDI-family members is largely to almost totally reduced. These observations are consistent with model studies showing that oxidative protein folding proceeds most efficiently at a reducing redox poise consistent with a stoichiometric insertion of disulfides into client proteins. After a discussion of the use of natively encoded fluorescent probes to report the glutathione redox poise of the ER, this review concludes with an elaboration of a complementary strategy to discontinuously survey the redox state of as many redox-active disulfides as can be identified by ratiometric LC-MS-MS methods. Consortia of oxidoreductases that are in redox equilibrium can then be identified and compared to the glutathione redox poise of the ER to gain a more detailed understanding of the factors that influence oxidative protein folding within the secretory compartment.
Collapse
Affiliation(s)
- Devin A Hudson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Shawn A Gannon
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
55
|
Abstract
Due to their susceptibility towards redox modification, protein thiols represent primary targets for the modulation of protein activity, conformation and oligomerization. Until fairly recently, such modifications were considered "damage" as a result of oxidative stress, before researchers recognized their physiological importance for biologic signaling. This paradigm shift, and the associated necessity to accurately characterize and quantify the various pathways of thiol redox modifications not only for specific proteins, but also within the cellular environment, has enticed researchers to take a close look at the impact of environment and molecular (protein) structure on these reactions. This Special Issue on Redox Biology of Thiols in Signaling Pathways is the result of a workshop organized at the 2013 Annual Meeting of the Society for Free Radical Biology and Medicine in San Antonio, Texas, summarizing the contributions from many of the presenters. It will provide a stimulating synopsis on what is known, and what is not known, about the reaction mechanisms which underlie the role of thiols and oxidative processes in signaling pathways.
Collapse
Affiliation(s)
- Leslie B Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 USA
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA
| |
Collapse
|
56
|
Bagi N, Kaizer J, Speier G. Oxidation of thiols to disulfides by dioxygen catalyzed by a bioinspired organocatalyst. RSC Adv 2015. [DOI: 10.1039/c5ra05529f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
2,3-Dihydro-2,2,2-triphenylphenanthro[9,10-d]-1,3,2-λ5-oxazaphosphole serves as good catalyst for the oxidation of thiophenol, cysteine and glutathione to their disulfides by molecular oxygen.
Collapse
Affiliation(s)
- Nárcisz Bagi
- Department of Chemistry
- University of Pannonia
- Veszprém
- Hungary
| | - József Kaizer
- Department of Chemistry
- University of Pannonia
- Veszprém
- Hungary
| | - Gábor Speier
- Department of Chemistry
- University of Pannonia
- Veszprém
- Hungary
| |
Collapse
|
57
|
Sapra A, Ramadan D, Thorpe C. Multivalency in the inhibition of oxidative protein folding by arsenic(III) species. Biochemistry 2014; 54:612-21. [PMID: 25506675 PMCID: PMC4303313 DOI: 10.1021/bi501360e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The
renewed use of arsenicals as chemotherapeutics has rekindled
interest in the biochemistry of As(III) species. In this work, simple
bis- and tris-arsenical derivatives were synthesized with the aim
of exploiting the chelate effect in the inhibition of thiol-disulfide
oxidoreductases (here, Quiescin sulfhydryl oxidase, QSOX, and protein
disulfide isomerase, PDI) that utilize two or more CxxC motifs in
the catalysis of oxidative protein folding. Coupling 4-aminophenylarsenoxide
(APAO) to acid chloride or anhydride derivatives yielded two bis-arsenical
prototypes, BA-1 and BA-2, and a tris-arsenical, TA-1. Unlike the
monoarsenical, APAO, these new reagents proved to be strong inhibitors
of oxidative protein folding in the presence of a realistic intracellular
concentration of competing monothiol (here, 5 mM reduced glutathione,
GSH). However, this inhibition does not reflect direct inactivation
of QSOX or PDI, but avid binding of MVAs to the reduced unfolded protein
substrates themselves. Titrations of reduced riboflavin-binding protein
with MVAs show that all 18 protein −SH groups can be captured
by these arsenicals. With reduced RNase, addition of substoichiometric
levels of MVAs is accompanied by the formation of Congo Red- and Thioflavin
T-positive fibrillar aggregates. Even with Kd values of ∼50 nM, MVAs are ineffective inhibitors
of PDI in the presence of millimolar levels of competing GSH. These
results underscore the difficulties of designing effective and specific
arsenical inhibitors for folded enzymes and proteins. Some of the
cellular effects of arsenicals likely reflect their propensity to
associate very tightly and nonspecifically to conformationally mobile
cysteine-rich regions of proteins, thereby interfering with folding
and/or function.
Collapse
Affiliation(s)
- Aparna Sapra
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | | | | |
Collapse
|
58
|
The disease-associated mutation of the mitochondrial thiol oxidase Erv1 impairs cofactor binding during its catalytic reaction. Biochem J 2014; 464:449-59. [DOI: 10.1042/bj20140679] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Erv1 is a mitochondrial FAD-dependent thiol oxidase. We show that the Erv1 R182H mutant impairs cofactor binding to its catalytic intermediates, providing a model for molecular basis of the functional defect of the disease-associated mutation.
Collapse
|
59
|
Okuda A, Matsusaki M, Higashino Y, Masuda T, Urade R. Disulfide bond formation activity of soybean quiescin sulfhydryl oxidase. FEBS J 2014; 281:5341-55. [PMID: 25265152 DOI: 10.1111/febs.13079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/22/2014] [Accepted: 09/25/2014] [Indexed: 12/23/2022]
Abstract
UNLABELLED Multiple enzymatic systems can catalyse protein disulfide bond formation in the endoplasmic reticulum (ER) of eukaryotic cells. The enzyme quiescin sulfhydryl oxidase (QSOX) catalyses disulfide bond formation in unfolded proteins via the reduction of oxygen. We found two QSOX homologues in the soybean genome database, Glycine max QSOX (GmQSOX)1 and GmQSOX2, which encode proteins composed of an N-terminal signal peptide, a thioredoxin-like domain, an FAD-binding domain, Erv/ALR, and a transmembrane region near the C terminus. We subsequently cloned two GmQSOX1 cDNAs, GmQSOX1a and GmQSOX1b, which may be generated by alternative splicing. The GmQSOX1a, GmQSOX1b and GmQSOX2 mRNA levels increased during seed storage protein synthesis in the cotyledon, and were also upregulated under conditions causing ER stress. Recombinant GmQSOX1 expressed in Escherichia coli formed disulfide bonds on reduced and denatured RNase A, but did not show any refolding activity. The reduced and denatured RNase A was effectively refolded by recombinant GmQSOX1 in the presence of the soybean protein disulfide isomerase family protein GmPDIL-2 in the absence of glutathione redox buffer, suggesting that GmQSOX1 plays a role in protein folding in the ER. DATABASES The nucleotide sequence data for the GmQSOX1a, GmQSOX1b, GmQSOX2a, GmQSOX2b and glycinin AaB1b cDNAs are available in the DDBJ/EMBL/GenBank databases under the accession numbers AB196647, AB195548, XM-006589586, XM-003536592, and AB113349, respectively.
Collapse
Affiliation(s)
- Aya Okuda
- Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | | | | | | | | |
Collapse
|
60
|
Abstract
SIGNIFICANCE Store-operated Ca2+ entry (SOCE) is a ubiquitous Ca2+ signaling mechanism triggered by Ca2+ depletion of the endoplasmic reticulum (ER) and by a variety of cellular stresses. Reactive oxygen species (ROS) are often concomitantly produced in response to these stresses, however, the relationship between redox signaling and SOCE is not completely understood. Various cardiovascular, neurological, and immune diseases are associated with alterations in both Ca2+ signaling and ROS production, and thus understanding this relationship has therapeutic implications. RECENT ADVANCES Several reactive cysteine modifications in stromal interaction molecule (STIM) and Orai proteins comprising the core SOCE machinery were recently shown to modulate SOCE in a redox-dependent manner. Moreover, STIM1 and Orai1 expression levels may reciprocally regulate and be affected by responses to oxidative stress. ER proteins involved in oxidative protein folding have gained increased recognition as important sources of ROS, and the recent discovery of their accumulation in contact sites between the ER and mitochondria provides a further link between ROS production and intracellular Ca2+ handling. CRITICAL ISSUES AND FUTURE DIRECTIONS Future research should aim to establish the complete set of SOCE controlling molecules, to determine their redox-sensitive residues, and to understand how intracellular Ca2+ stores dynamically respond to different types of stress. Mapping the precise nature and functional consequence of key redox-sensitive components of the pre- and post-translational control of SOCE machinery and of proteins regulating ER calcium content will be pivotal in advancing our understanding of the complex cross-talk between redox and Ca2+ signaling.
