51
|
Kayabolen A, Keskin D, Aykan A, Karslıoglu Y, Zor F, Tezcaner A. Native extracellular matrix/fibroin hydrogels for adipose tissue engineering with enhanced vascularization. ACTA ACUST UNITED AC 2017; 12:035007. [PMID: 28361795 DOI: 10.1088/1748-605x/aa6a63] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adipose tissue engineering is a promising field for regeneration of soft tissue defects. However, vascularization is needed since nutrients and oxygen cannot reach cells in thick implants by diffusion. Obtaining a biocompatible scaffold with good mechanical properties is another problem. In this study, we aimed to develop thick and vascularized adipose tissue constructs supporting cell viability and adipose tissue regeneration. Hydrogels were prepared by mixing rat decellularized adipose tissue (DAT) and silk fibroin (Fib) at different v/v ratios (3:1, 1:1 and 1:3) and vortexing. Gelation times decreased with increasing fibroin ratio Among hydrogel groups 1:3-DAT:Fib ratio group showed similar mechanical properties with adipose tissue. Both pre-adipocytes and pre-endothelial cells, pre-differentiated from adipose derived stem cells (ASCs), were encapsulated in hydrogels at a 1: 3 ratio. In vitro analyses showed that hydrogels with 1:3 (v/v) DAT:Fib ratio supported better cell viability. Pre-adipocytes had lipid vesicles, and pre-endothelial cells formed tubular structures inside hydrogels only after 3 days in vitro. When endothelial and adipogenic pre-differentiated ASCs (for 7 days before encapsulation) were encapsulated together into 1:3-DAT:Fib hydrogels both cell types continued to differentiate into the committed cell lineage. Vascularization process in the hydrogels implanted with adipogenic and endothelial pre-differentiated ASCs took place between the first and second week after implantation which was faster than observed in the empty hydrogels. ASCs pre-differentiated towards adipogenic lineage inside hydrogels had begun to accumulate lipid vesicles after 1 week of subcutaneous implantation Based on these results, we suggest that 1:3-DAT:Fib hydrogels with enhanced vascularization hold promise for adipose tissue engineering.
Collapse
Affiliation(s)
- Alisan Kayabolen
- Department of Biomedical Engineering, Middle East Technical University, Turkey
| | | | | | | | | | | |
Collapse
|
52
|
Correia CR, Santos TC, Pirraco RP, Cerqueira MT, Marques AP, Reis RL, Mano JF. In vivo osteogenic differentiation of stem cells inside compartmentalized capsules loaded with co-cultured endothelial cells. Acta Biomater 2017; 53:483-494. [PMID: 28179159 DOI: 10.1016/j.actbio.2017.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 12/22/2022]
Abstract
Capsules coated with polyelectrolytes and co-encapsulating adipose stem (ASCs) and endothelial (ECs) cells with surface modified microparticles are developed. Microparticles and cells are freely dispersed in a liquified core, responsible to maximize the diffusion of essential molecules and allowing the geometrical freedom for the autonomous three-dimensional (3D) organization of cells. While the membrane wraps all the instructive cargo elements within a single structure, the microparticles provide a solid 3D substrate for the encapsulated cells. Our hypothesis is that inside this isolated biomimetic 3D environment, ECs would lead ASCs to differentiate into the osteogenic lineage to ultimately generate a mineralized tissue in vivo. For that, capsules encapsulating only ASCs (MONO capsules) or co-cultured with ECs (CO capsules) are subcutaneously implanted in nude mice up to 6weeks. Capsules implanted immediately after production or after 21days of in vitro osteogenic stimulation are tested. The most valuable outcome of the present study is the mineralized tissue in CO capsules without in vitro pre-differentiation, with similar levels compared to the pre-stimulated capsules in vitro. We believe that the proposed bioencapsulation strategy is a potent self-regulated system, which might find great applicability in bone tissue engineering. STATEMENT OF SIGNIFICANCE The diffusion efficiency of essential molecules for cell survival is a main issue in cell encapsulation. Former studies reported the superior biological outcome of encapsulated cells within liquified systems. However, most cells used in TE are anchorage-dependent, requiring a solid substrate to perform main cellular processes. We hypothesized that liquified capsules encapsulating microparticles are a promising attempt. Inspired by the multiphenotypic cellular environment of bone, we combine the concept of liquified capsules with co-cultures of stem and endothelial cells. After implantation, results show that co-cultured capsules without in vitro stimulation were able to form a mineralized tissue in vivo. We believe that the present ready-to-use TE strategy requiring minimum in vitro manipulation will find great applicability in bone tissue engineering.
Collapse
Affiliation(s)
- Clara R Correia
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tírcia C Santos
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mariana T Cerqueira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra P Marques
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F Mano
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
53
|
Ravichandran A, Liu Y, Teoh SH. Review: bioreactor design towards generation of relevant engineered tissues: focus on clinical translation. J Tissue Eng Regen Med 2017; 12:e7-e22. [PMID: 28374578 DOI: 10.1002/term.2270] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/13/2016] [Accepted: 07/19/2016] [Indexed: 12/27/2022]
Abstract
In tissue engineering and regenerative medicine, studies that utilize 3D scaffolds for generating voluminous tissues are mostly confined in the realm of in vitro research and preclinical animal model testing. Bioreactors offer an excellent platform to grow and develop 3D tissues by providing conditions that mimic their native microenvironment. Aligning the bioreactor development process with a focus on patient care will aid in the faster translation of the bioreactor technology to clinics. In this review, we discuss the various factors involved in the design of clinically relevant bioreactors in relation to their respective applications. We explore the functional relevance of tissue grafts generated by bioreactors that have been designed to provide physiologically relevant mechanical cues on the growing tissue. The review discusses the recent trends in non-invasive sensing of the bioreactor culture conditions. It provides an insight to the current technological advancements that enable in situ, non-invasive, qualitative and quantitative evaluation of the tissue grafts grown in a bioreactor system. We summarize the emerging trends in commercial bioreactor design followed by a short discussion on the aspects that hamper the 'push' of bioreactor systems into the commercial market as well as 'pull' factors for stakeholders to embrace and adopt widespread utility of bioreactors in the clinical setting. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Akhilandeshwari Ravichandran
- School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Nanyang Technological University, Singapore, 637459, Singapore
| | - Yuchun Liu
- School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Nanyang Technological University, Singapore, 637459, Singapore.,Academic Clinical Program (Research), National Dental Centre of Singapore, 5 Second Hospital Ave Singapore, 168938, Singapore
| | - Swee-Hin Teoh
- School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
54
|
Rodriguez MJ, Brown J, Giordano J, Lin SJ, Omenetto FG, Kaplan DL. Silk based bioinks for soft tissue reconstruction using 3-dimensional (3D) printing with in vitro and in vivo assessments. Biomaterials 2017; 117:105-115. [PMID: 27940389 PMCID: PMC5180454 DOI: 10.1016/j.biomaterials.2016.11.046] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/15/2016] [Accepted: 11/24/2016] [Indexed: 02/07/2023]
Abstract
In the field of soft tissue reconstruction, custom implants could address the need for materials that can fill complex geometries. Our aim was to develop a material system with optimal rheology for material extrusion, that can be processed in physiological and non-toxic conditions and provide structural support for soft tissue reconstruction. To meet this need we developed silk based bioinks using gelatin as a bulking agent and glycerol as a non-toxic additive to induce physical crosslinking. We developed these inks optimizing printing efficacy and resolution for patient-specific geometries that can be used for soft tissue reconstruction. We demonstrated in vitro that the material was stable under physiological conditions and could be tuned to match soft tissue mechanical properties. We demonstrated in vivo that the material was biocompatible and could be tuned to maintain shape and volume up to three months while promoting cellular infiltration and tissue integration.
Collapse
Affiliation(s)
- María J Rodriguez
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Joseph Brown
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Jodie Giordano
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Samuel J Lin
- Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | | | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| |
Collapse
|
55
|
Bosio VE, Brown J, Rodriguez MJ, Kaplan DL. Biodegradable Porous Silk Microtubes for Tissue Vascularization. J Mater Chem B 2016; 5:1227-1235. [PMID: 28944059 DOI: 10.1039/c6tb02712a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cardiovascular diseases are the leading cause of mortality around the globe, and microvasculature replacements to help stem these diseases are not available. Additionally, some vascular surgeries needing small diameter vascular grafts present different performance requirements. In this work silk fibroin scaffolds based on silk/polyethylene oxide blends were developed as microtubes for vasculature needs and for different tissue regeneration times, mechanical properties and structural designs. Systems with 13, 14 and 15% silk alone or blended with 1 or 2% of polyethylene oxide (PEO) were used to generate porous microtubes using gel-spinning. Microtubes with inner diameters (ID) of 150-300 μm and 100 μm wall thickness were fabricated. The systems were assessed for porosity, mechanical properties, enzymatic degradability, and in vitro vascular endothelial cell attachment and metabolic activity. After 14 days all tubes supported the proliferation of cells and cell attachment increased with porosity. The silk tubes with PEO had similar crystallinity but higher elastic modulus compared with the systems without PEO. The silk (13%)/PEO (1%) system showed the highest porosity (20 μm pore diameters on average), highest cell attachment and fastest degradation profile. There was a good correlation between these parameters with silk concentration and the presence of PEO. The results demonstrate the ability to generate versatile and tunable tubular biomaterials based on silk-PEO-blends with potential for microvascular grafts.
