51
|
Antioxidation and Antiapoptosis Characteristics of Heme Oxygenase-1 Enhance Tumorigenesis of Human Prostate Carcinoma Cells. Transl Oncol 2019; 13:102-112. [PMID: 31810001 PMCID: PMC6909070 DOI: 10.1016/j.tranon.2019.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/31/2022] Open
Abstract
Heme oxygenase-1 (HO-1) has antiinflammatory and antioxidant properties and is deemed as a tissue protector. However, effects of HO-1 in prostate cancer remain in controversy. We evaluated the role of HO-1 in prostate carcinoma in vitro and in vivo. Overexpression of HO-1 did not affect prostate cell proliferation in the normal condition but enhanced cell proliferation under serum starvation. HO-1 overexpression enhanced cell invasion of PC-3 cells through epithelial–mesenchymal transition (EMT) induction, which was supported by increased Slug, N-cadherin, and vimentin expressions. In the xenograft animal study, HO-1 overexpression enhanced PC-3 cell tumor growth in vivo. HO-1 attenuated reactive oxygen species induced by H2O2 or pyocyanin treatment in PC-3 and DU145 cells. HO-1 further reduced PC-3 and DU145 cell apoptosis induced by H2O2 or serum starvation. Our results suggested that HO-1 was able to increase prostate carcinoma cell invasion in vitro and tumor growth in vivo. The EMT induction and antioxidant and antiapoptotic effects of HO-1 in the prostate carcinoma cells may be responsible for these findings.
Collapse
|
52
|
Yan H, Du J, Zhu S, Nie G, Zhang H, Gu Z, Zhao Y. Emerging Delivery Strategies of Carbon Monoxide for Therapeutic Applications: from CO Gas to CO Releasing Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904382. [PMID: 31663244 DOI: 10.1002/smll.201904382] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Carbon monoxide (CO) therapy has emerged as a hot topic under exploration in the field of gas therapy as it shows the promise of treating various diseases. Due to the gaseous property and the high affinity for human hemoglobin, the main challenges of administrating medicinal CO are the lack of target selectivity as well as the toxic profile at relatively high concentrations. Although abundant CO releasing molecules (CORMs) with the capacity to deliver CO in biological systems have been developed, several disadvantages related to CORMs, including random diffusion, poor solubility, potential toxicity, and lack of on-demand CO release in deep tissue, still confine their practical use. Recently, the advent of versatile nanomedicine has provided a promising chance for improving the properties of naked CORMs and simultaneously realizing the therapeutic applications of CO. This review presents a brief summarization of the emerging delivery strategies of CO based on nanomaterials for therapeutic application. First, an introduction covering the therapeutic roles of CO and several frequently used CORMs is provided. Then, recent advancements in the synthesis and application of versatile CO releasing nanomaterials are elaborated. Finally, the current challenges and future directions of these important delivery strategies are proposed.
Collapse
Affiliation(s)
- Haili Yan
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Jiangfeng Du
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guangjun Nie
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hui Zhang
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuliang Zhao
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
53
|
Berning L, Scharf L, Aplak E, Stucki D, von Montfort C, Reichert AS, Stahl W, Brenneisen P. In vitro selective cytotoxicity of the dietary chalcone cardamonin (CD) on melanoma compared to healthy cells is mediated by apoptosis. PLoS One 2019; 14:e0222267. [PMID: 31553748 PMCID: PMC6760786 DOI: 10.1371/journal.pone.0222267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
Malignant melanoma is an aggressive type of cancer and the deadliest form of skin cancer. Even though enormous efforts have been undertaken, in particular the treatment options against the metastasizing form are challenging and the prognosis is generally poor. A novel therapeutical approach is the application of secondary plant constituents occurring in food and food products. Herein, the effect of the dietary chalcone cardamonin, inter alia found in Alpinia species, was tested using human malignant melanoma cells. These data were compared to cardamonin treated normal melanocytes and dermal fibroblasts representing healthy cells. To investigate the impact of cardamonin on tumor and normal cells, it was added to monolayer cell cultures and cytotoxicity, proliferation, tumor invasion, and apoptosis were studied with appropriate cell biological and biochemical methods. Cardamonin treatment resulted in an apoptosis-mediated increase in cytotoxicity towards tumor cells, a decrease in their proliferation rate, and a lowered invasive capacity, whereas the viability of melanocytes and fibroblasts was hardly affected at such concentrations. A selective cytotoxic effect of cardamonin on melanoma cells compared to normal (healthy) cells was shown in vitro. This study along with others highlights that dietary chalcones may be a valuable tool in anticancer therapies which has to be proven in the future in vivo.
Collapse
Affiliation(s)
- Lena Berning
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Lisa Scharf
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Elif Aplak
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - David Stucki
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Claudia von Montfort
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Andreas S. Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Peter Brenneisen
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
54
|
Gao S, Yu Y, Liu L, Meng J, Li G. Circular RNA hsa_circ_0007059 restrains proliferation and epithelial-mesenchymal transition in lung cancer cells via inhibiting microRNA-378. Life Sci 2019; 233:116692. [PMID: 31351967 DOI: 10.1016/j.lfs.2019.116692] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/15/2019] [Accepted: 07/23/2019] [Indexed: 01/22/2023]
Abstract
As newly discovered non-coding RNA (ncRNA), circular RNA (circRNA) has become a research hotspot in manifold cancers. But, the influences of hsa_circ_0007059 in lung cancer remain obscure. Expression of hsa_circ_0007059 in lung cancer tissues was firstly determined through RT-qPCR. After overexpressing hsa_circ_0007059, cell viability, apoptosis, p53/CyclinD1, Bax and Pro/Cleaved-Caspase-3 and EMT-correlative factors (E-cadherin, Vimetin, Twist1 and Zeb1) were tested in A549 and H1975 cells. MiR-378 expression in lung cancer tissues and cells was evaluated after miR-378 mimic transfection. Wnt/β-catenin and ERK1/2 pathways were finally evaluated in A549 and H1975 cells. Inhibition of hsa_circ_0007059 was discovered in lung cancer tissues. Overexpressed hsa_circ_0007059 evidently restrained cell proliferation, elevated p53 and repressed CyclinD1 expression, meanwhile triggered apoptosis and enhanced Bax and Cleaved-Caspase-3 expression. Increased hsa_circ_0007059 abated EMT via enhancement of E-cadherin and inhibition of Vimentin, Twist and Zeb1 in A549 and H1975 cells. MiR-378 was up-regulated in lung cancer tissues, declined by hsa_circ_0007059 overexpression in A549 and H1975 cells. Overexpressed hsa_circ_0007059 hindered Wnt/β-catenin and ERK1/2 pathways via suppressing miR-378 in A549 and H1975 cells. The investigations manifested that hsa_circ_0007059 abated cell proliferation and EMT process in lung cancer cells via inactivation of Wnt/β-catenin and ERK1/2 pathways via suppressing miR-378.
Collapse
Affiliation(s)
- Shunji Gao
- Department of Occupational Medicine, Weifang People's Hospital, Weifang 261000, China
| | - Yanyan Yu
- Department of Occupational Medicine, Weifang People's Hospital, Weifang 261000, China
| | - Lu Liu
- Department of Occupational Medicine, Weifang People's Hospital, Weifang 261000, China
| | - Jun Meng
- Department of Occupational Medicine, Weifang People's Hospital, Weifang 261000, China
| | - Guifang Li
- Department of Occupational Medicine, Weifang People's Hospital, Weifang 261000, China.
| |
Collapse
|
55
|
Cao X, Ding L, Xie ZZ, Yang Y, Whiteman M, Moore PK, Bian JS. A Review of Hydrogen Sulfide Synthesis, Metabolism, and Measurement: Is Modulation of Hydrogen Sulfide a Novel Therapeutic for Cancer? Antioxid Redox Signal 2019; 31:1-38. [PMID: 29790379 PMCID: PMC6551999 DOI: 10.1089/ars.2017.7058] [Citation(s) in RCA: 288] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/14/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023]
Abstract
Significance: Hydrogen sulfide (H2S) has been recognized as the third gaseous transmitter alongside nitric oxide and carbon monoxide. In the past decade, numerous studies have demonstrated an active role of H2S in the context of cancer biology. Recent Advances: The three H2S-producing enzymes, namely cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3MST), have been found to be highly expressed in numerous types of cancer. Moreover, inhibition of CBS has shown anti-tumor activity, particularly in colon cancer, ovarian cancer, and breast cancer, whereas the consequence of CSE or 3MST inhibition remains largely unexplored in cancer cells. Intriguingly, H2S donation at high amounts or a long time duration has also been observed to induce cancer cell apoptosis in vitro and in vivo while sparing noncancerous fibroblast cells. Therefore, a bell-shaped model has been proposed to explain the role of H2S in cancer development. Specifically, endogenous H2S or a relatively low level of exogenous H2S may exhibit a pro-cancer effect, whereas exposure to H2S at a higher amount or for a long period may lead to cancer cell death. This indicates that inhibition of H2S biosynthesis and H2S supplementation serve as two distinct ways for cancer treatment. This paradoxical role of H2S has stimulated the enthusiasm for the development of novel CBS inhibitors, H2S donors, and H2S-releasing hybrids. Critical Issues: A clear relationship between H2S level and cancer progression remains lacking. The possibility that the altered levels of these byproducts have influenced the cell viability of cancer cells has not been excluded in previous studies when modulating H2S producing enzymes. Future Directions: The consequence of CSE or 3MST inhibition in cancer cells need to be examined in the future. Better portrayal of the crosstalk among these gaseous transmitters may not only lead to an in-depth understanding of cancer progression but also shed light on novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Xu Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lei Ding
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-zhong Xie
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Yong Yang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | | | - Philip K. Moore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
56
|
Gandini NA, Alonso EN, Fermento ME, Mascaró M, Abba MC, Coló GP, Arévalo J, Ferronato MJ, Guevara JA, Núñez M, Pichel P, Curino AC, Facchinetti MM. Heme Oxygenase-1 Has an Antitumor Role in Breast Cancer. Antioxid Redox Signal 2019; 30:2030-2049. [PMID: 30484334 DOI: 10.1089/ars.2018.7554] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aims: Heme oxygenase-1 (HO-1) is an enzyme involved in cellular responses to oxidative stress and has also been shown to regulate processes related to cancer progression. In this regard, HO-1 has been shown to display a dual effect with either antitumor or protumor activity, which is also true for breast cancer (BC). In this work, we address this discrepancy regarding the role of HO-1 in BC. Results: HO-1 was detected in human BC tissues, and its protein levels correlated with reduced tumor size and longer overall survival time of patients, thus suggesting the clinical importance of HO-1 in this type of cancer. Contrariwise, nuclear localization of HO-1 correlated with higher tumor grade suggesting that the effect of HO-1 is dependent on its cellular localization. In vivo experiments showed that both pharmacological activation and genetic overexpression of HO-1 reduce the tumor burden in two different animal models of BC. Furthermore, the pharmacological and genetic activation of HO-1 in several BC cell lines reduce the cellular viability by inducing apoptosis and cell cycle arrest and decrease the cellular migration and invasion rates by modulating pathways involved in the epithelial-mesenchymal transition. Furthermore, HO-1 activation impaired in vivo the metastatic dissemination. Innovation and Conclusion: By using various BC cell lines and animal models as well as human tumor samples, we demonstrated that total HO-1 displays antitumor activities in BC. Furthermore, our study suggests that HO-1 subcellular localization may explain the differential effects observed for the protein in different tumor types.
