51
|
Zhang Y, Yu M, Dai M, Chen C, Tang Q, Jing W, Wang H, Tian W. miR-450a-5p within rat adipose tissue exosome-like vesicles promotes adipogenic differentiation by targeting WISP2. J Cell Sci 2017; 130:1158-1168. [PMID: 28167681 DOI: 10.1242/jcs.197764] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/31/2017] [Indexed: 02/05/2023] Open
Abstract
Adipose tissue is an active endocrine organ that can secrete a wide number of factors to regulate adipogenesis via paracrine signals. In addition to soluble proteins in adipose tissue, microRNAs (miRNAs) enriched in extracellular vesicles (EVs), such as exosomes or microvesicles, could modulate intercellular communications. In this study, we demonstrated that exosome-like vesicles derived from adipose tissue (Exo-AT) were internalized by adipose tissue-derived stem cells (ADSCs), and that these, in turn, induced adipogenesis. High-throughput sequencing showed that 45 miRNAs were enriched in Exo-AT, and 31.11% of them were associated with adipogenesis, compared with ADSC-derived exosome-like vesicles (Exo-ADSC). miR-450a-5p, one of the most abundant miRNAs in Exo-AT, was a proadipogenic miRNA. Further study demonstrated that miR-450a-5p promoted adipogenesis through repressing expression of WISP2 by targeting its 3' untranslated region. Additionally, Exo-AT could also downregulate the expression of WISP2, while miR-450a-5p inhibitor reversed this effect. Moreover, inhibition of miR-450a-5p impaired adipogenesis mediated by exosome-like vesicles. In conclusion, Exo-AT mediates adipogenic differentiation through a mechanism involving transfer of miR-450a-5p.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, Sichuan Province 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mei Yu
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu 610041, China .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, Sichuan Province 610041, P.R. China
| | - Minjia Dai
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, Sichuan Province 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chang Chen
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, Sichuan Province 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qi Tang
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, Sichuan Province 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wei Jing
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, Sichuan Province 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hang Wang
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, Sichuan Province 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Weidong Tian
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu 610041, China .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, Sichuan Province 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
52
|
Poon CJ, Tan SS, Boodhun SW, Abberton KM, Morrison WA. A Streamlined Method for the Preparation of Growth Factor-enriched Thermosensitive Hydrogels from Soft Tissue. Bio Protoc 2017; 7:e2128. [PMID: 34458449 DOI: 10.21769/bioprotoc.2128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/07/2016] [Accepted: 01/06/2017] [Indexed: 11/02/2022] Open
Abstract
Hydrogels are an ideal medium for the expansion of cells in three dimensions. The ability to induce cell expansion and differentiation in a controlled manner is a key goal in tissue engineering. Here we describe a detailed method for producing hydrogels from soft tissues with an emphasis on adipose tissue. In this method, soluble, extractable proteins are recovered from the tissue and stored while the remaining insoluble tissue is processed and solubilised. Once the tissue has been sufficiently solubilised, the extracted proteins are added. The resulting product is a thermosensitive hydrogel with proteins representative of the native tissue. This method addresses common issues encountered when working with some biomaterials, such as high lipid content, DNA contamination, and finding an appropriate sterilisation method. Although the focus of this article is on adipose tissue, using this method we have produced hydrogels from other soft tissues including muscle, liver, and cardiac tissue.
Collapse
Affiliation(s)
- Christopher J Poon
- O'Brien Institute Department of SVI, St. Vincent's Institute of Medical Research, Melbourne, Australia
| | - Shaun S Tan
- O'Brien Institute Department of SVI, St. Vincent's Institute of Medical Research, Melbourne, Australia
| | - Sholeh W Boodhun
- O'Brien Institute Department of SVI, St. Vincent's Institute of Medical Research, Melbourne, Australia
| | - Keren M Abberton
- O'Brien Institute Department of SVI, St. Vincent's Institute of Medical Research, Melbourne, Australia
| | - Wayne A Morrison
- O'Brien Institute Department of SVI, St. Vincent's Institute of Medical Research, Melbourne, Australia
| |
Collapse
|
53
|
Dai M, Zhang Y, Yu M, Tian W. Therapeutic applications of conditioned medium from adipose tissue. Cell Prolif 2016; 49:561-7. [PMID: 27487984 PMCID: PMC6496245 DOI: 10.1111/cpr.12281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/23/2016] [Indexed: 02/05/2023] Open
Abstract
For the past number of decades, adipose tissue has attracted significant interest due to its complicated composition and versatile functions. Adipose tissue is no longer considered to be just an energy-storing fat pad, but is also a key ring player in interaction networks between various organs and tissues. A wide range of factors released by adipose tissue are responsible for regulation of adipose tissue and other distant target tissues and cells, such as kidneys, skeletal muscle, the cardiovascular system and the immune system, in an auto-/paracrine manner. A mixture of bioactive molecules makes up the conditioned medium of adipose tissue. The beneficial role played by these bioactive molecules in angiogenesis, wound healing, tissue regeneration and immunomodulation has been demonstrated by various studies. Study of this conditioned medium helps deepen our understanding of underlying mechanisms and broadens the potential for therapeutic applications. In this review, we have aimed to improve fundamental understanding of conditioned medium from adipose tissue and to summarize recent efforts to study its therapeutic applications.