Collapse
Affiliation(s)
- Paula Nunes
- Department of Cell Physiology and Metabolism, University of Geneva , Geneva, Switzerland
| | | |
Collapse
|
61
|
Zhang W, Zheng W, Mao M, Yang Y. Highly efficient folding of multi-disulfide proteins in superoxidizingEscherichia colicytoplasm. Biotechnol Bioeng 2014; 111:2520-7. [DOI: 10.1002/bit.25309] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 06/02/2014] [Accepted: 06/02/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Wenyao Zhang
- Synthetic Biology and Biotechnology Laboratory; State Key Laboratory of Bioreactor Engineering; Shanghai Collaborative Innovation Center for Biomanufacturing Technology; School of Pharmacy; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 China
| | - Wenyun Zheng
- Synthetic Biology and Biotechnology Laboratory; State Key Laboratory of Bioreactor Engineering; Shanghai Collaborative Innovation Center for Biomanufacturing Technology; School of Pharmacy; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 China
| | - Miaowei Mao
- Synthetic Biology and Biotechnology Laboratory; State Key Laboratory of Bioreactor Engineering; Shanghai Collaborative Innovation Center for Biomanufacturing Technology; School of Pharmacy; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 China
| | - Yi Yang
- Synthetic Biology and Biotechnology Laboratory; State Key Laboratory of Bioreactor Engineering; Shanghai Collaborative Innovation Center for Biomanufacturing Technology; School of Pharmacy; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 China
| |
Collapse
|
62
|
Abstract
SIGNIFICANCE The thioredoxin (Trx) superfamily proteins, including protein disulfide isomerases (PDI) and Dsb protein family, are major players in oxidative protein folding, which involves native disulfide bond formation. These proteins contain Trx folds with CXXC active sites and fulfill their physiological functions in oxidative cellular compartments such as the endoplasmic reticulum (ER) or the bacterial periplasm. RECENT ADVANCES The structure of the Trx superfamily protein PDI has been solved by X-ray crystallography and shown to be a flexible molecule, having a horseshoe shape with a closed reduced and an open oxidized conformation, which is important for exerting its catalytic activity. Atomic force microscopy revealed that PDI works as a placeholder to prevent early non-native disulfide bond formation and further misfolding. S-nitrosylation of the active site of PDI inhibits the PDI activity and links protein misfolding to neurodegenerative diseases like Alzheimer's and Parkinson's diseases. CRITICAL ISSUES Electron transfer pathways of the oxidative protein folding show conserved Trx-like thiol-disulfide chemistry. Overall, mammalian cells have a large number of disulfide-containing proteins, the folding of which involves non-native disulfide bond isomerization. The process is sensitive to oxidative stress and ER stress. FUTURE DIRECTIONS The correct oxidative protein folding is critical for the substrate protein stability and function, and protein misfolding is linked to, for example, neurodegenerative diseases. Further understanding on the mechanisms and specific roles of Trx superfamily proteins in oxidative protein folding may lead to drug development for the treatment of bacterial infection and various human diseases in aging and neurodegeneration.
Collapse
Affiliation(s)
- Jun Lu
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | | |
Collapse
|
63
|
Mitochondrial thiol oxidase Erv1: both shuttle cysteine residues are required for its function with distinct roles. Biochem J 2014; 460:199-210. [PMID: 24625320 PMCID: PMC4019985 DOI: 10.1042/bj20131540] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Erv1 (essential for respiration and viability 1), is an essential component of the MIA (mitochondrial import and assembly) pathway, playing an important role in the oxidative folding of mitochondrial intermembrane space proteins. In the MIA pathway, Mia40, a thiol oxidoreductase with a CPC motif at its active site, oxidizes newly imported substrate proteins. Erv1 a FAD-dependent thiol oxidase, in turn reoxidizes Mia40 via its N-terminal Cys30–Cys33 shuttle disulfide. However, it is unclear how the two shuttle cysteine residues of Erv1 relay electrons from the Mia40 CPC motif to the Erv1 active-site Cys130–Cys133 disulfide. In the present study, using yeast genetic approaches we showed that both shuttle cysteine residues of Erv1 are required for cell growth. In organelle and in vitro studies confirmed that both shuttle cysteine residues were indeed required for import of MIA pathway substrates and Erv1 enzyme function to oxidize Mia40. Furthermore, our results revealed that the two shuttle cysteine residues of Erv1 are functionally distinct. Although Cys33 is essential for forming the intermediate disulfide Cys33–Cys130′ and transferring electrons to the redox active-site directly, Cys30 plays two important roles: (i) dominantly interacts and receives electrons from the Mia40 CPC motif; and (ii) resolves the Erv1 Cys33–Cys130 intermediate disulfide. Taken together, we conclude that both shuttle cysteine residues are required for Erv1 function, and play complementary, but distinct, roles to ensure rapid turnover of active Erv1. Erv1 is a sulfydryl oxidase, an essential component of mitochondrial MIA pathway. The present study shows that both shuttle cysteine residues of Erv1 are required for its function, they play complementary, but distinct, roles to ensure rapid turnover of active enzyme.
Collapse
|
64
|
Stocki P, Chapman DC, Beach LA, Williams DB. Depletion of cyclophilins B and C leads to dysregulation of endoplasmic reticulum redox homeostasis. J Biol Chem 2014; 289:23086-23096. [PMID: 24990953 DOI: 10.1074/jbc.m114.570911] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Protein folding within the endoplasmic reticulum is assisted by molecular chaperones and folding catalysts that include members of the protein-disulfide isomerase and peptidyl-prolyl isomerase families. In this report, we examined the contributions of the cyclophilin subset of peptidyl-prolyl isomerases to protein folding and identified cyclophilin C as an endoplasmic reticulum (ER) cyclophilin in addition to cyclophilin B. Using albumin and transferrin as models of cis-proline-containing proteins in human hepatoma cells, we found that combined knockdown of cyclophilins B and C delayed transferrin secretion but surprisingly resulted in more efficient oxidative folding and secretion of albumin. Examination of the oxidation status of ER protein-disulfide isomerase family members revealed a shift to a more oxidized state. This was accompanied by a >5-fold elevation in the ratio of oxidized to total glutathione. This "hyperoxidation" phenotype could be duplicated by incubating cells with the cyclophilin inhibitor cyclosporine A, a treatment that triggered efficient ER depletion of cyclophilins B and C by inducing their secretion to the medium. To identify the pathway responsible for ER hyperoxidation, we individually depleted several enzymes that are known or suspected to deliver oxidizing equivalents to the ER: Ero1αβ, VKOR, PRDX4, or QSOX1. Remarkably, none of these enzymes contributed to the elevated oxidized to total glutathione ratio induced by cyclosporine A treatment. These findings establish cyclophilin C as an ER cyclophilin, demonstrate the novel involvement of cyclophilins B and C in ER redox homeostasis, and suggest the existence of an additional ER oxidative pathway that is modulated by ER cyclophilins.
Collapse
Affiliation(s)
- Pawel Stocki
- Department of Biochemistry, University of Toronto, Toronto M5S 1A8, Canada
| | - Daniel C Chapman
- Department of Biochemistry, University of Toronto, Toronto M5S 1A8, Canada
| | - Lori A Beach
- Department of Biochemistry, University of Toronto, Toronto M5S 1A8, Canada
| | - David B Williams
- Department of Biochemistry, University of Toronto, Toronto M5S 1A8, Canada.
| |
Collapse
|
65
|
Israel BA, Jiang L, Gannon SA, Thorpe C. Disulfide bond generation in mammalian blood serum: detection and purification of quiescin-sulfhydryl oxidase. Free Radic Biol Med 2014; 69:129-35. [PMID: 24468475 PMCID: PMC3960832 DOI: 10.1016/j.freeradbiomed.2014.01.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/14/2014] [Accepted: 01/17/2014] [Indexed: 12/15/2022]
Abstract
A sensitive new plate-reader assay has been developed showing that adult mammalian blood serum contains circulating soluble sulfhydryl oxidase activity that can introduce disulfide bonds into reduced proteins with the reduction of oxygen to hydrogen peroxide. The activity was purified 5000-fold to >90% homogeneity from bovine serum and found by mass spectrometry to be consistent with the short isoform of quiescin-sulfhydryl oxidase 1 (QSOX1). This FAD-dependent enzyme is present at comparable activity levels in fetal and adult commercial bovine sera. Thus cell culture media that are routinely supplemented with either fetal or adult bovine sera will contain this facile catalyst of protein thiol oxidation. QSOX1 is present at approximately 25 nM in pooled normal adult human serum. Examination of the unusual kinetics of QSOX1 toward cysteine and glutathione at low micromolar concentrations suggests that circulating QSOX1 is unlikely to significantly contribute to the oxidation of these monothiols in plasma. However, the ability of QSOX1 to rapidly oxidize conformationally mobile protein thiols suggests a possible contribution to the redox status of exofacial and soluble proteins in blood plasma. Recent proteomic studies showing that plasma QSOX1 can be utilized in the diagnosis of pancreatic cancer and acute decompensated heart failure, together with the overexpression of this secreted enzyme in a number of solid tumors, suggest that the robust QSOX assay developed here may be useful in the quantitation of enzyme levels in a wide range of biological fluids.