Collapse
Affiliation(s)
- V E Bosio
- Institute of Applied Biotechnology CINDEFI (CCT La Plata-CONICET, U.N.L.P.), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, 1900 La Plata, Argentina.,Department of Biomedical Engineering, Tufts University, Medford, MA02155, USA
| | - J Brown
- Department of Biomedical Engineering, Tufts University, Medford, MA02155, USA
| | - M J Rodriguez
- Department of Biomedical Engineering, Tufts University, Medford, MA02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA02155, USA
| |
Collapse
|
56
|
Wang RY, Abbott RD, Zieba A, Borowsky FE, Kaplan DL. Development of a Three-Dimensional Adipose Tissue Model for Studying Embryonic Exposures to Obesogenic Chemicals. Ann Biomed Eng 2016; 45:1807-1818. [PMID: 27815650 DOI: 10.1007/s10439-016-1752-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/18/2016] [Indexed: 12/29/2022]
Abstract
Obesity is a rising issue especially in the United States that can lead to heart problems, type II diabetes, and respiratory problems. Since the 1970s, obesity rates in the United States have more than doubled in adults and children. Recent evidence suggests that exposure to certain chemicals, termed "obesogens," in utero may alter metabolic processes, predisposing individuals to weight gain. There is a need to develop a three-dimensional human tissue system that is able to model the effects of obesogens in vitro in order to better understand the impact of obesogens on early development. Human embryonic-derived stem cells in three-dimensional collagen embedded silk scaffolds were exposed to three different obesogens: Bisphenol A (BPA), Bisphenol S (BPS), and Tributyltin (TBT). The exposed tissues accumulated triglycerides and increased expression of adipogenic genes (Perilipin (PLIN1), peroxisome proliferator-activated receptor gamma (PPARy), fatty acid binding protein 4 (FABP4)) compared to equivalent control cultures with no obesogen exposure. These cultures were also compared to human adult stem cell cultures, which did not respond the same upon addition of obesogens. These results demonstrate the successful development of a representative tissue model of in utero obesogen exposures. This tissue system could be used to determine mechanisms of action of current obesogens and to screen other potential obesogens.
Collapse
Affiliation(s)
- Rebecca Y Wang
- Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| | - Rosalyn D Abbott
- Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| | - Adam Zieba
- Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| | - Francis E Borowsky
- Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| | - David L Kaplan
- Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA.
| |
Collapse
|
57
|
Abbott RD, Kimmerling EP, Cairns DM, Kaplan DL. Silk as a Biomaterial to Support Long-Term Three-Dimensional Tissue Cultures. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21861-21868. [PMID: 26849288 DOI: 10.1021/acsami.5b12114] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Tissue engineering has broad and diverse impacts on a variety of different applications from tissue regeneration to drug screening. While two-dimensional (2-D) cell culture platforms are suitable for tissue interfaces where planar surfaces are relevant, three dimensional (3-D) tissue models have enhanced relevance and sustainability over 2-D devices. The improvements between 2-D and 3-D functions and sustainability are related to the limitations of 2-D systems to support proper cellular morphology and signaling over time, resulting in cell overgrowth or changes in viability. For sustainable (long-term) cultures, 3-D silk protein scaffolds provide biocompatibility, porous features for transport, robust yet tunable mechanical properties, retain size and open porous structures for extended time frames due to slow proteolytic biodegradation, avoid specific cell signaling, and require no chemical cross-linking. Silk degradation can be extended for months to years without premature collapse of structures (that would result in necrosis) to support cell interactions during slow remodeling toward native tissue. Silk can also be fabricated into different material formats, such as hydrogels, tubes, sponges, composites, fibers, microspheres, and thin films, providing versatile platforms and interfaces for a variety of different applications. For sustainable tissue engineering applications, many formats have been used, including silk ionmer hydrogels that have been cultured for up to 8 weeks and porous silk scaffolds that have been cultured for up to 6 months. In this review, we highlight some of our tissue engineering work related to long-term in vitro cultures. While each tissue engineered system (adipose tissue, cortical brain tissue, intestine, kidney tissue, bone) is unique, they all use silk biomaterials as a base scaffolding material to achieve sustainable cultivation. Sustainability is important for studies that extend past a few weeks to study acute and chronic impacts of treatments, disease models, and other related applications in the field of tissue engineering.
Collapse
Affiliation(s)
- Rosalyn D Abbott
- Tufts University , 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Erica P Kimmerling
- Tufts University , 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Dana M Cairns
- Tufts University , 4 Colby Street, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Tufts University , 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
58
|
Singh YP, Bhardwaj N, Mandal BB. Potential of Agarose/Silk Fibroin Blended Hydrogel for in Vitro Cartilage Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21236-21249. [PMID: 27459679 DOI: 10.1021/acsami.6b08285] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An osteoarthritis pandemic has accelerated exploration of various biomaterials for cartilage reconstruction with a special emphasis on silk fibroin from mulberry (Bombyx mori) and non-mulberry (Antheraea assamensis) silk worms. Retention of positive attributes of the agarose standard and nullification of its negatives are central to the current agarose/silk fibroin hydrogel design. In this study, hydrogels of mulberry and non-mulberry silk fibroin blended with agarose were fabricated and evaluated in vitro for two weeks for cartilaginous tissue formation. The fabricated hydrogels were physicochemically characterized and analyzed for cell viability, proliferation, and extra cellular matrix deposition. The amalgamation of silk fibroin with agarose impacted the pore size, as illustrated by field emission scanning electron microscopy studies, swelling behavior, and in vitro degradation of the hydrogels. Fourier transform infrared spectroscopy results indicated the blend formation and confirmed the presence of both components in the fabricated hydrogels. Rheological studies demonstrated enhanced elasticity of blended hydrogels with G' > G″. Biochemical analysis revealed significantly higher levels of sulfated glycosaminoglycans (sGAGs) and collagen (p ≤ 0.01) in blended hydrogels. More specifically, the non-mulberry silk fibroin blend showed sGAG and collagen content (∼1.5-fold) higher than that of the mulberry blend (p ≤ 0.05). Histological and immunohistochemical analyses further validated the enhanced deposition of sGAG and collagen, indicating maintenance of chondrogenic phenotype within constructs after two weeks of culture. Real-time PCR analysis further confirmed up-regulation of cartilage-specific aggrecan, sox-9 (∼1.5-fold) and collagen type II (∼2-fold) marker genes (p ≤ 0.01) in blended hydrogels. The hydrogels demonstrated immunocompatibility, which was evidenced by minimal in vitro secretion of tumor necrosis factor-α (TNF-α) by murine macrophages. Taken together, the results suggest promising attributes of blended hydrogels and particularly the non-mulberry silk fibroin/agarose blends as alternative biomaterial for cartilage tissue engineering.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati , Guwahati 781039, Assam, India
| | - Nandana Bhardwaj
- Biological and Chemical Sciences Section, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST) , Guwahati 781035, Assam, India
| | - Biman B Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati , Guwahati 781039, Assam, India
| |
Collapse
|
59
|
Abbott RD, Wang RY, Reagan MR, Chen Y, Borowsky FE, Zieba A, Marra KG, Rubin JP, Ghobrial IM, Kaplan DL. The Use of Silk as a Scaffold for Mature, Sustainable Unilocular Adipose 3D Tissue Engineered Systems. Adv Healthc Mater 2016; 5:1667-77. [PMID: 27197588 PMCID: PMC4982640 DOI: 10.1002/adhm.201600211] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/29/2016] [Indexed: 01/04/2023]
Abstract
There is a critical need for monitoring physiologically relevant, sustainable, human adipose tissues in vitro to gain new insights into metabolic diseases. To support long-term culture, a 3D silk scaffold assisted culture system is developed that maintains mature unilocular adipocytes ex vivo in coculture with preadipocytes, endothelial cells, and smooth muscle cells obtained from small volumes of liquefied adipose samples. Without the silk scaffold, adipose tissue explants cannot be sustained in long-term culture (3 months) due to their fragility. Adjustments to media components are used to tune lipid metabolism and proliferation, in addition to responsiveness to an inflammatory stimulus. Interestingly, patient specific responses to TNFα stimulation are observed, providing a proof-of-concept translational technique for patient specific disease modeling in the future. In summary, this novel 3D scaffold assisted approach is required for establishing physiologically relevant, sustainable, human adipose tissue systems from small volumes of lipoaspirate, making this methodology of great value to studies of metabolism, adipokine-driven diseases, and other diseases where the roles of adipocytes are only now becoming uncovered.
Collapse
Affiliation(s)
- Rosalyn D. Abbott
- Biomedical Engineering, Tufts University, 4 Colby St. Medford MA 02155, United States of America
| | - Rebecca Y. Wang
- Biomedical Engineering, Tufts University, 4 Colby St. Medford MA 02155, United States of America
| | - Michaela R. Reagan
- School of Medicine, Harvard Institute, 4 Blackfan Circle, 2nd Floor, Suite 240 Boston, MA 02115, United States of America
| | - Ying Chen
- Biomedical Engineering, Tufts University, 4 Colby St. Medford MA 02155, United States of America
| | - Francis E. Borowsky
- Biomedical Engineering, Tufts University, 4 Colby St. Medford MA 02155, United States of America
| | - Adam Zieba
- Biomedical Engineering, Tufts University, 4 Colby St. Medford MA 02155, United States of America
| | - Kacey G. Marra
- Departments of Plastic Surgery in the School of Medicine at the University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States of America
| | - J. Peter Rubin
- Departments of Plastic Surgery in the School of Medicine at the University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States of America
| | - Irene M. Ghobrial
- School of Medicine, Harvard Institute, 4 Blackfan Circle, 2nd Floor, Suite 240 Boston, MA 02115, United States of America
| | - David L. Kaplan
- Biomedical Engineering, Tufts University, 4 Colby St. Medford MA 02155, United States of America
| |
Collapse
|
60
|
Volz AC, Huber B, Kluger PJ. Adipose-derived stem cell differentiation as a basic tool for vascularized adipose tissue engineering. Differentiation 2016; 92:52-64. [PMID: 26976717 DOI: 10.1016/j.diff.2016.02.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 01/08/2016] [Accepted: 02/10/2016] [Indexed: 12/13/2022]
Abstract
The development of in vitro adipose tissue constructs is highly desired to cope with the increased demand for substitutes to replace damaged soft tissue after high graded burns, deformities or tumor removal. To achieve clinically relevant dimensions, vascularization of soft tissue constructs becomes inevitable but still poses a challenge. Adipose-derived stem cells (ASCs) represent a promising cell source for the setup of vascularized fatty tissue constructs as they can be differentiated into adipocytes and endothelial cells in vitro and are thereby available in sufficiently high cell numbers. This review summarizes the currently known characteristics of ASCs and achievements in adipogenic and endothelial differentiation in vitro. Further, the interdependency of adipogenesis and angiogenesis based on the crosstalk of endothelial cells, stem cells and adipocytes is addressed at the molecular level. Finally, achievements and limitations of current co-culture conditions for the construction of vascularized adipose tissue are evaluated.