Collapse
Affiliation(s)
- Minjia Dai
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yan Zhang
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Mei Yu
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu, 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| | - Weidong Tian
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu, 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan Province, China.
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
54
|
Lopez J, Huttala O, Sarkanen JR, Kaartinen I, Kuokkanen H, Ylikomi T. Cytokine-Rich Adipose Tissue Extract Production from Water-Assisted Lipoaspirate: Methodology for Clinical Use. Biores Open Access 2016; 5:269-78. [PMID: 27679753 PMCID: PMC5035828 DOI: 10.1089/biores.2016.0030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Proper functioning wound healing strategies are sparse. Adequate vascular formation to the injured area, as well as replacement of the volume loss, is fundamental in soft tissue repair. Tissue engineering strategies have been proposed for the treatment of these injury sites. Novel cell-free substance, human adipose tissue extract (ATE), has been previously shown to induce in vitro angiogenesis and adipogenesis and in vivo soft tissue formation. This study reports the translation of ATE preparation from laboratory to the operating room (OR). ATE samples for this study were derived from adipose tissue obtained with the water-jet assisted liposuction technique from 27 healthy patients. The variables studied included incubation time (15, 30, and 45 min), temperature (room temperature vs. 37°C), and filter type to determine the optimal method yielding the most consistent total protein content, as well as consistent and high expression of adipose-derived growth factors and cytokines, including: vascular endothelial growth factor, basic fibroblast growth factor, interleukin-6, adiponectin, leptin, and insulin-like growth factor. Following the optimization, samples were produced in the OR and tested for their sterility. No significant differences were observed when comparing extract incubation time points or incubation temperature. Nonetheless, when studying the different filter types used, a syringe filter with PES membrane with larger filter area showed significantly higher protein concentration (p ≤ 0.018). When studying the different growth factor concentrations, ELISA results showed less variation in cytokine concentrations in the OR samples with the optimized protocol. All of the OR samples were tested sterile. The devised protocol is an easy and reproducible OR-ready method for ATE generation. As an attractive source of growth factors, ATE is a promising alternative in the vast field of tissue engineering. Its clinical applications include volume replacement as a complement to fillers and improvement of the permanence of fat grafts and wound healing, among other bioactive functions.
Collapse
Affiliation(s)
- Jenny Lopez
- Department of Cell Biology, School of Medicine, University of Tampere, Tampere, Finland.; Department of Plastic Surgery, Unit of Musculoskeletal Diseases, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland
| | - Outi Huttala
- FICAM, Finnish Centre for Alternative Methods, School of Medicine, University of Tampere , Tampere, Finland
| | - Jertta-Riina Sarkanen
- Department of Cell Biology, School of Medicine, University of Tampere, Tampere, Finland.; Science Center, Pirkanmaa Hospital District, Finland
| | - Ilkka Kaartinen
- Department of Plastic Surgery, Unit of Musculoskeletal Diseases, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland.; Science Center, Pirkanmaa Hospital District, Finland
| | - Hannu Kuokkanen
- Department of Plastic Surgery, Unit of Musculoskeletal Diseases, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland.; Science Center, Pirkanmaa Hospital District, Finland
| | - Timo Ylikomi
- Department of Cell Biology, School of Medicine, University of Tampere, Tampere, Finland.; Science Center, Pirkanmaa Hospital District, Finland
| |
Collapse
|
55
|
Zhang S, Lu Q, Cao T, Toh WS. Adipose Tissue and Extracellular Matrix Development by Injectable Decellularized Adipose Matrix Loaded with Basic Fibroblast Growth Factor. Plast Reconstr Surg 2016; 137:1171-1180. [PMID: 27018672 DOI: 10.1097/prs.0000000000002019] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND There is a significant need for soft-tissue replacements in the field of reconstructive surgery. Decellularized adipose tissues were heparin crosslinked and loaded with basic fibroblast growth factor (bFGF). This injectable system was evaluated for its adipogenic and angiogenic capabilities for in vivo adipose tissue regeneration. METHODS Decellularized adipose tissues were harvested from the inguinal fat pads of C57BL/6J mice, minced, and heparinized before being loaded with bFGF. Decellularized adipose tissues without bFGF served as a control. In vivo adipose neotissue formation, neovascularization, and volume stability were evaluated over a period of 12 weeks. After 6 or 12 weeks, mice were killed and the newly formed adipose tissues, together with the contralateral endogenous adipose tissues, were harvested for gross, volumetric, histologic, and immunohistochemical analysis. RESULTS Decellularized adipose tissues that were heparinized and loaded with bFGF induced significant de novo adipose neotissue formation, with progressive tissue growth and neovascularization from 6 to 12 weeks. The adipose neotissues exhibited mature adipose morphology and extracellular matrix that closely resembled that of the endogenous adipose tissue. In contrast, decellularized adipose tissues without bFGF induced limited adipose neotissue formation and were completely resorbed by the end of 12 weeks. CONCLUSION This study demonstrates the high efficiency of heparinized decellularized adipose tissue matrix loaded with bFGF in promoting adipose neotissue formation and neovascularization with long-term volume stability.
