51
|
Lee JS, Choi YS, Cho SW. Decellularized Tissue Matrix for Stem Cell and Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1064:161-180. [DOI: 10.1007/978-981-13-0445-3_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
52
|
Conese M, Beccia E, Castellani S, Di Gioia S, Colombo C, Angiolillo A, Carbone A. The long and winding road: stem cells for cystic fibrosis. Expert Opin Biol Ther 2017; 18:281-292. [PMID: 29216777 DOI: 10.1080/14712598.2018.1413087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a genetic syndrome with a high mortality rate due to severe lung disease. Despite having several drugs targeting specific mutated CFTR proteins already in clinical trials, new therapies, based on stem cells, are also emerging to treat those patients. AREAS COVERED The authors review the main sources of stem cells, including embryonic stem cells (ESCs), induced-pluripotent stem cells (iPSCs), gestational stem cells, and adult stem cells, such as mesenchymal stem cells (MSCs) in the context of CF. Furthermore, they describe the main animal and human models of lung physiology and pathology, involved in the optimization of these stem cell-applied therapies in CF. EXPERT OPINION ESCs and iPSCs are emerging sources for disease modeling and drug discovery purposes. The allogeneic transplant of healthy MSCs, that acts independently to specific mutations, is under intense scrutiny due to their secretory, immunomodulatory, anti-inflammatory and anti-bacterial properties. The main challenge for future developments will be to get exogenous stem cells into the appropriate lung location, where they can regenerate endogenous stem cells and act as inflammatory modulators. The clinical application of stem cells for the treatment of CF certainly warrants further insight into pre-clinical models, including large animals, organoids, decellularized organs and lung bioengineering.
Collapse
Affiliation(s)
- Massimo Conese
- a Laboratory of Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences , University of Foggia , Foggia , Italy
| | - Elisa Beccia
- a Laboratory of Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences , University of Foggia , Foggia , Italy.,b Department of Medicine and Health Sciences 'V. Tiberio' , University of Molise , Campobasso , Italy
| | - Stefano Castellani
- a Laboratory of Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences , University of Foggia , Foggia , Italy
| | - Sante Di Gioia
- a Laboratory of Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences , University of Foggia , Foggia , Italy
| | - Carla Colombo
- c Cystic Fibrosis Center, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation , University of Milan , Milan , Italy
| | - Antonella Angiolillo
- b Department of Medicine and Health Sciences 'V. Tiberio' , University of Molise , Campobasso , Italy
| | - Annalucia Carbone
- d Division of Internal Medicine and Chronobiology Unit , IRCCS 'Casa Sollievo della Sofferenza' , San Giovanni Rotondo (FG) , Italy
| |
Collapse
|
53
|
Doi R, Tsuchiya T, Mitsutake N, Nishimura S, Matsuu-Matsuyama M, Nakazawa Y, Ogi T, Akita S, Yukawa H, Baba Y, Yamasaki N, Matsumoto K, Miyazaki T, Kamohara R, Hatachi G, Sengyoku H, Watanabe H, Obata T, Niklason LE, Nagayasu T. Transplantation of bioengineered rat lungs recellularized with endothelial and adipose-derived stromal cells. Sci Rep 2017; 7:8447. [PMID: 28814761 PMCID: PMC5559597 DOI: 10.1038/s41598-017-09115-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 07/24/2017] [Indexed: 01/08/2023] Open
Abstract
Bioengineered lungs consisting of a decellularized lung scaffold that is repopulated with a patient's own cells could provide desperately needed donor organs in the future. This approach has been tested in rats, and has been partially explored in porcine and human lungs. However, existing bioengineered lungs are fragile, in part because of their immature vascular structure. Herein, we report the application of adipose-derived stem/stromal cells (ASCs) for engineering the pulmonary vasculature in a decellularized rat lung scaffold. We found that pre-seeded ASCs differentiated into pericytes and stabilized the endothelial cell (EC) monolayer in nascent pulmonary vessels, thereby contributing to EC survival in the regenerated lungs. The ASC-mediated stabilization of the ECs clearly reduced vascular permeability and suppressed alveolar hemorrhage in an orthotopic transplant model for up to 3 h after extubation. Fibroblast growth factor 9, a mesenchyme-targeting growth factor, enhanced ASC differentiation into pericytes but overstimulated their proliferation, causing a partial obstruction of the vasculature in the regenerated lung. ASCs may therefore provide a promising cell source for vascular regeneration in bioengineered lungs, though additional work is needed to optimize the growth factor or hormone milieu for organ culture.
Collapse
Affiliation(s)
- Ryoichiro Doi
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Tomoshi Tsuchiya
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan.
- Translational Research Center, Research Institute for Science & Technology, Tokyo University of Science, Chiba, 278-8510, Japan.
| | - Norisato Mitsutake
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Satoshi Nishimura
- Department of Cardiovascular Medicine, Translational Systems Biology and Medicine Initiative, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8654, Japan
- Center for Molecular Medicine, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Mutsumi Matsuu-Matsuyama
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Yuka Nakazawa
- Department of Genome Repair, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan
| | - Sadanori Akita
- Department of Plastic Surgery, Wound Repair and Regeneration, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Hiroshi Yukawa
- FIRST Research Center for Innovative Nanobiodevices, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Yoshinobu Baba
- FIRST Research Center for Innovative Nanobiodevices, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Naoya Yamasaki
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
- Medical-Engineering Hybrid Professional Development Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Keitaro Matsumoto
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
- Medical-Engineering Hybrid Professional Development Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Takuro Miyazaki
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Ryotaro Kamohara
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Go Hatachi
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Hideyori Sengyoku
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Hironosuke Watanabe
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Tomohiro Obata
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Laura E Niklason
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
- Department of Anesthesia, Yale University, New Haven, CT, 06520, USA
| | - Takeshi Nagayasu
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan.
- Medical-Engineering Hybrid Professional Development Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan.
| |
Collapse
|
54
|
Decellularized tongue tissue as an in vitro model for studying tongue cancer and tongue regeneration. Acta Biomater 2017; 58:122-135. [PMID: 28600128 DOI: 10.1016/j.actbio.2017.05.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/25/2017] [Accepted: 05/25/2017] [Indexed: 12/15/2022]
Abstract
The decellularization of tissues or organs provides an efficient strategy for preparing functional scaffolds for tissue engineering. The microstructures of native extracellular matrices and biochemical compositions retained in the decellularized matrices provide tissue-specific microenvironments for anchoring cells. Here, we report the tongue extracellular matrix (TEM), which showed favorable cytocompatibility for normal tongue-derived cells and tongue squamous cell carcinoma (TSCC) cells under static or stirring culture conditions. Our results show that TEM retained tongue-specific integrated microstructures and abundant matrix components, which offer mechanical support and spatial signals for regulating cell behavior and function. Reconstructed TSCC by TEM presented characteristics resembling clinical TSCC histopathology, suggesting the possibility for TSCC research. In addition, TEM might be capable of guiding tongue-derived cells to the niche, benefiting cell survival, proliferation and differentiation. STATEMENT OF SIGNIFICANCE In this study, we prepared decellularized tongue extracellular matrix (TEM) and evaluated the possibility for tongue squamous cell carcinoma (TSCC) research and tongue regeneration. TEM has six irreplaceable advantages: (1) tongue-specific intricate structures of TEM, which offer mechanical support for the cells; (2) abundant matrix components and spatial signals benefiting for cell attachment, survival, differentiation, and long-term viability of the highly functional phenotypes of tongue cells or TSCC cells; (3) reconstructed TSCC by TEM exhibited tumor heterogeneity, extremely resembling clinical TSCC histopathology; (4) ideal model to evaluate TSCC movement mode; (5) guiding tongue-derived cells to the site-appropriate niche; and (6) the possibility for static or stirred cell culture. These properties might be considered in TSCC research or tongue regeneration.
Collapse
|
55
|
Wu T, Economopoulos KP, Ott HC. Engineering Bioartificial Lungs for Transplantation. CURRENT STEM CELL REPORTS 2017. [DOI: 10.1007/s40778-017-0082-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
56
|
Scarritt ME, Pashos NC, Motherwell JM, Eagle ZR, Burkett BJ, Gregory AN, Mostany R, Weiss DJ, Alvarez DF, Bunnell BA. Re-endothelialization of rat lung scaffolds through passive, gravity-driven seeding of segment-specific pulmonary endothelial cells. J Tissue Eng Regen Med 2017; 12:e786-e806. [PMID: 27943597 DOI: 10.1002/term.2382] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 09/27/2016] [Accepted: 12/06/2016] [Indexed: 01/05/2023]
Abstract
Effective re-endothelialization is critical for the use of decellularized scaffolds for ex vivo lung engineering. Current approaches yield insufficiently re-endothelialized scaffolds that haemorrhage and become thrombogenic upon implantation. Herein, gravity-driven seeding coupled with bioreactor culture facilitated widespread distribution and engraftment of endothelial cells throughout rat lung scaffolds. Initially, human umbilical vein endothelial cells were seeded into the pulmonary artery by either gravity-driven, variable flow perfusion seeding or pump-driven, pulsatile flow perfusion seeding. Gravity seeding evenly distributed cells and supported cell survival and re-lining of the vascular walls while perfusion pump-driven seeding led to increased cell fragmentation and death. Using gravity seeding, rat pulmonary artery endothelial cells and rat pulmonary vein endothelial cells attached in intermediate and large vessels, while rat pulmonary microvascular endothelial cells deposited mostly in microvessels. Combination seeding of these cells led to positive vascular endothelial cadherin staining. In addition, combination seeding improved barrier function as assessed by serum albumin extravasation; however, leakage was observed in the distal portions of the re-endothelialized tissue suggesting that recellularization of the alveoli is necessary to complete barrier function of the capillary-alveolar network. Overall, these data indicate that vascular recellularization of rat lung scaffolds is achieved through gravity seeding. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Michelle E Scarritt
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Nicholas C Pashos
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA.,Bioinnovation PhD Program, Tulane University, New Orleans, LA, USA
| | | | - Zachary R Eagle
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Brian J Burkett
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ashley N Gregory
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Daniel J Weiss
- Department of Medicine, University of Vermont, Burlington, VT, USA
| | - Diego F Alvarez
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
57
|
Miller AJ, Spence JR. In Vitro Models to Study Human Lung Development, Disease and Homeostasis. Physiology (Bethesda) 2017; 32:246-260. [PMID: 28404740 DOI: 10.1152/physiol.00041.2016] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 01/08/2023] Open
Abstract
The main function of the lung is to support gas exchange, and defects in lung development or diseases affecting the structure and function of the lung can have fatal consequences. Most of what we currently understand about human lung development and disease has come from animal models. However, animal models are not always fully able to recapitulate human lung development and disease, highlighting an area where in vitro models of the human lung can compliment animal models to further understanding of critical developmental and pathological mechanisms. This review will discuss current advances in generating in vitro human lung models using primary human tissue, cell lines, and human pluripotent stem cell derived lung tissue, and will discuss crucial next steps in the field.