Collapse
Affiliation(s)
- Ann-Cathrin Volz
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany
| | - Birgit Huber
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Petra J Kluger
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany
| |
Collapse
|
61
|
Hsiao AY, Okitsu T, Teramae H, Takeuchi S. 3D Tissue Formation of Unilocular Adipocytes in Hydrogel Microfibers. Adv Healthc Mater 2016; 5:548-56. [PMID: 26680212 DOI: 10.1002/adhm.201500673] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/23/2015] [Indexed: 11/12/2022]
Abstract
Adipose tissue, an active metabolic and endocrine organ mainly composed of unilocular adipocytes, is implicated in various obesity related diseases. Developing morphologically and functionally accurate in vitro models of the adipose tissue is therefore critically important for basic biological studies, drug screening/testing, and clinical implants to advance the understanding and treatment of these diseases. However, current adipose tissue engineering technologies either cannot replicate the unilocular morphologies of mature adipocytes, or lack the ease of monitoring, handling, and scaling up required in the above mentioned applications. This paper presents the differentiation of adipose derived stem cells (ADSCs) to mature adipocytes in highly observable and highly handleable 3D fiber shaped constructs exhibiting morphologies and functions of native adipose tissues. Using the cell fiber technology, ADSCs were encapsulated in hydrogel microfibers, allowed to form into fiber shaped constructs, and differentiated to mature unilocular adipocytes. These adipocyte fibers are observed and maintained for up to 91 d, and secretion of adipose tissue-specific factor, adiponectin, is further confirmed. The handleability of the adipocyte fibers is demonstrated by assembling the adipocyte fibers into doll shaped constructs. Such highly observable, highly handleable, and scalable characteristics of the adipocyte fibers make them suitable for biological studies, high-throughput drug screening/testing, and clinical applications.
Collapse
Affiliation(s)
- Amy Y. Hsiao
- Institute of Industrial Science; The University of Tokyo; 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
- Takeuchi Biohybrid Innovation Project; Exploratory Research for Advanced Technology (ERATO); Japan Science and Technology Agency (JST); 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
| | - Teru Okitsu
- Institute of Industrial Science; The University of Tokyo; 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
- Takeuchi Biohybrid Innovation Project; Exploratory Research for Advanced Technology (ERATO); Japan Science and Technology Agency (JST); 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
| | - Hiroki Teramae
- Faculty of Teacher Education; Shumei University; 1-1 Daigaku-cho Yachiyo City Chiba 276-0003 Japan
| | - Shoji Takeuchi
- Institute of Industrial Science; The University of Tokyo; 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
- Takeuchi Biohybrid Innovation Project; Exploratory Research for Advanced Technology (ERATO); Japan Science and Technology Agency (JST); 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
| |
Collapse
|
62
|
Correia CR, Pirraco RP, Cerqueira MT, Marques AP, Reis RL, Mano JF. Semipermeable Capsules Wrapping a Multifunctional and Self-regulated Co-culture Microenvironment for Osteogenic Differentiation. Sci Rep 2016; 6:21883. [PMID: 26905619 PMCID: PMC4764811 DOI: 10.1038/srep21883] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/11/2016] [Indexed: 01/26/2023] Open
Abstract
A new concept of semipermeable reservoirs containing co-cultures of cells and supporting microparticles is presented, inspired by the multi-phenotypic cellular environment of bone. Based on the deconstruction of the "stem cell niche", the developed capsules are designed to drive a self-regulated osteogenesis. PLLA microparticles functionalized with collagen I, and a co-culture of adipose stem (ASCs) and endothelial (ECs) cells are immobilized in spherical liquified capsules. The capsules are coated with multilayers of poly(L-lysine), alginate, and chitosan nano-assembled through layer-by-layer. Capsules encapsulating ASCs alone or in a co-culture with ECs are cultured in endothelial medium with or without osteogenic differentiation factors. Results show that osteogenesis is enhanced by the co-encapsulation, which occurs even in the absence of differentiation factors. These findings are supported by an increased ALP activity and matrix mineralization, osteopontin detection, and the up regulation of BMP-2, RUNX2 and BSP. The liquified co-capsules also act as a VEGF and BMP-2 cytokines release system. The proposed liquified capsules might be a valuable injectable self-regulated system for bone regeneration employing highly translational cell sources.
Collapse
Affiliation(s)
- Clara R Correia
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mariana T Cerqueira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra P Marques
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F Mano
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
63
|
Song YH, Shon SH, Shan M, Stroock A, Fischbach C. Adipose-derived stem cells increase angiogenesis through matrix metalloproteinase-dependent collagen remodeling. Integr Biol (Camb) 2016; 8:205-15. [PMID: 26758423 PMCID: PMC4755818 DOI: 10.1039/c5ib00277j] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adipose-derived stem cells (ASCs) are key regulators of new blood vessel formation and widely investigated for their role in tissue regeneration and tumorigenesis. However, the cellular and molecular mechanisms through which ASCs regulate angiogenesis are not well understood. Here, it was our goal to test the functional contribution of ASC-mediated extracellular matrix (ECM) remodeling on endothelial cell invasion. To isolate the effect of ECM-remodeling, ASCs were embedded within 3-D collagen type I hydrogels and pre-cultured for 7 days; controls were not pre-cultured. A confluent monolayer of human umbilical vein endothelial cells (HUVECs) was seeded on top and its invasion into the underlying hydrogel was analyzed. Without pre-culture, ASCs inhibited vascular sprouting by stabilizing the endothelium. In contrast, 7 day pre-culture of ASCs drastically increased invasion by HUVECs. This effect was largely mediated by proteolytic ECM degradation by ASC-derived matrix metalloproteinases (MMPs) rather than vascular endothelial growth factor (VEGF), as our results indicated that blockade of MMPs, but not VEGF, inhibited endothelial sprouting. Collectively, these data suggest that the angiogenic capability of ASCs is modulated by their proteolytic remodeling of the ECM, opening new avenues for pro- and anti-angiogenic therapies.
Collapse
Affiliation(s)
- Young Hye Song
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
| | - Seung Hee Shon
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
| | - Mengrou Shan
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY
| | - Abraham Stroock
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY
| |
Collapse
|
64
|
Huang S, Zhao W, Wang Z, Tao K, Liu X, Chang P. Potential drawbacks in cell-assisted lipotransfer: A systematic review of existing reports (Review). Mol Med Rep 2015; 13:1063-9. [PMID: 26677061 PMCID: PMC4732852 DOI: 10.3892/mmr.2015.4682] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 11/17/2015] [Indexed: 12/12/2022] Open
Abstract
Cell-assisted lipotransfer (CAL) has been widely used in various clinical applications, including breast augmentation following mammectomy, soft-tissue reconstruction and wound healing. However, the clinical application of CAL has been restricted due to the transplanted fat tissues being readily liquefied and absorbed. The present review examines 57 previously published studies involving CAL, including fat grafting or fat transfer with human adipose-stem cells in all known databases. Of these 57 articles, seven reported the clinical application of CAL. In the 57 studies, the majority of the fat tissues were obtained from the abdomen via liposuction of the seven clinical studies, four were performed in patients requiring breast augmentation, one in a patient requiring facial augmentation, one in a patient requiring soft tissue augmentation/reconstruction and one in a patient requiring fat in their upper arms. Despite the potential risks, there has been an increased demand for CAL in in cosmetic or aesthetic applications. Thus, criteria and guidelines are necessary for the clinical application of CAL technology.
Collapse
Affiliation(s)
- Sheng Huang
- Department of Plastic and Reconstructive Surgery, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110840, P.R. China
| | - Weiliang Zhao
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Zihua Wang
- Department of Plastic and Reconstructive Surgery, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110840, P.R. China
| | - Kai Tao
- Department of Plastic and Reconstructive Surgery, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110840, P.R. China
| | - Xiaoyan Liu
- Department of Plastic and Reconstructive Surgery, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110840, P.R. China
| | - Peng Chang
- Department of Plastic and Reconstructive Surgery, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110840, P.R. China
| |
Collapse
|
65
|
Aubin K, Safoine M, Proulx M, Audet-Casgrain MA, Côté JF, Têtu FA, Roy A, Fradette J. Characterization of In Vitro Engineered Human Adipose Tissues: Relevant Adipokine Secretion and Impact of TNF-α. PLoS One 2015; 10:e0137612. [PMID: 26367137 PMCID: PMC4569087 DOI: 10.1371/journal.pone.0137612] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 08/20/2015] [Indexed: 01/04/2023] Open
Abstract
Representative modelling of human adipose tissue functions is central to metabolic research. Tridimensional models able to recreate human adipogenesis in a physiological tissue-like context in vitro are still scarce. We describe the engineering of white adipose tissues reconstructed from their cultured adipose-derived stromal precursor cells. We hypothesize that these reconstructed tissues can recapitulate key functions of AT under basal and pro-inflammatory conditions. These tissues, featuring human adipocytes surrounded by stroma, were stable and metabolically active in long-term cultures (at least 11 weeks). Secretion of major adipokines and growth factors by the reconstructed tissues was determined and compared to media conditioned by human native fat explants. Interestingly, the secretory profiles of the reconstructed adipose tissues indicated an abundant production of leptin, PAI-1 and angiopoietin-1 proteins, while higher HGF levels were detected for the human fat explants. We next demonstrated the responsiveness of the tissues to the pro-inflammatory stimulus TNF-α, as reflected by modulation of MCP-1, NGF and HGF secretion, while VEGF and leptin protein expression did not vary. TNF-α exposure induced changes in gene expression for adipocyte metabolism-associated mRNAs such as SLC2A4, FASN and LIPE, as well as for genes implicated in NF-κB activation. Finally, this model was customized to feature adipocytes representative of progressive stages of differentiation, thereby allowing investigations using newly differentiated or more mature adipocytes. In conclusion, we produced tridimensional tissues engineered in vitro that are able to recapitulate key characteristics of subcutaneous white adipose tissue. These tissues are produced from human cells and their neo-synthesized matrix elements without exogenous or synthetic biomaterials. Therefore, they represent unique tools to investigate the effects of pharmacologically active products on human stromal cells, extracellular matrix and differentiated adipocytes, in addition to compounds modulating adipogenesis from precursor cells.