Collapse
Affiliation(s)
- Shipin Zhang
- Singapore.,From the Faculty of Dentistry and the Tissue Engineering Program, Life Sciences Institute, National University of Singapore
| | - Qiqi Lu
- Singapore.,From the Faculty of Dentistry and the Tissue Engineering Program, Life Sciences Institute, National University of Singapore
| | - Tong Cao
- Singapore.,From the Faculty of Dentistry and the Tissue Engineering Program, Life Sciences Institute, National University of Singapore
| | - Wei Seong Toh
- Singapore.,From the Faculty of Dentistry and the Tissue Engineering Program, Life Sciences Institute, National University of Singapore
| |
Collapse
|
56
|
Wang ML, Lin SH, Hou YY, Chen YH. Suppression of Lipid Accumulation by Indole-3-Carbinol Is Associated with Increased Expression of the Aryl Hydrocarbon Receptor and CYP1B1 Proteins in Adipocytes and with Decreased Adipocyte-Stimulated Endothelial Tube Formation. Int J Mol Sci 2016; 17:ijms17081256. [PMID: 27527145 PMCID: PMC5000654 DOI: 10.3390/ijms17081256] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 12/13/2022] Open
Abstract
This study investigated the effects of indole-3-carbinol (I3C) on adipogenesis- and angiogenesis-associated factors in mature adipocytes. The cross-talk between mature adipocytes and endothelial cells (ECs) was also explored by cultivating ECs in a conditioned medium (CM) by using I3C-treated adipocytes. The results revealed that I3C significantly inhibited triglyceride accumulation in mature adipocytes in association with significantly increased expression of AhR and CYP1B1 proteins as well as slightly decreased nuclear factor erythroid-derived factor 2–related factor 2, hormone-sensitive lipase, and glycerol-3-phosphate dehydrogenase expression by mature adipocytes. Furthermore, I3C inhibited CM-stimulated endothelial tube formation, which was accompanied by the modulated secretion of angiogenic factors in adipocytes, including vascular endothelial growth factor, interleukin-6, matrix metalloproteinases, and nitric oxide. In conclusion, I3C reduced lipid droplet accumulation in adipocytes and suppressed adipocyte-stimulated angiogenesis in ECs, suggesting that I3C is a potential therapeutic agent for treating obesity and obesity-associated disorders.
Collapse
Affiliation(s)
- Mei-Lin Wang
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan.
| | - Shyh-Hsiang Lin
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan.
| | - Yuan-Yu Hou
- Department of Food and Beverage Management, Mackay Medicine, Nursing and Management College, Taipei 112, Taiwan.
| | - Yue-Hwa Chen
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan.
- Cancer Research Center, Taipei Medical University Hospital, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan.
| |
Collapse
|
57
|
Lappalainen OP, Karhula SS, Haapea M, Kauppinen S, Finnilä M, Saarakkala S, Serlo W, Sándor GK. Micro-CT Analysis of Bone Healing in Rabbit Calvarial Critical-Sized Defects with Solid Bioactive Glass, Tricalcium Phosphate Granules or Autogenous Bone. EJOURNAL OF ORAL MAXILLOFACIAL RESEARCH 2016; 7:e4. [PMID: 27489608 PMCID: PMC4970504 DOI: 10.5037/jomr.2016.7204] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/13/2016] [Indexed: 12/15/2022]
Abstract
Objectives The purpose of the present study was to evaluate bone healing in rabbit critical-sized calvarial defects using two different synthetic scaffold materials, solid biodegradable bioactive glass and tricalcium phosphate granules alongside solid and particulated autogenous bone grafts. Material and Methods Bilateral full thickness critical-sized calvarial defects were created in 15 New Zealand white adult male rabbits. Ten defects were filled with solid scaffolds made of bioactive glass or with porous tricalcium phosphate granules. The healing of the biomaterial-filled defects was compared at the 6 week time point to the healing of autologous bone grafted defects filled with a solid cranial bone block in 5 defects and with particulated bone combined with fibrin glue in 10 defects. In 5 animals one defect was left unfilled as a negative control. Micro-computed tomography (micro-CT) was used to analyze healing of the defects. Results Micro-CT analysis revealed that defects filled with tricalcium phosphate granules showed new bone formation in the order of 3.89 (SD 1.17)% whereas defects treated with solid bioactive glass scaffolds showed 0.21 (SD 0.16)%, new bone formation. In the empty negative control defects there was an average new bone formation of 21.8 (SD 23.7)%. Conclusions According to findings in this study, tricalcium phosphate granules have osteogenic potential superior to bioactive glass, though both particulated bone with fibrin glue and solid bone block were superior defect filling materials.