Collapse
Affiliation(s)
- Alyssa J Miller
- PhD Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jason R Spence
- PhD Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan; .,PhD Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan.,PhD Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan.,Center for Organogenesis, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
58
|
Morris AH, Stamer DK, Kyriakides TR. The host response to naturally-derived extracellular matrix biomaterials. Semin Immunol 2017; 29:72-91. [PMID: 28274693 DOI: 10.1016/j.smim.2017.01.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/20/2017] [Accepted: 01/31/2017] [Indexed: 12/13/2022]
Abstract
Biomaterials based on natural materials including decellularized tissues and tissue-derived hydrogels are becoming more widely used for clinical applications. Because of their native composition and structure, these biomaterials induce a distinct form of the foreign body response that differs from that of non-native biomaterials. Differences include direct interactions with cells via preserved moieties as well as the ability to undergo remodeling. Moreover, these biomaterials could elicit adaptive immune responses due to the presence of modified native molecules. Therefore, these biomaterials present unique challenges in terms of understanding the progression of the foreign body response. This review covers this response to natural materials including natural polymers, decellularized tissues, cell-derived matrix, tissue derived hydrogels, and biohybrid materials. With the expansion of the fields of regenerative medicine and tissue engineering, the current repertoire of biomaterials has also expanded and requires continuous investigation of the responses they elicit.
Collapse
Affiliation(s)
- Aaron H Morris
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, United States
| | - D K Stamer
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - T R Kyriakides
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States; Department of Pathology, Yale University, New Haven, CT, United States; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, United States.
| |
Collapse
|
59
|
Recellularization on Acellular Lung Tissue Scaffold Using Perfusion-Based Bioreactor: An Online Monitoring Strategy. J Med Biol Eng 2017. [DOI: 10.1007/s40846-016-0205-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
60
|
|
61
|
Pashos NC, Scarritt ME, Eagle ZR, Gimble JM, Chaffin AE, Bunnell BA. Characterization of an Acellular Scaffold for a Tissue Engineering Approach to the Nipple-Areolar Complex Reconstruction. Cells Tissues Organs 2017; 203:183-193. [PMID: 28125805 DOI: 10.1159/000455070] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2016] [Indexed: 11/19/2022] Open
Abstract
A significant number of patients undergo mastectomies and breast reconstructions every year using many surgical-based techniques to reconstruct the nipple-areolar complex (NAC). Described herein is a tissue engineering approach that may permit a human NAC onlay graft during breast reconstruction procedures. By applying decellularization, which is the removal of cellular components from tissue, to an intact whole donor NAC, the extracellular matrix (ECM) structure of the NAC is preserved. This creates a biologically derived scaffold for cells to repopulate and regenerate the NAC. A detergent-based decellularization method was used to derive whole NAC scaffolds from nonhuman primate rhesus macaque NAC tissue. Using both histological and quantitative analyses for the native and decellularized tissues, the derived ECM graft was assessed. The bioactivity of the scaffold was evaluated following cell culture with bone marrow-derived mesenchymal stem cells (BMSCs). The data presented here demonstrate that scaffolds are devoid of cells and retain ECM integrity and a high degree of bioactivity. The content of collagen and glycosaminoglycans were not significantly altered by the decellularization process, whereas the elastin content was significantly decreased. The proliferation and apoptosis of seeded BMSCs were found to be approximately 65 and <1.5%, respectively. This study characterizes the successful decellularization of NAC tissue as compared to native NACs based on structural protein composition, lubricating protein retention, the maintenance of adhesion molecules, and bioactivity when reseeded with cells. These histological and quantitative analyses provide the foundation for a novel approach to NAC reconstruction.
Collapse
Affiliation(s)
- Nicholas C Pashos
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | | | | | | |
Collapse
|
62
|
Uhl FE, Wagner DE, Weiss DJ. Preparation of Decellularized Lung Matrices for Cell Culture and Protein Analysis. Methods Mol Biol 2017; 1627:253-283. [PMID: 28836208 PMCID: PMC7456164 DOI: 10.1007/978-1-4939-7113-8_18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The limited available treatment options for patients with chronic lung diseases, such as fibrosis, lead to poor prognosis after diagnosis and short survival rates. An exciting new bioengineering approach utilizes de- and recellularization of lung tissue to potentially overcome donor organ shortage and immune reactions toward the received transplant. The goal of decellularization is to create a scaffold which contains the necessary framework for stability and functionality for regenerating lung tissue while removing immunomodulatory factors by removal of cells. After decellularization, the scaffold could be re-functionalized by repopulation with the patient's own stem/progenitor cells to create a fully functional organ or can be used as ex vivo models of disease. In this chapter the decellularization of lung tissue from multiple species (i.e., rodents, pigs, and humans) as well as disease states such as fibrosis is described. We discuss and describe the various quality control measures which should be used to characterize decellularized scaffolds, methods for protein analysis of the remaining scaffold, and methods for recellularization of scaffolds.
Collapse
Affiliation(s)
- Franziska E Uhl
- Department of Med-Pulmonary, College of Medicine, University of Vermont, Burlington, VT, USA.
| | - Darcy E Wagner
- Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Daniel J Weiss
- Department of Med-Pulmonary, College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
63
|
Nicolas CT, Hickey RD, Chen HS, Mao SA, Lopera Higuita M, Wang Y, Nyberg SL. Concise Review: Liver Regenerative Medicine: From Hepatocyte Transplantation to Bioartificial Livers and Bioengineered Grafts. Stem Cells 2017; 35:42-50. [PMID: 27641427 PMCID: PMC5529050 DOI: 10.1002/stem.2500] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/27/2016] [Accepted: 08/21/2016] [Indexed: 12/13/2022]
Abstract
Donor organ shortage is the main limitation to liver transplantation as a treatment for end-stage liver disease and acute liver failure. Liver regenerative medicine may in the future offer an alternative form of therapy for these diseases, be it through cell transplantation, bioartificial liver (BAL) devices, or bioengineered whole organ liver transplantation. All three strategies have shown promising results in the past decade. However, before they are incorporated into widespread clinical practice, the ideal cell type for each treatment modality must be found, and an adequate amount of metabolically active, functional cells must be able to be produced. Research is ongoing in hepatocyte expansion techniques, use of xenogeneic cells, and differentiation of stem cell-derived hepatocyte-like cells (HLCs). HLCs are a few steps away from clinical application, but may be very useful in individualized drug development and toxicity testing, as well as disease modeling. Finally, safety concerns including tumorigenicity and xenozoonosis must also be addressed before cell transplantation, BAL devices, and bioengineered livers occupy their clinical niche. This review aims to highlight the most recent advances and provide an updated view of the current state of affairs in the field of liver regenerative medicine. Stem Cells 2017;35:42-50.
Collapse
Affiliation(s)
- Clara T Nicolas
- William J Von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Raymond D Hickey
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Harvey S Chen
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Shennen A Mao
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Manuela Lopera Higuita
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Yujia Wang
- William J Von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Scott L Nyberg
- William J Von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
64
|
Hassanein W, Uluer MC, Langford J, Woodall JD, Cimeno A, Dhru U, Werdesheim A, Harrison J, Rivera-Pratt C, Klepfer S, Khalifeh A, Buckingham B, Brazio PS, Parsell D, Klassen C, Drachenberg C, Barth RN, LaMattina JC. Recellularization via the bile duct supports functional allogenic and xenogenic cell growth on a decellularized rat liver scaffold. Organogenesis 2016; 13:16-27. [PMID: 28029279 DOI: 10.1080/15476278.2016.1276146] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Recent years have seen a proliferation of methods leading to successful organ decellularization. In this experiment we examine the feasibility of a decellularized liver construct to support growth of functional multilineage cells. Bio-chamber systems were used to perfuse adult rat livers with 0.1% SDS for 24 hours yielding decellularized liver scaffolds. Initially, we recellularized liver scaffolds using a human tumor cell line (HepG2, introduced via the bile duct). Subsequent studies were performed using either human tumor cells co-cultured with human umbilical vein endothelial cells (HUVECs, introduced via the portal vein) or rat neonatal cell slurry (introduced via the bile duct). Bio-chambers were used to circulate oxygenated growth medium via the portal vein at 37C for 5-7 days. Human HepG2 cells grew readily on the scaffold (n = 20). HepG2 cells co-cultured with HUVECs demonstrated viable human endothelial lining with concurrent hepatocyte growth (n = 10). In the series of neonatal cell slurry infusion (n = 10), distinct foci of neonatal hepatocytes were observed to repopulate the parenchyma of the scaffold. The presence of cholangiocytes was verified by CK-7 positivity. Quantitative albumin measurement from the grafts showed increasing albumin levels after seven days of perfusion. Graft albumin production was higher than that observed in traditional cell culture. This data shows that rat liver scaffolds support human cell ingrowth. The scaffold likewise supported the engraftment and survival of neonatal rat liver cell slurry. Recellularization of liver scaffolds thus presents a promising model for functional liver engineering.