Collapse
Affiliation(s)
- Kim Aubin
- Centre de recherche en organogénèse expérimentale de l’Université Laval / LOEX, Québec, Canada
- Division of Regenerative Medicine, CHU de Québec Research Centre, Québec, Canada
| | - Meryem Safoine
- Centre de recherche en organogénèse expérimentale de l’Université Laval / LOEX, Québec, Canada
- Division of Regenerative Medicine, CHU de Québec Research Centre, Québec, Canada
| | - Maryse Proulx
- Centre de recherche en organogénèse expérimentale de l’Université Laval / LOEX, Québec, Canada
- Division of Regenerative Medicine, CHU de Québec Research Centre, Québec, Canada
| | | | - Jean-François Côté
- Centre de recherche en organogénèse expérimentale de l’Université Laval / LOEX, Québec, Canada
| | - Félix-André Têtu
- Clinique de chirurgie esthétique Félix-André Têtu and CHU de Québec, Québec, Canada
| | - Alphonse Roy
- Clinique de chirurgie plastique Alphonse Roy and CHU de Québec, Québec, Canada
| | - Julie Fradette
- Centre de recherche en organogénèse expérimentale de l’Université Laval / LOEX, Québec, Canada
- Division of Regenerative Medicine, CHU de Québec Research Centre, Québec, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, Canada
| |
Collapse
|
66
|
Unser AM, Tian Y, Xie Y. Opportunities and challenges in three-dimensional brown adipogenesis of stem cells. Biotechnol Adv 2015; 33:962-79. [PMID: 26231586 DOI: 10.1016/j.biotechadv.2015.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/07/2015] [Accepted: 07/23/2015] [Indexed: 12/21/2022]
Abstract
The formation of brown adipose tissue (BAT) via brown adipogenesis has become a notable process due to its ability to expend energy as heat with implications in the treatment of metabolic disorders and obesity. With the advent of complexity within white adipose tissue (WAT) along with inducible brown adipocytes (also known as brite and beige), there has been a surge in deciphering adipocyte biology as well as in vivo adipogenic microenvironments. A therapeutic outcome would benefit from understanding early events in brown adipogenesis, which can be accomplished by studying cellular differentiation. Pluripotent stem cells are an efficient model for differentiation and have been directed towards both white adipogenic and brown adipogenic lineages. The stem cell microenvironment greatly contributes to terminal cell fate and as such, has been mimicked extensively by various polymers including those that can form 3D hydrogel constructs capable of biochemical and/or mechanical modifications and modulations. Using bioengineering approaches towards the creation of 3D cell culture arrangements is more beneficial than traditional 2D culture in that it better recapitulates the native tissue biochemically and biomechanically. In addition, such an approach could potentially protect the tissue formed from necrosis and allow for more efficient implantation. In this review, we highlight the promise of brown adipocytes with a focus on brown adipogenic differentiation of stem cells using bioengineering approaches, along with potential challenges and opportunities that arise when considering the energy expenditure of BAT for prospective therapeutics.
Collapse
Affiliation(s)
- Andrea M Unser
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road Albany, NY 12203, USA
| | - Yangzi Tian
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road Albany, NY 12203, USA
| | - Yubing Xie
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road Albany, NY 12203, USA.
| |
Collapse
|
67
|
Wang X, Rijff BL, Khang G. A building-block approach to 3D printing a multichannel, organ-regenerative scaffold. J Tissue Eng Regen Med 2015; 11:1403-1411. [PMID: 26123711 DOI: 10.1002/term.2038] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 02/01/2015] [Accepted: 04/29/2015] [Indexed: 11/07/2022]
Abstract
Multichannel scaffolds, formed by rapid prototyping technologies, retain a high potential for regenerative medicine and the manufacture of complex organs. This study aims to optimize several parameters for producing poly(lactic-co-glycolic acid) (PLGA) scaffolds by a low-temperature, deposition manufacturing, three-dimensional printing (3DP, or rapid prototyping) system. Concentration of the synthetic polymer solution, nozzle speed and extrusion rate were analysed and discussed. Polymer solution with a concentration of 12% w/v was determined as optimal for formation; large deviation of this figure failed to maintain the desired structure. The extrusion rate was also modified for better construct quality. Finally, several solid organ scaffolds, such as the liver, with proper wall thickness and intact contour were printed. This study gives basic instruction to design and fabricate scaffolds with de novo material systems, particularly by showing the approximation of variables for manufacturing multichannel PLGA scaffolds. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xiaohong Wang
- Centre of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing, People's Republic of China
- State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Boaz Lloyd Rijff
- Centre of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Gilson Khang
- Department of BIN Fusion Technology and Department of Polymer Nanoscience Technology, Chonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
68
|
Abbott RD, Kaplan DL. Strategies for improving the physiological relevance of human engineered tissues. Trends Biotechnol 2015; 33:401-7. [PMID: 25937289 DOI: 10.1016/j.tibtech.2015.04.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 02/05/2023]
Abstract
This review examines important robust methods for sustained, steady-state, in vitro culture. To achieve 'physiologically relevant' tissues in vitro additional complexity must be introduced to provide suitable transport, cell signaling, and matrix support for cells in 3D environments to achieve stable readouts of tissue function. Most tissue engineering systems draw conclusions on tissue functions such as responses to toxins, nutrition, or drugs based on short-term outcomes with in vitro cultures (2-14 days). However, short-term cultures limit insight with physiological relevance because the cells and tissues have not reached a steady-state.
Collapse
Affiliation(s)
- Rosalyn D Abbott
- Department of Biomedical Engineering, Science and Technology Center, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Science and Technology Center, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
69
|
Long term perfusion system supporting adipogenesis. Methods 2015; 84:84-9. [PMID: 25843606 DOI: 10.1016/j.ymeth.2015.03.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/17/2015] [Accepted: 03/20/2015] [Indexed: 12/28/2022] Open
Abstract
Adipose tissue engineered models are needed to enhance our understanding of disease mechanisms and for soft tissue regenerative strategies. Perfusion systems generate more physiologically relevant and sustainable adipose tissue models, however adipocytes have unique properties that make culturing them in a perfusion environment challenging. In this paper we describe the methods involved in the development of two perfusion culture systems (2D and 3D) to test their applicability for long term in vitro adipogenic cultures. It was hypothesized that a silk protein biomaterial scaffold would provide a 3D framework, in combination with perfusion flow, to generate a more physiologically relevant sustainable adipose tissue engineered model than 2D cell culture. Consistent with other studies evaluating 2D and 3D culture systems for adipogenesis we found that both systems successfully model adipogenesis, however 3D culture systems were more robust, providing the mechanical structure required to contain the large, fragile adipocytes that were lost in 2D perfused culture systems. 3D perfusion also stimulated greater lipogenesis and lipolysis and resulted in decreased secretion of LDH compared to 2D perfusion. Regardless of culture configuration (2D or 3D) greater glycerol was secreted with the increased nutritional supply provided by perfusion of fresh media. These results are promising for adipose tissue engineering applications including long term cultures for studying disease mechanisms and regenerative approaches, where both acute (days to weeks) and chronic (weeks to months) cultivation are critical for useful insight.
Collapse
|
70
|
Bellas E, Lo TJ, Fournier EP, Brown JE, Abbott RD, Gil ES, Marra KG, Rubin JP, Leisk GG, Kaplan DL. Injectable silk foams for soft tissue regeneration. Adv Healthc Mater 2015; 4:452-9. [PMID: 25323438 DOI: 10.1002/adhm.201400506] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/14/2014] [Indexed: 11/11/2022]
Abstract
Soft tissue fillers are needed for restoration of a defect or augmentation of existing tissues. Autografts and lipotransfer have been under study for soft tissue reconstruction but yield inconsistent results, often with considerable resorption of the grafted tissue. A minimally invasive procedure would reduce scarring and recovery time as well as allow the implant and/or grafted tissue to be placed closer to existing vasculature. Here, the feasibility of an injectable silk foam for soft tissue regeneration is demonstrated. Adipose-derived stem cells survive and migrate through the foam over a 10-d period in vitro. The silk foams are also successfully injected into the subcutaneous space in a rat and over a 3-month period integrating with the surrounding native tissue. The injected foams are palpable and soft to the touch through the skin and returning to their original dimensions after pressure is applied and then released. The foams readily absorb lipoaspirate making the foams useful as a scaffold or template for existing soft tissue filler technologies, useful either as a biomaterial alone or in combination with the lipoaspirate.