Collapse
Affiliation(s)
- Olli-Pekka Lappalainen
- Department of Oral and Maxillofacial Surgery, Research Group in Tissue Engineering, Faculty of Medicine, Medical Research Center, University of Oulu, Oulu University Hospital, Oulu Finland
| | - Sakari S Karhula
- Department of Medical Imaging, Physics and Technology, Research Unit, Faculty of Medicine, Medical Research Center, University of Oulu, OuluFinland.; Department of Diagnostic Radiology, Oulu University Hospital, Medical Research Center, University of Oulu, OuluFinland
| | - Marianne Haapea
- Department of Diagnostic Radiology, Oulu University Hospital, Medical Research Center, University of Oulu, Oulu Finland
| | - Sami Kauppinen
- Department of Medical Imaging, Physics and Technology, Research Unit, Faculty of Medicine, Medical Research Center, University of Oulu, OuluFinland.; Department of Diagnostic Radiology, Oulu University Hospital, Medical Research Center, University of Oulu, OuluFinland
| | - Mikko Finnilä
- Department of Medical Imaging, Physics and Technology, Research Unit, Faculty of Medicine, Medical Research Center, University of Oulu, OuluFinland.; Department of Applied Physics, University of Eastern Finland, KuopioFinland
| | - Simo Saarakkala
- Department of Medical Imaging, Physics and Technology, Research Unit, Faculty of Medicine, Medical Research Center, University of Oulu, OuluFinland.; Department of Diagnostic Radiology, Oulu University Hospital, Medical Research Center, University of Oulu, OuluFinland
| | - Willy Serlo
- Department of Pediatric Surgery, PEDEGO Research Center, Oulu University Hospital, Medical Research Center, Uinversity of Oulu, Oulu Finland
| | - George K Sándor
- Department of Oral and Maxillofacial Surgery, Research Group in Tissue Engineering, Faculty of Medicine, Medical Research Center, University of Oulu, Oulu University Hospital, Oulu Finland
| |
Collapse
|
58
|
Huttala O, Mysore R, Sarkanen JR, Heinonen T, Olkkonen VM, Ylikomi T. Differentiation of human adipose stromal cells in vitro into insulin-sensitive adipocytes. Cell Tissue Res 2016; 366:63-74. [DOI: 10.1007/s00441-016-2409-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/05/2016] [Indexed: 12/28/2022]
|
59
|
Zhang Y, Yu M, Tian W. Physiological and pathological impact of exosomes of adipose tissue. Cell Prolif 2016; 49:3-13. [PMID: 26776755 DOI: 10.1111/cpr.12233] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/14/2015] [Indexed: 02/05/2023] Open
Abstract
Exosomes are nanovesicles that have emerged as a new intercellular communication system for transporting proteins and RNAs; recent studies have shown that they play a role in many physiological and pathological processes such as immune regulation, cell differentiation, infection and cancer. By transferring proteins, mRNAs and microRNAs, exosomes act as information vehicles that alter the behavior of recipient cells. Compared to direct cell-cell contact or secreted factors, exosomes can affect recipient cells in more efficient ways. In whole adipose tissues, it has been shown that exosomes exist in supernatants of adipocytes and adipose stromal cells (ADSCs). Adipocyte exosomes are linked to lipid metabolism and obesity-related insulin resistance and exosomes secreted by ADSCs are involved in angiogenesis, immunomodulation and tumor development. This review introduces characteristics of exosomes in adipose tissue, summarizes their functions in different physiological and pathological processes and provides the further insight into potential application of exosomes to disease diagnosis and treatment.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China.,Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Mei Yu
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Weidong Tian
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China.,Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
60
|
Lu Z, Yuan Y, Gao J, Lu F. Adipose tissue extract promotes adipose tissue regeneration in an adipose tissue engineering chamber model. Cell Tissue Res 2015; 364:289-98. [PMID: 26678825 DOI: 10.1007/s00441-015-2322-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 10/24/2015] [Accepted: 10/28/2015] [Indexed: 01/07/2023]
Abstract
An adipose tissue engineering chamber model of spontaneous adipose tissue generation from an existing fat flap has been described. However, the chamber does not completely fill with adipose tissue in this model. Here, the effect of adipose tissue extract (ATE) on adipose tissue regeneration was investigated. In vitro, the adipogenic and angiogenic capacities of ATE were evaluated using Oil Red O and tube formation assays on adipose-derived stem cells (ASCs) and rat aortic endothelial cells (RAECs), respectively. In vivo, saline or ATE was injected into the adipose tissue engineering chamber 1 week after its implantation. At different time points post-injection, the contents were morphometrically, histologically, and immunohistochemically evaluated, and the expression of growth factors and adipogenic genes was analyzed by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR. With the exception of the baseline control group, in which fat flaps were not inserted into a chamber, the total volume of fat flap tissue increased significantly in all groups, especially in the ATE group. Better morphology and structure, a thinner capsule, and more vessels were observed in the ATE group than in the control group. Expression of angiogenic growth factors and adipogenic markers were significantly higher in the ATE group. ATE therefore significantly promoted adipose tissue regeneration and reduced capsule formation in an adipose tissue engineering chamber model. These data suggest that ATE provides a more angiogenic and adipogenic microenvironment for adipose tissue formation by releasing various cytokines and growth factors that also inhibit capsule formation.