Collapse
Affiliation(s)
- Wessam Hassanein
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - Mehmet C Uluer
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - John Langford
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - Jhade D Woodall
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - Arielle Cimeno
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - Urmil Dhru
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - Avraham Werdesheim
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - Joshua Harrison
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - Carlos Rivera-Pratt
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - Stephen Klepfer
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - Ali Khalifeh
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - Bryan Buckingham
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - Philip S Brazio
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - Dawn Parsell
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - Charlie Klassen
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - Cinthia Drachenberg
- b University of Maryland School of Medicine , Department of Pathology , Baltimore , MD , USA
| | - Rolf N Barth
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - John C LaMattina
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| |
Collapse
|
65
|
Abstract
PURPOSE OF REVIEW Whole lung tissue engineering is a relatively new area of investigation. In a short time, however, the field has advanced quickly beyond proof of concept studies in rodents and now stands on the cusp of wide-spread scale up to large animal studies. Therefore, this technology is ever closer to being directly clinically relevant. RECENT FINDINGS The main themes in the literature include refinement of the fundamental components of whole lung engineering and increasing effort to direct induced pluripotent stem cells and lung progenitor cells toward use in lung regeneration. There is also increasing need for and emphasis on functional evaluation in the lab and in vivo, and the use of all of these tools to construct and evaluate forthcoming clinically scaled engineered lung. SUMMARY Ultimately, the goal of the research described herein is to create a useful clinical product. In the intermediate time, however, the tools described here may be employed to advance our knowledge of lung biology and the organ-specific regenerative capacity of lung stem and progenitor cells.
Collapse
|
66
|
Calle EA, Hill RC, Leiby KL, Le AV, Gard AL, Madri JA, Hansen KC, Niklason LE. Targeted proteomics effectively quantifies differences between native lung and detergent-decellularized lung extracellular matrices. Acta Biomater 2016; 46:91-100. [PMID: 27693690 DOI: 10.1016/j.actbio.2016.09.043] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/25/2016] [Accepted: 09/28/2016] [Indexed: 12/16/2022]
Abstract
Extracellular matrix is a key component of many products in regenerative medicine. Multiple regenerative medicine products currently in the clinic are comprised of human or xenogeneic extracellular matrix. In addition, whole-organ regeneration exploits decellularized native organs as scaffolds for organotypic cell culture. However, precise understanding of the constituents of such extracellular matrix-based implants and scaffolds has sorely lagged behind their use. We present here an advanced protein extraction method using known quantities of proteotypic 13C-labeled peptides to quantify matrix proteins in native and decellularized lung tissues. Using quantitative proteomics that produce picomole-level measurements of a large number of matrix proteins, we show that a mild decellularization technique ("Triton/SDC") results in near-native retention of laminins, proteoglycans, and other basement membrane and ECM-associated proteins. Retention of these biologically important glycoproteins and proteoglycans is quantified to be up to 27-fold higher in gently-decellularized lung scaffolds compared to scaffolds generated using a previously published decellularization regimen. Cells seeded onto this new decellularized matrix also proliferate robustly, showing positive staining for proliferating cell nuclear antigen (PCNA). The high fidelity of the gently decellularized scaffold as compared to the original lung extracellular matrix represents an important step forward in the ultimate recapitulation of whole organs using tissue-engineering techniques. This method of ECM and scaffold protein analysis allows for better understanding, and ultimately quality control, of matrices that are used for tissue engineering and human implantation. These results should advance regenerative medicine in general, and whole organ regeneration in particular. STATEMENT OF SIGNIFICANCE The extracellular matrix (ECM) in large part defines the biochemical and mechanical properties of tissues and organs; these inherent cues make acellular ECM scaffolds potent substrates for tissue regeneration. As such, they are increasingly prevalent in the clinic and the laboratory. However, the exact composition of these scaffolds has been difficult to ascertain. This paper uses targeted proteomics to definitively quantify 71 proteins present in acellular lung ECM scaffolds. We use this technique to compare two decellularization methods and demonstrate superior retention of ECM proteins important for cell adhesion, migration, proliferation, and differentiation in scaffolds treated with low-concentration detergent solutions. In the long term, the ability to acquire quantitative biochemical data about biological substrates will facilitate the rational design of engineered tissues and organs based on precise cell-matrix interactions.
Collapse
|
67
|
Doryab A, Amoabediny G, Salehi-Najafabadi A. Advances in pulmonary therapy and drug development: Lung tissue engineering to lung-on-a-chip. Biotechnol Adv 2016; 34:588-596. [DOI: 10.1016/j.biotechadv.2016.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 02/04/2016] [Accepted: 02/10/2016] [Indexed: 12/21/2022]
|
68
|
Platz J, Bonenfant NR, Uhl FE, Coffey AL, McKnight T, Parsons C, Sokocevic D, Borg ZD, Lam YW, Deng B, Fields JG, DeSarno M, Loi R, Hoffman AM, Bianchi J, Dacken B, Petersen T, Wagner DE, Weiss DJ. Comparative Decellularization and Recellularization of Wild-Type and Alpha 1,3 Galactosyltransferase Knockout Pig Lungs: A Model for Ex Vivo Xenogeneic Lung Bioengineering and Transplantation. Tissue Eng Part C Methods 2016; 22:725-39. [PMID: 27310581 DOI: 10.1089/ten.tec.2016.0109] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND A novel potential approach for lung transplantation could be to utilize xenogeneic decellularized pig lung scaffolds that are recellularized with human lung cells. However, pig tissues express several immunogenic proteins, notably galactosylated cell surface glycoproteins resulting from alpha 1,3 galactosyltransferase (α-gal) activity, that could conceivably prevent effective use. Use of lungs from α-gal knock out (α-gal KO) pigs presents a potential alternative and thus comparative de- and recellularization of wild-type and α-gal KO pig lungs was assessed. METHODS Decellularized lungs were compared by histologic, immunohistochemical, and mass spectrometric techniques. Recellularization was assessed following compartmental inoculation of human lung bronchial epithelial cells, human lung fibroblasts, human bone marrow-derived mesenchymal stromal cells (all via airway inoculation), and human pulmonary vascular endothelial cells (CBF) (vascular inoculation). RESULTS No obvious differences in histologic structure was observed but an approximate 25% difference in retention of residual proteins was determined between decellularized wild-type and α-gal KO pig lungs, including retention of α-galactosylated epitopes in acellular wild-type pig lungs. However, robust initial recellularization and subsequent growth and proliferation was observed for all cell types with no obvious differences between cells seeded into wild-type versus α-gal KO lungs. CONCLUSION These proof of concept studies demonstrate that decellularized wild-type and α-gal KO pig lungs can be comparably decellularized and comparably support initial growth of human lung cells, despite some differences in retained proteins. α-Gal KO pig lungs are a suitable platform for further studies of xenogeneic lung regeneration.
Collapse
Affiliation(s)
- Joseph Platz
- 1 Department of Medicine, University of Vermont College of Medicine , Burlington, Vermont
| | - Nicholas R Bonenfant
- 1 Department of Medicine, University of Vermont College of Medicine , Burlington, Vermont
| | - Franziska E Uhl
- 1 Department of Medicine, University of Vermont College of Medicine , Burlington, Vermont
| | - Amy L Coffey
- 1 Department of Medicine, University of Vermont College of Medicine , Burlington, Vermont
| | - Tristan McKnight
- 1 Department of Medicine, University of Vermont College of Medicine , Burlington, Vermont
| | - Charles Parsons
- 1 Department of Medicine, University of Vermont College of Medicine , Burlington, Vermont
| | - Dino Sokocevic
- 1 Department of Medicine, University of Vermont College of Medicine , Burlington, Vermont
| | - Zachary D Borg
- 1 Department of Medicine, University of Vermont College of Medicine , Burlington, Vermont
| | - Ying-Wai Lam
- 2 Department of Biology and VGN Proteomics Facility, University of Vermont College of Arts and Sciences , Burlington, Vermont
| | - Bin Deng
- 2 Department of Biology and VGN Proteomics Facility, University of Vermont College of Arts and Sciences , Burlington, Vermont
| | - Julia G Fields
- 2 Department of Biology and VGN Proteomics Facility, University of Vermont College of Arts and Sciences , Burlington, Vermont
| | - Michael DeSarno
- 3 Biostatistics Unit, University of Vermont College of Medicine , Burlington, Vermont
| | - Roberto Loi
- 4 Department of Biomedical Sciences, University of Cagliari , Cagliari, Italy
| | - Andrew M Hoffman
- 5 Department of Clinical Sciences, Tufts University , Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| | | | | | - Thomas Petersen
- 8 United Therapeutics Corp., Research Triangle Park , Durham, North Carolina
| | - Darcy E Wagner
- 1 Department of Medicine, University of Vermont College of Medicine , Burlington, Vermont.,9 Comprehensive Pneumonology Center, Helmholtz Center Munich, Ludwig Maximilians University Munich , Munich, Germany
| | - Daniel J Weiss
- 1 Department of Medicine, University of Vermont College of Medicine , Burlington, Vermont
| |
Collapse
|
69
|
Meiners S, Hilgendorff A. Early injury of the neonatal lung contributes to premature lung aging: a hypothesis. Mol Cell Pediatr 2016; 3:24. [PMID: 27406259 PMCID: PMC4942446 DOI: 10.1186/s40348-016-0052-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 07/04/2016] [Indexed: 12/20/2022] Open
Abstract
Chronic lung disease of the newborn, also known as bronchopulmonary dysplasia (BPD), is the most common chronic lung disease in early infancy and results in an increased risk for long-lasting pulmonary impairment in the adult. BPD develops upon injury of the immature lung by oxygen toxicity, mechanical ventilation, and infections which trigger sustained inflammatory immune responses and extensive remodeling of the extracellular matrix together with dysregulated growth factor signaling. Histopathologically, BPD is characterized by impaired alveolarization, disrupted vascular development, and saccular wall fibrosis. Here, we explore the hypothesis that development of BPD involves disturbance of conserved pathways of molecular aging that may contribute to premature aging of the lung and an increased susceptibility to chronic lung diseases in adulthood.