Collapse
Affiliation(s)
- Benjamin A Israel
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Lingxi Jiang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Shawn A Gannon
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
66
|
Israel BA, Kodali VK, Thorpe C. Going through the barrier: coupled disulfide exchange reactions promote efficient catalysis in quiescin sulfhydryl oxidase. J Biol Chem 2013; 289:5274-84. [PMID: 24379406 DOI: 10.1074/jbc.m113.536219] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The quiescin sulfhydryl oxidase (QSOX) family of enzymes generates disulfide bonds in peptides and proteins with the reduction of oxygen to hydrogen peroxide. Determination of the potentials of the redox centers in Trypanosoma brucei QSOX provides a context for understanding catalysis by this facile oxidant of protein thiols. The CXXC motif of the thioredoxin domain is comparatively oxidizing (E'0 of -144 mV), consistent with an ability to transfer disulfide bonds to a broad range of thiol substrates. In contrast, the proximal CXXC disulfide in the ERV (essential for respiration and vegetative growth) domain of TbQSOX is strongly reducing (E'0 of -273 mV), representing a major apparent thermodynamic barrier to overall catalysis. Reduction of the oxidizing FAD cofactor (E'0 of -153 mV) is followed by the strongly favorable reduction of molecular oxygen. The role of a mixed disulfide intermediate between thioredoxin and ERV domains was highlighted by rapid reaction studies in which the wild-type CGAC motif in the thioredoxin domain of TbQSOX was replaced by the more oxidizing CPHC or more reducing CGPC sequence. Mixed disulfide bond formation is accompanied by the generation of a charge transfer complex with the flavin cofactor. This provides thermodynamic coupling among the three redox centers of QSOX and avoids the strongly uphill mismatch between the formal potentials of the thioredoxin and ERV disulfides. This work identifies intriguing mechanistic parallels between the eukaryotic QSOX enzymes and the DsbA/B system catalyzing disulfide bond generation in the bacterial periplasm and suggests that the strategy of linked disulfide exchanges may be exploited in other catalysts of oxidative protein folding.
Collapse
Affiliation(s)
- Benjamin A Israel
- From the Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
| | | | | |
Collapse
|
67
|
Abstract
QSOX1 (quiescin sulfhydryl oxidase 1) efficiently catalyses the insertion of disulfide bonds into a wide range of proteins. The enzyme is mechanistically well characterized, but its subcellular location and the identity of its protein substrates remain ill-defined. The function of QSOX1 is likely to involve disulfide formation in proteins entering the secretory pathway or outside the cell. In the present study, we show that this enzyme is efficiently secreted from mammalian cells despite the presence of a transmembrane domain. We identify internal cleavage sites and demonstrate that the protein is processed within the Golgi apparatus to yield soluble enzyme. As a consequence of this efficient processing, QSOX1 is probably functional outside the cell. Also, QSOX1 forms a dimer upon cleavage of the C-terminal domain. The processing of QSOX1 suggests a novel level of regulation of secretion of this potent disulfide catalyst and producer of hydrogen peroxide.
Collapse
|
68
|
Destroy and exploit: catalyzed removal of hydroperoxides from the endoplasmic reticulum. Int J Cell Biol 2013; 2013:180906. [PMID: 24282412 PMCID: PMC3824332 DOI: 10.1155/2013/180906] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/05/2013] [Indexed: 01/06/2023] Open
Abstract
Peroxidases are enzymes that reduce hydroperoxide substrates. In many cases, hydroperoxide reduction is coupled to the formation of a disulfide bond, which is transferred onto specific acceptor molecules, the so-called reducing substrates. As such, peroxidases control the spatiotemporal distribution of diffusible second messengers such as hydrogen peroxide (H2O2) and generate new disulfides. Members of two families of peroxidases, peroxiredoxins (Prxs) and glutathione peroxidases (GPxs), reside in different subcellular compartments or are secreted from cells. This review discusses the properties and physiological roles of PrxIV, GPx7, and GPx8 in the endoplasmic reticulum (ER) of higher eukaryotic cells where H2O2 and—possibly—lipid hydroperoxides are regularly produced. Different peroxide sources and reducing substrates for ER peroxidases are critically evaluated. Peroxidase-catalyzed detoxification of hydroperoxides coupled to the productive use of disulfides, for instance, in the ER-associated process of oxidative protein folding, appears to emerge as a common theme. Nonetheless, in vitro and in vivo studies have demonstrated that individual peroxidases serve specific, nonoverlapping roles in ER physiology.
Collapse
|
69
|
Abstract
SIGNIFICANCE Disulfide bond formation is critical for biogenesis of many proteins. While most studies in this field are aimed at elucidating the mechanisms in the endoplasmic reticulum, intermembrane space of mitochondria, and prokaryotic periplasm, structural disulfide bond formation also occurs in other compartments including the cytoplasm. Such disulfide bond formation is essential for biogenesis of some viruses, correct epidermis biosynthesis, thermal adaptation of some extremophiles, and efficient recombinant protein production. RECENT ADVANCES The majority of work in this new field has been reported in the past decade. Within the past few years very significant new data have emerged on the catalytic and noncatalytic mechanisms for disulfide bond formation in the cytoplasm. This includes the crystal structure of a key component of viral oxidative protein folding, identification of a missing component in cytoplasmic disulfide bond formation in hyperthermophiles, and introduction of de novo dithiol oxidants in engineered oxidative folding pathways. CRITICAL ISSUES AND FUTURE DIRECTIONS While a broad picture of cytoplasmic disulfide bond formation has emerged many critical questions remain unanswered. The individual components in the natural systems are largely known, but the molecular mechanisms by which these processes occur are largely deduced from the mechanisms of analogous components in other compartments. This prevents full understanding and manipulation of these systems, including the potential for novel anti-viral drugs based on the unique features of their sulfhydryl oxidases and the generation of more efficient cell factories for the large-scale production of therapeutic and industrial proteins.
Collapse
|
70
|
Avezov E, Cross BCS, Kaminski Schierle GS, Winters M, Harding HP, Melo EP, Kaminski CF, Ron D. Lifetime imaging of a fluorescent protein sensor reveals surprising stability of ER thiol redox. ACTA ACUST UNITED AC 2013; 201:337-49. [PMID: 23589496 PMCID: PMC3628511 DOI: 10.1083/jcb.201211155] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Interfering with disulfide bond formation impedes protein folding and promotes endoplasmic reticulum (ER) stress. Due to limitations in measurement techniques, the relationships of altered thiol redox and ER stress have been difficult to assess. We report that fluorescent lifetime measurements circumvented the crippling dimness of an ER-tuned fluorescent redox-responsive probe (roGFPiE), faithfully tracking the activity of the major ER-localized protein disulfide isomerase, PDI. In vivo lifetime imaging by time-correlated single-photon counting (TCSPC) recorded subtle changes in ER redox poise induced by exposure of mammalian cells to a reducing environment but revealed an unanticipated stability of redox to fluctuations in unfolded protein load. By contrast, TCSPC of roGFPiE uncovered a hitherto unsuspected reductive shift in the mammalian ER upon loss of luminal calcium, whether induced by pharmacological inhibition of calcium reuptake into the ER or by physiological activation of release channels. These findings recommend fluorescent lifetime imaging as a sensitive method to track ER redox homeostasis in mammalian cells.
Collapse
Affiliation(s)
- Edward Avezov
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, England, UK
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Bindoli A, Rigobello MP. Principles in redox signaling: from chemistry to functional significance. Antioxid Redox Signal 2013; 18:1557-93. [PMID: 23244515 DOI: 10.1089/ars.2012.4655] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reactive oxygen and nitrogen species are currently considered not only harmful byproducts of aerobic respiration but also critical mediators of redox signaling. The molecules and the chemical principles sustaining the network of cellular redox regulated processes are described. Special emphasis is placed on hydrogen peroxide (H(2)O(2)), now considered as acting as a second messenger, and on sulfhydryl groups, which are the direct targets of the oxidant signal. Cysteine residues of some proteins, therefore, act as sensors of redox conditions and are oxidized in a reversible reaction. In particular, the formation of sulfenic acid and disulfide, the initial steps of thiol oxidation, are described in detail. The many cell pathways involved in reactive oxygen species formation are reported. Central to redox signaling processes are the glutathione and thioredoxin systems controlling H(2)O(2) levels and, hence, the thiol/disulfide balance. Lastly, some of the most important redox-regulated processes involving specific enzymes and organelles are described. The redox signaling area of research is rapidly expanding, and future work will examine new pathways and clarify their importance in cellular pathophysiology.