Collapse
Affiliation(s)
| | - Tim J. Lo
- Biomedical Engineering; Tufts University; Medford MA 02155 USA
| | | | - Joseph E. Brown
- Biomedical Engineering; Tufts University; Medford MA 02155 USA
| | | | - Eun S. Gil
- Biomedical Engineering; Tufts University; Medford MA 02155 USA
| | - Kacey G. Marra
- Department of Surgery; University of Pittsburgh; Pittsburgh PA 15213 USA
| | - J. Peter Rubin
- Department of Surgery; University of Pittsburgh; Pittsburgh PA 15213 USA
| | - Gary G. Leisk
- Mechanical Engineering; Tufts University; Medford MA 02155 USA
| | - David L. Kaplan
- Biomedical Engineering; Tufts University; Medford MA 02155 USA
| |
Collapse
|
71
|
Li Z, Qu T, Ding C, Ma C, Sun H, Li S, Liu X. Injectable gelatin derivative hydrogels with sustained vascular endothelial growth factor release for induced angiogenesis. Acta Biomater 2015; 13:88-100. [PMID: 25462840 DOI: 10.1016/j.actbio.2014.11.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 10/01/2014] [Accepted: 11/03/2014] [Indexed: 02/08/2023]
Abstract
Injectable biomaterials are attractive for soft tissue regeneration because they are handled in a minimally invasive manner and can easily adapt to complex defects. However, inadequate vascularization of the injectable constructs has long been a barrier, leading to necrosis or volume reduction after implantation. In this work, we developed a three-step process to synthesize injectable gelatin-derived hydrogels that are capable of controlling growth factor delivery to induce angiogenesis. In our approach, tyramine was first introduced into gelatin chains to provide enzymatic crosslinking points for gel formation after injection. Next, heparin, a polysaccharide with binding domains to many growth factors, was covalently linked to the tyramine-modified gelatin. Finally, vascular endothelial growth factor (VEGF) was incorporated into the gelatin derivative by binding with the heparin in the gelatin derivative, and an injectable gel with controlled VEGF release was formed by an enzymatic catalytic reaction with hydrogen peroxide (H2O2) and horseradish peroxidase (HRP). The gelation time, mechanical properties and degradation of the gel was readily tailored by the gelatin concentration and the ratio of H2O2/HRP. Binding VEGF to heparin stabilizes this growth factor, protects it from denaturation and proteolytic degradation and subsequently prolongs the sustained release. An in vitro release study and bioactivity assay indicated that the VEGF was released in a sustained manner with high bioactivity for over 3 weeks. Furthermore, a chicken chorioallantoic membrane (CAM) assay and animal experiments were performed to evaluate in vivo bioactivity of the VEGF released from the hydrogels. After 5 days of incubation on CAM, the number of blood vessels surrounding the heparin-modified hydrogels was increased by 2.4-fold compared with that of the control group. Deeper and denser cell infiltration and angiogenesis in the heparin-modified gelatin/VEGF gels were observed compared to the controls after being subcutaneously injected in the dorsal side of the mice for 2 weeks. Interestingly, even without the incorporation of VEGF, the heparin-modified gelatin derivative still had the capability to induce angiogenesis to a certain degree. Our results suggest that the gelatin derivative/VEGF is an excellent injectable delivery system for induced angiogenesis of soft tissue regeneration.
Collapse
|
72
|
Aubin K, Vincent C, Proulx M, Mayrand D, Fradette J. Creating capillary networks within human engineered tissues: impact of adipocytes and their secretory products. Acta Biomater 2015; 11:333-45. [PMID: 25278444 DOI: 10.1016/j.actbio.2014.09.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/03/2014] [Accepted: 09/24/2014] [Indexed: 12/12/2022]
Abstract
The development of tissue-engineered substitutes of substantial volume is closely associated with the need to ensure rapid vascularization upon grafting. Strategies promoting angiogenesis include the in vitro formation of capillary-like networks within engineered substitutes. We generated both connective and adipose tissues based on a cell sheet technology using human adipose-derived stromal cells. This study evaluates the morphology and extent of the capillary networks that developed upon seeding of human microvascular endothelial cells during tissue production. We posited that adipocyte presence/secretory products could modulate the resulting capillary network when compared to connective substitutes. Analyses including confocal imaging of CD31-labeled capillary-like networks indicated slight differences in their morphological appearance. However, the total volume occupied by the networks as well as the frequency distribution of the structure's volumes were similar between connective and adipose tissues. The average diameter of the capillary structures tended to be 20% higher in reconstructed adipose tissues. Quantification of pro-angiogenic molecules in conditioned media showed greater amounts of leptin (15×), angiopoietin-1 (3.4×) and HGF (1.7×) secreted from adipose than connective tissues at the time of endothelial cell seeding. However, this difference was attenuated during the following coculture period in endothelial cell-containing media, correlating with the minor differences noted between the networks. Taken together, we developed a protocol allowing reconstruction of both connective and adipose tissues featuring well-developed capillary networks in vitro. We performed a detailed characterization of the network architecture within engineered tissues that is relevant for graft assessment before implantation as well as for in vitro screening of angiogenic modulators using three-dimensional models.
Collapse
|
73
|
Bellas E, Rollins A, Moreau JE, Lo T, Quinn KP, Fourligas N, Georgakoudi I, Leisk GG, Mazan M, Thane KE, Taeymans O, Hoffman AM, Kaplan DL, Kirker-Head CA. Equine model for soft-tissue regeneration. J Biomed Mater Res B Appl Biomater 2014; 103:1217-1227. [PMID: 25350377 DOI: 10.1002/jbm.b.33299] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/26/2014] [Accepted: 10/01/2014] [Indexed: 11/10/2022]
Abstract
Soft-tissue regeneration methods currently yield suboptimal clinical outcomes due to loss of tissue volume and a lack of functional tissue regeneration. Grafted tissues and natural biomaterials often degrade or resorb too quickly, while most synthetic materials do not degrade. In previous research we demonstrated that soft-tissue regeneration can be supported using silk porous biomaterials for at least 18 months in vivo in a rodent model. In the present study, we scaled the system to a survival study using a large animal model and demonstrated the feasibility of these biomaterials for soft-tissue regeneration in adult horses. Both slow and rapidly degrading silk matrices were evaluated in subcutaneous pocket and intramuscular defect depots. We showed that we can effectively employ an equine model over 6 months to simultaneously evaluate many different implants, reducing the number of animals needed. Furthermore, we were able to tailor matrix degradation by varying the initial format of the implanted silk. Finally, we demonstrate ultrasound imaging of implants to be an effective means for tracking tissue regeneration and implant degradation.
Collapse
Affiliation(s)
- E Bellas
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - A Rollins
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA
| | - J E Moreau
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - T Lo
- Department of Mechanical Engineering, Tufts University, Medford, MA
| | - K P Quinn
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - N Fourligas
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - I Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - G G Leisk
- Department of Mechanical Engineering, Tufts University, Medford, MA
| | - M Mazan
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA
| | - K E Thane
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA
| | - O Taeymans
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA
| | - A M Hoffman
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA
| | - D L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - C A Kirker-Head
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA
| |
Collapse
|
74
|
Mathes SH, Ruffner H, Graf-Hausner U. The use of skin models in drug development. Adv Drug Deliv Rev 2014; 69-70:81-102. [PMID: 24378581 DOI: 10.1016/j.addr.2013.12.006] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/10/2013] [Accepted: 12/17/2013] [Indexed: 12/12/2022]
Abstract
Three dimensional (3D) tissue models of the human skin are probably the most developed and understood in vitro engineered constructs. The motivation to accomplish organotypic structures was driven by the clinics to enable transplantation of in vitro grown tissue substitutes and by the cosmetics industry as alternative test substrates in order to replace animal models. Today a huge variety of 3D human skin models exist, covering a multitude of scientific and/or technical demands. This review summarizes and discusses different approaches of skin model development and sets them into the context of drug development. Although human skin models have become indispensable for the cosmetics industry, they have not yet started their triumphal procession in pharmaceutical research and development. For drug development these tissue models may be of particular interest for a) systemically acting drugs applied on the skin, and b) drugs acting at the site of application in the case of skin diseases or disorders. Although quite a broad spectrum of models covering different aspects of the skin as a biologically acting surface exists, these are most often single stand-alone approaches. In order to enable the comprehensive application into drug development processes, the approaches have to be synchronized to allow a cross-over comparison. Besides the development of biological relevant models, other issues are not less important in the context of drug development: standardized production procedures, process automation, establishment of significant analytical methods, and data correlation. For the successful routine use of engineered human skin models in drug development, major requirements were defined. If these requirements can be accomplished in the next few years, human organotypic skin models will become indispensable for drug development, too.
Collapse
Affiliation(s)
- Stephanie H Mathes
- Institute of Chemistry and Biological Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820 Waedenswil, Switzerland
| | - Heinz Ruffner
- Developmental and Molecular Pathways (DMP), Novartis Institutes for BioMedical Research (NIBR), Fabrikstrasse 22, 4056 Basel, Switzerland
| | - Ursula Graf-Hausner
- Institute of Chemistry and Biological Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820 Waedenswil, Switzerland.
| |
Collapse
|
75
|
Hayden RS, Fortin JP, Harwood B, Subramanian B, Quinn KP, Georgakoudi I, Kopin AS, Kaplan DL. Cell-tethered ligands modulate bone remodeling by osteoblasts and osteoclasts. ADVANCED FUNCTIONAL MATERIALS 2014; 24:472-479. [PMID: 25419210 PMCID: PMC4235974 DOI: 10.1002/adfm.201302210] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The goals of the present study are to establish an in vitro co-culture model of osteoblast and osteoclast function and to quantify the resulting bone remodeling. The bone is tissue engineered using well-defined silk protein biomaterials in 2D and 3D formats in combination with human cells expressing tethered agonists for selected G protein-coupled receptors (GPCRs). The tethered constructs are introduced with the objective of triggering sustained and localized GPCR signaling. The cell-modified biomaterial surfaces are reconstructed from SEM images into 3D models using image processing for quantitative measurement of surface characteristics. Parathyroid hormone (PTH) and glucose-dependent insulinotropic peptide (GIP) are selected because of their roles in bone remodeling for expression in tethered format on bone marrow derived human mesenchymal stem cells (hMSCs). Increased calcium deposition and increased surface roughness are found in 3D digital surface models constructed from SEM images of silk protein films remodeled by the co-cultures containing the tethered PTH, and decreased surface roughness is found for the films remodeled by the tethered GIP co-cultures. Increased surface roughness is not found in monocultures of hMSCs expressing tethered PTH, suggesting that osteoclast-osteoblast interactions in the presence of PTH signaling are responsible for the increased mineralization. These data point towards the design of in vitro bone models in which osteoblast-osteoclast interactions are mimicked for a better understanding of bone remodeling.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alan S. Kopin
- 800 Washington Street, Box 7703, Boston, MA 02111 (USA)
| | | |
Collapse
|
76
|
Wu I, Elisseeff J. Biomaterials and Tissue Engineering for Soft Tissue Reconstruction. NATURAL AND SYNTHETIC BIOMEDICAL POLYMERS 2014:235-241. [DOI: 10.1016/b978-0-12-396983-5.00015-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
77
|
Yao R, Du Y, Zhang R, Lin F, Luan J. A biomimetic physiological model for human adipose tissue by adipocytes and endothelial cell cocultures with spatially controlled distribution. Biomed Mater 2013; 8:045005. [PMID: 23735623 DOI: 10.1088/1748-6041/8/4/045005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An in vitro model that recapitulates the characteristics of native human adipose tissue would largely benefit pathology studies and therapy development. In this paper, we fabricated a physiological model composed of both human adipocytes and endothelial cells with spatially controlled distribution that biomimics the structure and composition of human adipose tissue. Detailed studies into the cell-cell interactions between the adipocytes and endothelial cells revealed a mutual-enhanced effect which resembles the in vivo routine. Furthermore, comparisons between planar coculture and model coculture demonstrated improved adipocyte function as well as endothelial cell proliferation under the same conditions. This research provided a reliable model for human adipose tissue development studies and potential obesity-related therapy development.