Collapse
Affiliation(s)
- Silke Meiners
- Comprehensive Pneumology Center (CPC), Ludwig-Maximilians University, Helmholtz Zentrum München, German Center for Lung Research (DZL), Max-Lebsche-Platz 31, 81377, München, Germany.
| | - Anne Hilgendorff
- Comprehensive Pneumology Center (CPC), Ludwig-Maximilians University, Helmholtz Zentrum München, German Center for Lung Research (DZL), Max-Lebsche-Platz 31, 81377, München, Germany.,Perinatal Center Grosshadern, Dr. von Haunersches Children's Hospital, Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
70
|
Balestrini JL, Gard AL, Gerhold KA, Wilcox EC, Liu A, Schwan J, Le AV, Baevova P, Dimitrievska S, Zhao L, Sundaram S, Sun H, Rittié L, Dyal R, Broekelmann TJ, Mecham RP, Schwartz MA, Niklason LE, White ES. Comparative biology of decellularized lung matrix: Implications of species mismatch in regenerative medicine. Biomaterials 2016; 102:220-30. [PMID: 27344365 DOI: 10.1016/j.biomaterials.2016.06.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 06/03/2016] [Accepted: 06/12/2016] [Indexed: 01/14/2023]
Abstract
Lung engineering is a promising technology, relying on re-seeding of either human or xenographic decellularized matrices with patient-derived pulmonary cells. Little is known about the species-specificity of decellularization in various models of lung regeneration, or if species dependent cell-matrix interactions exist within these systems. Therefore decellularized scaffolds were produced from rat, pig, primate and human lungs, and assessed by measuring residual DNA, mechanical properties, and key matrix proteins (collagen, elastin, glycosaminoglycans). To study intrinsic matrix biologic cues, human endothelial cells were seeded onto acellular slices and analyzed for markers of cell health and inflammation. Despite similar levels of collagen after decellularization, human and primate lungs were stiffer, contained more elastin, and retained fewer glycosaminoglycans than pig or rat lung scaffolds. Human endothelial cells seeded onto human and primate lung tissue demonstrated less expression of vascular cell adhesion molecule and activation of nuclear factor-κB compared to those seeded onto rodent or porcine tissue. Adhesion of endothelial cells was markedly enhanced on human and primate tissues. Our work suggests that species-dependent biologic cues intrinsic to lung extracellular matrix could have profound effects on attempts at lung regeneration.
Collapse
Affiliation(s)
- Jenna L Balestrini
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Anesthesiolgy, Yale University, New Haven, CT, USA
| | - Ashley L Gard
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | | - Elise C Wilcox
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Angela Liu
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Jonas Schwan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Andrew V Le
- Department of Anesthesiolgy, Yale University, New Haven, CT, USA
| | - Pavlina Baevova
- Department of Anesthesiolgy, Yale University, New Haven, CT, USA
| | | | - Liping Zhao
- Department of Anesthesiolgy, Yale University, New Haven, CT, USA
| | - Sumati Sundaram
- Department of Anesthesiolgy, Yale University, New Haven, CT, USA
| | - Huanxing Sun
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Laure Rittié
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Rachel Dyal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tom J Broekelmann
- Department of Cell Biology and Physiology, Washington University St. Louis, St. Louis, MO, USA
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University St. Louis, St. Louis, MO, USA
| | - Martin A Schwartz
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Cell Biology, Yale University, New Haven, CT, USA
| | - Laura E Niklason
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Anesthesiolgy, Yale University, New Haven, CT, USA
| | - Eric S White
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
71
|
|
72
|
Pouliot RA, Link PA, Mikhaiel NS, Schneck MB, Valentine MS, Kamga Gninzeko FJ, Herbert JA, Sakagami M, Heise RL. Development and characterization of a naturally derived lung extracellular matrix hydrogel. J Biomed Mater Res A 2016; 104:1922-35. [PMID: 27012815 DOI: 10.1002/jbm.a.35726] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/10/2016] [Accepted: 03/22/2016] [Indexed: 01/15/2023]
Abstract
The complexity and rapid clearance mechanisms of lung tissue make it difficult to develop effective treatments for many chronic pathologies. We are investigating lung derived extracellular matrix (ECM) hydrogels as a novel approach for delivery of cellular therapies to the pulmonary system. The main objectives of this study include effective decellularization of porcine lung tissue, development of a hydrogel from the porcine ECM, and characterization of the material's composition, mechanical properties, and ability to support cellular growth. Our evaluation of the decellularized tissue indicated successful removal of cellular material and immunogenic remnants in the ECM. The self-assembly of the lung ECM hydrogel was rapid, reaching maximum modulus values within 3 min at 37°C. Rheological characterization showed the lung ECM hydrogel to have a concentration dependent storage modulus between 15 and 60 Pa. The purpose of this study was to evaluate our novel ECM derived hydrogel and measure its ability to support 3D culture of MSCs in vitro and in vivo delivery of MSCs. Our in vitro experiments using human mesenchymal stem cells demonstrated our novel ECM hydrogel's ability to enhance cellular attachment and viability. Our in vivo experiments demonstrated that rat MSC delivery in pre-gel solution significantly increased cell retention in the lung over 24 h in an emphysema rat model. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1922-1935, 2016.
Collapse
Affiliation(s)
- Robert A Pouliot
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Patrick A Link
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Nabil S Mikhaiel
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Matthew B Schneck
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Michael S Valentine
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | | | - Joseph A Herbert
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Masahiro Sakagami
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia
| | - Rebecca L Heise
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia.,Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
73
|
Stabler CT, Caires LC, Mondrinos MJ, Marcinkiewicz C, Lazarovici P, Wolfson MR, Lelkes PI. Enhanced Re-Endothelialization of Decellularized Rat Lungs. Tissue Eng Part C Methods 2016; 22:439-50. [PMID: 26935764 DOI: 10.1089/ten.tec.2016.0012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Decellularized lung tissue has been recognized as a potential platform to engineer whole lung organs suitable for transplantation or for modeling a variety of lung diseases. However, many technical hurdles remain before this potential may be fully realized. Inability to efficiently re-endothelialize the pulmonary vasculature with a functional endothelium appears to be the primary cause of failure of recellularized lung scaffolds in early transplant studies. Here, we present an optimized approach for enhanced re-endothelialization of decellularized rodent lung scaffolds with rat lung microvascular endothelial cells (ECs). This was achieved by adjusting the posture of the lung to a supine position during cell seeding through the pulmonary artery. The supine position allowed for significantly more homogeneous seeding and better cell retention in the apex regions of all lobes than the traditional upright position, especially in the right upper and left lobes. Additionally, the supine position allowed for greater cell retention within large diameter vessels (proximal 100-5000 μm) than the upright position, with little to no difference in the small diameter distal vessels. EC adhesion in the proximal regions of the pulmonary vasculature in the decellularized lung was dependent on the binding of EC integrins, specifically α1β1, α2β1, and α5β1 integrins to, respectively, collagen type-I, type-IV, and fibronectin in the residual extracellular matrix. Following in vitro maturation of the seeded constructs under perfusion culture, the seeded ECs spread along the vascular wall, leading to a partial reestablishment of endothelial barrier function as inferred from a custom-designed leakage assay. Our results suggest that attention to cellular distribution within the whole organ is of paramount importance for restoring proper vascular function.
Collapse
Affiliation(s)
- Collin T Stabler
- 1 Department of Bioengineering, College of Engineering, Temple University , Philadelphia, Pennsylvania
| | - Luiz C Caires
- 1 Department of Bioengineering, College of Engineering, Temple University , Philadelphia, Pennsylvania.,2 Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, MG, Brazil
| | - Mark J Mondrinos
- 1 Department of Bioengineering, College of Engineering, Temple University , Philadelphia, Pennsylvania
| | - Cezary Marcinkiewicz
- 1 Department of Bioengineering, College of Engineering, Temple University , Philadelphia, Pennsylvania
| | - Philip Lazarovici
- 1 Department of Bioengineering, College of Engineering, Temple University , Philadelphia, Pennsylvania
| | - Marla R Wolfson
- 3 Department of Physiology, Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Peter I Lelkes
- 1 Department of Bioengineering, College of Engineering, Temple University , Philadelphia, Pennsylvania
| |
Collapse
|
74
|
Zvarova B, Uhl FE, Uriarte JJ, Borg ZD, Coffey AL, Bonenfant NR, Weiss DJ, Wagner DE. Residual Detergent Detection Method for Nondestructive Cytocompatibility Evaluation of Decellularized Whole Lung Scaffolds. Tissue Eng Part C Methods 2016; 22:418-28. [PMID: 26905643 DOI: 10.1089/ten.tec.2015.0439] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The development of reliable tissue engineering methods using decellularized cadaveric or donor lungs could potentially provide a new source of lung tissue. The vast majority of current lung decellularization protocols are detergent based and incompletely removed residual detergents may have a deleterious impact on subsequent scaffold recellularization. Detergent removal and quality control measures that rigorously and reliably confirm removal, ideally utilizing nondestructive methods, are thus critical for generating optimal acellular scaffolds suitable for potential clinical translation. Using a modified and optimized version of a methylene blue-based detergent assay, we developed a straightforward, noninvasive method for easily and reliably detecting two of the most commonly utilized anionic detergents, sodium deoxycholate (SDC) and sodium dodecyl sulfate (SDS), in lung decellularization effluents. In parallel studies, we sought to determine the threshold of detergent concentration that was cytotoxic using four different representative human cell types utilized in the study of lung recellularization: human bronchial epithelial cells, human pulmonary vascular endothelial cells (CBF12), human lung fibroblasts, and human mesenchymal stem cells. Notably, different cells have varying thresholds for either SDC or SDS-based detergent-induced cytotoxicity. These studies demonstrate the importance of reliably removing residual detergents and argue that multiple cell lines should be tested in cytocompatibility-based assessments of acellular scaffolds. The detergent detection assay presented here is a useful nondestructive tool for assessing detergent removal in potential decellularization schemes or for use as a potential endpoint in future clinical schemes, generating acellular lungs using anionic detergent-based decellularization protocols.