Collapse
Affiliation(s)
- Norberto Ariel Gandini
- 1 Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Dpto. de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | - Eliana Noelia Alonso
- 1 Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Dpto. de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | - María Eugenia Fermento
- 1 Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Dpto. de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | - Marilina Mascaró
- 1 Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Dpto. de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | - Martín Carlos Abba
- 2 CINIBA, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Georgina Pamela Coló
- 1 Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Dpto. de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | - Julián Arévalo
- 1 Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Dpto. de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina.,3 Servicio de Patología del Hospital Interzonal de Agudos Dr. José Penna, Bahía Blanca, Argentina
| | - María Julia Ferronato
- 1 Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Dpto. de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | - Josefina Alejandra Guevara
- 1 Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Dpto. de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | - Myriam Núñez
- 4 Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pamela Pichel
- 5 Hospital Municipal de Agudos Dr Leónidas Lucero, Bahía Blanca, Argentina
| | - Alejandro Carlos Curino
- 1 Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Dpto. de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | - María Marta Facchinetti
- 1 Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Dpto. de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| |
Collapse
|
57
|
Wu G, Wang Q, Xu Y, Li J, Zhang H, Qi G, Xia Q. Targeting the transcription factor receptor LXR to treat clear cell renal cell carcinoma: agonist or inverse agonist? Cell Death Dis 2019; 10:416. [PMID: 31138790 PMCID: PMC6538631 DOI: 10.1038/s41419-019-1654-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/15/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022]
Abstract
Growing evidence indicates that clear cell renal cell carcinoma (ccRCC) is a metabolism-related disease. Changes in fatty acid (FA) and cholesterol metabolism play important roles in ccRCC development. As a nuclear transcription factor receptor, Liver X receptor (LXR) regulates a variety of key molecules associated with FA synthesis and cholesterol transport. Therefore, targeting LXR may provide new therapeutic targets for ccRCC. However, the potential regulatory effect and molecular mechanisms of LXR in ccRCC remain unknown. In the present study, we found that both an LXR agonist and an XLR inverse agonist could inhibit proliferation and colony formation and induce apoptosis in ccRCC cells. We observed that the LXR agonist LXR623 downregulated the expression of the low-density lipoprotein receptor (LDLR) and upregulated the expression of ABCA1, which resulted in reduced intracellular cholesterol and apoptosis. The LXR inverse agonist SR9243 downregulated the FA synthesis proteins sterol regulatory element-binding protein 1c (SREBP-1c), fatty acid synthase (FASN) and stearoyl-coA desaturase 1 (SCD1), causing a decrease in intracellular FA content and inducing apoptosis in ccRCC cells. SR9243 and LXR623 induced apoptosis in ccRCC cells but had no killing effect on normal renal tubular epithelial HK2 cells. We also found that SRB1-mediated high-density lipoprotein (HDL) in cholesterol influx is the cause of high cholesterol in ccRCC cells. In conclusion, our data suggest that an LXR inverse agonist and LXR agonist decrease the intracellular FA and cholesterol contents in ccRCC to inhibit tumour cells but do not have cytotoxic effects on non-malignant cells. Thus, LXR may be a safe therapeutic target for treating ccRCC patients.
Collapse
Affiliation(s)
- Guangzhen Wu
- Department of Urology, Shandong Province Hospital Affiliated to Shandong University, Jinan, China
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qinglian Wang
- Department of Nephrology, Shandong Province Hospital Affiliated to Shandong University, Jinan, China
| | - Yingkun Xu
- Department of Urology, Shandong Province Hospital Affiliated to Shandong University, Jinan, China
| | - Jianyi Li
- Department of Urology, Shandong Province Hospital Affiliated to Shandong University, Jinan, China
| | - Hongge Zhang
- Department of Urology, Tengzhou Hospital of Traditional Chinese Medicine, Tengzhou, China
| | - Guanghui Qi
- Department of Urology, The First Hospital of Zibo City, Zibo, China
| | - Qinghua Xia
- Department of Urology, Shandong Province Hospital Affiliated to Shandong University, Jinan, China.
| |
Collapse
|
58
|
Podkalicka P, Mucha O, Dulak J, Loboda A. Targeting angiogenesis in Duchenne muscular dystrophy. Cell Mol Life Sci 2019; 76:1507-1528. [PMID: 30770952 PMCID: PMC6439152 DOI: 10.1007/s00018-019-03006-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/28/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy (DMD) represents one of the most devastating types of muscular dystrophies which affect boys already at early childhood. Despite the fact that the primary cause of the disease, namely the lack of functional dystrophin is known already for more than 30 years, DMD still remains an incurable disease. Thus, an enormous effort has been made during recent years to reveal novel mechanisms that could provide therapeutic targets for DMD, especially because glucocorticoids treatment acts mostly symptomatic and exerts many side effects, whereas the effectiveness of genetic approaches aiming at the restoration of functional dystrophin is under the constant debate. Taking into account that dystrophin expression is not restricted to muscle cells, but is present also in, e.g., endothelial cells, alterations in angiogenesis process have been proposed to have a significant impact on DMD progression. Indeed, already before the discovery of dystrophin, several abnormalities in blood vessels structure and function have been revealed, suggesting that targeting angiogenesis could be beneficial in DMD. In this review, we will summarize current knowledge about the angiogenesis status both in animal models of DMD as well as in DMD patients, focusing on different organs as well as age- and sex-dependent effects. Moreover, we will critically discuss some approaches such as modulation of vascular endothelial growth factor or nitric oxide related pathways, to enhance angiogenesis and attenuate the dystrophic phenotype. Additionally, we will suggest the potential role of other mediators, such as heme oxygenase-1 or statins in those processes.
Collapse
Affiliation(s)
- Paulina Podkalicka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Olga Mucha
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Loboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
59
|
Weidle UH, Birzele F, Nopora A. MicroRNAs as Potential Targets for Therapeutic Intervention With Metastasis of Non-small Cell Lung Cancer. Cancer Genomics Proteomics 2019; 16:99-119. [PMID: 30850362 PMCID: PMC6489690 DOI: 10.21873/cgp.20116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 02/08/2023] Open
Abstract
The death toll of non-small cell lung cancer (NSCLC) patients is primarily due to metastases, which are poorly amenable to therapeutic intervention. In this review we focus on miRs associated with metastasis of NSCLC as potential new targets for anti-metastatic therapy. We discuss miRs validated as therapeutic targets by in vitro data, identification of target(s) and pathway(s) and in vivo efficacy data in at least one clinically-relevant metastasis-related model. A few of the discussed miRs correlate with the clinical status of NSCLC patients. Using miRs as therapeutic agents has the advantage that targeting a single miR can potentially interfere with several metastatic pathways. Depending on their mode of action, the corresponding miRs can be up- or down-regulated compared to normal matching tissues. Here, we describe therapeutic approaches for reconstitution therapy and miR inhibition, general principles of anti-metastatic therapy as well as current technical pitfalls.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Fabian Birzele
- Roche Innovation Center Basel, F. Hofman La Roche, Basel, Switzerland
| | - Adam Nopora
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
60
|
MicroRNA in Lung Cancer Metastasis. Cancers (Basel) 2019; 11:cancers11020265. [PMID: 30813457 PMCID: PMC6406837 DOI: 10.3390/cancers11020265] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
Tumor metastasis is a hallmark of cancer, with distant metastasis frequently developing in lung cancer, even at initial diagnosis, resulting in poor prognosis and high mortality. However, available biomarkers cannot reliably predict cancer spreading sites. The metastatic cascade involves highly complicated processes including invasion, migration, angiogenesis, and epithelial-to-mesenchymal transition that are tightly controlled by various genetic expression modalities along with interaction between cancer cells and the extracellular matrix. In particular, microRNAs (miRNAs), a group of small non-coding RNAs, can influence the transcriptional and post-transcriptional processes, with dysregulation of miRNA expression contributing to the regulation of cancer metastasis. Nevertheless, although miRNA-targeted therapy is widely studied in vitro and in vivo, this strategy currently affords limited feasibility and a few miRNA-targeted therapies for lung cancer have entered into clinical trials to date. Advances in understanding the molecular mechanism of metastasis will thus provide additional potential targets for lung cancer treatment. This review discusses the current research related to the role of miRNAs in lung cancer invasion and metastasis, with a particular focus on the different metastatic lesions and potential miRNA-targeted treatments for lung cancer with the expectation that further exploration of miRNA-targeted therapy may establish a new spectrum of lung cancer treatments.
Collapse
|
61
|
Ma J, Wu D, Yi J, Yi Y, Zhu X, Qiu H, Kong R, Lin J, Qian J, Deng Z. MiR-378 promoted cell proliferation and inhibited apoptosis by enhanced stem cell properties in chronic myeloid leukemia K562 cells. Biomed Pharmacother 2019; 112:108623. [PMID: 30797151 DOI: 10.1016/j.biopha.2019.108623] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of miR-378 has been found in diverse types of tumors as well as in leukemia. The role of miR-378 in chronic myeloid leukemia (CML) remains unclear. The aim of the study was to reveal the potential effects of miR-378 in the pathological process and progress in CML. Our results showed general level of miR-378 was significant higher in CML patients compared to controls. Overexpression of miR-378 dramatically promoted cell proliferation and drug-resistance. Additionally, apoptosis was inhibited in cells transfected with miR-378. More and bigger stem cell sphere formation was observed in miR-378 transfected cells. Furthermore, enhanced expression of miR-378 was associated with upregulation of stem-cell makers OCT4 and c-Myc. Further study validated that miR-378 inhibited the expression of FUS1. Our research demonstrated the oncogenic nature of miR-378 in CML, and might contribute to the progress of CML.
Collapse
Affiliation(s)
- Jichun Ma
- Department of Central Lab, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China; The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, China
| | - Dehong Wu
- Department of Hematology, Kunshan Third People's Hospital, KunShan, Jiangsu, China
| | - Jing Yi
- Department of Central Lab, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China; The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, China
| | - Yunyun Yi
- Department of Central Lab, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China; The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, China
| | - Xin Zhu
- Department of Central Lab, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China; The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, China
| | - Hongchun Qiu
- Department of Hematology, Kunshan Third People's Hospital, KunShan, Jiangsu, China
| | - Rong Kong
- Department of Hematology, Kunshan Third People's Hospital, KunShan, Jiangsu, China
| | - Jiang Lin
- Department of Central Lab, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China; The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, China
| | - Jun Qian
- Department of Central Lab, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China; The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, China.
| | - Zhaoqun Deng
- Department of Central Lab, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China; The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, China.
| |
Collapse
|
62
|
Salinas-Vera YM, Marchat LA, Gallardo-Rincón D, Ruiz-García E, Astudillo-De La Vega H, Echavarría-Zepeda R, López-Camarillo C. AngiomiRs: MicroRNAs driving angiogenesis in cancer (Review). Int J Mol Med 2019; 43:657-670. [PMID: 30483765 DOI: 10.3892/ijmm.2018.4003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/22/2018] [Indexed: 01/13/2023] Open
Abstract
Angiogenesis is an important hallmark of cancer serving a key role in tumor growth and metastasis. Therefore, tumor angiogenesis has become an attractive target for development of novel drug therapies. An increased amount of anti‑angiogenic compounds is currently in preclinical and clinical development for personalized therapies. However, resistance to current angiogenesis inhibitors is emerging, indicating that there is a need to identify novel anti‑angiogenic agents. In the last decade, the field of microRNA biology has exploded revealing unsuspected functions in tumor angiogenesis. These small non‑coding RNAs, which have been dubbed as angiomiRs, may target regulatory molecules driving angiogenesis, such as cytokines, metalloproteinases and growth factors, including vascular endothelial growth factor, platelet‑derived growth factor, fibroblast growth factor, epidermal growth factor, hypoxia inducible factor‑1, as well as mitogen‑activated protein kinase, phosphoinositide 3‑kinase and transforming growth factor signaling pathways. The present review discusses the current progress towards understanding the functions of miRNAs in tumor angiogenesis regulation in diverse types of human cancer. Furthermore, the potential clinical application of angiomiRs towards anti‑angiogenic tumor therapy was explored.