Collapse
Affiliation(s)
- Rui Yao
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.
| | | | | | | | | |
Collapse
|
78
|
Gimble J, Rad MR, Yao S. Adipose Tissue–Derived Stem Cells and Their Regeneration Potential. STEM CELLS IN CRANIOFACIAL DEVELOPMENT AND REGENERATION 2013:241-258. [DOI: 10.1002/9781118498026.ch12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
79
|
Bellas E, Marra KG, Kaplan DL. Sustainable three-dimensional tissue model of human adipose tissue. Tissue Eng Part C Methods 2013; 19:745-54. [PMID: 23373822 DOI: 10.1089/ten.tec.2012.0620] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The need for physiologically relevant sustainable human adipose tissue models is crucial for understanding tissue development, disease progression, in vitro drug development and soft tissue regeneration. The coculture of adipocytes differentiated from human adipose-derived stem cells, with endothelial cells, on porous silk protein matrices for at least 6 months is reported, while maintaining adipose-like outcomes. Cultures were assessed for structure and morphology (Oil Red O content and CD31 expression), metabolic functions (leptin, glycerol production, gene expression for GLUT4, and PPARγ) and cell replication (DNA content). The cocultures maintained size and shape over this extended period in static cultures, while increasing in diameter by 12.5% in spinner flask culture. Spinner flask cultures yielded improved adipose tissue outcomes overall, based on structure and function, when compared to the static cultures. This work establishes a tissue model system that can be applied to the development of chronic metabolic dysfunction systems associated with human adipose tissue, such as obesity and diabetes, due to the long term sustainable functions demonstrated here.
Collapse
Affiliation(s)
- Evangelia Bellas
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | | | |
Collapse
|
80
|
Hronik-Tupaj M, Raja WK, Tang-Schomer M, Omenetto FG, Kaplan DL. Neural responses to electrical stimulation on patterned silk films. J Biomed Mater Res A 2013; 101:2559-72. [PMID: 23401351 DOI: 10.1002/jbm.a.34565] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/15/2012] [Accepted: 12/18/2012] [Indexed: 12/21/2022]
Abstract
Peripheral nerve injury is a critical issue for patients with trauma. Following injury, incomplete axon regeneration or misguided axon innervation into tissue will result in loss of sensory and motor functions. The objective of this study was to examine axon outgrowth and axon alignment in response to surface patterning and electrical stimulation. To accomplish our objective, metal electrodes with dimensions of 1.5 mm × 4 cm, were sputter coated onto micropatterned silk protein films, with surface grooves 3.5 μm wide × 500 nm deep. P19 neurons were seeded on the patterned electronic silk films and stimulated at 120 mV, 1 kHz, for 45 min each day for 7 days. Responses were compared with neurons on flat electronic silk films, patterned silk films without stimulation, and flat silk films without stimulation. Significant alignment was found on the patterned film groups compared with the flat film groups. Axon outgrowth was greater (p < 0.05) on electronic films on days 5 and 7 compared with the unstimulated groups. In conclusion, electrical stimulation, at 120 mV, 1 kHz, for 45 min daily, in addition to surface patterning, of 3.5 μm wide × 500 nm deep grooves, offered control of nerve axon outgrowth and alignment.
Collapse
Affiliation(s)
- Marie Hronik-Tupaj
- Department of Biomedical Engineering, Science & Technology Center, Tufts University, Medford, Massachusetts 02155, USA
| | | | | | | | | |
Collapse
|
81
|
Ward A, Quinn KP, Bellas E, Georgakoudi I, Kaplan DL. Noninvasive metabolic imaging of engineered 3D human adipose tissue in a perfusion bioreactor. PLoS One 2013; 8:e55696. [PMID: 23405199 PMCID: PMC3566027 DOI: 10.1371/journal.pone.0055696] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/02/2013] [Indexed: 11/18/2022] Open
Abstract
The efficacy and economy of most in vitro human models used in research is limited by the lack of a physiologically-relevant three-dimensional perfused environment and the inability to noninvasively quantify the structural and biochemical characteristics of the tissue. The goal of this project was to develop a perfusion bioreactor system compatible with two-photon imaging to noninvasively assess tissue engineered human adipose tissue structure and function in vitro. Three-dimensional (3D) vascularized human adipose tissues were engineered in vitro, before being introduced to a perfusion environment and tracked over time by automated quantification of endogenous markers of metabolism using two-photon excited fluorescence (TPEF). Depth-resolved image stacks were analyzed for redox ratio metabolic profiling and compared to prior analyses performed on 3D engineered adipose tissue in static culture. Traditional assessments with H&E staining were used to qualitatively measure extracellular matrix generation and cell density with respect to location within the tissue. The distribution of cells within the tissue and average cellular redox ratios were different between static and perfusion cultures, while the trends of decreased redox ratio and increased cellular proliferation with time in both static and perfusion cultures were similar. These results establish a basis for noninvasive optical tracking of tissue structure and function in vitro, which can be applied to future studies to assess tissue development or drug toxicity screening and disease progression.
Collapse
Affiliation(s)
- Andrew Ward
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - Kyle P. Quinn
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - Evangelia Bellas
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
82
|
Bellas E, Panilaitis BJB, Glettig DL, Kirker-Head CA, Yoo JJ, Marra KG, Rubin JP, Kaplan DL. Sustained volume retention in vivo with adipocyte and lipoaspirate seeded silk scaffolds. Biomaterials 2013; 34:2960-8. [PMID: 23374707 DOI: 10.1016/j.biomaterials.2013.01.058] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 01/10/2013] [Indexed: 01/31/2023]
Abstract
Current approaches to soft tissue regeneration include the use of fat grafts, natural or synthetic biomaterials as filler materials. Fat grafts and natural biomaterials resorb too quickly to maintain tissue regeneration, while synthetic materials do not degrade or regenerate tissue. Here, we present a simple approach to volume stable filling of soft tissue defects. In this study, we combined lipoaspirate with a silk protein matrix in a subcutaneous rat model. Silk biomaterials can be tailored to fit a variety of needs, and here were processed silk biomaterials into a porous sponge format to allow for tissue ingrowth while remaining mechanically robust. Over an 18 month period, the lipoaspirate seeded silk protein matrix regenerated subcutaneous adipose tissue while maintaining the original implanted volume. A silk protein matrix alone was not sufficient to regenerate adipose tissue, but yielded a fibrous tissue, although implanted volume was maintained. This work presents a significant improvement to the standard approaches to filling soft tissue defects by matching biomaterial degradation and tissue regeneration profiles.
Collapse
Affiliation(s)
- Evangelia Bellas
- Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Porzionato A, Sfriso MM, Macchi V, Rambaldo A, Lago G, Lancerotto L, Vindigni V, De Caro R. Decellularized omentum as novel biologic scaffold for reconstructive surgery and regenerative medicine. Eur J Histochem 2013; 57:e4. [PMID: 23549463 PMCID: PMC3683611 DOI: 10.4081/ejh.2013.e4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/17/2012] [Accepted: 09/19/2012] [Indexed: 12/17/2022] Open
Abstract
Homologous tissues, such as adipose tissue, may be an interesting source of acellular scaffolds, maintaining a complex physiological three-dimensional (3D) structure, to be recellularized with autologous cells. The aim of the present work is to evaluate the possibility of obtaining homologous acellular scaffolds from decellularization of the omentum, which is known to have a complex vascular network. Adult rat and human omenta were treated with an adapted decellularization protocol involving mechanical rupture (freeze-thaw cycles), enzymatic digestion (trypsin, lipase, deoxyribonuclease, ribonuclease) and lipid extraction (2-propanol). Histological staining confirmed the effectiveness of decellularization, resulting in cell-free scaffolds with no residual cells in the matrix. The complex 3D networks of collagen (azan-Mallory), elastic fibers (Van Gieson), reticular fibers and glycosaminoglycans (PAS) were maintained, whereas Oil Red and Sudan stains showed the loss of lipids in the decellularized tissue. The vascular structures in the tissue were still visible, with preservation of collagen and elastic wall components and loss of endothelial (anti-CD31 and -CD34 immunohistochemistry) and smooth muscle (anti-alpha smooth muscle actin) cells. Fat-rich and well vascularized omental tissue may be decellularized to obtain complex 3D scaffolds preserving tissue architecture potentially suitable for recellularization. Further analyses are necessary to verify the possibility of recolonization of the scaffold by adipose-derived stem cells in vitro and then in vivo after re implantation, as already known for homologus implants in regenerative processes.