Collapse
Affiliation(s)
- Barbora Zvarova
- 1 Department of Medicine, University of Vermont , Burlington, Vermont
| | - Franziska E Uhl
- 1 Department of Medicine, University of Vermont , Burlington, Vermont
| | - Juan J Uriarte
- 2 Unit of Biophysics and Bioengineering, University of Barcelona, Barcelona, Spain .,3 CIBER Enfermedades Respiratorias , Madrid, Spain
| | - Zachary D Borg
- 1 Department of Medicine, University of Vermont , Burlington, Vermont
| | - Amy L Coffey
- 1 Department of Medicine, University of Vermont , Burlington, Vermont
| | | | - Daniel J Weiss
- 1 Department of Medicine, University of Vermont , Burlington, Vermont
| | - Darcy E Wagner
- 1 Department of Medicine, University of Vermont , Burlington, Vermont.,4 Comprehensive Pneumology Center, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern , Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
75
|
Bajaj P, Harris JF, Huang JH, Nath P, Iyer R. Advances and Challenges in Recapitulating Human Pulmonary Systems: At the Cusp of Biology and Materials. ACS Biomater Sci Eng 2016; 2:473-488. [PMID: 33465851 DOI: 10.1021/acsbiomaterials.5b00480] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The aim of this review is to provide an overview of physiologically relevant microengineered lung-on-a-chip (LoC) platforms for a variety of different biomedical applications with emphasis on drug screening. First, a brief outline of lung anatomy and physiology is presented followed by discussion of the lung parenchyma and its extracellular matrix. Next, we point out the technical challenges in recapitulating the complexity of lung in conventional static two-dimensional microenvironments and the need for alternate lung platforms. The importance of scaling laws is also emphasized in designing these in vitro microengineered lung platforms. The review then discusses current LoC platforms that have been used for testing the efficacy of drugs or as model systems for investigating disorders of the lung parenchyma. Finally, the design parameters in developing an ideal physiologically relevant LoC platform are presented. As this emerging field of organ-on-a-chip can serve an alternative platform for animal testing of drugs or modeling human diseases in vitro, it has significant potential to impact the future of pharmaceutical research.
Collapse
Affiliation(s)
- Piyush Bajaj
- Information Systems and Modeling, §Bioscience Division, and ⊥Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jennifer F Harris
- Information Systems and Modeling, Bioscience Division, and ⊥Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jen-Huang Huang
- Information Systems and Modeling, Bioscience Division, and Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Pulak Nath
- Information Systems and Modeling, Bioscience Division, and Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Rashi Iyer
- Information Systems and Modeling, Bioscience Division, and Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
76
|
An official American Thoracic Society workshop report: stem cells and cell therapies in lung biology and diseases. Ann Am Thorac Soc 2016; 12:S79-97. [PMID: 25897748 DOI: 10.1513/annalsats.201502-086st] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The University of Vermont College of Medicine and the Vermont Lung Center, in collaboration with the NHLBI, Alpha-1 Foundation, American Thoracic Society, European Respiratory Society, International Society for Cell Therapy, and the Pulmonary Fibrosis Foundation, convened a workshop, "Stem Cells and Cell Therapies in Lung Biology and Lung Diseases," held July 29 to August 1, 2013 at the University of Vermont. The conference objectives were to review the current understanding of the role of stem and progenitor cells in lung repair after injury and to review the current status of cell therapy and ex vivo bioengineering approaches for lung diseases. These are all rapidly expanding areas of study that both provide further insight into and challenge traditional views of mechanisms of lung repair after injury and pathogenesis of several lung diseases. The goals of the conference were to summarize the current state of the field, discuss and debate current controversies, and identify future research directions and opportunities for both basic and translational research in cell-based therapies for lung diseases. This conference was a follow-up to four previous biennial conferences held at the University of Vermont in 2005, 2007, 2009, and 2011. Each of those conferences, also sponsored by the National Institutes of Health, American Thoracic Society, and Respiratory Disease Foundations, has been important in helping guide research and funding priorities. The major conference recommendations are summarized at the end of the report and highlight both the significant progress and major challenges in these rapidly progressing fields.
Collapse
|
77
|
Zhou P, Huang Y, Guo Y, Wang L, Ling C, Guo Q, Wang Y, Zhu S, Fan X, Zhu M, Huang H, Lu Y, Wang Z. Decellularization and Recellularization of Rat Livers With Hepatocytes and Endothelial Progenitor Cells. Artif Organs 2015; 40:E25-38. [PMID: 26637111 DOI: 10.1111/aor.12645] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Pengcheng Zhou
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
- Department of Emergency Surgery; Affiliated Hospital of Nantong University; Nantong China
| | - Yan Huang
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
| | - Yibing Guo
- Surgical Comprehensive Laboratory; Affiliated Hospital of Nantong University; Nantong China
| | - Lei Wang
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
| | - Changchun Ling
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
| | - Qingsong Guo
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
| | - Yao Wang
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
| | - Shajun Zhu
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
| | - Xiangjun Fan
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
| | - Mingyan Zhu
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
| | - Hua Huang
- Department of Pathology; Affiliated Hospital of Nantong University; Nantong China
| | - Yuhua Lu
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
- Surgical Comprehensive Laboratory; Affiliated Hospital of Nantong University; Nantong China
| | - Zhiwei Wang
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
| |
Collapse
|
78
|
Ebrahimi A, Kardar GA, Teimoori-Toolabi L, Toolabi L, Ghanbari H, Sadroddiny E. Inducible expression of indoleamine 2,3-dioxygenase attenuates acute rejection of tissue-engineered lung allografts in rats. Gene 2015; 576:412-20. [PMID: 26506443 DOI: 10.1016/j.gene.2015.10.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/06/2015] [Accepted: 10/21/2015] [Indexed: 12/19/2022]
Abstract
Lung disease remains one of the principal causes of death worldwide and the incidence of pulmonary diseases is increasing. Complexity in treatments and shortage of donors leads us to develop new ways for lung disease treatment. One promising strategy is preparing engineered lung for transplantation. In this context, employing new immunosuppression strategies which suppresses immune system locally rather than systemic improves transplant survival. This tends to reduce the difficulties in transplant rejection and the systemic impact of the use of immunosuppressive drugs which causes side effects such as serious infections and malignancies. In our study examining the immunosuppressive effects of IDO expression, we produced rat lung tissues with the help of decellularized tissue, differentiating medium and rat mesenchymal stem cells. Transduction of these cells by IDO expressing lentiviruses provided inducible and local expression of this gene. To examine immunosuppressive properties of IDO expression by these tissues, we transplanted these allografts into rats and, subsequently, evaluated cytokine expression and histopathological properties. Expression of inflammatory cytokines IFNγ and TNFα were significantly downregulated in IDO expressing allograft. Moreover, acute rejection score of this experimental group was also lower comparing other two groups and mRNA levels of FOXP3, a regulatory T cell marker, upregulated in IDO expressing group. However, infiltrating lymphocyte counting did not show significant difference between groups. This study demonstrates that IDO gene transfer into engineered lung allograft tissues significantly attenuates acute allograft damage suggesting local therapy with IDO as a strategy to reduce the need for systemic immunosuppression and, thereby, its side effects.
Collapse
Affiliation(s)
- Ammar Ebrahimi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholam Ali Kardar
- Immunology, Asthma and Allergy Research Institute, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - LadanTeimoori Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Iran
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmaeil Sadroddiny
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
79
|
Balestrini JL, Gard AL, Liu A, Leiby KL, Schwan J, Kunkemoeller B, Calle EA, Sivarapatna A, Lin T, Dimitrievska S, Cambpell SG, Niklason LE. Production of decellularized porcine lung scaffolds for use in tissue engineering. Integr Biol (Camb) 2015; 7:1598-610. [PMID: 26426090 DOI: 10.1039/c5ib00063g] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
There is a growing body of work dedicated to producing acellular lung scaffolds for use in regenerative medicine by decellularizing donor lungs of various species. These scaffolds typically undergo substantial matrix damage due to the harsh conditions required to remove cellular material (e.g., high pH, strong detergents), lengthy processing times, or pre-existing tissue contamination from microbial colonization. In this work, a new decellularization technique is described that maintains the global tissue architecture, key matrix components, mechanical composition and cell-seeding potential of lung tissue while effectively removing resident cellular material. Acellular lung scaffolds were produced from native porcine lungs using a combination of Triton X-100 and sodium deoxycholate (SDC) at low concentrations in 24 hours. We assessed the effect of matrix decellularization by measuring residual DNA, biochemical composition, mechanical characteristics, tissue architecture, and recellularization capacity.
Collapse
Affiliation(s)
- Jenna L Balestrini
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Stabler CT, Lecht S, Mondrinos MJ, Goulart E, Lazarovici P, Lelkes PI. Revascularization of decellularized lung scaffolds: principles and progress. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1273-85. [PMID: 26408553 DOI: 10.1152/ajplung.00237.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/23/2015] [Indexed: 02/07/2023] Open
Abstract
There is a clear unmet clinical need for novel biotechnology-based therapeutic approaches to lung repair and/or replacement, such as tissue engineering of whole bioengineered lungs. Recent studies have demonstrated the feasibility of decellularizing the whole organ by removal of all its cellular components, thus leaving behind the extracellular matrix as a complex three-dimensional (3D) biomimetic scaffold. Implantation of decellularized lung scaffolds (DLS), which were recellularized with patient-specific lung (progenitor) cells, is deemed the ultimate alternative to lung transplantation. Preclinical studies demonstrated that, upon implantation in rodent models, bioengineered lungs that were recellularized with airway and vascular cells were capable of gas exchange for up to 14 days. However, the long-term applicability of this concept is thwarted in part by the failure of current approaches to reconstruct a physiologically functional, quiescent endothelium lining the entire vascular tree of reseeded lung scaffolds, as inferred from the occurrence of hemorrhage into the airway compartment and thrombosis in the vasculature in vivo. In this review, we explore the idea that successful whole lung bioengineering will critically depend on 1) preserving and/or reestablishing the integrity of the subendothelial basement membrane, especially of the ultrathin respiratory membrane separating airways and capillaries, during and following decellularization and 2) restoring vascular physiological functionality including the barrier function and quiescence of the endothelial lining following reseeding of the vascular compartment. We posit that physiological reconstitution of the pulmonary vascular tree in its entirety will significantly promote the clinical translation of the next generation of bioengineered whole lungs.