Collapse
Affiliation(s)
- Zijing Lu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yi Yuan
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jianhua Gao
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Feng Lu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
61
|
Choi HY, Jung J, Name SB, Lee JE, Byon IS, Seo JH. The effects of vascular endothelial growth factor (VEGF) on human orbital preadipocyte. Orbit 2015; 35:6-10. [PMID: 26588326 DOI: 10.3109/01676830.2015.1082606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 08/08/2015] [Indexed: 06/05/2023]
Abstract
PURPOSE To investigate the presence of the Vascular Endothelial Growth Factor (VEGF) and its receptor (VEGFR) in human orbital preadipocytes, and to evaluate the effect of VEGF on human orbital preadipocyte differentiation and adipogenesis in vitro. RESULTS Four isoforms of VEGF (VEGF121, 155, 189, and 206), VEGFR-1, VEGF-2, and neuropilin-1 were expressed in human orbital preadipocytes. Treatment with 100 ng/ml VEGF induced higher expressions of C/EBPα and LPL than the non-treated control (p = 0.03 and p = 0.01) or treatment with 50ng/ml (p = 0.04 for both). At both concentrations VEGF enhanced the accumulation of intra-cytoplasmic lipid versus the control, and treatment with 100 ng/ml VEGF induced more lipid accumulation than treatment with 50 ng/ml VEGF (p = 0.03). CONCLUSIONS VEGF and VEGFR were observed in human orbital preadipocytes, and exogenous VEGF enhanced adipogenesis in these cells. These results suggest that VEGF plays a role as an autocrine or paracrine growth factor during human orbital preadipocyte differentiation.
Collapse
Affiliation(s)
- Hee-young Choi
- a Department of Ophthalmology , Pusan National University Hospital , Busan , South Korea
- b Medical Research Institute , Pusan National University , Busan , South Korea
| | - Jaeho Jung
- c Department of Ophthalmology , Pusan National University Yangsan Hospital , Yangsan , South Korea
- d Research Institute for Convergence of Biomedical Science and Technology , Pusan National University Yangsan Hospital , Yangsan , South Korea
| | - Su-bong Name
- e Department of Plastic and Reconstructive Surgery , Pusan National University Yangsan Hospital , Yangsan , South Korea
| | - Ji-eun Lee
- c Department of Ophthalmology , Pusan National University Yangsan Hospital , Yangsan , South Korea
| | - Ik-soo Byon
- c Department of Ophthalmology , Pusan National University Yangsan Hospital , Yangsan , South Korea
| | - Je-hyun Seo
- c Department of Ophthalmology , Pusan National University Yangsan Hospital , Yangsan , South Korea
| |
Collapse
|
62
|
Unser AM, Tian Y, Xie Y. Opportunities and challenges in three-dimensional brown adipogenesis of stem cells. Biotechnol Adv 2015; 33:962-79. [PMID: 26231586 DOI: 10.1016/j.biotechadv.2015.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/07/2015] [Accepted: 07/23/2015] [Indexed: 12/21/2022]
Abstract
The formation of brown adipose tissue (BAT) via brown adipogenesis has become a notable process due to its ability to expend energy as heat with implications in the treatment of metabolic disorders and obesity. With the advent of complexity within white adipose tissue (WAT) along with inducible brown adipocytes (also known as brite and beige), there has been a surge in deciphering adipocyte biology as well as in vivo adipogenic microenvironments. A therapeutic outcome would benefit from understanding early events in brown adipogenesis, which can be accomplished by studying cellular differentiation. Pluripotent stem cells are an efficient model for differentiation and have been directed towards both white adipogenic and brown adipogenic lineages. The stem cell microenvironment greatly contributes to terminal cell fate and as such, has been mimicked extensively by various polymers including those that can form 3D hydrogel constructs capable of biochemical and/or mechanical modifications and modulations. Using bioengineering approaches towards the creation of 3D cell culture arrangements is more beneficial than traditional 2D culture in that it better recapitulates the native tissue biochemically and biomechanically. In addition, such an approach could potentially protect the tissue formed from necrosis and allow for more efficient implantation. In this review, we highlight the promise of brown adipocytes with a focus on brown adipogenic differentiation of stem cells using bioengineering approaches, along with potential challenges and opportunities that arise when considering the energy expenditure of BAT for prospective therapeutics.