Collapse
Affiliation(s)
- A Porzionato
- Section of Human Anatomy, Department of Molecular Medicine, University of Padua, Padova,
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Strassburg S, Nienhueser H, Stark GB, Finkenzeller G, Torio-Padron N. Human Adipose-Derived Stem Cells Enhance the Angiogenic Potential of Endothelial Progenitor Cells, But Not of Human Umbilical Vein Endothelial Cells. Tissue Eng Part A 2013; 19:166-74. [DOI: 10.1089/ten.tea.2011.0699] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Sandra Strassburg
- Department of Plastic and Hand Surgery, University of Freiburg Medical Center, Freiburg, Germany
| | - Henrik Nienhueser
- Department of Plastic and Hand Surgery, University of Freiburg Medical Center, Freiburg, Germany
| | - G. Björn Stark
- Department of Plastic and Hand Surgery, University of Freiburg Medical Center, Freiburg, Germany
| | - Günter Finkenzeller
- Department of Plastic and Hand Surgery, University of Freiburg Medical Center, Freiburg, Germany
| | - Nestor Torio-Padron
- Department of Plastic and Hand Surgery, University of Freiburg Medical Center, Freiburg, Germany
| |
Collapse
|
85
|
Yao R, Zhang R, Lin F, Luan J. Biomimetic injectable HUVEC-adipocytes/collagen/alginate microsphere co-cultures for adipose tissue engineering. Biotechnol Bioeng 2012; 110:1430-43. [DOI: 10.1002/bit.24784] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 12/12/2022]
|
86
|
Bellas E, Seiberg M, Garlick J, Kaplan DL. In vitro 3D full-thickness skin-equivalent tissue model using silk and collagen biomaterials. Macromol Biosci 2012; 12:1627-36. [PMID: 23161763 PMCID: PMC3724336 DOI: 10.1002/mabi.201200262] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 08/30/2012] [Indexed: 11/11/2022]
Abstract
Current approaches to skin equivalents often only include the epidermis and dermis. Here, a full-thickness skin equivalent is described including epidermis, dermis, and hypodermis, that could serve as an in vitro model for studying skin biology or as a platform for consumer product testing. The construct is easy to handle and is maintained for >14 d while expressing physiological morphologies of the epidermis and dermis, seen by keratin 10, collagens I and IV expression. The skin equivalent produces glycerol and leptin, markers of adipose metabolism. This work serves as a foundation for understanding a few necessary factors needed to develop a stable, functional model of full-thickness skin.
Collapse
Affiliation(s)
- Evangelia Bellas
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - Miri Seiberg
- Johnson &Johnson Skin Research Center, Johnson & Johnson Consumer Companies Inc, Skillman, NJ
| | - Jonathan Garlick
- Sackler Graduate School of Biomedical Sciences, Tufts University, Boston, MA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA
| |
Collapse
|
87
|
Gibbons MC, Foley MA, Cardinal KO. Thinking inside the box: keeping tissue-engineered constructs in vitro for use as preclinical models. TISSUE ENGINEERING PART B-REVIEWS 2012; 19:14-30. [PMID: 22800715 DOI: 10.1089/ten.teb.2012.0305] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue engineers have made great strides toward the creation of living tissue replacements for a wide range of tissue types and applications, with eventual patient implantation as the primary goal. However, an alternate use of tissue-engineered constructs exists: as in vitro preclinical models for purposes such as drug screening and device testing. Tissue-engineered preclinical models have numerous potential advantages over existing models, including cultivation in three-dimensional geometries, decreased cost, increased reproducibility, precise control over cultivation conditions, and the incorporation of human cells. Over the past decade, a number of researchers have developed and used tissue-engineered constructs as preclinical models for testing pharmaceuticals, gene therapies, stents, and other technologies, with examples including blood vessels, skeletal muscle, bone, cartilage, skin, cardiac muscle, liver, cornea, reproductive tissues, adipose, small intestine, neural tissue, and kidney. The focus of this article is to review accomplishments toward the creation and use of tissue-engineered preclinical models of each of these different tissue types.
Collapse
Affiliation(s)
- Michael C Gibbons
- Department of Biomedical and General Engineering, Cal Poly San Luis Obispo, San Luis Obispo, California 93407, USA
| | | | | |
Collapse
|
88
|
Daquinag AC, Souza GR, Kolonin MG. Adipose tissue engineering in three-dimensional levitation tissue culture system based on magnetic nanoparticles. Tissue Eng Part C Methods 2012; 19:336-44. [PMID: 23017116 DOI: 10.1089/ten.tec.2012.0198] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
White adipose tissue (WAT) is becoming widely used in regenerative medicine/cell therapy applications, and its physiological and pathological importance is increasingly appreciated. WAT is a complex organ composed of differentiated adipocytes, stromal mesenchymal progenitors known as adipose stromal cells (ASC), as well as endothelial vascular cells and infiltrating leukocytes. Two-dimensional (2D) culture that has been typically used for studying adipose cells does not adequately recapitulate WAT complexity. Improved methods for reconstruction of functional WAT ex vivo are instrumental for understanding of physiological interactions between the composing cell populations. Here, we used a three-dimensional (3D) levitation tissue culture system based on magnetic nanoparticle assembly to model WAT development and growth in organoids termed adipospheres. We show that 3T3-L1 preadipocytes remain viable in spheroids for a long period of time, while in 2D culture, they lose adherence and die after reaching confluence. Upon adipogenesis induction in 3T3-L1 adipospheres, cells efficiently formed large lipid droplets typical of white adipocytes in vivo, while only smaller lipid droplet formation is achievable in 2D. Adiposphere-based coculture of 3T3-L1 preadipocytes with murine endothelial bEND.3 cells led to a vascular-like network assembly concomitantly with lipogenesis in perivascular cells. Adipocyte-depleted stromal vascular fraction (SVF) of mouse WAT cultured in 3D underwent assembly into organoids with vascular-like structures containing luminal endothelial and perivascular stromal cell layers. Adipospheres made from primary WAT cells displayed robust proliferation and complex hierarchical organization reflected by a matricellular gradient incorporating ASC, endothelial cells, and leukocytes, while ASC quickly outgrew other cell types in adherent culture. Upon adipogenesis induction, adipospheres derived from the SVF displayed more efficient lipid droplet accumulation than 2D cultures. This indicates that 3D intercellular signaling better recapitulates WAT organogenesis. Combined, our studies show that adipospheres are appropriate for WAT modeling ex vivo and provide a new platform for functional screens to identify molecules bioactive toward individual adipose cell populations. This 3D methodology could be adopted for WAT transplantation applications and aid approaches to WAT-based cell therapy.
Collapse
Affiliation(s)
- Alexes C Daquinag
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | | |
Collapse
|
89
|
Abstract
Adipose tissue pathologies and defects have always represented a reconstructive challenge for plastic surgeons. In more recent years, several allogenic and alloplastic materials have been developed and used as fillers for soft tissue defects. However, their clinical use has been limited by further documented complications, such as foreign-body reactions potentially affecting function, degradation over time, and the risk for immunogenicity. Tissue-engineering strategies are thus being investigated to develop methods for generating adipose tissue. This paper will discuss the current state of the art in adipose tissue engineering techniques, exploring the biomaterials used, stem cells application, culture strategies, and current regulatory framework that are in use are here described and discussed.
Collapse
|
90
|
Hsu VM, Stransky CA, Bucky LP, Percec I. Fat grafting's past, present, and future: why adipose tissue is emerging as a critical link to the advancement of regenerative medicine. Aesthet Surg J 2012; 32:892-9. [PMID: 22942117 DOI: 10.1177/1090820x12455658] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Fat grafting is a common reconstructive and aesthetic procedure with extensive clinical applications. Recently, significant strides have been made in investigating the biology behind the success of this procedure. Surgeons and scientists alike have advanced this field by innovating fat graft harvesting and injection techniques, expanding the use of adipose tissue and its stem cell components, and broadening our understanding of the viability of fat grafting at the molecular and cellular levels. The objectives of this review are to (1) discuss the clinical applications of fat grafting, (2) describe the cellular biology of fat and the optimization of fat graft preparation, (3) illustrate the significance of adipose-derived stem cells and the potentiality of fat cells, (4) highlight the clinical uses of adipose-derived stem cells, and (5) explore the current and future frontiers of the study of fat grafting. Although collaborative knowledge has increased exponentially, many of the biological mechanisms behind fat grafting are still unknown. Plastic surgeons are in a unique position to pioneer both the scientific and clinical frontiers of fat grafting and to ultimately further this technology for the benefit of our patients.
Collapse
Affiliation(s)
- Vivian M Hsu
- Division of Plastic Surgery, Hospital of the University of Pennsylvania, Philadelphia, 19104, USA
| | | | | | | |
Collapse
|
91
|
Correia C, Bhumiratana S, Yan LP, Oliveira AL, Gimble JM, Rockwood D, Kaplan DL, Sousa RA, Reis RL, Vunjak-Novakovic G. Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomater 2012; 8:2483-92. [PMID: 22421311 DOI: 10.1016/j.actbio.2012.03.019] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/08/2012] [Accepted: 03/07/2012] [Indexed: 12/13/2022]
Abstract
Silk fibroin is a potent alternative to other biodegradable biopolymers for bone tissue engineering (TE), because of its tunable architecture and mechanical properties, and its demonstrated ability to support bone formation both in vitro and in vivo. In this study, we investigated a range of silk scaffolds for bone TE using human adipose-derived stem cells (hASCs), an attractive cell source for engineering autologous bone grafts. Our goal was to understand the effects of scaffold architecture and biomechanics and use this information to optimize silk scaffolds for bone TE applications. Silk scaffolds were fabricated using different solvents (aqueous vs. hexafluoro-2-propanol (HFIP)), pore sizes (250-500 μm vs. 500-1000 μm) and structures (lamellar vs. spherical pores). Four types of silk scaffolds combining the properties of interest were systematically compared with respect to bone tissue outcomes, with decellularized trabecular bone (DCB) included as a "gold standard". The scaffolds were seeded with hASCs and cultured for 7 weeks in osteogenic medium. Bone formation was evaluated by cell proliferation and differentiation, matrix production, calcification and mechanical properties. We observed that 400-600 μm porous HFIP-derived silk fibroin scaffold demonstrated the best bone tissue formation outcomes, as evidenced by increased bone protein production (osteopontin, collagen type I, bone sialoprotein), enhanced calcium deposition and total bone volume. On a direct comparison basis, alkaline phosphatase activity (AP) at week 2 and new calcium deposition at week 7 were comparable to the cells cultured in DCB. Yet, among the aqueous-based structures, the lamellar architecture induced increased AP activity and demonstrated higher equilibrium modulus than the spherical-pore scaffolds. Based on the collected data, we propose a conceptual model describing the effects of silk scaffold design on bone tissue formation.