Collapse
Affiliation(s)
- Collin T Stabler
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Shimon Lecht
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Mark J Mondrinos
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ernesto Goulart
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; and
| | - Philip Lazarovici
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Peter I Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania;
| |
Collapse
|
81
|
Price AP, Godin LM, Domek A, Cotter T, D'Cunha J, Taylor DA, Panoskaltsis-Mortari A. Automated decellularization of intact, human-sized lungs for tissue engineering. Tissue Eng Part C Methods 2015; 21:94-103. [PMID: 24826875 DOI: 10.1089/ten.tec.2013.0756] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We developed an automated system that can be used to decellularize whole human-sized organs and have shown lung as an example. Lungs from 20 to 30 kg pigs were excised en bloc with the trachea and decellularized with our established protocol of deionized water, detergents, sodium chloride, and porcine pancreatic DNase. A software program was written to control a valve manifold assembly that we built for selection and timing of decellularization fluid perfusion through the airway and the vasculature. This system was interfaced with a prototypic bioreactor chamber that was connected to another program, from a commercial source, which controlled the volume and flow pressure of fluids. Lung matrix that was decellularized by the automated method was compared to a manual method previously used by us and others. Automation resulted in more consistent acellular matrix preparations as demonstrated by measuring levels of DNA, hydroxyproline (collagen), elastin, laminin, and glycosaminoglycans. It also proved highly beneficial in saving time as the decellularization procedure was reduced from days down to just 24 h. Developing a rapid, controllable, automated system for production of reproducible matrices in a closed system is a major step forward in whole-organ tissue engineering.
Collapse
Affiliation(s)
- Andrew P Price
- 1 Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota Cancer Center, University of Minnesota , Minneapolis, Minnesota
| | | | | | | | | | | | | |
Collapse
|
82
|
Prakash YS, Tschumperlin DJ, Stenmark KR. Coming to terms with tissue engineering and regenerative medicine in the lung. Am J Physiol Lung Cell Mol Physiol 2015; 309:L625-38. [PMID: 26254424 DOI: 10.1152/ajplung.00204.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/04/2015] [Indexed: 01/10/2023] Open
Abstract
Lung diseases such as emphysema, interstitial fibrosis, and pulmonary vascular diseases cause significant morbidity and mortality, but despite substantial mechanistic understanding, clinical management options for them are limited, with lung transplantation being implemented at end stages. However, limited donor lung availability, graft rejection, and long-term problems after transplantation are major hurdles to lung transplantation being a panacea. Bioengineering the lung is an exciting and emerging solution that has the ultimate aim of generating lung tissues and organs for transplantation. In this article we capture and review the current state of the art in lung bioengineering, from the multimodal approaches, to creating anatomically appropriate lung scaffolds that can be recellularized to eventually yield functioning, transplant-ready lungs. Strategies for decellularizing mammalian lungs to create scaffolds with native extracellular matrix components vs. de novo generation of scaffolds using biocompatible materials are discussed. Strengths vs. limitations of recellularization using different cell types of various pluripotency such as embryonic, mesenchymal, and induced pluripotent stem cells are highlighted. Current hurdles to guide future research toward achieving the clinical goal of transplantation of a bioengineered lung are discussed.
Collapse
Affiliation(s)
- Y S Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota;
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Division of Pulmonary Medicine, Mayo Clinic, Rochester, Minnesota; and
| | - Kurt R Stenmark
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| |
Collapse
|
83
|
Stem Cells and Regenerative Medicine: Myth or Reality of the 21th Century. Stem Cells Int 2015; 2015:734731. [PMID: 26300923 PMCID: PMC4537770 DOI: 10.1155/2015/734731] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/22/2015] [Accepted: 05/24/2015] [Indexed: 02/07/2023] Open
Abstract
Since the 1960s and the therapeutic use of hematopoietic stem cells of bone marrow origin, there has been an increasing interest in the study of undifferentiated progenitors that have the ability to proliferate and differentiate into various tissues. Stem cells (SC) with different potency can be isolated and characterised. Despite the promise of embryonic stem cells, in many cases, adult or even fetal stem cells provide a more interesting approach for clinical applications. It is undeniable that mesenchymal stem cells (MSC) from bone marrow, adipose tissue, or Wharton's Jelly are of potential interest for clinical applications in regenerative medicine because they are easily available without ethical problems for their uses. During the last 10 years, these multipotent cells have generated considerable interest and have particularly been shown to escape to allogeneic immune response and be capable of immunomodulatory activity. These properties may be of a great interest for regenerative medicine. Different clinical applications are under study (cardiac insufficiency, atherosclerosis, stroke, bone and cartilage deterioration, diabetes, urology, liver, ophthalmology, and organ's reconstruction). This review focuses mainly on tissue and organ regeneration using SC and in particular MSC.
Collapse
|
84
|
Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods 2015; 84:25-34. [DOI: 10.1016/j.ymeth.2015.03.005] [Citation(s) in RCA: 367] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/02/2015] [Accepted: 03/09/2015] [Indexed: 02/07/2023] Open
|
85
|
Lo JH, Bassett EK, Penson EJN, Hoganson DM, Vacanti JP. Gas Transfer in Cellularized Collagen-Membrane Gas Exchange Devices. Tissue Eng Part A 2015; 21:2147-55. [PMID: 26020102 DOI: 10.1089/ten.tea.2014.0369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chronic lower respiratory disease is highly prevalent in the United States, and there remains a need for alternatives to lung transplant for patients who progress to end-stage lung disease. Portable or implantable gas oxygenators based on microfluidic technologies can address this need, provided they operate both efficiently and biocompatibly. Incorporating biomimetic materials into such devices can help replicate native gas exchange function and additionally support cellular components. In this work, we have developed microfluidic devices that enable blood gas exchange across ultra-thin collagen membranes (as thin as 2 μm). Endothelial, stromal, and parenchymal cells readily adhere to these membranes, and long-term culture with cellular components results in remodeling, reflected by reduced membrane thickness. Functionally, acellular collagen-membrane lung devices can mediate effective gas exchange up to ∼288 mL/min/m(2) of oxygen and ∼685 mL/min/m(2) of carbon dioxide, approaching the gas exchange efficiency noted in the native lung. Testing several configurations of lung devices to explore various physical parameters of the device design, we concluded that thinner membranes and longer gas exchange distances result in improved hemoglobin saturation and increases in pO2. However, in the design space tested, these effects are relatively small compared to the improvement in overall oxygen and carbon dioxide transfer by increasing the blood flow rate. Finally, devices cultured with endothelial and parenchymal cells achieved similar gas exchange rates compared with acellular devices. Biomimetic blood oxygenator design opens the possibility of creating portable or implantable microfluidic devices that achieve efficient gas transfer while also maintaining physiologic conditions.
Collapse
Affiliation(s)
- Justin H Lo
- 1 Department of Surgery, Center for Regenerative Medicine , Massachusetts General Hospital, Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts.,3 Harvard-MIT Division of Health Sciences and Technology , Cambridge, Massachusetts
| | - Erik K Bassett
- 1 Department of Surgery, Center for Regenerative Medicine , Massachusetts General Hospital, Boston, Massachusetts
| | - Elliot J N Penson
- 1 Department of Surgery, Center for Regenerative Medicine , Massachusetts General Hospital, Boston, Massachusetts
| | - David M Hoganson
- 1 Department of Surgery, Center for Regenerative Medicine , Massachusetts General Hospital, Boston, Massachusetts
| | - Joseph P Vacanti
- 1 Department of Surgery, Center for Regenerative Medicine , Massachusetts General Hospital, Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
86
|
Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO. The extracellular matrix: Tools and insights for the "omics" era. Matrix Biol 2015; 49:10-24. [PMID: 26163349 DOI: 10.1016/j.matbio.2015.06.003] [Citation(s) in RCA: 722] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 12/31/2022]
Abstract
The extracellular matrix (ECM) is a fundamental component of multicellular organisms that provides mechanical and chemical cues that orchestrate cellular and tissue organization and functions. Degradation, hyperproduction or alteration of the composition of the ECM cause or accompany numerous pathologies. Thus, a better characterization of ECM composition, metabolism, and biology can lead to the identification of novel prognostic and diagnostic markers and therapeutic opportunities. The development over the last few years of high-throughput ("omics") approaches has considerably accelerated the pace of discovery in life sciences. In this review, we describe new bioinformatic tools and experimental strategies for ECM research, and illustrate how these tools and approaches can be exploited to provide novel insights in our understanding of ECM biology. We also introduce a web platform "the matrisome project" and the database MatrisomeDB that compiles in silico and in vivo data on the matrisome, defined as the ensemble of genes encoding ECM and ECM-associated proteins. Finally, we present a first draft of an ECM atlas built by compiling proteomics data on the ECM composition of 14 different tissues and tumor types.
Collapse
Affiliation(s)
- Alexandra Naba
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Karl R Clauser
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Huiming Ding
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Barbara K. Ostrom Bioinformatics and Computing facility at the Swanson Biotechnology Center, Cambridge, MA 02139, USA
| | - Charles A Whittaker
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Barbara K. Ostrom Bioinformatics and Computing facility at the Swanson Biotechnology Center, Cambridge, MA 02139, USA
| | - Steven A Carr
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Richard O Hynes
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
87
|
Peloso A, Dhal A, Zambon JP, Li P, Orlando G, Atala A, Soker S. Current achievements and future perspectives in whole-organ bioengineering. Stem Cell Res Ther 2015; 6:107. [PMID: 26028404 PMCID: PMC4450459 DOI: 10.1186/s13287-015-0089-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 05/06/2015] [Indexed: 12/11/2022] Open
Abstract
Irreversible end-stage organ failure represents one of the leading causes of death, and organ transplantation is currently the only curative solution. Donor organ shortage and adverse effects of immunosuppressive regimens are the major limiting factors for this definitive practice. Recent developments in bioengineering and regenerative medicine could provide a solid base for the future creation of implantable, bioengineered organs. Whole-organ detergent-perfusion protocols permit clinicians to gently remove all the cells and at the same time preserve the natural three-dimensional framework of the native organ. Several decellularized organs, including liver, kidney, and pancreas, have been created as a platform for further successful seeding. These scaffolds are composed of organ-specific extracellular matrix that contains growth factors important for cellular growth and function. Macro- and microvascular tree is entirely maintained and can be incorporated in the recipient's vascular system after the implant. This review will emphasize recent achievements in the whole-organ scaffolds and at the same time underline complications that the scientific community has to resolve before reaching a functional bioengineered organ.