Collapse
Affiliation(s)
- Yarely M Salinas-Vera
- Posgrado en Ciencias Genomicas, Universidad Autonoma de la Ciudad de Mexico, Ciudad de Mexico 03100, Mexico
| | - Laurence A Marchat
- Programa en Biomedicina Molecular y Red de Biotecnologia, Instituto Politecnico Nacional, Ciudad de Mexico 07320, Mexico
| | - Dolores Gallardo-Rincón
- Laboratorio de Medicina Translacional, Instituto Nacional de Cancerología, Ciudad de Mexico 14080, Mexico
| | - Erika Ruiz-García
- Laboratorio de Medicina Translacional, Instituto Nacional de Cancerología, Ciudad de Mexico 14080, Mexico
| | - Horacio Astudillo-De La Vega
- Laboratorio de Investigacion Translacional en Cáncer y Terapia Celular, Hospital de Oncologia, Centro Médico Nacional Siglo XXI, Ciudad de Mexico 06720, Mexico
| | | | - César López-Camarillo
- Posgrado en Ciencias Genomicas, Universidad Autonoma de la Ciudad de Mexico, Ciudad de Mexico 03100, Mexico
| |
Collapse
|
63
|
Krishn SR, Ganguly K, Kaur S, Batra SK. Ramifications of secreted mucin MUC5AC in malignant journey: a holistic view. Carcinogenesis 2019; 39:633-651. [PMID: 29415129 DOI: 10.1093/carcin/bgy019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Heavily glycosylated secreted mucin MUC5AC, by the virtue of its cysteine-rich repeats, can form inter- and intramolecular disulfide linkages resulting in complex polymers, which in turn craft the framework of the polymeric mucus gel on epithelial cell surfaces. MUC5AC is a molecule with versatile functional implications including barrier functions to epithelial cells, host-pathogen interaction, immune cell attraction to sites of premalignant or malignant lesions and tumor progression in a context-dependent manner. Differential expression, glycosylation and localization of MUC5AC have been associated with a plethora of benign and malignant pathologies. In this era of robust technologies, overexpression strategies and genetically engineered mouse models, MUC5AC is emerging as a potential diagnostic, prognostic and therapeutic target for various malignancies. Considering the clinical relevance of MUC5AC, this review holistically encompasses its genomic organization, domain structure, glycosylation patterns, regulation, functional and molecular connotation from benign to malignant pathologies. Furthermore, we have here explored the incipient and significant experimental tools that are being developed to study this structurally complex and evolutionary conserved gel-forming mucin.
Collapse
Affiliation(s)
- Shiv Ram Krishn
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
64
|
Heme oxygenase-1 as a potential therapeutic target in rheumatic diseases. Life Sci 2018; 218:205-212. [PMID: 30580021 DOI: 10.1016/j.lfs.2018.12.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Heme oxygenase-1 (HO-1), a cellular stress protein, serves a vital metabolic function as the rate-limiting enzyme in the degradation of heme to generate carbon monoxide (CO), iron, and biliverdin (BR). HO-1 may function as one of the most momentous factors of cell adaptation to oxidase stress, as well as a regulator of inflammatory signaling programs through the generation of its biologically active end products. Intensive investigation is now focusing on the potential function of HO-1 in inflammatory disorders, among which rheumatic diseases are one of the principal issues. METHODS "Heme oxygenase-1", "rheumatic diseases"; "lupus", "rheumatic arthritis", "osteoarthritis" and "oxidative stress" were used as key words for searching in Pubmed and Google scholar database. RESULTS Collected information from the related articles revealed the important role of pathogenesis and therapeutic potential of HO-1 in rheumatic diseases. Conclusions and discussions HO-1 has potential as a target for the treatment of rheumatic diseases due to its characteristic anti-inflammatory and anti-oxidative role. However, it is essential to monitor the HO-1 expression during particular stage of the disorders, and levels of HO-1 in different tissues and organs should be further confirmed in order to correlate it with clinical symptoms and other hallmarks of rheumatic diseases.
Collapse
|
65
|
Tsai CF, Chen JH, Chang CN, Lu DY, Chang PC, Wang SL, Yeh WL. Fisetin inhibits cell migration via inducing HO-1 and reducing MMPs expression in breast cancer cell lines. Food Chem Toxicol 2018; 120:528-535. [DOI: 10.1016/j.fct.2018.07.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/16/2018] [Accepted: 07/30/2018] [Indexed: 01/09/2023]
|
66
|
Fujimoto Y, Imanaka S, Yamada Y, Ogawa K, Ito F, Kawahara N, Yoshimoto C, Kobayashi H. Comparison of redox parameters in ovarian endometrioma and its malignant transformation. Oncol Lett 2018; 16:5257-5264. [PMID: 30214615 DOI: 10.3892/ol.2018.9242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/25/2018] [Indexed: 01/08/2023] Open
Abstract
The present study aimed to evaluate the levels of oxidative stress and antioxidant markers in benign endometrioma (OE) and its malignant transformation [endometriosis-associated ovarian cancer (EAOC)] by measuring 8-hydroxy-2-deoxyguanosine (8-OHdG), heme oxygenase-1 (HO-1) and total antioxidant capacity (TAC/Heme-iron) alterations associated with disease progression. Cyst fluid samples from 44 patients with OE and 14 patients with EAOC were studied using an enzyme-linked immunosorbent assay. A χ2 test, t-test and Pearson correlation test were performed using SPSS version 22.0. The cut-off point, sensitivity and specificity of each marker for EAOC diagnosis were evaluated by receiver operating characteristic curve analysis. Cyst fluid 8-OHdG and HO-1 levels in the EAOC group were significantly decreased compared with the OE subjects (P=0.013 and P<0.001, respectively). The levels of TAC/Heme-iron in patients with EAOC were significantly higher compared with those in the OE subjects (P<0.001). The present study demonstrated a positive correlation between 8-OHdG and HO-1 levels (P=0.012). HO-1 exhibited the highest discriminant value for EAOC (Area Under the Curve=0.901). The optimal cut-off point of HO-1 for the diagnosis of EAOC was 2.314 ng/ml, with a sensitivity and specifity of 95.2 and 85.7%, respectively. The present study revealed a clear separation between the overall redox state in OE and EAOC. It was concluded that characteristic alterations in important factors in redox may be helpful for understanding the pathogenesis of the malignant transformation of endometriosis.
Collapse
Affiliation(s)
- Yoshikatsu Fujimoto
- Department of Obstetrics and Gynecology, Japan Community Health Care Organization Yamato Koriyama, Yamato Koriyama, Nara 634-1013, Japan.,Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Shogo Imanaka
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan.,IVF Osaka Clinic, Osaka 577-0012, Japan
| | - Yuki Yamada
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kenji Ogawa
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Fuminori Ito
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, Nara 631-0846, Japan
| | - Naoki Kawahara
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
67
|
Wang M, Sun X, Yang Y, Jiao W. Long non-coding RNA OIP5-AS1 promotes proliferation of lung cancer cells and leads to poor prognosis by targeting miR-378a-3p. Thorac Cancer 2018; 9:939-949. [PMID: 29897167 PMCID: PMC6068457 DOI: 10.1111/1759-7714.12767] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 01/09/2023] Open
Abstract
Background The antisense of the OIP5‐AS1 gene is a long non‐coding RNA (lncRNA) that is reported to be upregulated and promotes cell proliferation in multiple human cancers; however, its function in lung cancer is unknown. We investigated the regulatory function and underlying mechanisms of OIP5‐AS1 in lung cancer. Methods OIP5‐AS1 and microRNA (miR)‐378a‐3p expression were assayed by quantitative real‐time PCR, and proliferation‐related protein expression was measured by Western blotting. Cell viability was detected using methyl thiazolyl tetrazolium assay. Luciferase reporter assay and RNA immunoprecipitation were used to detect the direct regulation of miR‐378a‐3p by OIP5‐AS1. Nude mice were used to test the function of OIP5‐AS1 in vivo. Results OIP5‐AS1 was highly expressed in lung cancer tissues and was correlated with tumor size and tumor growth speed. OIP5‐AS1 overexpression increased lung cancer cell proliferation in vitro. Further investigation revealed that OIP5‐AS1 functions as a competing endogenous RNA of miR‐378a‐3p. MiR‐378a‐3p overexpression inhibited cell proliferation and caused proliferation‐associated proteins CDK4 and CDK6 to decrease in A549 cells. Overexpression of wild type OIP5‐AS1 led to strong CDK4 and CDK6 expression; however, these two proteins did not change when mutated OIP5‐AS1 was upregulated. Finally, in vivo assay showed that the speed of tumor growth was increased and decreased when OIP5‐AS1 was upregulated and downregulated, respectively. Conclusion Our results revealed that OIP5‐AS1 acts as a growth‐promoting lncRNA in lung cancer by suppressing miR‐378a‐3p function. OIP5‐AS1 and miR‐378a‐3p interaction may provide a potential target for lung cancer treatment.
Collapse
Affiliation(s)
- Maolong Wang
- Department of Thoracic Surgery, Affiliated Hospital, Qingdao University, Qingdao, China
| | - Xiao Sun
- Department of Thoracic Surgery, Affiliated Hospital, Qingdao University, Qingdao, China
| | - Yuling Yang
- Department of Infectious Disease, Affiliated Hospital, Qingdao University, Qingdao, China
| | - Wenjie Jiao
- Department of Thoracic Surgery, Affiliated Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
68
|
SNAIL is a key regulator of alveolar rhabdomyosarcoma tumor growth and differentiation through repression of MYF5 and MYOD function. Cell Death Dis 2018; 9:643. [PMID: 29844345 PMCID: PMC5974324 DOI: 10.1038/s41419-018-0693-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/30/2018] [Accepted: 05/10/2018] [Indexed: 12/13/2022]
Abstract
Rhabdomyosarcoma (RMS) is a mesenchymal tumor of soft tissue in children that originates from a myogenic differentiation defect. Expression of SNAIL transcription factor is elevated in the alveolar subtype of RMS (ARMS), characterized by a low myogenic differentiation status and high aggressiveness. In RMS patients SNAIL level increases with higher stage. Moreover, SNAIL level negatively correlates with MYF5 expression. The differentiation of human ARMS cells diminishes SNAIL level. SNAIL silencing in ARMS cells inhibits proliferation and induces differentiation in vitro, and thereby completely abolishes the growth of human ARMS xenotransplants in vivo. SNAIL silencing induces myogenic differentiation by upregulation of myogenic factors and muscle-specific microRNAs, such as miR-206. SNAIL binds to the MYF5 promoter suppressing its expression. SNAIL displaces MYOD from E-box sequences (CANNTG) that are associated with genes expressed during differentiation and G/C rich in their central dinucleotides. SNAIL silencing allows the re-expression of MYF5 and canonical MYOD binding, promoting ARMS cell myogenic differentiation. In differentiating ARMS cells SNAIL forms repressive complex with histone deacetylates 1 and 2 (HDAC1/2) and regulates their expression. Accordingly, in human myoblasts SNAIL silencing induces differentiation by upregulation of myogenic factors. Our data clearly point to SNAIL as a key regulator of myogenic differentiation and a new promising target for future ARMS therapies.
Collapse
|
69
|
Abstract
Heme oxygenase-1 (HO-1, encoded by HMOX1) through degradation of pro-oxidant heme into carbon monoxide (CO), ferrous ions (Fe2+) and biliverdin, exhibits cytoprotective, anti-apoptotic and anti-inflammatory properties. All of these potentially beneficial functions of HO-1 may play an important role in tumors’ development and progression. Moreover, HO-1 is very often upregulated in tumors in comparison to healthy tissues, and its expression is further induced upon chemo-, radio- and photodynamic therapy, what results in decreased effectiveness of the treatment. Consequently, HO-1 can be proposed as a therapeutic target for anticancer treatment in many types of tumors. Nonetheless, possibilities of specific inhibition of HO-1 are strongly limited. Metalloporphyrins are widely used in in vitro studies, however, they are unselective and may exert serious side effects including an increase in HMOX1 mRNA level. On the other hand, detailed information about pharmacokinetics and biodistribution of imidazole-dioxolane derivatives, other potential inhibitors, is lacking. The genetic inhibition of HO-1 by RNA interference (RNAi) or CRISPR/Cas9 approaches provides the possibility to specifically target HO-1; however, the potential therapeutic application of those methods are distant at best. In summary, HO-1 inhibition might be the valuable anticancer approach, however, the ideal strategy for HO-1 targeting requires further studies.