Collapse
Affiliation(s)
- Andrea M Unser
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road Albany, NY 12203, USA
| | - Yangzi Tian
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road Albany, NY 12203, USA
| | - Yubing Xie
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road Albany, NY 12203, USA.
| |
Collapse
|
63
|
α-Naphthoflavone Increases Lipid Accumulation in Mature Adipocytes and Enhances Adipocyte-Stimulated Endothelial Tube Formation. Nutrients 2015; 7:3166-83. [PMID: 25942489 PMCID: PMC4446745 DOI: 10.3390/nu7053166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/14/2015] [Accepted: 04/20/2015] [Indexed: 01/24/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated factor that regulates biological effects associated with obesity. The AhR agonists, such as environmental contaminants 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and β-naphthoflavone (BNF), inhibit preadipocyte differentiation and interfere with the functions of adipose tissue, whereas the antagonist may have opposite or protective effects in obesity. This study investigated the effects of α-naphthoflavone (α-NF), an AhR antagonist, on adipogenesis- and angiogenesis-associated factors in mature adipocytes and on cross-talk of mature adipocytes with endothelial cells (ECs). Besides, the roles of the AhR on lipid accumulation and on secretion of vascular endothelial growth factor were also determined by introducing siRNA of AhR. Differentiated 3T3-L1 cells were treated with α-naphthoflavone (α-NF) (1-5 μM) for 16 h. Lipid accumulation and the expressions of AhR-associated factors in the cells were determined. The interaction between adipocytes and ECs was investigated by cultivating ECs with conditioned medium (CM) from α-NF-treated mature adipocytes, followed by the determination of endothelial tube formation. The results showed that α-NF significantly increased triglyceride (TG) accumulation in mature adipocytes, which was associated with increased expression of hormone-sensitive lipase (HSL), estrogen receptor (ER), as well as decreased expression of AhR, AhR nuclear translocator (ARNT), cytochrome P4501B1 (CYP1B1), and nuclear factor erythroid-2-related factor (NRF-2) proteins. In addition, CM stimulated formation of tube-like structures in ECs, and α-NF further enhanced such stimulation in association with modulated the secretions of various angiogenic mediators by mature adipocytes. Similarly, increased TG accumulation and vascular endothelial growth factor (VEGF) secretion were observed in AhR-knockout cells. In conclusion, α-NF increased TG accumulation in mature adipocytes and enhanced mature adipocyte-stimulated tube formation in ECs, suggesting that the AhR may suppress obesity-induced adverse effects, and α-NF abolished the protective effects of the AhR.
Collapse
|
64
|
Li Z, Qu T, Ding C, Ma C, Sun H, Li S, Liu X. Injectable gelatin derivative hydrogels with sustained vascular endothelial growth factor release for induced angiogenesis. Acta Biomater 2015; 13:88-100. [PMID: 25462840 DOI: 10.1016/j.actbio.2014.11.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 10/01/2014] [Accepted: 11/03/2014] [Indexed: 02/08/2023]
Abstract
Injectable biomaterials are attractive for soft tissue regeneration because they are handled in a minimally invasive manner and can easily adapt to complex defects. However, inadequate vascularization of the injectable constructs has long been a barrier, leading to necrosis or volume reduction after implantation. In this work, we developed a three-step process to synthesize injectable gelatin-derived hydrogels that are capable of controlling growth factor delivery to induce angiogenesis. In our approach, tyramine was first introduced into gelatin chains to provide enzymatic crosslinking points for gel formation after injection. Next, heparin, a polysaccharide with binding domains to many growth factors, was covalently linked to the tyramine-modified gelatin. Finally, vascular endothelial growth factor (VEGF) was incorporated into the gelatin derivative by binding with the heparin in the gelatin derivative, and an injectable gel with controlled VEGF release was formed by an enzymatic catalytic reaction with hydrogen peroxide (H2O2) and horseradish peroxidase (HRP). The gelation time, mechanical properties and degradation of the gel was readily tailored by the gelatin concentration and the ratio of H2O2/HRP. Binding VEGF to heparin stabilizes this growth factor, protects it from denaturation and proteolytic degradation and subsequently prolongs the sustained release. An in vitro release study and bioactivity assay indicated that the VEGF was released in a sustained manner with high bioactivity for over 3 weeks. Furthermore, a chicken chorioallantoic membrane (CAM) assay and animal experiments were performed to evaluate in vivo bioactivity of the VEGF released from the hydrogels. After 5 days of incubation on CAM, the number of blood vessels surrounding the heparin-modified hydrogels was increased by 2.4-fold compared with that of the control group. Deeper and denser cell infiltration and angiogenesis in the heparin-modified gelatin/VEGF gels were observed compared to the controls after being subcutaneously injected in the dorsal side of the mice for 2 weeks. Interestingly, even without the incorporation of VEGF, the heparin-modified gelatin derivative still had the capability to induce angiogenesis to a certain degree. Our results suggest that the gelatin derivative/VEGF is an excellent injectable delivery system for induced angiogenesis of soft tissue regeneration.