Collapse
Affiliation(s)
- Andrea Peloso
- IRCCS Policlinico San Matteo, Department of General Surgery, University of Pavia, Viale Golgi 19, Pavia, 27100, Italy. .,Wake Forest Institute for Regenerative Medicine, Medical Centre Boulevard, Winston-Salem, NC, 27157, USA.
| | - Abritee Dhal
- Wake Forest Institute for Regenerative Medicine, Medical Centre Boulevard, Winston-Salem, NC, 27157, USA.
| | - Joao P Zambon
- Wake Forest Institute for Regenerative Medicine, Medical Centre Boulevard, Winston-Salem, NC, 27157, USA.
| | - Peng Li
- Wake Forest Institute for Regenerative Medicine, Medical Centre Boulevard, Winston-Salem, NC, 27157, USA. .,Department of General Surgery Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, 226001, China.
| | - Giuseppe Orlando
- Wake Forest Institute for Regenerative Medicine, Medical Centre Boulevard, Winston-Salem, NC, 27157, USA. .,Wake Forest School of Medicine, Medical Centre Boulevard, Winston-Salem, NC, 27517, USA.
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Medical Centre Boulevard, Winston-Salem, NC, 27157, USA. .,Wake Forest School of Medicine, Medical Centre Boulevard, Winston-Salem, NC, 27517, USA.
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Medical Centre Boulevard, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
88
|
Crabbé A, Liu Y, Sarker SF, Bonenfant NR, Barrila J, Borg ZD, Lee JJ, Weiss DJ, Nickerson CA. Recellularization of decellularized lung scaffolds is enhanced by dynamic suspension culture. PLoS One 2015; 10:e0126846. [PMID: 25962111 PMCID: PMC4427280 DOI: 10.1371/journal.pone.0126846] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/08/2015] [Indexed: 12/20/2022] Open
Abstract
Strategies are needed to improve repopulation of decellularized lung scaffolds with stromal and functional epithelial cells. We demonstrate that decellularized mouse lungs recellularized in a dynamic low fluid shear suspension bioreactor, termed the rotating wall vessel (RWV), contained more cells with decreased apoptosis, increased proliferation and enhanced levels of total RNA compared to static recellularization conditions. These results were observed with two relevant mouse cell types: bone marrow-derived mesenchymal stromal (stem) cells (MSCs) and alveolar type II cells (C10). In addition, MSCs cultured in decellularized lungs under static but not bioreactor conditions formed multilayered aggregates. Gene expression and immunohistochemical analyses suggested differentiation of MSCs into collagen I-producing fibroblast-like cells in the bioreactor, indicating enhanced potential for remodeling of the decellularized scaffold matrix. In conclusion, dynamic suspension culture is promising for enhancing repopulation of decellularized lungs, and could contribute to remodeling the extracellular matrix of the scaffolds with subsequent effects on differentiation and functionality of inoculated cells.
Collapse
Affiliation(s)
- Aurélie Crabbé
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Yulong Liu
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Shameema F. Sarker
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Nicholas R. Bonenfant
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Jennifer Barrila
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Zachary D. Borg
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - James J. Lee
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, United States of America
| | - Daniel J. Weiss
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Cheryl A. Nickerson
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
89
|
da Palma RK, Campillo N, Uriarte JJ, Oliveira LVF, Navajas D, Farré R. Pressure- and flow-controlled media perfusion differently modify vascular mechanics in lung decellularization. J Mech Behav Biomed Mater 2015; 49:69-79. [PMID: 26002417 DOI: 10.1016/j.jmbbm.2015.04.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/18/2015] [Accepted: 04/23/2015] [Indexed: 01/07/2023]
Abstract
Organ biofabrication is a potential future alternative for obtaining viable organs for transplantation. Achieving intact scaffolds to be recellularized is a key step in lung bioengineering. Perfusion of decellularizing media through the pulmonary artery has shown to be effective. How vascular perfusion pressure and flow vary throughout lung decellularization, which is not well known, is important for optimizing the process (minimizing time) while ensuring scaffold integrity (no barotrauma). This work was aimed at characterizing the pressure/flow relationship at the pulmonary vasculature and at how effective vascular resistance depends on pressure- and flow-controlled variables when applying different methods of media perfusion for lung decellularization. Lungs from 43 healthy mice (C57BL/6; 7-8 weeks old) were investigated. After excision and tracheal cannulation, lungs were inflated at 10 cmH2O airway pressure and subjected to conventional decellularization with a solution of 1% sodium dodecyl sulfate (SDS). Pressure (PPA) and flow (V'PA) at the pulmonary artery were continuously measured. Decellularization media was perfused through the pulmonary artery: (a) at constant PPA=20 cmH2O or (b) at constant V'PA=0.5 and 0.2 ml/min. Effective vascular resistance was computed as Rv=PPA/V'PA. Rv (in cmH2O/(ml/min)); mean±SE) considerably varied throughout lung decellularization, particularly for pressure-controlled perfusion (from 29.1±3.0 in baseline to a maximum of 664.1±164.3 (p<0.05), as compared with flow-controlled perfusion (from 49.9±3.3 and 79.5±5.1 in baseline to a maximum of 114.4±13.9 and 211.7±70.5 (p<0.05, both), for V'PA of 0.5 and 0.2 ml/min respectively. Most of the media infused to the pulmonary artery throughout decellularization circulated to the airways compartment across the alveolar-capillary membrane. This study shows that monitoring perfusion mechanics throughout decellularization provides information relevant for optimizing the process time while ensuring that vascular pressure is kept within a safety range to preserve the organ scaffold integrity.
Collapse
Affiliation(s)
- Renata K da Palma
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Master's and Doctoral Degree Programs in Rehabilitation Sciences, Nove de Julho University, Sao Paulo, Brazil
| | - Noelia Campillo
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institut de Bioenginyeria de Catalunya, Barcelona, Spain
| | - Juan J Uriarte
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; CIBER Enfermedades Respiratorias, Madrid, Spain
| | - Luis V F Oliveira
- Master's and Doctoral Degree Programs in Rehabilitation Sciences, Nove de Julho University, Sao Paulo, Brazil
| | - Daniel Navajas
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institut de Bioenginyeria de Catalunya, Barcelona, Spain; CIBER Enfermedades Respiratorias, Madrid, Spain
| | - Ramon Farré
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; CIBER Enfermedades Respiratorias, Madrid, Spain; Institut Investigacions Biomediques August Pi Sunyer, Barcelona, Spain.
| |
Collapse
|
90
|
Hill RC, Calle EA, Dzieciatkowska M, Niklason LE, Hansen KC. Quantification of extracellular matrix proteins from a rat lung scaffold to provide a molecular readout for tissue engineering. Mol Cell Proteomics 2015; 14:961-73. [PMID: 25660013 PMCID: PMC4390273 DOI: 10.1074/mcp.m114.045260] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/06/2015] [Indexed: 01/20/2023] Open
Abstract
The use of extracellular matrix (ECM) scaffolds, derived from decellularized tissues for engineered organ generation, holds enormous potential in the field of regenerative medicine. To support organ engineering efforts, we developed a targeted proteomics method to extract and quantify extracellular matrix components from tissues. Our method provides more complete and accurate protein characterization than traditional approaches. This is accomplished through the analysis of both the chaotrope-soluble and -insoluble protein fractions and using recombinantly generated stable isotope labeled peptides for endogenous protein quantification. Using this approach, we have generated 74 peptides, representing 56 proteins to quantify protein in native (nondecellularized) and decellularized lung matrices. We have focused on proteins of the ECM and additional intracellular proteins that are challenging to remove during the decellularization procedure. Results indicate that the acellular lung scaffold is predominantly composed of structural collagens, with the majority of these proteins found in the insoluble ECM, a fraction that is often discarded using widely accepted proteomic methods. The decellularization procedure removes over 98% of intracellular proteins evaluated and retains, to varying degrees, proteoglycans and glycoproteins of the ECM. Accurate characterization of ECM proteins from tissue samples will help advance organ engineering efforts by generating a molecular readout that can be correlated with functional outcome to drive the next generation of engineered organs.
Collapse
Affiliation(s)
- Ryan C Hill
- ‡Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045
| | | | - Monika Dzieciatkowska
- ‡Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045
| | - Laura E Niklason
- §Department of Biomedical Engineering and Anesthesiology, ¶Yale University, New Haven, CT 06519
| | - Kirk C Hansen
- ‡Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045,
| |
Collapse
|
91
|
Wolf MT, Dearth CL, Sonnenberg SB, Loboa EG, Badylak SF. Naturally derived and synthetic scaffolds for skeletal muscle reconstruction. Adv Drug Deliv Rev 2015; 84:208-21. [PMID: 25174309 DOI: 10.1016/j.addr.2014.08.011] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 07/22/2014] [Accepted: 08/20/2014] [Indexed: 12/15/2022]
Abstract
Skeletal muscle tissue has an inherent capacity for regeneration following injury. However, severe trauma, such as volumetric muscle loss, overwhelms these natural muscle repair mechanisms prompting the search for a tissue engineering/regenerative medicine approach to promote functional skeletal muscle restoration. A desirable approach involves a bioscaffold that simultaneously acts as an inductive microenvironment and as a cell/drug delivery vehicle to encourage muscle ingrowth. Both biologically active, naturally derived materials (such as extracellular matrix) and carefully engineered synthetic polymers have been developed to provide such a muscle regenerative environment. Next generation naturally derived/synthetic "hybrid materials" would combine the advantageous properties of these materials to create an optimal platform for cell/drug delivery and possess inherent bioactive properties. Advances in scaffolds using muscle tissue engineering are reviewed herein.