Collapse
|
70
|
Nemeth Z, Csizmadia E, Vikstrom L, Li M, Bisht K, Feizi A, Otterbein S, Zuckerbraun B, Costa DB, Pandolfi PP, Fillinger J, Döme B, Otterbein LE, Wegiel B. Alterations of tumor microenvironment by carbon monoxide impedes lung cancer growth. Oncotarget 2018; 7:23919-32. [PMID: 26993595 PMCID: PMC5029674 DOI: 10.18632/oncotarget.8081] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/29/2016] [Indexed: 12/26/2022] Open
Abstract
We hypothesized that tumor-associated macrophages (TAMs) are controlled by the diffusible gas carbon monoxide (CO). We demonstrate that induction of apoptosis in lung tumors treated with low doses of CO is associated with increased CD86 expression and activation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinases (Erk) 1/2 pathway in tumor microenvironment. Presence of CD86-positive cells was required for the anti-tumoral effects of CO in established A549 xenografts. We show that the effects of CO on tumor stroma and reprogramming of macrophages towards the anti-tumoral phenotype is mediated by reactive oxygen species (ROS)-dependent activation of MAPK/Erk1/2-c-myc pathway as well as Notch 1-dependent negative feedback on the metabolic enzyme heme oxygenase-1 (HO-1). We find a similar negative correlation between HO-1 and active MAPK-Erk1/2 levels in human lung cancer specimens. In summary, we describe novel non-cell autonomous mechanisms by which the diffusible gas CO dictates changes in the tumor microenvironment through the modulation of macrophages.
Collapse
Affiliation(s)
- Zsuzsanna Nemeth
- Department of Surgery, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Tumor Biology, National Koranyi Institute of TB and Pulmonology, Budapest, Hungary
| | - Eva Csizmadia
- Department of Surgery, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lisa Vikstrom
- Department of Surgery, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mailin Li
- Department of Surgery, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kavita Bisht
- Department of Surgery, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Heart Foundation Research Center, Griffith Health Institute, Griffith University, Gold Coast, Australia
| | - Alborz Feizi
- Department of Surgery, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sherrie Otterbein
- Department of Surgery, Section of Trauma and Acute Care Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Brian Zuckerbraun
- Department of Surgery, Section of Trauma and Acute Care Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Daniel B Costa
- Cancer Center Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Pier Paolo Pandolfi
- Cancer Center Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Janos Fillinger
- Department of Pathology, National Koranyi Institute of TB and Pulmonology, Budapest, Hungary
| | - Balazs Döme
- Department of Tumor Biology, National Koranyi Institute of TB and Pulmonology, Budapest, Hungary.,Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, Austria.,Department of Thoracic Surgery, National Institute of Oncology, Budapest, Hungary
| | - Leo E Otterbein
- Department of Surgery, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Barbara Wegiel
- Department of Surgery, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Cancer Center Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
71
|
Shin CH, Ryu S, Kim HH. hnRNPK-regulated PTOV1-AS1 modulates heme oxygenase-1 expression via miR-1207-5p. BMB Rep 2018; 50:220-225. [PMID: 28228215 PMCID: PMC5437967 DOI: 10.5483/bmbrep.2017.50.4.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Indexed: 11/20/2022] Open
Abstract
Antisense transcripts were initially identified as transcriptional noise, but have since been reported to play an important role in the quality control of miRNA functions. In this report, we tested the hypothesis that heterogeneous nuclear ribonucleoprotein K (hnRNPK) regulates miRNA function via competitive endogenous RNAs, such as pseudogenes, long non-coding RNAs, and antisense transcripts. Based on analyses of RNA sequencing data, the knockdown of hnRNPK decreased the antisense PTOV1-AS1 transcript which harbors five binding sites for miR-1207-5p. We identified heme oxygenase-1 (HO-1) mRNA as a novel target of miR-1207-5p by western blotting and Ago2 immunoprecipitation. The knockdown of hnRNPK or PTOV1-AS1 suppressed HO-1 expression by increasing the enrichment of HO-1 mRNA in miR-1207-5p-mediated miRISC. Downregulation of HO-1 by a miR-1207-5p mimic or knockdown of hnRNPK and PTOV1-AS1 inhibited the proliferation and clonogenic ability of HeLa cells. Taken together, our results demonstrate that hnRNPKregulated PTOV1-AS1 modulates HO-1 expression via miR- 1207-5p. [BMB Reports 2017; 50(4): 220-225].
Collapse
Affiliation(s)
- Chang Hoon Shin
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Korea
| | - Seongho Ryu
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Korea
| | - Hyeon Ho Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Korea; Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea
| |
Collapse
|
72
|
Lou W, Liu J, Gao Y, Zhong G, Chen D, Shen J, Bao C, Xu L, Pan J, Cheng J, Ding B, Fan W. MicroRNAs in cancer metastasis and angiogenesis. Oncotarget 2017; 8:115787-115802. [PMID: 29383201 PMCID: PMC5777813 DOI: 10.18632/oncotarget.23115] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/17/2017] [Indexed: 12/15/2022] Open
Abstract
Cancer metastasis is a malignant process by which tumor cells migrate from their primary site of origin to other organs. It is the main cause of poor prognosis in cancer patients. Angiogenesis is the process of generating new blood capillaries from pre-existing vasculature. It plays a vital role in primary tumor growth and distant metastasis. MicroRNAs are small non-coding RNAs involved in regulating normal physiological processes as well as cancer pathogenesis. They suppress gene expression by specifically binding to the 3′-untranslated region (3′-UTR) of their target genes. They can thus act as oncogenes or tumor suppressors depending on the function of their target genes. MicroRNAs have shown great promise for use in anti-metastatic cancer therapy. In this article, we review the roles of various miRNAs in cancer angiogenesis and metastasis and highlight their potential for use in future therapies against metastatic cancer.
Collapse
Affiliation(s)
- Weiyang Lou
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Jingxing Liu
- Department of Intensive Care Unit, Changxing People's Hospital of Zhejiang, Zhejiang Province, Huzhou 313100, China
| | - Yanjia Gao
- Department of Anesthesiology, International Hospital of Zhejiang University, Shulan (Hangzhou) Hospital, Zhejiang Province, Hangzhou 310003, China
| | - Guansheng Zhong
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Danni Chen
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Jiaying Shen
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Chang Bao
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Liang Xu
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003, China
| | - Jie Pan
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Junchi Cheng
- Department of Chemotherapy, Zhejiang Cancer Hospital, Zhejiang Province, Hangzhou 310003, China
| | - Bisha Ding
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Weimin Fan
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
73
|
Salerno L, Romeo G, Modica MN, Amata E, Sorrenti V, Barbagallo I, Pittalà V. Heme oxygenase-1: A new druggable target in the management of chronic and acute myeloid leukemia. Eur J Med Chem 2017; 142:163-178. [DOI: 10.1016/j.ejmech.2017.07.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022]
|
74
|
Loboda A, Jozkowicz A, Dulak J. Carbon monoxide: pro- or anti-angiogenic agent? Comment on Ahmad et al. (Thromb Haemost 2015; 113: 329–337). Thromb Haemost 2017; 114:432-3. [DOI: 10.1160/th15-01-0082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/26/2015] [Indexed: 12/31/2022]
|
75
|
Wu YH, Lin HR, Lee YH, Huang PH, Wei HC, Stern A, Chiu DTY. A novel fine tuning scheme of miR-200c in modulating lung cell redox homeostasis. Free Radic Res 2017; 51:591-603. [PMID: 28675952 DOI: 10.1080/10715762.2017.1339871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oxidative stress induces miR-200c, the predominant microRNA (miRNA) in lung tissues; however, the antioxidant role and biochemistry of such induction have not been clearly defined. Therefore, a lung adenocarcinoma cell line (A549) and a normal lung fibroblast (MRC-5) were used as models to determine the effects of miR-200c expression on lung antioxidant response. Hydrogen peroxide (H2O2) upregulated miR-200c, whose overexpression exacerbated the decrease in cell proliferation, retarded the progression of cells in the G2/M-phase, and increased oxidative stress upon H2O2 stimulation. The expression of three antioxidant proteins, superoxide dismutase (SOD)-2, haem oxygenase (HO)-1, and sirtuin (SIRT) 1, was reduced upon H2O2 stimulation in miR-200c-overexpressed A549 cells. This phenomenon of increased oxidative stress and antioxidant protein downregulation also occurs simultaneously in miR-200c overexpressed MRC-5 cells. Molecular analysis revealed that miR-200c inhibited the gene expression of HO-1 by directly targeting its 3'-untranslated region. The downregulation of SOD2 and SIRT1 by miR-200c was mediated through zinc finger E-box-binding homeobox 2 (ZEB2) and extracellular signal-regulated kinase 5 (ERK5) pathways, respectively, where knockdown of ZEB2 or ERK5 decreased the expression of SOD2 or SIRT1 in A549 cells. LNA anti-miR-200c transfection in A549 cells inhibited the endogenous miR-200c expression, resulting in increased expressions of antioxidant proteins, reduced oxidative stress and recovered cell proliferation upon H2O2 stimulation. These findings indicate that miR-200c fine-tuned the antioxidant response of the lung cells to oxidative stress through several pathways, and thus this study provides novel information concerning the role of miR-200c in modulating redox homeostasis of lung.
Collapse
Affiliation(s)
- Yi-Hsuan Wu
- a Research Center for Chinese Herbal Medicine, College of Human Ecology , Chang Gung University of Science and Technology , Taoyuan , Taiwan.,b Department of Medical Biotechnology and Laboratory Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| | - Hsin-Ru Lin
- b Department of Medical Biotechnology and Laboratory Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan.,c Molecular Medicine Research Center, Chang Gung University , Taoyuan , Taiwan
| | - Ying-Hsuan Lee
- b Department of Medical Biotechnology and Laboratory Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| | - Pin-Hao Huang
- b Department of Medical Biotechnology and Laboratory Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| | - Huei-Chung Wei
- b Department of Medical Biotechnology and Laboratory Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| | - Arnold Stern
- d New York University School of Medicine , New York , NY , USA
| | - Daniel Tsun-Yee Chiu
- a Research Center for Chinese Herbal Medicine, College of Human Ecology , Chang Gung University of Science and Technology , Taoyuan , Taiwan.,b Department of Medical Biotechnology and Laboratory Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan.,e Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan.,f Department of Pediatric Hematology/Oncology , Linkou Chang Gung Memorial Hospital , Taoyuan , Taiwan
| |
Collapse
|
76
|
Nitti M, Piras S, Marinari UM, Moretta L, Pronzato MA, Furfaro AL. HO-1 Induction in Cancer Progression: A Matter of Cell Adaptation. Antioxidants (Basel) 2017; 6:antiox6020029. [PMID: 28475131 PMCID: PMC5488009 DOI: 10.3390/antiox6020029] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/26/2017] [Accepted: 04/29/2017] [Indexed: 02/07/2023] Open
Abstract
The upregulation of heme oxygenase-1 (HO-1) is one of the most important mechanisms of cell adaptation to stress. Indeed, the redox sensitive transcription factor Nrf2 is the pivotal regulator of HO-1 induction. Through the antioxidant, antiapoptotic, and antinflammatory properties of its metabolic products, HO-1 plays a key role in healthy cells in maintaining redox homeostasis and in preventing carcinogenesis. Nevertheless, several lines of evidence have highlighted the role of HO-1 in cancer progression and its expression correlates with tumor growth, aggressiveness, metastatic and angiogenetic potential, resistance to therapy, tumor escape, and poor prognosis, even though a tumor- and tissue-specific activity has been observed. In this review, we summarize the current literature regarding the pro-tumorigenic role of HO-1 dependent tumor progression as a promising target in anticancer strategy.