Collapse
Affiliation(s)
- Alberto Bindoli
- Institute of Neuroscience (CNR), Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | | |
Collapse
|
72
|
Nagy P. Kinetics and mechanisms of thiol-disulfide exchange covering direct substitution and thiol oxidation-mediated pathways. Antioxid Redox Signal 2013; 18:1623-41. [PMID: 23075118 PMCID: PMC3613173 DOI: 10.1089/ars.2012.4973] [Citation(s) in RCA: 289] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SIGNIFICANCE Disulfides are important building blocks in the secondary and tertiary structures of proteins, serving as inter- and intra-subunit cross links. Disulfides are also the major products of thiol oxidation, a process that has primary roles in defense mechanisms against oxidative stress and in redox regulation of cell signaling. Although disulfides are relatively stable, their reduction, isomerisation, and interconversion as well as their production reactions are catalyzed by delicate enzyme machineries, providing a dynamic system in biology. Redox homeostasis, a thermodynamic parameter that determines which reactions can occur in cellular compartments, is also balanced by the thiol-disulfide pool. However, it is the kinetic properties of the reactions that best represent cell dynamics, because the partitioning of the possible reactions depends on kinetic parameters. CRITICAL ISSUES This review is focused on the kinetics and mechanisms of thiol-disulfide substitution and redox reactions. It summarizes the challenges and advances that are associated with kinetic investigations in small molecular and enzymatic systems from a rigorous chemical perspective using biological examples. The most important parameters that influence reaction rates are discussed in detail. RECENT ADVANCES AND FUTURE DIRECTIONS Kinetic studies of proteins are more challenging than small molecules, and quite often investigators are forced to sacrifice the rigor of the experimental approach to obtain the important kinetic and mechanistic information. However, recent technological advances allow a more comprehensive analysis of enzymatic systems via using the systematic kinetics apparatus that was developed for small molecule reactions, which is expected to provide further insight into the cell's machinery.
Collapse
Affiliation(s)
- Péter Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary.
| |
Collapse
|
73
|
Sarkar DD, Edwards SK, Mauser JA, Suarez AM, Serowoky MA, Hudok NL, Hudok PL, Nuñez M, Weber CS, Lynch RM, Miyashita O, Tsao TS. Increased redox-sensitive green fluorescent protein reduction potential in the endoplasmic reticulum following glutathione-mediated dimerization. Biochemistry 2013; 52:3332-45. [PMID: 23594148 DOI: 10.1021/bi400052u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As the endoplasmic reticulum (ER) is the compartment where disulfide bridges in secreted and cell surface proteins are formed, the disturbance of its redox state has profound consequences, yet regulation of ER redox potential remains poorly understood. To monitor the ER redox state in live cells, several fluorescence-based sensors have been developed. However, these sensors have yielded results that are inconsistent with each other and with earlier non-fluorescence-based studies. One particular green fluorescent protein (GFP)-based redox sensor, roGFP1-iL, could detect oxidizing changes in the ER despite having a reduction potential significantly lower than that previously reported for the ER. We have confirmed these observations and determined the mechanisms by which roGFP1-iL detects oxidizing changes. First, glutathione mediates the formation of disulfide-bonded roGFP1-iL dimers with an intermediate excitation fluorescence spectrum resembling a mixture of oxidized and reduced monomers. Second, glutathione facilitates dimerization of roGFP1-iL, which shifted the equilibrium from oxidized monomers to dimers, thereby increasing the molecule's reduction potential compared with that of a dithiol redox buffer. We conclude that the glutathione redox couple in the ER significantly increased the reduction potential of roGFP1-iL in vivo by facilitating its dimerization while preserving its ratiometric nature, which makes it suitable for monitoring oxidizing and reducing changes in the ER with a high degree of reliability in real time. The ability of roGFP1-iL to detect both oxidizing and reducing changes in ER and its dynamic response in glutathione redox buffer between approximately -190 and -130 mV in vitro suggests a range of ER redox potentials consistent with those determined by earlier approaches that did not involve fluorescent sensors.
Collapse
Affiliation(s)
- Deboleena Dipak Sarkar
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Abstract
It has been known for many decades that cell surface, soluble-secreted, and extracellular matrix proteins are generally rich in disulfide bonds, but only more recently has the functional diversity of disulfide bonding in extracellular proteins been appreciated. In addition to the classic mechanisms by which disulfide bonds enhance protein thermodynamic stability, disulfides in certain configurations contribute particular mechanical properties to proteins that sense and respond to tensile forces. Disulfides may help warp protein folds for the evolution of new functions, or they may fasten aggregation-prone flaps of polypeptide to protein surfaces to prevent fibrilization or oligomerization. Disulfides can also be used to package and secure macromolecular cargo for intercellular transport. A series of case studies illustrating diverse biophysical roles of disulfide bonding are reviewed, with a focus on proteins functioning in the extracellular environment.
Collapse
Affiliation(s)
- Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
75
|
Gad W, Nair MG, Van Belle K, Wahni K, De Greve H, Van Ginderachter JA, Vandenbussche G, Endo Y, Artis D, Messens J. The quiescin sulfhydryl oxidase (hQSOX1b) tunes the expression of resistin-like molecule alpha (RELM-α or mFIZZ1) in a wheat germ cell-free extract. PLoS One 2013; 8:e55621. [PMID: 23383248 PMCID: PMC3561318 DOI: 10.1371/journal.pone.0055621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 01/02/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although disulfide bond formation in proteins is one of the most common types of post-translational modifications, the production of recombinant disulfide-rich proteins remains a challenge. The most popular host for recombinant protein production is Escherichia coli, but disulfide-rich proteins are here often misfolded, degraded, or found in inclusion bodies. METHODOLOGY/PRINCIPAL FINDINGS We optimize an in vitro wheat germ translation system for the expression of an immunological important eukaryotic protein that has to form five disulfide bonds, resistin-like alpha (mFIZZ1). Expression in combination with human quiescin sulfhydryl oxidase (hQSOX1b), the disulfide bond-forming enzyme of the endoplasmic reticulum, results in soluble, intramolecular disulfide bonded, monomeric, and biological active protein. The mFIZZ1 protein clearly suppresses the production of the cytokines IL-5 and IL-13 in mouse splenocytes cultured under Th2 permissive conditions. CONCLUSION/SIGNIFICANCE The quiescin sulfhydryl oxidase hQSOX1b seems to function as a chaperone and oxidase during the oxidative folding. This example for mFIZZ1 should encourage the design of an appropriate thiol/disulfide oxidoreductase-tuned cell free expression system for other challenging disulfide rich proteins.
Collapse
Affiliation(s)
- Wael Gad
- Brussels Center for Redox Biology, Brussels, Belgium
- Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Meera G. Nair
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, United States of America
| | - Karolien Van Belle
- Brussels Center for Redox Biology, Brussels, Belgium
- Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Khadija Wahni
- Brussels Center for Redox Biology, Brussels, Belgium
- Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Henri De Greve
- Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A. Van Ginderachter
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Guy Vandenbussche
- Centre de Biologie Structurale et de Bioinformatique, Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Brussels, Belgium
| | - Yaeta Endo
- Cell Free Science and Technology Research Center, Ehime University, Matsuyama, Japan
| | - David Artis
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joris Messens
- Brussels Center for Redox Biology, Brussels, Belgium
- Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- * E-mail:
| |
Collapse
|
76
|
Abstract
BACKGROUND With increasing evidence that hydroperoxides are not only toxic but rather exert essential physiological functions, also hydroperoxide removing enzymes have to be re-viewed. In mammals, the peroxidases inter alia comprise the 8 glutathione peroxidases (GPx1-GPx8) so far identified. SCOPE OF THE REVIEW Since GPxs have recently been reviewed under various aspects, we here focus on novel findings considering their diverse physiological roles exceeding an antioxidant activity. MAJOR CONCLUSIONS GPxs are involved in balancing the H2O2 homeostasis in signalling cascades, e.g. in the insulin signalling pathway by GPx1; GPx2 plays a dual role in carcinogenesis depending on the mode of initiation and cancer stage; GPx3 is membrane associated possibly explaining a peroxidatic function despite low plasma concentrations of GSH; GPx4 has novel roles in the regulation of apoptosis and, together with GPx5, in male fertility. Functions of GPx6 are still unknown, and the proposed involvement of GPx7 and GPx8 in protein folding awaits elucidation. GENERAL SIGNIFICANCE Collectively, selenium-containing GPxs (GPx1-4 and 6) as well as their non-selenium congeners (GPx5, 7 and 8) became key players in important biological contexts far beyond the detoxification of hydroperoxides. This article is part of a Special Issue entitled Cellular functions of glutathione.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- Department of Biochemistry of Micronutrients, German Institute of Human Nutrition, Nuthetal, Germany.
| | | |
Collapse
|
77
|
Hakim M, Ezerina D, Alon A, Vonshak O, Fass D. Exploring ORFan domains in giant viruses: structure of mimivirus sulfhydryl oxidase R596. PLoS One 2012; 7:e50649. [PMID: 23209798 PMCID: PMC3509050 DOI: 10.1371/journal.pone.0050649] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/22/2012] [Indexed: 11/25/2022] Open
Abstract
The mimivirus genome contains many genes that lack homologs in the sequence database and are thus known as ORFans. In addition, mimivirus genes that encode proteins belonging to known fold families are in some cases fused to domain-sized segments that cannot be classified. One such ORFan region is present in the mimivirus enzyme R596, a member of the Erv family of sulfhydryl oxidases. We determined the structure of a variant of full-length R596 and observed that the carboxy-terminal region of R596 assumes a folded, compact domain, demonstrating that these ORFan segments can be stable structural units. Moreover, the R596 ORFan domain fold is novel, hinting at the potential wealth of protein structural innovation yet to be discovered in large double-stranded DNA viruses. In the context of the R596 dimer, the ORFan domain contributes to formation of a broad cleft enriched with exposed aromatic groups and basic side chains, which may function in binding target proteins or localization of the enzyme within the virus factory or virions. Finally, we find evidence for an intermolecular dithiol/disulfide relay within the mimivirus R596 dimer, the first such extended, intersubunit redox-active site identified in a viral sulfhydryl oxidase.