Collapse
Affiliation(s)
- Matthew T Wolf
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Christopher L Dearth
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Sonya B Sonnenberg
- Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Elizabeth G Loboa
- Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Department of Materials Science & Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
92
|
Gao Z, Wu T, Xu J, Liu G, Xie Y, Zhang C, Wang J, Wang S. Generation of Bioartificial Salivary Gland Using Whole-Organ Decellularized Bioscaffold. Cells Tissues Organs 2015; 200:171-80. [PMID: 25824480 DOI: 10.1159/000371873] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2015] [Indexed: 11/19/2022] Open
Abstract
Salivary gland hypofunction resulting in xerostomia occurs as a result of various pathological conditions such as radiotherapy for head and neck cancers, Sjögren's syndrome or salivary gland tumor resection. It can induce a large number of problems, including dental decay, periodontitis, dysgeusia, difficulty with mastication and swallowing and a reduced quality of life. Current therapies for xerostomia mostly focus on saliva substitutes, oral lubricants and medications which stimulate salivation from residual glands. However, these treatments are not sufficient to restore gland secretory function. Tissue engineering-based organ regeneration has emerged as a potential therapeutic alternative for end- organ failure. Here, we decellularized rat submandibular glands (SMG) by detergent immersion. Histological, immunofluorescent, Western blot, DNA and collagen quantitative analyses demonstrated that our protocol effectively removed cellular components and that extracellular matrix proteins and native structures were well preserved. We then reseeded the decellularized SMG as scaffolds with rat primary SMG cells in a rotary cell culture system. Histological staining and electron microscopy analyses illustrated that the decellularized SMG could support cellular adhesion. Furthermore, with immunofluorescent staining, we proved that bioartificially generated SMG showed some differentiation markers in vitro. Taken together, our findings might provide a potential scaffold for tissue-engineered regeneration of the salivary glands.
Collapse
|
93
|
Scarritt ME, Pashos NC, Bunnell BA. A review of cellularization strategies for tissue engineering of whole organs. Front Bioeng Biotechnol 2015; 3:43. [PMID: 25870857 PMCID: PMC4378188 DOI: 10.3389/fbioe.2015.00043] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/16/2015] [Indexed: 12/22/2022] Open
Abstract
With the advent of whole organ decellularization, extracellular matrix scaffolds suitable for organ engineering were generated from numerous tissues, including the heart, lung, liver, kidney, and pancreas, for use as alternatives to traditional organ transplantation. Biomedical researchers now face the challenge of adequately and efficiently recellularizing these organ scaffolds. Herein, an overview of whole organ decellularization and a thorough review of the current literature for whole organ recellularization are presented. The cell types, delivery methods, and bioreactors employed for recellularization are discussed along with commercial and clinical considerations, such as immunogenicity, biocompatibility, and Food and Drug Administartion regulation.
Collapse
Affiliation(s)
- Michelle E Scarritt
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine , New Orleans, LA , USA
| | - Nicholas C Pashos
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine , New Orleans, LA , USA ; Bioinnovation PhD Program, Tulane University , New Orleans, LA , USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine , New Orleans, LA , USA ; Department of Pharmacology, Tulane University School of Medicine , New Orleans, LA , USA
| |
Collapse
|
94
|
O'Leary C, Gilbert JL, O'Dea S, O'Brien FJ, Cryan SA. Respiratory Tissue Engineering: Current Status and Opportunities for the Future. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:323-44. [PMID: 25587703 DOI: 10.1089/ten.teb.2014.0525] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Currently, lung disease and major airway trauma constitute a major global healthcare burden with limited treatment options. Airway diseases such as chronic obstructive pulmonary disease and cystic fibrosis have been identified as the fifth highest cause of mortality worldwide and are estimated to rise to fourth place by 2030. Alternate approaches and therapeutic modalities are urgently needed to improve clinical outcomes for chronic lung disease. This can be achieved through tissue engineering of the respiratory tract. Interest is growing in the use of airway tissue-engineered constructs as both a research tool, to further our understanding of airway pathology, validate new drugs, and pave the way for novel drug therapies, and also as regenerative medical devices or as an alternative to transplant tissue. This review provides a concise summary of the field of respiratory tissue engineering to date. An initial overview of airway anatomy and physiology is given, followed by a description of the stem cell populations and signaling processes involved in parenchymal healing and tissue repair. We then focus on the different biomaterials and tissue-engineered systems employed in upper and lower respiratory tract engineering and give a final perspective of the opportunities and challenges facing the field of respiratory tissue engineering.
Collapse
Affiliation(s)
- Cian O'Leary
- 1 Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland , Dublin, Ireland .,2 School of Pharmacy, Royal College of Surgeons in Ireland , Dublin, Ireland .,3 Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin , Dublin, Ireland
| | - Jennifer L Gilbert
- 4 Department of Biology, Institute of Immunology, University of Ireland , Maynooth, Ireland
| | - Shirley O'Dea
- 4 Department of Biology, Institute of Immunology, University of Ireland , Maynooth, Ireland
| | - Fergal J O'Brien
- 1 Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland , Dublin, Ireland .,3 Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin , Dublin, Ireland .,5 Trinity Centre of Bioengineering, Trinity College Dublin , Dublin, Ireland
| | - Sally-Ann Cryan
- 1 Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland , Dublin, Ireland .,2 School of Pharmacy, Royal College of Surgeons in Ireland , Dublin, Ireland .,5 Trinity Centre of Bioengineering, Trinity College Dublin , Dublin, Ireland
| |
Collapse
|
95
|
|
96
|
Niedermaier S, Hilgendorff A. Bronchopulmonary dysplasia - an overview about pathophysiologic concepts. Mol Cell Pediatr 2015; 2:2. [PMID: 26542292 PMCID: PMC4530566 DOI: 10.1186/s40348-015-0013-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/25/2015] [Indexed: 12/27/2022] Open
Abstract
Neonatal chronic lung disease in the preterm infant, i.e. bronchopulmonary dysplasia (BPD) is characterized by impaired pulmonary development with its effects persisting into adulthood. Triggered in the immature lung by infectious complications, oxygen toxicity and the impact of mechanical ventilation, a sustained inflammatory response, extensive remodeling of the extracellular matrix, increased apoptosis as well as altered growth factor signaling characterize the disease. The current review focuses on selected pathophysiologic processes and their interplay in disease development. Furthermore, the potential of both, acute and long-term changes to the pulmonary scaffold and the cellular interface in concert with dysregulated growth factor signaling to affect aging and repair processes in the adult lung is discussed.
Collapse
Affiliation(s)
- Sophie Niedermaier
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich Max-Lebsche-Platz 31, 81377, Munich, Germany. .,Dr. von Hauner Children's Hospital, Ludwig-Maximilians University Munich, Munich, Germany.
| | - Anne Hilgendorff
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich Max-Lebsche-Platz 31, 81377, Munich, Germany. .,Dr. von Hauner Children's Hospital, Ludwig-Maximilians University Munich, Munich, Germany.
| |
Collapse
|
97
|
Hilgendorff A, O'Reilly MA. Bronchopulmonary dysplasia early changes leading to long-term consequences. Front Med (Lausanne) 2015; 2:2. [PMID: 25729750 PMCID: PMC4325927 DOI: 10.3389/fmed.2015.00002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/05/2015] [Indexed: 12/05/2022] Open
Abstract
Neonatal chronic lung disease, i.e., bronchopulmonary dysplasia, is characterized by impaired pulmonary development resulting from the impact of different risk factors including infections, hyperoxia, and mechanical ventilation on the immature lung. Remodeling of the extracellular matrix, apoptosis as well as altered growth factor signaling characterize the disease. The immediate consequences of these early insults have been studied in different animal models supported by results from in vitro approaches leading to the successful application of some findings to the clinical setting in the past. Nonetheless, existing information about long-term consequences of the identified early and most likely sustained changes to the developing lung is limited. Interesting results point towards a tremendous impact of these early injuries on the pulmonary repair capacity as well as aging related processes in the adult lung.
Collapse
Affiliation(s)
- Anne Hilgendorff
- Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL) , Munich , Germany ; Neonatology, Perinatal Center Grosshadern, Dr. von Hauner Children's Hospital, Ludwig-Maximilians University , Munich , Germany
| | - Michael A O'Reilly
- Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester , Rochester, NY , USA
| |
Collapse
|
98
|
Kim SY, Wong AHM, Abou Neel EA, Chrzanowski W, Chan HK. The future perspectives of natural materials for pulmonary drug delivery and lung tissue engineering. Expert Opin Drug Deliv 2014; 12:869-87. [DOI: 10.1517/17425247.2015.993314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
99
|
Weiss DJ. Concise review: current status of stem cells and regenerative medicine in lung biology and diseases. Stem Cells 2014; 32:16-25. [PMID: 23959715 DOI: 10.1002/stem.1506] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/24/2013] [Indexed: 12/29/2022]
Abstract
Lung diseases remain a significant and devastating cause of morbidity and mortality worldwide. In contrast to many other major diseases, lung diseases notably chronic obstructive pulmonary diseases (COPDs), including both asthma and emphysema, are increasing in prevalence and COPD is expected to become the third leading cause of disease mortality worldwide by 2020. New therapeutic options are desperately needed. A rapidly growing number of investigations of stem cells and cell therapies in lung biology and diseases as well as in ex vivo lung bioengineering have offered exciting new avenues for advancing knowledge of lung biology as well as providing novel potential therapeutic approaches for lung diseases. These initial observations have led to a growing exploration of endothelial progenitor cells and mesenchymal stem (stromal) cells in clinical trials of pulmonary hypertension and COPD with other clinical investigations planned. Ex vivo bioengineering of the trachea, larynx, diaphragm, and the lung itself with both biosynthetic constructs as well as decellularized tissues have been used to explore engineering both airway and vascular systems of the lung. Lung is thus a ripe organ for a variety of cell therapy and regenerative medicine approaches. Current state-of-the-art progress for each of the above areas will be presented as will discussion of current considerations for cell therapy-based clinical trials in lung diseases.
Collapse
Affiliation(s)
- Daniel J Weiss
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA
| |
Collapse
|
100
|
Extracellular matrix as a driver for lung regeneration. Ann Biomed Eng 2014; 43:568-76. [PMID: 25344351 DOI: 10.1007/s10439-014-1167-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/15/2014] [Indexed: 12/20/2022]
Abstract
Extracellular matrix has manifold roles in tissue mechanics, guidance of cellular behavior, developmental biology, and regenerative medicine. Over the past several decades, various pre-clinical and clinical studies have shown that many connective tissues may be replaced and/or regenerated using suitable extracellular matrix scaffolds. More recently, decellularization of lung tissue has shown that gentle removal of cells can leave behind a "footprint" within the matrix that may guide cellular adhesion, differentiation and homing following cellular repopulation. Fundamental issues like understanding matrix composition and micro-mechanics remain difficult to tackle, largely because of a lack of available assays and tools for systematically characterizing intact matrix from tissues and organs. This review will critically examine the role of engineered and native extracellular matrix in tissue and lung regeneration, and provide insights into directions for future research and translation.
Collapse
|