Collapse
Affiliation(s)
- Mariapaola Nitti
- Department of Experimental Medicine, University of Genoa, Via L. B. Alberti 2, Genoa 16132, Italy.
| | - Sabrina Piras
- Department of Experimental Medicine, University of Genoa, Via L. B. Alberti 2, Genoa 16132, Italy.
| | - Umberto M Marinari
- Department of Experimental Medicine, University of Genoa, Via L. B. Alberti 2, Genoa 16132, Italy.
| | - Lorenzo Moretta
- Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, Rome 00165, Italy.
| | - Maria A Pronzato
- Department of Experimental Medicine, University of Genoa, Via L. B. Alberti 2, Genoa 16132, Italy.
| | - Anna Lisa Furfaro
- Giannina Gaslini Institute, IRCCS, Via Gerolamo Gaslini 5, Genoa 16147, Italy.
| |
Collapse
|
77
|
Otterbein LE, Foresti R, Motterlini R. Heme Oxygenase-1 and Carbon Monoxide in the Heart: The Balancing Act Between Danger Signaling and Pro-Survival. Circ Res 2017; 118:1940-1959. [PMID: 27283533 DOI: 10.1161/circresaha.116.306588] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/02/2016] [Indexed: 12/22/2022]
Abstract
Understanding the processes governing the ability of the heart to repair and regenerate after injury is crucial for developing translational medical solutions. New avenues of exploration include cardiac cell therapy and cellular reprogramming targeting cell death and regeneration. An attractive possibility is the exploitation of cytoprotective genes that exist solely for self-preservation processes and serve to promote and support cell survival. Although the antioxidant and heat-shock proteins are included in this category, one enzyme that has received a great deal of attention as a master protective sentinel is heme oxygenase-1 (HO-1), the rate-limiting step in the catabolism of heme into the bioactive signaling molecules carbon monoxide, biliverdin, and iron. The remarkable cardioprotective effects ascribed to heme oxygenase-1 are best evidenced by its ability to regulate inflammatory processes, cellular signaling, and mitochondrial function ultimately mitigating myocardial tissue injury and the progression of vascular-proliferative disease. We discuss here new insights into the role of heme oxygenase-1 and heme on cardiovascular health, and importantly, how they might be leveraged to promote heart repair after injury.
Collapse
Affiliation(s)
- Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Roberta Foresti
- Inserm, U955, Equipe 12, Créteil, 94000, France.,University Paris Est, Faculty of Medicine, Créteil, 94000, France
| | - Roberto Motterlini
- Inserm, U955, Equipe 12, Créteil, 94000, France.,University Paris Est, Faculty of Medicine, Créteil, 94000, France
| |
Collapse
|
78
|
Wang S, Zhang T, Yang Z, Lin J, Cai B, Ke Q, Lan W, Shi J, Wu S, Lin W. Heme oxygenase-1 protects spinal cord neurons from hydrogen peroxide-induced apoptosis via suppression of Cdc42/MLK3/MKK7/JNK3 signaling. Apoptosis 2017; 22:449-462. [PMID: 27864650 DOI: 10.1007/s10495-016-1329-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mechanisms by which oxidative stress induces spinal cord neuron death has not been completely understood. Investigation on the molecular signal pathways involved in oxidative stress-mediated neuronal death is important for development of new therapeutics for oxidative stress-associated spinal cord disorders. In current study we examined the role of heme oxygenase-1 (HO-1) in the modulation of MLK3/MKK7/JNK3 signaling, which is a pro-apoptotic pathway, after treating primary spinal cord neurons with H2O2. We found that MLK3/MKK7/JNK3 signaling was substantially activated by H2O2 in a time-dependent manner, demonstrated by increase of activating phosphorylation of MLK3, MKK7 and JNK3. H2O2 also induced expression of HO-1. Transduction of neurons with HO-1-expressing adeno-associated virus before H2O2 treatment introduced expression of exogenous HO-1 in neurons. Exogenous HO-1 reduced phosphorylation of MLK3, MKK7 and JNK3. Consistent with its inhibitory effect on MLK3/MKK7/JNK3 signaling, exogenous HO-1 decreased H2O2-induced neuronal apoptosis and necrosis. Furthermore, we found that exogenous HO-1 inhibited expression of Cdc42, which is crucial for MLK3 activation. In addition, HO-1-induced down-regulation of MLK3/MKK7/JNK3 signaling might be related to up-regulation of microRNA-137 (mir-137). A mir-137 inhibitor alleviated the inhibitory effect of HO-1 on JNK3 activation. This inhibitor also increased neuronal death even when exogenous HO-1 was expressed. Therefore, our study suggests a novel mechanism by which HO-1 exerted its neuroprotective efficacy on oxidative stress.
Collapse
Affiliation(s)
- Siyuan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Fujian Medical University, 34 North Zhongshan Road, Quanzhou, 362000, China
| | - Tao Zhang
- Department of Orthopedic Surgery, The Second Hospital of Fuzhou Affiliated to Xiamen University, Fuzhou, 350007, China
| | - Zhen Yang
- Department of Orthopedic Surgery, The People's Hospital of Guizhou Province, Guiyang, 550002, China
| | - Jianhua Lin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China
| | - Bin Cai
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China
| | - Qingfeng Ke
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Fujian Medical University, 34 North Zhongshan Road, Quanzhou, 362000, China
| | - Wenbin Lan
- Department of Orthopedic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China
| | - Jinxing Shi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Fujian Medical University, 34 North Zhongshan Road, Quanzhou, 362000, China
| | - Shiqiang Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Fujian Medical University, 34 North Zhongshan Road, Quanzhou, 362000, China
| | - Wenping Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Fujian Medical University, 34 North Zhongshan Road, Quanzhou, 362000, China.
| |
Collapse
|
79
|
Aspects of Carbon Monoxide in Form of CO-Releasing Molecules Used in Cancer Treatment: More Light on the Way. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9326454. [PMID: 28286606 PMCID: PMC5327762 DOI: 10.1155/2017/9326454] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/10/2017] [Accepted: 01/15/2017] [Indexed: 01/23/2023]
Abstract
Carbon monoxide (CO) has always been recognised as a toxic gas, due to its higher affinity for haemoglobin than oxygen. However, biological studies have revealed an intriguing role for CO as an endogenous signalling molecule, a gasotransmitter. CO is demonstrated to exert many cellular activities including anti-inflammatory, antiapoptotic, and antiproliferative activities. In animal studies, CO gas administration can prevent tissues from hypoxia or ischemic-reperfusion injury. As a result, there are a plethora of reports dealing with the biological applications of CO and CO-releasing molecules (CORMs) in inflammatory and vascular diseases. CORMs have already been tested as a therapeutic agent in clinical trials. More recently, an increased interest has been drawn to CO's potential use as an anticancer agent. In this review, we will aim to give an overview of the research focused on the role of CO and CORMs in different types of cancer and expand to the recent development of the next generation CORMs for clinical application in cancer treatment.
Collapse
|
80
|
Lin W, Wang S, Yang Z, Lin J, Ke Q, Lan W, Shi J, Wu S, Cai B. Heme Oxygenase-1 Inhibits Neuronal Apoptosis in Spinal Cord Injury through Down-Regulation of Cdc42-MLK3-MKK7-JNK3 Axis. J Neurotrauma 2017; 34:695-706. [PMID: 27526795 DOI: 10.1089/neu.2016.4608] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The mechanism by which spinal cord injury (SCI) induces neuronal death has not been thoroughly understood. Investigation on the molecular signal pathways involved in SCI-mediated neuronal apoptosis is important for development of new therapeutics for SCI. In the current study, we explore the role of heme oxygenase-1 (HO-1) in the modulation of mixed lineage kinase 3/mitogen-activated protein kinase kinase/cJUN N-terminal kinase 3 (MLK3/MKK7/JNK3) signaling, which is a pro-apoptotic pathway, after SCI. We found that MLK3/MKK7/JNK3 signaling was activated by SCI in a time-dependent manner, demonstrated by increase in activating phosphorylation of MLK3, MKK7, and JNK3. SCI also induced HO-1 expression. Administration of HO-1-expressing adeno-associated virus before SCI introduced expression of exogenous HO-1 in injured spinal cords. Exogenous HO-1 reduced phosphorylation of MLK3, MKK7, and JNK3. Consistent with its inhibitory effect on MLK3/MKK7/JNK3 signaling, exogenous HO-1 decreased SCI-induced neuronal apoptosis and improved neurological score. Further, we found that exogenous HO-1 inhibited expression of cell division cycle 42 (Cdc42), which is crucial for MLK3 activation. In vitro experiments indicated that Cdc42 was essential for neuronal apoptosis, while transduction of neurons with HO-1-expressing adeno-associated virus significantly reduced neuronal apoptosis to enhance neuronal survival. Therefore, our study disclosed a novel mechanism by which HO-1 exerted its neuroprotective efficacy. Our discovery might be valuable for developing a new therapeutic approach for SCI.
Collapse
Affiliation(s)
- Wenping Lin
- 1 Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University , Quanzhou, China
| | - Siyuan Wang
- 1 Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University , Quanzhou, China
| | - Zhen Yang
- 2 Department of Orthopedic Surgery, the People's Hospital of Guizhou Province , Guiyang, China
| | - Jianhua Lin
- 3 Department of Orthopedic Surgery, the First Affiliated Hospital, Fujian Medical University , Fuzhou, China
| | - Qingfeng Ke
- 1 Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University , Quanzhou, China
| | - Wenbin Lan
- 3 Department of Orthopedic Surgery, the First Affiliated Hospital, Fujian Medical University , Fuzhou, China
| | - Jinxing Shi
- 1 Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University , Quanzhou, China
| | - Shiqiang Wu
- 1 Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University , Quanzhou, China
| | - Bin Cai
- 4 Department of Neurology and Institute of Neurology, the First Affiliated Hospital, Fujian Medical University , Fuzhou, China
| |
Collapse
|
81
|
Heme oxygenase-1 in the forefront of a multi-molecular network that governs cell-cell contacts and filopodia-induced zippering in prostate cancer. Cell Death Dis 2016; 7:e2570. [PMID: 28032857 PMCID: PMC5261017 DOI: 10.1038/cddis.2016.420] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/11/2016] [Indexed: 01/02/2023]
Abstract
Prostate cancer (PCa) cells display abnormal expression of cytoskeletal proteins resulting in an augmented capacity to resist chemotherapy and colonize distant organs. We have previously shown that heme oxygenase 1 (HO-1) is implicated in cell morphology regulation in PCa. Here, through a multi 'omics' approach we define the HO-1 interactome in PCa, identifying HO-1 molecular partners associated with the integrity of the cellular cytoskeleton. The bioinformatics screening for these cytoskeletal-related partners reveal that they are highly misregulated in prostate adenocarcinoma compared with normal prostate tissue. Under HO-1 induction, PCa cells present reduced frequency in migration events, trajectory and cell velocity and, a significant higher proportion of filopodia-like protrusions favoring zippering among neighboring cells. Moreover forced expression of HO-1 was also capable of altering cell protrusions in transwell co-culture systems of PCa cells with MC3T3 cells (pre-osteoblastic cell line). Accordingly, these effects were reversed under siHO. Transcriptomics profiling evidenced significant modulation of key markers related to cell adhesion and cell–cell communication under HO-1 induction. The integration from our omics-based research provides a four molecular pathway foundation (ANXA2/HMGA1/POU3F1; NFRSF13/GSN; TMOD3/RAI14/VWF; and PLAT/PLAU) behind HO-1 regulation of tumor cytoskeletal cell compartments. The complementary proteomics and transcriptomics approaches presented here promise to move us closer to unravel the molecular framework underpinning HO-1 involvement in the modulation of cytoskeleton pathways, pushing toward a less aggressive phenotype in PCa.