Collapse
Affiliation(s)
- Motti Hakim
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Daria Ezerina
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Alon
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ohad Vonshak
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
78
|
Zito E, Hansen H, Yeo G, Fujii J, Ron D. Endoplasmic reticulum thiol oxidase deficiency leads to ascorbic acid depletion and noncanonical scurvy in mice. Mol Cell 2012; 48:39-51. [PMID: 22981861 PMCID: PMC3473360 DOI: 10.1016/j.molcel.2012.08.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/16/2012] [Accepted: 08/07/2012] [Indexed: 12/16/2022]
Abstract
Endoplasmic reticulum (ER) thiol oxidases initiate a disulfide relay to oxidatively fold secreted proteins. We found that combined loss-of-function mutations in genes encoding the ER thiol oxidases ERO1α, ERO1β, and PRDX4 compromised the extracellular matrix in mice and interfered with the intracellular maturation of procollagen. These severe abnormalities were associated with an unexpectedly modest delay in disulfide bond formation in secreted proteins but a profound, 5-fold lower procollagen 4-hydroxyproline content and enhanced cysteinyl sulfenic acid modification of ER proteins. Tissue ascorbic acid content was lower in mutant mice, and ascorbic acid supplementation improved procollagen maturation and lowered sulfenic acid content in vivo. In vitro, the presence of a sulfenic acid donor accelerated the oxidative inactivation of ascorbate by an H(2)O(2)-generating system. Compromised ER disulfide relay thus exposes protein thiols to competing oxidation to sulfenic acid, resulting in depletion of ascorbic acid, impaired procollagen proline 4-hydroxylation, and a noncanonical form of scurvy.
Collapse
Affiliation(s)
- Ester Zito
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Henning Gram Hansen
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Giles S.H. Yeo
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - David Ron
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| |
Collapse
|
79
|
The dynamic disulphide relay of quiescin sulphydryl oxidase. Nature 2012; 488:414-8. [PMID: 22801504 DOI: 10.1038/nature11267] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 05/28/2012] [Indexed: 12/16/2022]
Abstract
Protein stability, assembly, localization and regulation often depend on the formation of disulphide crosslinks between cysteine side chains. Enzymes known as sulphydryl oxidases catalyse de novo disulphide formation and initiate intra- and intermolecular dithiol/disulphide relays to deliver the disulphides to substrate proteins. Quiescin sulphydryl oxidase (QSOX) is a unique, multi-domain disulphide catalyst that is localized primarily to the Golgi apparatus and secreted fluids and has attracted attention owing to its overproduction in tumours. In addition to its physiological importance, QSOX is a mechanistically intriguing enzyme, encompassing functions typically carried out by a series of proteins in other disulphide-formation pathways. How disulphides are relayed through the multiple redox-active sites of QSOX and whether there is a functional benefit to concatenating these sites on a single polypeptide are open questions. Here we present the first crystal structure of an intact QSOX enzyme, derived from a trypanosome parasite. Notably, sequential sites in the disulphide relay were found more than 40 Å apart in this structure, too far for direct disulphide transfer. To resolve this puzzle, we trapped and crystallized an intermediate in the disulphide hand-off, which showed a 165° domain rotation relative to the original structure, bringing the two active sites within disulphide-bonding distance. The comparable structure of a mammalian QSOX enzyme, also presented here, shows further biochemical features that facilitate disulphide transfer in metazoan orthologues. Finally, we quantified the contribution of concatenation to QSOX activity, providing general lessons for the understanding of multi-domain enzymes and the design of new catalytic relays.
Collapse
|
80
|
Haque SJ, Majumdar T, Barik S. Redox-assisted protein folding systems in eukaryotic parasites. Antioxid Redox Signal 2012; 17:674-83. [PMID: 22122448 PMCID: PMC3373220 DOI: 10.1089/ars.2011.4433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE The cysteine (Cys) residues of proteins play two fundamentally important roles. They serve as sites of post-translational redox modifications as well as influence the conformation of the protein through the formation of disulfide bonds. RECENT ADVANCES Redox-related and redox-associated protein folding in protozoan parasites has been found to be a major mode of regulation, affecting myriad aspects of the parasitic life cycle, host-parasite interactions, and the disease pathology. Available genome sequences of various parasites have begun to complement the classical biochemical and enzymological studies of these processes. In this article, we summarize the reversible Cys disulfide (S-S) bond formation in various classes of strategically important parasitic proteins, and its structural consequence and functional relevance. CRITICAL ISSUES Molecular mechanisms of folding remain under-studied and often disconnected from functional relevance. FUTURE DIRECTIONS The clinical benefit of redox research will require a comprehensive characterization of the various isoforms and paralogs of the redox enzymes and their concerted effect on the structure and function of the specific parasitic client proteins.
Collapse
Affiliation(s)
- Saikh Jaharul Haque
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | |
Collapse
|
81
|
Sato Y, Inaba K. Disulfide bond formation network in the three biological kingdoms, bacteria, fungi and mammals. FEBS J 2012; 279:2262-71. [DOI: 10.1111/j.1742-4658.2012.08593.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
82
|
Abstract
SIGNIFICANCE The biogenesis of most secreted and outer membrane proteins involves the formation of structure stabilizing disulfide bonds. Hence knowledge of the mechanisms for their formation is critical for understanding a myriad of cellular processes and associated disease states. RECENT ADVANCES Until recently it was thought that members of the Ero1 sulfhydryl oxidase family were responsible for catalyzing the majority of disulfide bond formation in the endoplasmic reticulum. However, multiple eukaryotic organisms are now known to show no or minor phenotypes when these enzymatic pathways are disrupted, suggesting that other pathways can catalyze disulfide bond formation to an extent sufficient to maintain normal physiology. CRITICAL ISSUES AND FUTURE DIRECTIONS This lack of a strong phenotype raises multiple questions regarding what pathways are acting and whether they themselves constitute the major route for disulfide bond formation. This review critically examines the potential low molecular oxidants that maybe involved in the catalyzed or noncatalyzed formation of disulfide bonds, with an emphasis on the mammalian endoplasmic reticulum, via an examination of their thermodynamics, kinetics, and availability and gives pointers to help guide future experimental work.
Collapse
|
83
|
Hagiwara M, Nagata K. Redox-dependent protein quality control in the endoplasmic reticulum: folding to degradation. Antioxid Redox Signal 2012; 16:1119-28. [PMID: 22229892 DOI: 10.1089/ars.2011.4495] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Nascent polypeptides entering the endoplasmic reticulum (ER) are co- and post-translationally modified by N-glycosylation and the oxidation/isomerization of cysteine residues followed by folding with the aid of molecular chaperones. Only properly folded proteins reach their final destination. The oxidative environment in the ER enables ER-resident oxidoreductases to facilitate disulfide bond formation, which stabilizes protein structures. ER oxidoreductases involve in both the productive folding of newly synthesized proteins and ER-associated degradation (ERAD) of misfolded proteins. RECENT ADVANCES The ER luminal event of ERAD is composed of three major steps: the recognition and segregation of terminally misfolded proteins from folding intermediates, unfolding of misfolded substrates by oxidoreductases that cleave the disulfide bonds to enable the translocation of the substrates through the retrotranslocation channel, and transport of substrates to be degraded to the dislocon channel. The factors required for these three critical steps have been found to form a supramolecular complex in the ER. CRITICAL ISSUES This complex comprises EDEM1, a lectin-like molecule that recognizes mannose-trimming and segregates the identified substrates from the productive folding pathway into the degradation pathway; ER DnaJ (ERdj)5, a reductase that resides in the ER and reduces disulfides in misfolded proteins; and immunoglobulin heavy chain binding protein (BiP), an heat shock protein (Hsp)70 family molecular chaperone that recruits substrates to the dislocon channel after dissociation from the EDEM1/ERdj5 complex coupled with ATP hydrolysis. FUTURE DIRECTIONS The importance of disulfide bond reduction in misfolded proteins for retrotranslocation through the dislocon channel will be discussed by comparing the function of ERdj5 with that of other oxidoreductases in the ER.