Collapse
|
65
|
Fisman EZ, Tenenbaum A. Adiponectin: a manifold therapeutic target for metabolic syndrome, diabetes, and coronary disease? Cardiovasc Diabetol 2014; 13:103. [PMID: 24957699 PMCID: PMC4230016 DOI: 10.1186/1475-2840-13-103] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 05/26/2014] [Indexed: 01/14/2023] Open
Abstract
Adiponectin is the most abundant peptide secreted by adipocytes, being a key component in the interrelationship between adiposity, insulin resistance and inflammation. Central obesity accompanied by insulin resistance is a key factor in the development of metabolic syndrome (MS) and future macrovascular complications. Moreover, the remarkable correlation between coronary artery disease (CAD) and alterations in glucose metabolism has raised the likelihood that atherosclerosis and type 2 diabetes mellitus (T2DM) may share a common biological background. We summarize here the current knowledge about the influence of adiponectin on insulin sensitivity and endothelial function, discussing its forthcoming prospects and potential role as a therapeutic target for MS, T2DM, and cardiovascular disease. Adiponectin is present in the circulation as a dimer, trimer or protein complex of high molecular weight hexamers, >400 kDa. AdipoR1 and AdipoR2 are its major receptors in vivo mediating the metabolic actions. Adiponectin stimulates phosphorylation and AMP (adenosin mono phosphate) kinase activation, exerting direct effects on vascular endothelium, diminishing the inflammatory response to mechanical injury and enhancing endothelium protection in cases of apolipoprotein E deficiency. Hypoadiponectinemia is consistently associated with obesity, MS, atherosclerosis, CAD, T2DM. Lifestyle correction helps to favorably modify plasma adiponectin levels. Low adiponectinemia in obese patients is raised via continued weight loss programs in both diabetic and nondiabetic individuals and is also accompanied by reductions in pro-inflammatory factors. Diet modifications, like intake of fish, omega-3 supplementation, adherence to a Mediterranean dietary pattern and coffee consumption also increase adiponectin levels. Antidiabetic and cardiovascular pharmacological agents, like glitazones, glimepiride, angiotensin converting enzyme inhibitors and angiotensin receptor blockers are also able to improve adiponectin concentration. Fibric acid derivatives, like bezafibrate and fenofibrate, have been reported to enhance adiponectin levels as well. T-cadherin, a membrane-associated adiponectin-binding protein lacking intracellular domain seems to be a main mediator of the antiatherogenic adiponectin actions. The finding of novel pharmacologic agents proficient to improve adiponectin plasma levels should be target of exhaustive research. Interesting future approaches could be the development of adiponectin-targeted drugs chemically designed to induce the activaton of its receptors and/or postreceptor signaling pathways, or the development of specific adiponectin agonists.
Collapse
Affiliation(s)
- Enrique Z Fisman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
66
|
Abstract
Excess body weight, as defined by the body mass index (BMI), has been associated with several diseases and includes subjects who are overweight (BMI≥25-29.9 kg/m(2)) or obese (BMI≥30 kg/m(2)). Overweight and obesity constitute the fifth leading risk for overall mortality, accounting for at least 2.8 million adult deaths each year. In addition around 11% of colorectal cancer (CRC) cases have been attributed to overweight and obesity in Europe. Epidemiological data suggest that obesity is associated with a 30-70% increased risk of colon cancer in men, whereas the association is less consistent in women. Similar trends exist for colorectal adenoma, although the risk appears lower. Visceral fat, or abdominal obesity, seems to be of greater concern than subcutaneous fat obesity, and any 1 kg/m(2) increase in BMI confers additional risk (HR 1.03). Obesity might be associated with worse cancer outcomes, such as recurrence of the primary cancer or mortality. Several factors, including reduced sensitivity to antiangiogenic-therapeutic regimens, might explain these differences. Except for wound infection, obesity has no significant impact on surgical procedures. The underlying mechanisms linking obesity to CRC are still a matter of debate, but metabolic syndrome, insulin resistance and modifications in levels of adipocytokines seem to be of great importance. Other biological factors such as the gut microbita or bile acids are emerging. Many questions still remain unanswered: should preventive strategies specifically target obese patients? Is the risk of cancer great enough to propose prophylactic bariatric surgery in certain patients with obesity?
Collapse
Affiliation(s)
- Marc Bardou
- INSERM-Centre d'Investigations Cliniques Plurithématique 803 (CIC-P 803), CHU du Bocage, Dijon, France.