Collapse
|
82
|
EETs and HO-1 cross-talk. Prostaglandins Other Lipid Mediat 2016; 125:65-79. [DOI: 10.1016/j.prostaglandins.2016.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/03/2016] [Accepted: 06/20/2016] [Indexed: 01/26/2023]
|
83
|
Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 2016; 73:3221-47. [PMID: 27100828 PMCID: PMC4967105 DOI: 10.1007/s00018-016-2223-0] [Citation(s) in RCA: 1825] [Impact Index Per Article: 202.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 12/12/2022]
Abstract
The multifunctional regulator nuclear factor erythroid 2-related factor (Nrf2) is considered not only as a cytoprotective factor regulating the expression of genes coding for anti-oxidant, anti-inflammatory and detoxifying proteins, but it is also a powerful modulator of species longevity. The vertebrate Nrf2 belongs to Cap 'n' Collar (Cnc) bZIP family of transcription factors and shares a high homology with SKN-1 from Caenorhabditis elegans or CncC found in Drosophila melanogaster. The major characteristics of Nrf2 are to some extent mimicked by Nrf2-dependent genes and their proteins including heme oxygenase-1 (HO-1), which besides removing toxic heme, produces biliverdin, iron ions and carbon monoxide. HO-1 and their products exert beneficial effects through the protection against oxidative injury, regulation of apoptosis, modulation of inflammation as well as contribution to angiogenesis. On the other hand, the disturbances in the proper HO-1 level are associated with the pathogenesis of some age-dependent disorders, including neurodegeneration, cancer or macular degeneration. This review summarizes our knowledge about Nrf2 and HO-1 across different phyla suggesting their conservative role as stress-protective and anti-aging factors.
Collapse
Affiliation(s)
- Agnieszka Loboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Faculty of Biology and Earth Sciences, Jagiellonian University, Krakow, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Faculty of Biology and Earth Sciences, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
84
|
Zou C, Zou C, Cheng W, Li Q, Han Z, Wang X, Jin J, Zou J, Liu Z, Zhou Z, Zhao W, Du Z. Heme oxygenase-1 retards hepatocellular carcinoma progression through the microRNA pathway. Oncol Rep 2016; 36:2715-2722. [PMID: 27571925 DOI: 10.3892/or.2016.5056] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/25/2016] [Indexed: 11/06/2022] Open
Abstract
Heme metabolism system is involved in microRNA (miRNA) biogenesis. The complicated interplay between heme oxygenase-1 (HO-1) and miRNA has been observed in various tissues and diseases, including human malignancy. In the present study, our data showed that stable HO-1 overexpression in hepatocellular carcinoma (HCC) cells downregulated several oncomiRs. The most stably downregulated are miR-30d and miR-107. Iron, one of HO-1 catalytic products, was an important mediator in this regulation. Cell function analysis demonstrated that HO-1 inhibited the proliferation and metastasis of HepG2 cells, whereas miR-30d/miR-107 improved the proliferative and migratory ability of HepG2 cells. The beneficial effect of HO-1 in HCC inhibition could be reversed by upregulating miR-30d and miR-107. Akt and ERK pathways may be involved in the regulation of HO-1/miR-30d/miR-107 in HCC. These data indicate that HO-1 significantly suppresses HCC progression by regulating the miR-30d/miR-107 level, suggesting miR-30d/miR-107 regulation as a new molecular mechanism of HO-1 anticancer effect.
Collapse
Affiliation(s)
- Chaoxia Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Chendan Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Wanpeng Cheng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Qiang Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Zhongjing Han
- Department of Hemopathology, General Hospital of Daqing Oil Field, Daqing, Heilongjiang, P.R. China
| | - Xiaona Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Jianfeng Jin
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Jiaqi Zou
- Institute of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Zhiyan Liu
- Institute of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Zhongqiu Zhou
- Institute of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Weiming Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Zhimin Du
- Institute of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
85
|
Skrzypek K, Kusienicka A, Szewczyk B, Adamus T, Lukasiewicz E, Miekus K, Majka M. Constitutive activation of MET signaling impairs myogenic differentiation of rhabdomyosarcoma and promotes its development and progression. Oncotarget 2016; 6:31378-98. [PMID: 26384300 PMCID: PMC4741613 DOI: 10.18632/oncotarget.5145] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/27/2015] [Indexed: 12/19/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a soft tissue sarcoma, which may originate from impaired differentiation of mesenchymal stem cells (MSC). Expression of MET receptor is elevated in alveolar RMS subtype (ARMS) which is associated with worse prognosis, compared to embryonal RMS (ERMS). Forced differentiation of ARMS cells diminishes MET level and, as shown previously, MET silencing induces differentiation of ARMS. In ERMS cells introduction of TPR-MET oncogene leads to an uncontrolled overstimulation of the MET receptor downstream signaling pathways. In vivo, tumors formed by those cells in NOD-SCID mice display inhibited differentiation, enhanced proliferation, diminished apoptosis and increased infiltration of neutrophils. Consequently, tumors grow significantly faster and they display enhanced ability to metastasize to lungs and to vascularize due to elevated VEGF, MMP9 and miR-378 expression. In vitro, TPR-MET ERMS cells display enhanced migration, chemotaxis and invasion toward HGF and SDF-1. Introduction of TPR-MET into MSC increases survival and may induce expression of early myogenic factors depending on the genetic background, and it blocks terminal differentiation of skeletal myoblasts. To conclude, our results suggest that activation of MET signaling may cause defects in myogenic differentiation leading to rhabdomyosarcoma development and progression.
Collapse
Affiliation(s)
- Klaudia Skrzypek
- Department of Transplantation, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Anna Kusienicka
- Department of Transplantation, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Barbara Szewczyk
- Department of Transplantation, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Tomasz Adamus
- Department of Transplantation, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Ewa Lukasiewicz
- Department of Transplantation, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Katarzyna Miekus
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Marcin Majka
- Department of Transplantation, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland
| |
Collapse
|
86
|
Luan X, Guan YY, Lovell JF, Zhao M, Lu Q, Liu YR, Liu HJ, Gao YG, Dong X, Yang SC, Zheng L, Sun P, Fang C, Chen HZ. Tumor priming using metronomic chemotherapy with neovasculature-targeted, nanoparticulate paclitaxel. Biomaterials 2016; 95:60-73. [PMID: 27130953 DOI: 10.1016/j.biomaterials.2016.04.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 02/06/2023]
Abstract
Normalization of the tumor microenvironment is a promising approach to render conventional chemotherapy more effective. Although passively targeted drug nanocarriers have been investigated to this end, actively targeted tumor priming remains to be explored. In this work, we demonstrate an effective tumor priming strategy using metronomic application of nanoparticles actively targeted to tumor neovasculature. F56 peptide-conjugated paclitaxel-loaded nanoparticles (F56-PTX-NP) were formulated from PEGylated polylactide using an oil in water emulsion approach. Metronomic F56-PTX-NP specifically targeted tumor vascular endothelial cells (ECs), pruned vessels with strong antiangiogenic activity and induced thrombospondin-1 (TSP-1) secretion from ECs. The treatment induced tumor vasculature normalization as evidenced by significantly increased coverage of basement membrane and pericytes. The tumor microenvironment was altered with enhanced pO2, lower interstitial fluid pressure, and enhanced vascular perfusion and doxorubicin delivery. A "normalization window" of at least 9 days was induced, which was longer than other approaches using antiangiogenic agents. Together, these results show that metronomic, actively-targeted nanomedicine can induce tumor vascular normalization and modulate the tumor microenvironment, opening a window of opportunity for effective combination chemotherapies.
Collapse
Affiliation(s)
- Xin Luan
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Ying-Yun Guan
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China; Department of Pharmacy, Ruijin Hospital, SJTU-SM, 197 Rui Jin Er Road, Shanghai 200025, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Mei Zhao
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Road, Shanghai 201318, China
| | - Qin Lu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Ya-Rong Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Hai-Jun Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Yun-Ge Gao
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Xiao Dong
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Si-Cong Yang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Lin Zheng
- Pathology Center, Shanghai First People's Hospital, SJTU-SM, 280 South Chongqing Road, Shanghai 200025, China
| | - Peng Sun
- Department of General Surgery, Shanghai Tongren Hospital, SJTU-SM, 1111 Xianxia Road, Shanghai 200336, China
| | - Chao Fang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China.
| | - Hong-Zhuan Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China.
| |
Collapse
|
87
|
Ma H, Lu T, Zhang X, Li C, Xiong J, Huang L, Liu P, Li Y, Liu L, Ding Z. HSPA12B: a novel facilitator of lung tumor growth. Oncotarget 2016; 6:9924-36. [PMID: 25909170 PMCID: PMC4496407 DOI: 10.18632/oncotarget.3533] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/17/2015] [Indexed: 12/21/2022] Open
Abstract
Lung tumor progression is regulated by proangiogenic factors. Heat shock protein A12B (HSPA12B) is a recently identified regulator of expression of proangiogenic factors. However, whether HSPA12B plays a role in lung tumor growth is unknown. To address this question, transgenic mice overexpressing HSPA12B (Tg) and wild-type littermates (WT) were implanted with Lewis lung cancer cells to induce lung tumorigenesis. Tg mice showed significantly higher number and bigger size of tumors than WT mice. Tg tumors exhibited increased angiogenesis and proliferation while reduced apoptosis compared with WT tumors. Interestingly, a significantly enhanced upregulation of Cox-2 was detected in Tg tumors than in WT tumors. Also, Tg tumors demonstrated upregulation of VEGF and angiopoietin-1, downregulation of AKAP12, and increased eNOS phosphorylation compared with WT tumors. Celecoxib, a selective Cox-2 inhibitor, suppressed the HSPA12B-induced increase in lung tumor burden. Moreover, celecoxib decreased angiogenesis and proliferation whereas increased apoptosis in Tg tumors. Additionally, celecoxib reduced angiopoietin-1 expression and eNOS phosphorylation but increased AKAP12 levels in Tg tumors. Our results indicate that HSPA12B stimulates lung tumor growth via a Cox-2-dependent mechanism. The present study identified HSPA12B as a novel facilitator of lung tumor growth and a potential therapeutic target for the treatment of lung cancer.
Collapse
Affiliation(s)
- He Ma
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Ting Lu
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xiaojin Zhang
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Chuanfu Li
- Department of Surgery, East Tennessee State University, Johnson City, TN, USA
| | - Jingwei Xiong
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Lei Huang
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Ping Liu
- Department of Oncology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yuehua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Li Liu
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Zhengnian Ding
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
88
|
Antognelli C, Gambelunghe A, Muzi G, Talesa VN. Glyoxalase I drives epithelial-to-mesenchymal transition via argpyrimidine-modified Hsp70, miR-21 and SMAD signalling in human bronchial cells BEAS-2B chronically exposed to crystalline silica Min-U-Sil 5: Transformation into a neoplastic-like phenotype. Free Radic Biol Med 2016; 92:110-125. [PMID: 26784015 DOI: 10.1016/j.freeradbiomed.2016.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 12/15/2022]
Abstract
Glyoxalase I (Glo1) is the main scavenging enzyme of methylglyoxal (MG), a potent precursor of advanced glycation end products (AGEs). AGEs are known to control multiple biological processes, including epithelial to mesenchymal transition (EMT), a multistep phenomenon associated with cell transformation, playing a major role in a variety of diseases, including cancer. Crystalline silica is a well-known occupational health hazard, responsible for a great number of human pulmonary diseases, such as silicosis. There is still much debate concerning the carcinogenic role of crystalline silica, mainly due to the lack of a causal demonstration between silica exposure and carcinogenesis. It has been suggested that EMT might play a role in crystalline silica-induced lung neoplastic transformation. The aim of this study was to investigate whether, and by means of which mechanism, the antiglycation defence Glo1 is involved in Min-U-Sil 5 (MS5) crystalline silica-induced EMT in BEAS-2B human bronchial epithelial cells chronically exposed, and whether this is associated with the beginning of a neoplastic-like transformation process. By using gene silencing/overexpression and scavenging/inhibitory agents, we demonstrated that MS5 induced hydrogen peroxide-mediated c-Jun-dependent Glo1 up-regulation which resulted in a decrease in the Argpyrimidine-modified Hsp70 protein level which triggered EMT in a novel mechanism involving miR-21 and SMAD signalling. The observed EMT was associated with a neoplastic-like phenotype. The results obtained provide a causal in vitro demonstration of the MS5 pro-carcinogenic transforming role and more importantly they provide new insights into the mechanisms involved in this process, thus opening new paths in research concerning the in vivo study of the carcinogenic potential of crystalline silica.