Collapse
Affiliation(s)
- Masatoshi Hagiwara
- Laboratory of Molecular and Cellular Biology, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto-City, Japan
| | | |
Collapse
|
84
|
Codding JA, Israel BA, Thorpe C. Protein substrate discrimination in the quiescin sulfhydryl oxidase (QSOX) family. Biochemistry 2012; 51:4226-35. [PMID: 22582951 DOI: 10.1021/bi300394w] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This work explores the substrate specificity of the quiescin sulfhydryl oxidase (QSOX) family of disulfide-generating flavoenzymes to provide enzymological context for investigation of the physiological roles of these facile catalysts of oxidative protein folding. QSOX enzymes are generally unable to form disulfide bonds within well-structured proteins. Use of a temperature-sensitive mutant of ubiquitin-conjugating enzyme 4 (Ubc4') as a model substrate shows that QSOX activity correlates with the unfolding of Ubc4' monitored by circular dichroism. Fusion of Ubc4' with the more stable glutathione-S-transferase domain demonstrates that QSOX can selectively introduce disulfides into the less stable domain of the fusion protein. In terms of intermolecular disulfide bond generation, QSOX is unable to cross-link well-folded globular proteins via their surface thiols. However, the construction of a septuple mutant of RNase A, retaining a single cysteine residue, demonstrates that flexible protein monomers can be directly coupled by the oxidase. Steady- and pre-steady-state kinetic experiments, combined with static fluorescence approaches, indicate that while QSOX is an efficient catalyst for disulfide bond formation between mobile elements of structure, it does not appear to have a significant binding site for unfolded proteins. These aspects of protein substrate discrimination by QSOX family members are rationalized in terms of the stringent steric requirements for disulfide exchange reactions.
Collapse
Affiliation(s)
- Jennifer A Codding
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716-2522, USA
| | | | | |
Collapse
|
85
|
Stojanovski D, Bragoszewski P, Chacinska A. The MIA pathway: a tight bond between protein transport and oxidative folding in mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1142-50. [PMID: 22579494 DOI: 10.1016/j.bbamcr.2012.04.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 11/29/2022]
Abstract
Many newly synthesized proteins obtain disulfide bonds in the bacterial periplasm, the endoplasmic reticulum (ER) and the mitochondrial intermembrane space. The acquisition of disulfide bonds is critical for the folding, assembly and activity of these proteins. Spontaneous oxidation of thiol groups is inefficient in vivo, therefore cells have developed machineries that catalyse the oxidation of substrate proteins. The identification of the machinery that mediates this process in the intermembrane space of mitochondria, known as MIA (mitochondrial intermembrane space assembly), provided a unique mechanism of protein transport. The MIA machinery introduces disulfide bonds into incoming intermembrane space precursors and thus tightly couples the process of precursor translocation to precursor oxidation. We discuss our current understanding of the MIA pathway and the mechanisms that oversee thiol-exchange reactions in mitochondria.
Collapse
Affiliation(s)
- Diana Stojanovski
- La Trobe Institute for Molecular Sciences, 3086 Melbourne, Australia
| | | | | |
Collapse
|
86
|
Laurindo FRM, Pescatore LA, Fernandes DDC. Protein disulfide isomerase in redox cell signaling and homeostasis. Free Radic Biol Med 2012; 52:1954-69. [PMID: 22401853 DOI: 10.1016/j.freeradbiomed.2012.02.037] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 12/16/2022]
Abstract
Thiol proteins may potentially act as redox signaling adaptor proteins, adjusting reactive oxygen species intermediates to specific signals and redox signals to cell homeostasis. In this review, we discuss redox effects of protein disulfide isomerase (PDI), a thioredoxin superfamily oxidoreductase from the endoplasmic reticulum (ER). Abundantly expressed PDI displays ubiquity, interactions with redox and nonredox proteins, versatile effects, and several posttranslational modifications. The PDI family contains >20 members with at least some apparent complementary actions. PDI has oxidoreductase, isomerase, and chaperone effects, the last not directly dependent on its thiols. PDI is a converging hub for pathways of disulfide bond introduction into ER-processed proteins, via hydrogen peroxide-generating mechanisms involving the oxidase Ero1α, as well as hydrogen peroxide-consuming reactions involving peroxiredoxin IV and the novel peroxidases Gpx7/8. PDI is a candidate pathway for coupling ER stress to oxidant generation. Emerging information suggests a convergence between PDI and Nox family NADPH oxidases. PDI silencing prevents Nox responses to angiotensin II and inhibits Akt phosphorylation in vascular cells and parasite phagocytosis in macrophages. PDI overexpression spontaneously enhances Nox activation and expression. In neutrophils, PDI redox-dependently associates with p47phox and supports the respiratory burst. At the cell surface, PDI exerts transnitrosation, thiol reductase, and apparent isomerase activities toward targets including adhesion and matrix proteins and proteases. Such effects mediate redox-dependent adhesion, coagulation/thrombosis, immune functions, and virus internalization. The route of PDI externalization remains elusive. Such multiple redox effects of PDI may contribute to its conspicuous expression and functional role in disease, rendering PDI family members putative redox cell signaling adaptors.
Collapse
Affiliation(s)
- Francisco R M Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, 05403-000 São Paulo, Brazil.
| | | | | |
Collapse
|
87
|
Kakihana T, Nagata K, Sitia R. Peroxides and peroxidases in the endoplasmic reticulum: integrating redox homeostasis and oxidative folding. Antioxid Redox Signal 2012; 16:763-71. [PMID: 22146055 DOI: 10.1089/ars.2011.4238] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE The endoplasmic reticulum (ER), the port of entry into the secretory pathway, is a complex organelle that performs many fundamental functions, including protein synthesis and quality control, Ca(2+) storage and signaling. Redox homeostasis is of paramount importance for allowing the efficient folding of secretory proteins, most of which contain essential disulfide bonds. RECENT ADVANCES revealed that an intricate protein network sustains the processes of disulfide bond formation and reshuffling in the ER. Remarkably, H(2)O(2), which is a known by-product of Ero1 flavoproteins in cells, is utilized by peroxiredoxin-4 and glutathione peroxidases-7 and -8, which reside in the mammalian secretory compartment and further fuel oxidative protein folding while limiting oxidative damage. CRITICAL ISSUES that remain to be addressed are the sources, diffusibility and signaling role(s) of H(2)O(2) in and between organelles and cells, how the emerging redundancy in the systems is coupled to precise regulation, and how the distinct pathways operating in the early secretory compartment are integrated with one another. FUTURE DIRECTIONS A further dissection of the pathways that integrate folding, redox homeostasis, and signaling in the early secretory pathway may allow to manipulate protein homeostasis and survival-death decisions in degenerative diseases or cancer.
Collapse
Affiliation(s)
- Taichi Kakihana
- Department of Molecular and Cellular Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
88
|
Sevier CS. Erv2 and quiescin sulfhydryl oxidases: Erv-domain enzymes associated with the secretory pathway. Antioxid Redox Signal 2012; 16:800-8. [PMID: 22142242 DOI: 10.1089/ars.2011.4450] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Members of the Erv/ALR/QSOX protein family contain an Erv sequence module and catalyze protein disulfide bond formation. Erv enzymes impact protein function within and outside cells that affects both normal and malignant cell growth. This protein family is named for its founding members: Erv1 (essential for respiratory and vegetative growth 1) and ALR (augmenter of liver regeneration), homologous mitochondrial proteins from yeast and mammals, respectively, and QSOX (quiescin sulfhydryl oxidase), an oxidase secreted from quiescent cells. This review will focus on a subset of Erv proteins that are localized within the secretory pathway: Erv2-like proteins, proteins present in the endoplasmic reticulum of fungi, and QSOX proteins, proteins localized within the secretory pathway and extracellular space and present in most eukaryotes, but not fungi. RECENT ADVANCES A wealth of structural and biochemical data has been obtained for Erv2 and QSOX proteins. These data have identified a generally conserved catalytic mechanism and structure for the Erv2 and QSOX proteins with unique features for each enzyme. CRITICAL ISSUES Many fundamental questions remain about the activity for these proteins in living cells including the partners, pathways, and locations utilized by these enzymes in vivo. FUTURE DIRECTIONS A more comprehensive understanding of the cellular roles for Erv2 and QSOX enzymes will require identification of their partners and substrates. Also, determining when Erv2 and QSOX function during growth and development, and how changes in levels of active Erv2 and QSOX impact cell function, is necessary to facilitate a better understanding of these intriguing enzymes.