Collapse
|
92
|
Quinn KP, Bellas E, Fourligas N, Lee K, Kaplan DL, Georgakoudi I. Characterization of metabolic changes associated with the functional development of 3D engineered tissues by non-invasive, dynamic measurement of individual cell redox ratios. Biomaterials 2012; 33:5341-8. [PMID: 22560200 DOI: 10.1016/j.biomaterials.2012.04.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 04/08/2012] [Indexed: 12/26/2022]
Abstract
Non-invasive approaches to assess tissue function could improve significantly current methods to diagnose diseases and optimize engineered tissues. In this study, we describe a two-photon excited fluorescence microscopy approach that relies entirely on endogenous fluorophores to dynamically quantify functional metabolic readouts from individual cells within three-dimensional engineered tissues undergoing adipogenic differentiation over six months. Specifically, we employ an automated approach to analyze 3D image volumes and extract a redox ratio of metabolic cofactors. We identify a decrease in redox ratio over the first two months of culture that is associated with stem cell differentiation and lipogenesis. In addition, we demonstrate that the presence of endothelial cells facilitate greater cell numbers deeper within the engineered tissues. Since traditional assessments of engineered tissue structure and function are destructive and logistically intensive, this non-destructive, label-free approach offers a potentially powerful high-content characterization tool for optimizing tissue engineering protocols and assessing engineered tissue implants.
Collapse
Affiliation(s)
- Kyle P Quinn
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | | | | | | | | | | |
Collapse
|
93
|
|
94
|
Fibrin glue is a candidate scaffold for long-term therapeutic protein expression in spontaneously differentiated adipocytes in vitro. Exp Cell Res 2011; 318:8-15. [PMID: 22020322 DOI: 10.1016/j.yexcr.2011.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 10/04/2011] [Accepted: 10/04/2011] [Indexed: 01/06/2023]
Abstract
Adipose tissue is expected to provide a source of cells for protein replacement therapies via auto-transplantation. However, the conditioning of the environment surrounding the transplanted adipocytes for their long-term survival and protein secretion properties has not been established. We have recently developed a preparation procedure for preadipocytes, ceiling culture-derived proliferative adipocytes (ccdPAs), as a therapeutic gene vehicle suitable for stable gene product secretion. We herein report the results of our evaluation of using fibrin glue as a scaffold for the transplanted ccdPAs for the expression of a transduced gene in a three-dimensional culture system. The ccdPAs secreted the functional protein translated from an exogenously transduced gene, as well as physiological adipocyte proteins, and the long viability of ccdPAs (up to 84 days) was dependent on the fibrinogen concentrations. The ccdPAs spontaneously accumulated lipid droplets, and their expression levels of the transduced exogenous gene with its product were maintained for at least 56 days. The fibrinogen concentration modified the adipogenic differentiation of ccdPAs and their exogenous gene expression levels, and the levels of exogenously transduced gene expression at the different fibrinogen concentrations were dependent on the extent of adipogenic differentiation in the gel. These results indicate that fibrin glue helps to maintain the high adipogenic potential of cultured adipocytes after passaging in a 3D culture system, and suggests that once they are successfully implanted at the transplantation site, the cells exhibit increased expression of the transduced gene with adipogenic differentiation.
Collapse
|
95
|
Arai K, Iwanaga S, Toda H, Genci C, Nishiyama Y, Nakamura M. Three-dimensional inkjet biofabrication based on designed images. Biofabrication 2011; 3:034113. [DOI: 10.1088/1758-5082/3/3/034113] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
96
|
Cai X, Lin Y, Hauschka PV, Grottkau BE. Adipose stem cells originate from perivascular cells. Biol Cell 2011; 103:435-447. [PMID: 21679159 DOI: 10.1042/bc20110033] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Recent research has shown that adipose tissues contain abundant MSCs (mesenchymal stem cells). The origin and location of the adipose stem cells, however, remain unknown, presenting an obstacle to the further purification and study of these cells. In the present study, we aimed at investigating the origins of adipose stem cells. α-SMA (α-smooth muscle actin) is one of the markers of pericytes. We harvested ASCs (adipose stromal cells) from α-SMA-GFP (green fluorescent protein) transgenic mice and sorted them into GFP-positive and GFP-negative cells by FACS. Multilineage differentiation tests were applied to examine the pluripotent ability of the α-SMA-GFP-positive and -negative cells. Immunofluorescent staining for α-SMA and PDGF-Rβ (platelet-derived growth factor receptor β) were applied to identify the α-SMA-GFP-positive cells. Then α-SMA-GFP-positive cells were loaded on a collagen-fibronectin gel with endothelial cells to test their vascularization ability both in vitro and in vivo. Results show that, in adipose tissue, all of the α-SMA-GFP-positive cells congregate around the blood vessels. Only the α-SMA-GFP-positive cells have multilineage differentiation ability, while the α-SMA-GFP-negative cells can only differentiate in an adipogenic direction. The α-SMA-GFP-positive cells maintained expression of α-SMA during multilineage differentiation. The α-SMA-GFP-positive cells can promote the vascularization of endothelial cells in three-dimensional culture both in vitro and in vivo. We conclude that the adipose stem cells originate from perivascular cells and congregate around blood vessels.
Collapse
Affiliation(s)
- Xiaoxiao Cai
- Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
97
|
Neofytou EA, Chang E, Patlola B, Joubert LM, Rajadas J, Gambhir SS, Cheng Z, Robbins RC, Beygui RE. Adipose tissue-derived stem cells display a proangiogenic phenotype on 3D scaffolds. J Biomed Mater Res A 2011; 98:383-93. [PMID: 21630430 DOI: 10.1002/jbm.a.33113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 02/22/2011] [Accepted: 03/09/2011] [Indexed: 01/24/2023]
Abstract
Ischemic heart disease is the leading cause of death worldwide. Recent studies suggest that adipose tissue-derived stem cells (ASCs) can be used as a potential source for cardiovascular tissue engineering due to their ability to differentiate along the cardiovascular lineage and to adopt a proangiogenic phenotype. To understand better ASCs' biology, we used a novel 3D culture device. ASCs' and b.END-3 endothelial cell proliferation, migration, and vessel morphogenesis were significantly enhanced compared to 2D culturing techniques. ASCs were isolated from inguinal fat pads of 6-week-old GFP+/BLI+ mice. Early passage ASCs cells (P3-P4), PKH26-labeled murine b.END-3 cells or a co-culture of ASCs and b.END-3 cells were seeded at a density of 1 × 10(5) on three different surface configurations: (a) a 2D surface of tissue culture plastic, (b) Matrigel, and (c) a highly porous 3D scaffold fabricated from inert polystyrene. VEGF expression, cell proliferation, and tubulization, were assessed using optical microscopy, fluorescence microscopy, 3D confocal microscopy, and SEM imaging (n = 6). Increased VEGF levels were seen in conditioned media harvested from co-cultures of ASCs and b.END-3 on either Matrigel or a 3D matrix. Fluorescence, confocal, SEM, bioluminescence revealed improved cell, proliferation, and tubule formation for cells seeded on the 3D polystyrene matrix. Collectively, these data demonstrate that co-culturing ASCs with endothelial cells in a 3D matrix environment enable us to generate prevascularized tissue-engineered constructs. This can potentially help us to surpass the tissue thickness limitations faced by the tissue engineering community today.
Collapse
Affiliation(s)
- Evgenios A Neofytou
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Choi JH, Gimble JM, Lee K, Marra KG, Rubin JP, Yoo JJ, Vunjak-Novakovic G, Kaplan DL. Adipose tissue engineering for soft tissue regeneration. TISSUE ENGINEERING PART B-REVIEWS 2011; 16:413-26. [PMID: 20166810 DOI: 10.1089/ten.teb.2009.0544] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Current treatment modalities for soft tissue defects caused by various pathologies and trauma include autologous grafting and commercially available fillers. However, these treatment methods present a number of challenges and limitations, such as donor-site morbidity and volume loss over time. As such, improved therapeutic modalities need to be developed. Tissue engineering techniques offer novel solutions to these problems through development of bioactive tissue constructs that can regenerate adipose tissue in both structure and function. Recently, a number of studies have been designed to explore various methods to engineer human adipose tissue. This review will focus on these developments in the area of adipose tissue engineering for soft tissue replacement. The physiology of adipose tissue and current surgical therapies used to replace lost tissue volume, specifically in breast tissue, are introduced, and current biomaterials, cell sources, and tissue culture strategies are discussed. We discuss future areas of study in adipose tissue engineering.
Collapse
Affiliation(s)
- Jennifer H Choi
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Gotoh Y, Ishizuka Y, Matsuura T, Niimi S. Spheroid Formation and Expression of Liver-Specific Functions of Human Hepatocellular Carcinoma-Derived FLC-4 Cells Cultured in Lactose−Silk Fibroin Conjugate Sponges. Biomacromolecules 2011; 12:1532-9. [DOI: 10.1021/bm101495c] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yohko Gotoh
- Silk-Materials Research Unit, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Yasuyuki Ishizuka
- Applied Cell Biotechnologies, Inc., 1-1-48 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tomokazu Matsuura
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Shingo Niimi
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| |
Collapse
|
100
|
Choi JH, Bellas E, Gimble JM, Vunjak-Novakovic G, Kaplan DL. Lipolytic function of adipocyte/endothelial cocultures. Tissue Eng Part A 2011; 17:1437-44. [PMID: 21247356 DOI: 10.1089/ten.tea.2010.0527] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The rising incidence of adipose-related disorders such as obesity has prompted increased interest in the in vitro development of functional human soft tissues to study the disease and treatment options. Further, soft tissues maintained in vitro with a capacity to resemble in vivo tissues in structure and metabolic function would help gain insight into mechanisms involved in adipose tissue development. In the current study, the metabolic potential of adipose/endothelial cocultures on three-dimensional silk fibroin scaffolds was studied. Endothelial contributions to adipose lipogenesis and lipolysis were the focus of the study. Triglyceride accumulation, adipogenic gene transcript expression, and basal lipolysis measurements demonstrated the ability of this coculture system to retain metabolic levels obtained in adipocyte monocultures. Additionally, basal lipolysis was stimulated in mono- and coculture systems to a similar extent at 1.6- and 1.9-fold over controls, respectively. The ability to maintain adipose functions in these cocultures represents a step forward in the development of a tissue-engineered adipose tissue system exhibiting both endothelial lumens and metabolic functions.
Collapse
Affiliation(s)
- Jennifer H Choi
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | | | | | | | | |
Collapse
|