| | | | | |
Collapse
|
67
|
Kim WS, Han J, Hwang SJ, Sung JH. An update on niche composition, signaling and functional regulation of the adipose-derived stem cells. Expert Opin Biol Ther 2014; 14:1091-102. [DOI: 10.1517/14712598.2014.907785] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
68
|
Li J, Qiao X, Yu M, Li F, Wang H, Guo W, Tian W. Secretory Factors From Rat Adipose Tissue Explants Promote Adipogenesis and Angiogenesis. Artif Organs 2013; 38:E33-45. [PMID: 24020992 DOI: 10.1111/aor.12162] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jie Li
- College of Life Science; Sichuan University; Chengdu China
- National Engineering Laboratory for Oral Regenerative Medicine; Sichuan University; Chengdu China
- State Key Laboratory of Oral Diseases; Sichuan University; Chengdu China
| | - Xiangchen Qiao
- National Engineering Laboratory for Oral Regenerative Medicine; Sichuan University; Chengdu China
- State Key Laboratory of Oral Diseases; Sichuan University; Chengdu China
| | - Mei Yu
- National Engineering Laboratory for Oral Regenerative Medicine; Sichuan University; Chengdu China
- State Key Laboratory of Oral Diseases; Sichuan University; Chengdu China
| | - Feng Li
- National Engineering Laboratory for Oral Regenerative Medicine; Sichuan University; Chengdu China
- State Key Laboratory of Oral Diseases; Sichuan University; Chengdu China
- Department of Oral and Maxillofacial Surgery; West China School of Stomatology; Sichuan University; Chengdu China
| | - Hang Wang
- National Engineering Laboratory for Oral Regenerative Medicine; Sichuan University; Chengdu China
- State Key Laboratory of Oral Diseases; Sichuan University; Chengdu China
- Department of Oral and Maxillofacial Surgery; West China School of Stomatology; Sichuan University; Chengdu China
| | - Weihua Guo
- National Engineering Laboratory for Oral Regenerative Medicine; Sichuan University; Chengdu China
- State Key Laboratory of Oral Diseases; Sichuan University; Chengdu China
- Department of Pedodontics; West China School of Stomatology; Sichuan University; Chengdu China
| | - Weidong Tian
- National Engineering Laboratory for Oral Regenerative Medicine; Sichuan University; Chengdu China
- State Key Laboratory of Oral Diseases; Sichuan University; Chengdu China
- Department of Oral and Maxillofacial Surgery; West China School of Stomatology; Sichuan University; Chengdu China
| |
Collapse
|
69
|
Henderson TMA, Ladewig K, Haylock DN, McLean KM, O'Connor AJ. Cryogels for biomedical applications. J Mater Chem B 2013; 1:2682-2695. [DOI: 10.1039/c3tb20280a] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
70
|
Dowling D, McAuliffe FM. The molecular mechanisms of offspring effects from obese pregnancy. Obes Facts 2013; 6:134-45. [PMID: 23571656 PMCID: PMC5644678 DOI: 10.1159/000350706] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/29/2012] [Indexed: 11/19/2022] Open
Abstract
The incidence of obesity, increased weight gain and the popularity of high-fat / high-sugar diets are seriously impacting upon the global population. Billions of individuals are affected, and although diet and lifestyle are of paramount importance to the development of adult obesity, compelling evidence is emerging which suggests that maternal obesity and related disorders may be passed on to the next generation by non-genetic means. The processes acting within the uteri of obese mothers may permanently predispose offspring to a diverse plethora of diseases ranging from obesity and diabetes to psychiatric disorders. This review aims to summarise some of the molecular mechanisms and active processes currently known about maternal obesity and its effect on foetal and neonatal physiology and metabolism. Complex and multifactorial networks of molecules are intertwined and culminate in a pathologically synergistic manner to cause disruption and disorganisation of foetal physiology. This altered phenotype may potentiate the cycle of intergenerational transmission of obesity and related disorders.
Collapse
Affiliation(s)
| | - Fionnuala M. McAuliffe
- *Prof. Dr. Fionnuala M. McAuliffe, UCD Obstetrics & Gynaecology, School of Medicine and Medical Science, University College Dublin, National Maternity Hospital, Dublin 2 (Ireland),
| |
Collapse
|
71
|
Fitzpatrick LE, Lisovsky A, Sefton MV. The expression of sonic hedgehog in diabetic wounds following treatment with poly(methacrylic acid-co-methyl methacrylate) beads. Biomaterials 2012; 33:5297-307. [PMID: 22541537 DOI: 10.1016/j.biomaterials.2012.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 04/01/2012] [Indexed: 12/15/2022]
Abstract
The expression of native sonic hedgehog (Shh) was significantly increased in poly(methacrylic acid-co-methyl methacrylate) bead (MAA) treated wounds at day 4 compared to both poly(methyl methacrylate) bead (PMMA) treated and untreated wounds in diabetic db/db mice. MAA beads also increased the expression of the Shh transcription factor Gli3 at day 4. Previously, topical application of MAA beads (45 mol % methacrylic acid) improved wound closure and blood vessel density in excisional wounds in these mice, while PMMA beads did not. Gene expression within the granulation tissue of healing wounds was studied to provide insight into the mechanism of vessel formation and wound healing in the presence of MAA beads. In addition to the increased expression of Shh, MAA-treated wounds had increased expression of osteopontin (OPN), IL-1β and TNF-α, (at day 7) similar to the previously reported MAA response of macrophage-like and endothelial cells in vitro.
Collapse
Affiliation(s)
- Lindsay E Fitzpatrick
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.
| | | | | |
Collapse
|