Collapse
Affiliation(s)
- Carolyn S Sevier
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
89
|
Rutkevich LA, Williams DB. Vitamin K epoxide reductase contributes to protein disulfide formation and redox homeostasis within the endoplasmic reticulum. Mol Biol Cell 2012; 23:2017-27. [PMID: 22496424 PMCID: PMC3364168 DOI: 10.1091/mbc.e12-02-0102] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ero1 oxidation of PDI family members drives disulfide bond formation, but parallel pathways support Ero1 function. Relative contributions of known and candidate ER oxidation pathways are ranked by combinatorial RNAi in human hepatoma cells to reveal VKOR as a substantial contributor to ER oxidation, but no role for QSOX1 is observed. The transfer of oxidizing equivalents from the endoplasmic reticulum (ER) oxidoreductin (Ero1) oxidase to protein disulfide isomerase is an important pathway leading to disulfide formation in nascent proteins within the ER. However, Ero1-deficient mouse cells still support oxidative protein folding, which led to the discovery that peroxiredoxin IV (PRDX4) catalyzes a parallel oxidation pathway. To identify additional pathways, we used RNA interference in human hepatoma cells and evaluated the relative contributions to oxidative protein folding and ER redox homeostasis of Ero1, PRDX4, and the candidate oxidants quiescin-sulfhydryl oxidase 1 (QSOX1) and vitamin K epoxide reductase (VKOR). We show that Ero1 is primarily responsible for maintaining cell growth, protein secretion, and recovery from a reductive challenge. We further show by combined depletion with Ero1 that PRDX4 and, for the first time, VKOR contribute to ER oxidation and that depletion of all three activities results in cell death. Of importance, Ero1, PRDX4, or VKOR was individually capable of supporting cell viability, secretion, and recovery after reductive challenge in the near absence of the other two activities. In contrast, no involvement of QSOX1 in ER oxidative processes could be detected. These findings establish VKOR as a significant contributor to disulfide bond formation within the ER.
Collapse
Affiliation(s)
- Lori A Rutkevich
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
90
|
Pimentel D, Haeussler DJ, Matsui R, Burgoyne JR, Cohen RA, Bachschmid MM. Regulation of cell physiology and pathology by protein S-glutathionylation: lessons learned from the cardiovascular system. Antioxid Redox Signal 2012; 16:524-42. [PMID: 22010840 PMCID: PMC3270052 DOI: 10.1089/ars.2011.4336] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Reactive oxygen and nitrogen species contributing to homeostatic regulation and the pathogenesis of various cardiovascular diseases, including atherosclerosis, hypertension, endothelial dysfunction, and cardiac hypertrophy, is well established. The ability of oxidant species to mediate such effects is in part dependent on their ability to induce specific modifications on particular amino acids, which alter protein function leading to changes in cell signaling and function. The thiol containing amino acids, methionine and cysteine, are the only oxidized amino acids that undergo reduction by cellular enzymes and are, therefore, prime candidates in regulating physiological signaling. Various reports illustrate the significance of reversible oxidative modifications on cysteine thiols and their importance in modulating cardiovascular function and physiology. RECENT ADVANCES The use of mass spectrometry, novel labeling techniques, and live cell imaging illustrate the emerging importance of reversible thiol modifications in cellular redox signaling and have advanced our analytical abilities. CRITICAL ISSUES Distinguishing redox signaling from oxidative stress remains unclear. S-nitrosylation as a precursor of S-glutathionylation is controversial and needs further clarification. Subcellular distribution of glutathione (GSH) may play an important role in local regulation, and targeted tools need to be developed. Furthermore, cellular redundancies of thiol metabolism complicate analysis and interpretation. FUTURE DIRECTIONS The development of novel pharmacological analogs that specifically target subcellular compartments of GSH to promote or prevent local protein S-glutathionylation as well as the establishment of conditional gene ablation and transgenic animal models are needed.
Collapse
Affiliation(s)
- David Pimentel
- Myocardial Biology Unit, Whitaker Cardiovascular Institute, Boston University School of Medicine, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
91
|
Daithankar VN, Wang W, Trujillo JR, Thorpe C. Flavin-linked Erv-family sulfhydryl oxidases release superoxide anion during catalytic turnover. Biochemistry 2011; 51:265-72. [PMID: 22148553 DOI: 10.1021/bi201672h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Typically, simple flavoprotein oxidases couple the oxidation of their substrates with the formation of hydrogen peroxide without release of significant levels of the superoxide ion. However, two evolutionarily related single-domain sulfhydryl oxidases (Erv2p; a yeast endoplasmic reticulum resident protein and augmenter of liver regeneration, ALR, an enzyme predominantly found in the mitochondrial intermembrane) release up to ~30% of the oxygen they reduce as the superoxide ion. Both enzymes oxidize dithiol substrates via a redox-active disulfide adjacent to the flavin cofactor within the helix-rich Erv domain. Subsequent reduction of the flavin is followed by transfer of reducing equivalents to molecular oxygen. Superoxide release was initially detected using tris(3-hydroxypropyl)phosphine (THP) as an alternative reducing substrate to dithiothreitol (DTT). THP, and other phosphines, showed anomalously high turnover numbers with Erv2p and ALR in the oxygen electrode, but oxygen consumption was drastically suppressed upon the addition of superoxide dismutase. The superoxide ion initiates a radical chain reaction promoting the aerobic oxidation of phosphines with the formation of hydrogen peroxide. Use of a known flux of superoxide generated by the xanthine/xanthine oxidase system showed that one superoxide ion stimulates the reduction of 27 and 4.5 molecules of oxygen using THP and tris(2-carboxyethyl)phosphine (TCEP), respectively. This superoxide-dependent amplification of oxygen consumption by phosphines provides a new kinetic method for the detection of superoxide. Superoxide release was also observed by a standard chemiluminescence method using a luciferin analogue (MCLA) when 2 mM DTT was employed as a substrate of Erv2p and ALR. The percentage of superoxide released from Erv2p increased to ~65% when monomeric mutants of the normally homodimeric enzyme were used. In contrast, monomeric multidomain quiescin sulfhydryl oxidase enzymes that also contain an Erv FAD-binding fold release only 1-5% of their total reduced oxygen species as the superoxide ion. Aspects of the mechanism and possible physiological significance of superoxide release from these Erv-domain flavoproteins are discussed.
Collapse
Affiliation(s)
- Vidyadhar N Daithankar
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716-2522, United States
| | | | | | | |
Collapse
|
92
|
Banerjee R. Redox outside the box: linking extracellular redox remodeling with intracellular redox metabolism. J Biol Chem 2011; 287:4397-402. [PMID: 22147695 DOI: 10.1074/jbc.r111.287995] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aerobic organisms generate reactive oxygen species as metabolic side products and must achieve a delicate balance between using them for signaling cellular functions and protecting against collateral damage. Small molecule (e.g. glutathione and cysteine)- and protein (e.g. thioredoxin)-based buffers regulate the ambient redox potentials in the various intracellular compartments, influence the status of redox-sensitive macromolecules, and protect against oxidative stress. Less well appreciated is the fact that the redox potential of the extracellular compartment is also carefully regulated and is dynamic. Changes in intracellular metabolism alter the redox poise in the extracellular compartment, and these are correlated with cellular processes such as proliferation, differentiation, and death. In this minireview, the mechanism of extracellular redox remodeling due to intracellular sulfur metabolism is discussed in the context of various cell-cell communication paradigms.
Collapse
Affiliation(s)
- Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
93
|
Onda Y, Kawagoe Y. Oxidative protein folding: selective pressure for prolamin evolution in rice. PLANT SIGNALING & BEHAVIOR 2011; 6:1966-72. [PMID: 22112460 PMCID: PMC3337189 DOI: 10.4161/psb.6.12.17967] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
During seed development, endosperm cells of highly productive cereals, including rice, synthesize disulfide-rich proteins in large amounts and deposit them into storage organelles. Disulfide bond formation involves electron transfer and generates H(2)O(2) as a by-product. To ensure proper development and maturation of seeds, the endosperm cells must supply large amounts of oxidizing equivalents to dithiols in nascent proteins in a controlled manner. This review compares multiple oxidative protein folding systems in yeast, cultured human cells, and rice endosperm. We discuss possible roles of ERO1, other sulfhydryl oxidases, and the protein disulfide isomerase family in the formation of disulfide bonds in storage proteins and the development of protein bodies. Rice prolamins, encoded by a multigene family, are divided into Cys-rich and Cys-depleted subgroups. We discuss the potential importance of disulfide bond formation in the evolution of the prolamin family in japonica rice.