Collapse
Affiliation(s)
- Cinzia Antognelli
- Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy.
| | - Angela Gambelunghe
- Department of Medicine, School of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy.
| | - Giacomo Muzi
- Department of Medicine, School of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy.
| | - Vincenzo Nicola Talesa
- Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy.
| |
Collapse
|
89
|
Preliminary Analysis of the Expression of Selected Proangiogenic and Antioxidant Genes and MicroRNAs in Patients with Non-Muscle-Invasive Bladder Cancer. J Clin Med 2016; 5:jcm5030029. [PMID: 26927195 PMCID: PMC4810100 DOI: 10.3390/jcm5030029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/25/2016] [Accepted: 02/14/2016] [Indexed: 12/11/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is an enzyme contributing to the development and progression of different cancer types. HO-1 plays a role in pathological angiogenesis in bladder cancer and contributes to the resistance of this cancer to therapy. It also regulates the expression of microRNAs in rhabdomyosarcoma and non-small cell lung cancer. The expression of HO-1 may be regulated by hypoxia inducible factors (HIFs) and Nrf2 transcription factor. The expression of HO-1 has not so far been examined in relation to Nrf2, HIF-1α, and potential mediators of angiogenesis in human bladder cancer. We measured the concentration of proinflammatory and proangiogenic cytokines and the expression of cytoprotective and proangiogenic mRNAs and miRNAs in healthy subjects and patients with bladder cancer. HO-1 expression was upregulated together with HIF-1α, HIF-2α, and Nrf2 in bladder cancer in comparison to healthy tissue. VEGF was elevated both at mRNA and protein level in the tumor and in sera, respectively. Additionally, IL-6 and IL-8 were increased in sera of patients affected with urothelial bladder cancer. Moreover, miR-155 was downregulated whereas miR-200c was elevated in cancer biopsies in comparison to healthy tissue. The results indicate that the increased expression of HO-1 in bladder cancer is paralleled by changes in the expression of other potentially interacting genes, like Nrf2, HIF-1α, HIF-2α, IL-6, IL-8, and VEGF. Further studies are necessary to also elucidate the potential links with miR-155 and miR-200c.
Collapse
|
90
|
Abstract
Growth of atherosclerotic plaque requires neovascularization (angiogenesis). To elucidate the involvement of angiotensin II (Ang II) in angiogenesis, we performed gene microarray and microRNA (miRNA) polymerase chain reaction array analyses on human coronary artery endothelial cells exposed to moderate concentration of Ang II for 2 and 12 hours. At 12, but not 2, hours, cultures treated with Ang II exhibited shifts in transcriptional activity involving 267 genes (>1.5-fold difference; P < 0.05). Resulting transcriptome was most significantly enriched for genes associated with blood vessel development, angiogenesis, and regulation of proliferation. Majority of upregulated genes implicated in angiogenesis shared a commonality of being either regulators (HES1, IL-18, and CXCR4) or targets (ADM, ANPEP, HES1, KIT, NOTCH4, PGF, and SOX18) of STAT3. In line with these findings, STAT3 inhibition attenuated Ang II-dependent stimulation of tube formation in Matrigel assay. Expression analysis of miRNAs transcripts revealed that the pattern of differential expression for miRNAs was largely consistent with proangiogenic response with a prominent theme of upregulation of miRs targeting PTEN (miR-19b-3p, miR-21-5p, 23b-3p, and 24-3p), many of which are directly or indirectly STAT3 dependent. We conclude that STAT3 signaling may be an intrinsic part of Ang II-mediated proangiogenic response in human endothelial cells.
Collapse
|
91
|
miRNA-378 reverses chemoresistance to cisplatin in lung adenocarcinoma cells by targeting secreted clusterin. Sci Rep 2016; 6:19455. [PMID: 26781643 PMCID: PMC4725983 DOI: 10.1038/srep19455] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/14/2015] [Indexed: 11/29/2022] Open
Abstract
Cisplatin resistance is a major obstacle in the treatment of NSCLC, and its mechanism has not been fully elucidated. The objectives of the study were to determine the role of miR-378 in the sensitivity of lung adenocarcinoma cells to cisplatin (cDDP) and its working mechanism. With TargetScan and luciferase assay, miR-378 was found to directly target sCLU. miR-378 and sCLU were regulated in A549/cDDP and Anip973/cDDP cells to investigate the effect of miR-378 on the sensitivity and apoptotic effects of cDDP. The effect of miR-378 upregulation on tumor growth was analyzed in a nude mouse xenograft model. The correlation between miR-378 and chemoresistance was tested in patient samples. We found that upregulation of miR-378 in A549/cDDP and Anip973/cDDP cells significantly down-regulated sCLU expression, and sensitized these cells to cDDP. miR-378 overexpression inhibited tumor growth and sCLU expression in a xenograft animal model. Analysis of human lung adenocarcinoma tissues revealed that the cDDP sensitive group expressed higher levels of miR-378 and lower levels of sCLU. miR-378 and sCLU were negatively correlated. To conclude, we identified sCLU as a novel miR-378 target, and we showed that targeting sCLU via miR-378 may help disable the chemoresistance against cisplatin in lung adenocarcinoma cells.
Collapse
|
92
|
Ryter SW, Choi AMK. Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl Res 2016; 167:7-34. [PMID: 26166253 PMCID: PMC4857893 DOI: 10.1016/j.trsl.2015.06.011] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/19/2022]
Abstract
The heme oxygenase-1 (HO-1) enzyme system remains an attractive therapeutic target for the treatment of inflammatory conditions. HO-1, a cellular stress protein, serves a vital metabolic function as the rate-limiting step in the degradation of heme to generate carbon monoxide (CO), iron, and biliverdin-IXα (BV), the latter which is converted to bilirubin-IXα (BR). HO-1 may function as a pleiotropic regulator of inflammatory signaling programs through the generation of its biologically active end products, namely CO, BV and BR. CO, when applied exogenously, can affect apoptotic, proliferative, and inflammatory cellular programs. Specifically, CO can modulate the production of proinflammatory or anti-inflammatory cytokines and mediators. HO-1 and CO may also have immunomodulatory effects with respect to regulating the functions of antigen-presenting cells, dendritic cells, and regulatory T cells. Therapeutic strategies to modulate HO-1 in disease include the application of natural-inducing compounds and gene therapy approaches for the targeted genetic overexpression or knockdown of HO-1. Several compounds have been used therapeutically to inhibit HO activity, including competitive inhibitors of the metalloporphyrin series or noncompetitive isoform-selective derivatives of imidazole-dioxolanes. The end products of HO activity, CO, BV and BR may be used therapeutically as pharmacologic treatments. CO may be applied by inhalation or through the use of CO-releasing molecules. This review will discuss HO-1 as a therapeutic target in diseases involving inflammation, including lung and vascular injury, sepsis, ischemia-reperfusion injury, and transplant rejection.
Collapse
Affiliation(s)
- Stefan W Ryter
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY.
| | - Augustine M K Choi
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY
| |
Collapse
|
93
|
Tertil M, Golda S, Skrzypek K, Florczyk U, Weglarczyk K, Kotlinowski J, Maleszewska M, Czauderna S, Pichon C, Kieda C, Jozkowicz A, Dulak J. Nrf2-heme oxygenase-1 axis in mucoepidermoid carcinoma of the lung: Antitumoral effects associated with down-regulation of matrix metalloproteinases. Free Radic Biol Med 2015; 89:147-57. [PMID: 26393425 DOI: 10.1016/j.freeradbiomed.2015.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 08/05/2015] [Accepted: 08/05/2015] [Indexed: 01/02/2023]
Abstract
Lung mucoepidermoid carcinoma (MEC) is a very poorly characterized rare subtype of non-small-cell lung cancer (NSCLC) associated with more favorable prognoses than other forms of intrathoracic malignancies. We have previously identified that heme oxygenase-1 (HO-1, encoded by HMOX1) inhibits MEC tumor growth and modulates the transcriptome of microRNAs. Here we investigate the role of a major upstream regulator of HO-1 and a master regulator of cellular antioxidant responses, transcription factor Nrf2, in MEC biology. Nrf2 overexpression in the NCI-H292 MEC cell line mimicked the phenotype of HO-1 overexpressing cells, leading to inhibition of cell proliferation and migration and down-regulation of oncogenic miR-378. HMOX1 silencing identified HO-1 as a major mediator of Nrf2 action. Nrf2- and HO-1 overexpressing cells exhibited strongly diminished expression of multiple matrix metalloproteinases and inflammatory cytokine interleukin-1β, which was confirmed in an NCI-HO-1 xenograft model. Overexpression of HO-1 altered not only human MMP levels in tumor cells but also murine MMP levels within tumor microenvironment and metastatic niche. This could possibly contribute to decreased metastasis to the lungs and inhibitory effects of HO-1 on MEC tumor growth. Our profound transcriptome analysis and molecular characterization of the mucoepidermoid lung carcinoma helps to understand the specific clinical presentations of these tumors, emphasizing a unique antitumoral role of the Nrf2-HO-1 axis.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blotting, Western
- Carcinoma, Mucoepidermoid/metabolism
- Carcinoma, Mucoepidermoid/pathology
- Carcinoma, Mucoepidermoid/prevention & control
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/prevention & control
- Cell Proliferation
- Down-Regulation
- Fluorescent Antibody Technique
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Heme Oxygenase-1/genetics
- Heme Oxygenase-1/metabolism
- Humans
- Immunoenzyme Techniques
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/prevention & control
- Male
- Matrix Metalloproteinases/genetics
- Matrix Metalloproteinases/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/metabolism
- Oxidative Stress
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Tumor Cells, Cultured
- Tumor Microenvironment
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Magdalena Tertil
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; Centre de Biophysique Moleculaire, CNRS UPR 4301, Rue Charles Sadron 45071 Cedex 2 Orléans, France; Department of Molecular Neuropharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Slawomir Golda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; Department of Molecular Neuropharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Klaudia Skrzypek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; Centre de Biophysique Moleculaire, CNRS UPR 4301, Rue Charles Sadron 45071 Cedex 2 Orléans, France
| | - Urszula Florczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Kazimierz Weglarczyk
- Centre de Biophysique Moleculaire, CNRS UPR 4301, Rue Charles Sadron 45071 Cedex 2 Orléans, France
| | - Jerzy Kotlinowski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Monika Maleszewska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Szymon Czauderna
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Chantal Pichon
- Centre de Biophysique Moleculaire, CNRS UPR 4301, Rue Charles Sadron 45071 Cedex 2 Orléans, France
| | - Claudine Kieda
- Centre de Biophysique Moleculaire, CNRS UPR 4301, Rue Charles Sadron 45071 Cedex 2 Orléans, France; Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland.
| |
Collapse
|
94
|
Collet G, Szade K, Nowak W, Klimkiewicz K, El Hafny-Rahbi B, Szczepanek K, Sugiyama D, Weglarczyk K, Foucault-Collet A, Guichard A, Mazan A, Nadim M, Fasani F, Lamerant-Fayel N, Grillon C, Petoud S, Beloeil JC, Jozkowicz A, Dulak J, Kieda C. Endothelial precursor cell-based therapy to target the pathologic angiogenesis and compensate tumor hypoxia. Cancer Lett 2015; 370:345-57. [PMID: 26577811 DOI: 10.1016/j.canlet.2015.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 01/08/2023]
Abstract
Hypoxia-inducing pathologies as cancer develop pathologic and inefficient angiogenesis which rules tumor facilitating microenvironment, a key target for therapy. As such, the putative ability of endothelial precursor cells (EPCs) to specifically home to hypoxic sites of neovascularization prompted to design optimized, site-specific, cell-mediated, drug-/gene-targeting approach. Thus, EPC lines were established from aorta-gonad-mesonephros (AGM) of murine 10.5 dpc and 11.5 dpc embryo when endothelial repertoire is completed. Lines representing early endothelial differentiation steps were selected: MAgEC10.5 and MagEC11.5. Distinct in maturation, they differently express VEGF receptors, VE-cadherin and chemokine/receptors. MAgEC11.5, more differentiated than MAgEC 10.5, displayed faster angiogenesis in vitro, different response to hypoxia and chemokines. Both MAgEC lines cooperated to tube-like formation with mature endothelial cells and invaded tumor spheroids through a vasculogenesis-like process. In vivo, both MAgEC-formed vessels established blood flow. Intravenously injected, both MAgECs invaded Matrigel(TM)-plugs and targeted tumors. Here we show that EPCs (MAgEC11.5) target tumor angiogenesis and allow local overexpression of hypoxia-driven soluble VEGF-receptor2 enabling drastic tumor growth reduction. We propose that such EPCs, able to target tumor angiogenesis, could act as therapeutic gene vehicles to inhibit tumor growth by vessel normalization resulting from tumor hypoxia alleviation.