Collapse
Affiliation(s)
- Yayoi Onda
- Department of Food and Applied Life Sciences; Yamagata University; Tsuruoka, Japan
| | - Yasushi Kawagoe
- Division of Plant Sciences; National Institute of Agrobiological Sciences; Tsukuba, Japan
| |
Collapse
|
94
|
de Andrade CR, Stolf BS, Debbas V, Rosa DS, Kalil J, Coelho V, Laurindo FRM. Quiescin sulfhydryl oxidase (QSOX) is expressed in the human atheroma core: possible role in apoptosis. In Vitro Cell Dev Biol Anim 2011; 47:716-27. [PMID: 22069028 DOI: 10.1007/s11626-011-9461-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/26/2011] [Indexed: 12/30/2022]
Abstract
Quiescin sulfhydryl oxidases (QSOXs) catalyze the formation of disulfide bonds in peptides and proteins, and in vertebrates comprise two proteins: QSOX1 and QSOX2. QSOX1, the most extensively studied type, has been implicated in protein folding, production of extracellular matrix, redox regulation, protection from apoptosis, angiogenesis, and cell differentiation. Atherosclerosis is an immunopathological condition in which redox processes, apoptosis, cell differentiation, and matrix secretion/maturation have critical roles. Considering these data, we hypothesized that QSOX1 could be involved in this disease, possibly reducing apoptosis and angiogenesis inside the plaque. QSOX1 labeling in normal human carotid vessels showed predominant expression by endothelium, subendothelium, and adventitia. In atherosclerotic plaques, however, QSOX1 was highly expressed in macrophages at the lipid core. QSOX1 expression was also studied in terms of mRNA and protein in cell types present in plaques under apoptotic or activating stimuli, emulating conditions found in the atherosclerotic process. QSOX1 mRNA increased in endothelial cells and macrophages after the induction of apoptosis. At the protein level, the correlation between apoptosis and QSOX1 expression was not evident in all cell types, possibly because of a rapid secretion of QSOX1. Our results propose for the first time possible roles for QSOX1 in atherosclerosis, being upregulated in endothelial cells and macrophages by apoptosis and cell activation, and possibly controlling these processes, as well as angiogenesis. The quantitative differences in QSOX1 induction may depend on the cell type and also on local factors.
Collapse
Affiliation(s)
- Claudia R de Andrade
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
95
|
Bulleid NJ, Ellgaard L. Multiple ways to make disulfides. Trends Biochem Sci 2011; 36:485-92. [PMID: 21778060 DOI: 10.1016/j.tibs.2011.05.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/13/2011] [Accepted: 05/24/2011] [Indexed: 12/16/2022]
Abstract
Our concept of how disulfides form in proteins entering the secretory pathway has changed dramatically in recent years. The discovery of endoplasmic reticulum (ER) oxidoreductin 1 (ERO1) was followed by the demonstration that this enzyme couples oxygen reduction to de novo formation of disulfides. However, mammals deficient in ERO1 survive and form disulfides, which suggests the presence of alternative pathways. It has recently been shown that peroxiredoxin 4 is involved in peroxide removal and disulfide formation. Other less well-characterized pathways involving quiescin sulfhydryl oxidase, ER-localized protein disulfide isomerase peroxidases and vitamin K epoxide reductase might all contribute to disulfide formation. Here we discuss these various pathways for disulfide formation in the mammalian ER and highlight the central role played by glutathione in regulating this process.
Collapse
Affiliation(s)
- Neil J Bulleid
- Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | | |
Collapse
|
96
|
Structure of a baculovirus sulfhydryl oxidase, a highly divergent member of the erv flavoenzyme family. J Virol 2011; 85:9406-13. [PMID: 21752922 DOI: 10.1128/jvi.05149-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Genomes of nucleocytoplasmic large DNA viruses (NCLDVs) encode enzymes that catalyze the formation of disulfide bonds between cysteine amino acid residues in proteins, a function essential for the proper assembly and propagation of NCLDV virions. Recently, a catalyst of disulfide formation was identified in baculoviruses, a group of large double-stranded DNA viruses considered phylogenetically distinct from NCLDVs. The NCLDV and baculovirus disulfide catalysts are flavin adenine dinucleotide (FAD)-binding sulfhydryl oxidases related to the cellular Erv enzyme family, but the baculovirus enzyme, the product of the Ac92 gene in Autographa californica multiple nucleopolyhedrovirus (AcMNPV), is highly divergent at the amino acid sequence level. The crystal structure of the Ac92 protein presented here shows a configuration of the active-site cysteine residues and bound cofactor similar to that observed in other Erv sulfhydryl oxidases. However, Ac92 has a complex quaternary structural arrangement not previously seen in cellular or viral enzymes of this family. This novel assembly comprises a dimer of pseudodimers with a striking 40-degree kink in the interface helix between subunits. The diversification of the Erv sulfhydryl oxidase enzymes in large double-stranded DNA viruses exemplifies the extreme degree to which these viruses can push the boundaries of protein family folds.
Collapse
|
97
|
Faccio G, Nivala O, Kruus K, Buchert J, Saloheimo M. Sulfhydryl oxidases: sources, properties, production and applications. Appl Microbiol Biotechnol 2011; 91:957-66. [DOI: 10.1007/s00253-011-3440-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/10/2011] [Accepted: 06/11/2011] [Indexed: 01/24/2023]
|
98
|
Abstract
The identification of protein disulfide isomerase, almost 50 years ago, opened the way to the study of oxidative protein folding. Oxidative protein folding refers to the composite process by which a protein recovers both its native structure and its native disulfide bonds. Pathways that form disulfide bonds have now been unraveled in the bacterial periplasm (disulfide bond protein A [DsbA], DsbB, DsbC, DsbG, and DsbD), the endoplasmic reticulum (protein disulfide isomerase and Ero1), and the mitochondrial intermembrane space (Mia40 and Erv1). This review summarizes the current knowledge on disulfide bond formation in both prokaryotes and eukaryotes and highlights the major problems that remain to be solved.
Collapse
Affiliation(s)
- Matthieu Depuydt
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
99
|
Appenzeller-Herzog C. Glutathione- and non-glutathione-based oxidant control in the endoplasmic reticulum. J Cell Sci 2011; 124:847-55. [PMID: 21378306 DOI: 10.1242/jcs.080895] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The redox-active tripeptide glutathione is an endogenous reducing agent that is found in abundance and throughout the cell. In the endoplasmic reticulum (ER), the ratio of glutathione to glutathione disulfide is lower compared with non-secretory organelles. This relatively oxidizing thiol-disulfide milieu is essential for the oxidative folding of nascent proteins in the ER and, at least in part, maintained by the activity of ER-resident endoplasmic oxidoreductin 1 (Ero1) enzymes that oxidize cysteine side chains at the expense of molecular oxygen. Glutathione disulfide and hydrogen peroxide formed as a consequence of Ero1 activity are widely considered as being inoperative and potentially dangerous by-products of oxidative protein folding in the ER. In contrast to this common view, this Commentary highlights the importance of glutathione- and non glutathione-based homeostatic redox control mechanisms in the ER. Stability in the thiol-disulfide system that prominently includes the protein disulfide isomerases is ensured by the contribution of tightly regulated Ero1 activity, ER-resident peroxidases and the glutathione-glutathione-disulfide redox pair that acts as a potent housekeeper of redox balance. Accordingly, the widely held concept that Ero1-mediated over-oxidation in the ER constitutes a common cause of cellular demise is critically re-evaluated.
Collapse
Affiliation(s)
- Christian Appenzeller-Herzog
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstr. 50, CH-4056 Basel, Switzerland.
| |
Collapse
|
100
|
Masui S, Vavassori S, Fagioli C, Sitia R, Inaba K. Molecular bases of cyclic and specific disulfide interchange between human ERO1alpha protein and protein-disulfide isomerase (PDI). J Biol Chem 2011; 286:16261-71. [PMID: 21398518 DOI: 10.1074/jbc.m111.231357] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the endoplasmic reticulum (ER) of human cells, ERO1α and protein-disulfide isomerase (PDI) constitute one of the major electron flow pathways that catalyze oxidative folding of secretory proteins. Specific and limited PDI oxidation by ERO1α is essential to avoid ER hyperoxidation. To investigate how ERO1α oxidizes PDI selectively among more than 20 ER-resident PDI family member proteins, we performed docking simulations and systematic biochemical analyses. Our findings reveal that a protruding β-hairpin of ERO1α specifically interacts with the hydrophobic pocket present in the redox-inactive PDI b'-domain through the stacks between their aromatic residues, leading to preferred oxidation of the C-terminal PDI a'-domain. ERO1α associated preferentially with reduced PDI, explaining the stepwise disulfide shuttle mechanism, first from ERO1α to PDI and then from oxidized PDI to an unfolded polypeptide bound to its hydrophobic pocket. The interaction of ERO1α with ERp44, another PDI family member protein, was also analyzed. Notably, ERO1α-dependent PDI oxidation was inhibited by a hyperactive ERp44 mutant that lacks the C-terminal tail concealing the substrate-binding hydrophobic regions. The potential ability of ERp44 to inhibit ERO1α activity may suggest its physiological role in ER redox and protein homeostasis.
Collapse
Affiliation(s)
- Shoji Masui
- Division of Protein Chemistry, Post-Genome Science Center, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | | | | | | |
Collapse
|