Collapse
Affiliation(s)
- Guillaume Collet
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland
| | - Krzysztof Szade
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland
| | - Witold Nowak
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland
| | - Krzysztof Klimkiewicz
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland
| | - Bouchra El Hafny-Rahbi
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Karol Szczepanek
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland
| | - Daisuke Sugiyama
- Division of Hematopoietic Stem Cells, Kyushu University Faculty of Medical Sciences, Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Kazimierz Weglarczyk
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Alexandra Foucault-Collet
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Alan Guichard
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Andrzej Mazan
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland
| | - Mahdi Nadim
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Fabienne Fasani
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Nathalie Lamerant-Fayel
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Catherine Grillon
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Stéphane Petoud
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Jean-Claude Beloeil
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Alicja Jozkowicz
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland; Malopolska Biotechnology Centre, Jagiellonian University, Gronostajowa 7A, Kraków 30387, Poland
| | - Jozef Dulak
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland; Malopolska Biotechnology Centre, Jagiellonian University, Gronostajowa 7A, Kraków 30387, Poland.
| | - Claudine Kieda
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Malopolska Biotechnology Centre, Jagiellonian University, Gronostajowa 7A, Kraków 30387, Poland.
| |
Collapse
|
95
|
Lakshmanan I, Ponnusamy MP, Macha MA, Haridas D, Majhi PD, Kaur S, Jain M, Batra SK, Ganti AK. Mucins in lung cancer: diagnostic, prognostic, and therapeutic implications. J Thorac Oncol 2015; 10:19-27. [PMID: 25319180 DOI: 10.1097/jto.0000000000000404] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aberrant expression of mucins is associated with cancer development and metastasis. An overexpression of few mucins contributes to oncogenesis by enhancing cancer cell growth and providing constitutive survival signals. This review focuses on the importance of mucins both in the normal bronchial epithelial cells and the malignant tumors of the lung and their contribution in the diagnosis and prognosis of lung cancer patients. During lung cancer progression, mucins either alone or through their interaction with many receptor tyrosine kinases mediate cell signals for growth and survival of cancer cells. Also, stage-specific expression of certain mucins, like MUC1, is associated with poor prognosis from lung cancer. Thus, mucins are emerging as attractive targets for developing novel therapeutic approaches for lung cancer. Several strategies targeting mucin expression and function are currently being investigated to control lung cancer progression.
Collapse
Affiliation(s)
- Imayavaramban Lakshmanan
- *Department of Biochemistry and Molecular Biology, †Department of Pathology and Microbiology, ‡Eppley Institute for Research in Cancer and Allied Diseases, §Department of Internal Medicine, VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska, and ‖Division of Oncology-Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Loboda A, Jozkowicz A, Dulak J. HO-1/CO system in tumor growth, angiogenesis and metabolism - Targeting HO-1 as an anti-tumor therapy. Vascul Pharmacol 2015; 74:11-22. [PMID: 26392237 DOI: 10.1016/j.vph.2015.09.004] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/02/2015] [Accepted: 09/16/2015] [Indexed: 02/08/2023]
Abstract
Heme oxygenase-1 (HO-1, hmox-1) catalyzes the rate-limiting step in the heme degradation processes. Out of three by-products of HO-1 activity, biliverdin, iron ions and carbon monoxide (CO), the latter was mostly shown to mediate many beneficial HO-1 effects, including protection against oxidative injury, regulation of apoptosis, modulation of inflammation as well as contribution to angiogenesis. Mounting evidence suggests that HO-1/CO systemmay be of special benefit in protection inmany pathological conditions, like atherosclerosis or myocardial infarction. By contrast, the augmented expression of HO-1 in tumor tissues may have detrimental effect as HO-1 accelerates the formation of tumor neovasculature and provides the selective advantage for tumor cells to overcome the increased oxidative stress during tumorigenesis and during treatment. The inhibition of HO-1 has been proposed as an anti-cancer therapy, however, because of non-specific effects of known HO-1 inhibitors, the discovery of ideal drug lowering HO-1 expression/activity is still an open question. Importantly, in several types of cancer HO-1/CO system exerts opposite activities, making the possible treatment more complicated. All together indicates the complex role for HO-1/CO in various in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Agnieszka Loboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| |
Collapse
|
97
|
Jiang F, Li J, Wu G, Miao Z, Lu L, Ren G, Wang X. Upregulation of microRNA‑335 and microRNA‑584 contributes to the pathogenesis of severe preeclampsia through downregulation of endothelial nitric oxide synthase. Mol Med Rep 2015; 12:5383-90. [PMID: 26133786 DOI: 10.3892/mmr.2015.4018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 05/28/2015] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to identify the differentially expressed microRNAs (miRNAs) in placenta from patients with preeclampsia, and examine their roles in the pathogenesis of preeclampsia in vivo and ex vivo. The placental expression levels of miRNAs were examined in tissue samples harvested from 20 patients with preeclampsia and 20 healthy control individuals. A total of 18 miRNAs were differentially expressed (12 upregulated and six downregulated) among the preeclampsia cases, compared with the controls. By further functional/pathway analysis, two significantly upregulated miRNAs, miR‑335 and miR‑584, were identified. These target endothelial nitric oxide synthase (eNOS), which has been repeatedly reported to be involved in the development of preeclampsia. The present study then verified eNOS as a target gene of miR‑335 and miR‑584 using a luceriferase assay, and confirmed the expression patterns of the two miRNAs and eNOS in preeclampsic and normal placentas. Additionally, to examine the function of miR‑584 and miR‑335 in human placenta, the present study transiently transfected the HTR8/Svneo cell line with miR‑584 and miR‑335 mimics or their inhibitors, and the results of a subsequent Transwell insert invasion assay revealed that miR‑584 and miR‑335 inhibited the migratory ability of the trophoblast cells, and that the effect was 'rescued' by overexpressed eNOS. These data revealed a negative regulatory role of miR‑584 and miR‑335 in the migration of HTR‑8/SVneo cells by targeting eNOS, and identified miR‑584 and miR‑335 as potential novel therapeutic targets in preeclampsia.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Gynecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jipeng Li
- Department of Gastrointestinal Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710033, P.R. China
| | - Guojun Wu
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710033, P.R. China
| | - Zhuo Miao
- Department of Gynecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Linshan Lu
- Department of Gynecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Guoping Ren
- Department of Hematology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiaohong Wang
- Department of Gynecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
98
|
Zhu XW, Wen XM, Zhang YY, Yang L, Guo H, Yang J, Zhang M, Yin JY, Ma JC, Lin J, Deng ZQ, Qian J. The 5' flanking region of miR-378 is hypomethylated in acute myeloid leukemia. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:4321-4331. [PMID: 26191124 PMCID: PMC4502996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/24/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Aberrant expression of miR-378 has been observed in various malignancies including acute myeloid leukemia (AML). However, the mechanism regulating of miR-378 expression remains unknown. This study was aimed to investigate miR-378 methylation and to explore its clinical significance in AML. METHODS Methylation status of miR-378 5'-flanking region was investigated by real-time quantitative methylation-specific PCR (RQ-MSP) and bisulfite-sequencing PCR (BSP). The expression of miR-378 was evaluated by real-time quantitative PCR (RQ-PCR). The correlation between expression of miR-378 and 5'-flanking region methylation was analyzed using 5-aza-2'-deoxycytidine (5-aza-dC) treatment. RESULTS miR-378 5'-flanking region was significantly hypomethylated in AML patients compared to controls (median 0.109 vs. 0.058) (P=0.048). miR-378 expression was correlated with miR-378 5'-flanking region in leukemic cell line treated with 5-aza-dC, but not in AML patients. The level of miR-378 hypomethylation significantly increased in M2 subtype compared to other subtypes. Moreover, patients with t(8;21) harbored the highest level of miR-378 hypomethylation. However, there was no significant difference in overall survival between patients with high and low miR-378 hypomethylation. The association of miR-378 expression with methylation was not observed in AML patients, but miR-378 expression in THP-1 line was increased while methylation status of miR-378 5-flanking region was decreased after 5-aza-dC treatment. CONCLUSIONS Our findings suggest that miR-378 is reactivated by demethylation after 5-aza-dC treatment. 5'-flanking region of miR-378 is hypomethylated in AML especially in those with t(8;21).
Collapse
Affiliation(s)
- Xiao-Wen Zhu
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Xiang-Mei Wen
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Ying-Ying Zhang
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Lei Yang
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Hong Guo
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jing Yang
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Ming Zhang
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jia-Yu Yin
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jiang Lin
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Zhao-Qun Deng
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jun Qian
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| |
Collapse
|
99
|
Gueron G, Giudice J, Valacco P, Paez A, Elguero B, Toscani M, Jaworski F, Leskow FC, Cotignola J, Marti M, Binaghi M, Navone N, Vazquez E. Heme-oxygenase-1 implications in cell morphology and the adhesive behavior of prostate cancer cells. Oncotarget 2015; 5:4087-102. [PMID: 24961479 PMCID: PMC4147308 DOI: 10.18632/oncotarget.1826] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer death in men. Although previous studies in PCa have focused on cell adherens junctions (AJs), key players in metastasis, they have left the molecular mechanisms unexplored. Inflammation and the involvement of reactive oxygen species (ROS) are critical in the regulation of cell adhesion and the integrity of the epithelium. Heme oxygenase-1 (HO-1) counteracts oxidative and inflammatory damage. Here, we investigated whether HO-1 is implicated in the adhesive and morphological properties of tumor cells. Genes differentially regulated by HO-1 were enriched for cell motility and adhesion biological processes. HO-1 induction, increased E-cadherin and β-catenin levels. Immunofluorescence analyses showed a striking remodeling of E-cadherin/β-catenin based AJs under HO-1 modulation. Interestingly, the enhanced levels of E-cadherin and β-catenin coincided with a markedly change in cell morphology. To further our analysis we sought to identify HO-1 binding proteins that might participate in the regulation of cell morphology. A proteomics approach identified Muskelin, as a novel HO-1 partner, strongly implicated in cell morphology regulation. These results define a novel role for HO-1 in modulating the architecture of cell-cell interactions, favoring a less aggressive phenotype and further supporting its anti-tumoral function in PCa.
Collapse
|
100
|
Szade A, Grochot-Przeczek A, Florczyk U, Jozkowicz A, Dulak J. Cellular and molecular mechanisms of inflammation-induced angiogenesis. IUBMB Life 2015; 67:145-59. [PMID: 25899846 DOI: 10.1002/iub.1358] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/20/2015] [Indexed: 02/06/2023]
Abstract
Blood vessel formation is a fundamental process for the development of organism and tissue regeneration. Of importance, angiogenesis occurring during postnatal development is usually connected with inflammation. Here, we review how molecular and cellular mechanisms underlying inflammatory reactions regulate angiogenesis. Inflamed tissues are characterized by hypoxic conditions and immune cell infiltration. In this review, we describe an interplay of hypoxia-inducible factors (HIFs), HIF1 and HIF2, as well as NF-κB and nitric oxide in the regulation of angiogenesis. The mobilization of macrophages and the differential role of M1 and M2 macrophage subsets in angiogenesis are also discussed. Next, we present the current knowledge about microRNA regulation of inflammation in the context of new blood vessel formation. Finally, we describe how the mechanisms involved in inflammation influence tumor angiogenesis. We underlay and discuss the role of NF-E2-related factor 2/heme oxygenase-1 pathway as crucial in the regulation of inflammation-induced angiogenesis.
Collapse
Affiliation(s)
- Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | | | |
Collapse
|