51
|
Nichols JE, La Francesca S, Niles JA, Vega SP, Argueta LB, Frank L, Christiani DC, Pyles RB, Himes BE, Zhang R, Li S, Sakamoto J, Rhudy J, Hendricks G, Begarani F, Liu X, Patrikeev I, Pal R, Usheva E, Vargas G, Miller A, Woodson L, Wacher A, Grimaldo M, Weaver D, Mlcak R, Cortiella J. Production and transplantation of bioengineered lung into a large-animal model. Sci Transl Med 2018; 10:10/452/eaao3926. [DOI: 10.1126/scitranslmed.aao3926] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 06/19/2018] [Indexed: 12/26/2022]
Abstract
The inability to produce perfusable microvasculature networks capable of supporting tissue survival and of withstanding physiological pressures without leakage is a fundamental problem facing the field of tissue engineering. Microvasculature is critically important for production of bioengineered lung (BEL), which requires systemic circulation to support tissue survival and coordination of circulatory and respiratory systems to ensure proper gas exchange. To advance our understanding of vascularization after bioengineered organ transplantation, we produced and transplanted BEL without creation of a pulmonary artery anastomosis in a porcine model. A single pneumonectomy, performed 1 month before BEL implantation, provided the source of autologous cells used to bioengineer the organ on an acellular lung scaffold. During 30 days of bioreactor culture, we facilitated systemic vessel development using growth factor–loaded microparticles. We evaluated recipient survival, autograft (BEL) vascular and parenchymal tissue development, graft rejection, and microbiome reestablishment in autografted animals 10 hours, 2 weeks, 1 month, and 2 months after transplant. BEL became well vascularized as early as 2 weeks after transplant, and formation of alveolar tissue was observed in all animals (n = 4). There was no indication of transplant rejection. BEL continued to develop after transplant and did not require addition of exogenous growth factors to drive cell proliferation or lung and vascular tissue development. The sterile BEL was seeded and colonized by the bacterial community of the native lung.
Collapse
Affiliation(s)
- Joan E. Nichols
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | | | - Jean A. Niles
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Stephanie P. Vega
- Department of Microbiology and Immunology, UTMB, Galveston, TX 77555, USA
| | | | - Luba Frank
- Department of Radiology, UTMB, Galveston, TX 77555, USA
| | - David C. Christiani
- Pulmonary Division, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Environmental, Occupational Medicine, Epidemiology Department, TH Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Richard B. Pyles
- Galveston National Laboratory, Assay Development Core, UTMB, Galveston, TX 77555, USA
| | - Blanca E. Himes
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruyang Zhang
- Environmental, Occupational Medicine, Epidemiology Department, TH Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Su Li
- Environmental, Occupational Medicine, Epidemiology Department, TH Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Jason Sakamoto
- Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Jessica Rhudy
- Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Greg Hendricks
- Radiology Division of Cell Biology, University of Massachusetts Medical School, Worchester, MA 01605, USA
| | - Filippo Begarani
- Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Xuewu Liu
- Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Igor Patrikeev
- Center for Biomedical Engineering, UTMB, Galveston, TX 77555, USA
| | - Rahul Pal
- Center for Biomedical Engineering, UTMB, Galveston, TX 77555, USA
| | - Emiliya Usheva
- University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | - Grace Vargas
- Center for Biomedical Engineering, UTMB, Galveston, TX 77555, USA
| | - Aaron Miller
- Galveston National Laboratory, Assay Development Core, UTMB, Galveston, TX 77555, USA
| | - Lee Woodson
- Department of Anesthesiology, UTMB, Galveston, TX 77555, USA
| | - Adam Wacher
- Department of Anesthesiology, UTMB, Galveston, TX 77555, USA
| | - Maria Grimaldo
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Daniil Weaver
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Ron Mlcak
- Shriners Hospital for Children, Galveston, TX 77550, USA
| | | |
Collapse
|
52
|
De Santis MM, Bölükbas DA, Lindstedt S, Wagner DE. How to build a lung: latest advances and emerging themes in lung bioengineering. Eur Respir J 2018; 52:13993003.01355-2016. [PMID: 29903859 DOI: 10.1183/13993003.01355-2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/30/2018] [Indexed: 12/19/2022]
Abstract
Chronic respiratory diseases remain a major cause of morbidity and mortality worldwide. The only option at end-stage disease is lung transplantation, but there are not enough donor lungs to meet clinical demand. Alternative options to increase tissue availability for lung transplantation are urgently required to close the gap on this unmet clinical need. A growing number of tissue engineering approaches are exploring the potential to generate lung tissue ex vivo for transplantation. Both biologically derived and manufactured scaffolds seeded with cells and grown ex vivo have been explored in pre-clinical studies, with the eventual goal of generating functional pulmonary tissue for transplantation. Recently, there have been significant efforts to scale-up cell culture methods to generate adequate cell numbers for human-scale bioengineering approaches. Concomitantly, there have been exciting efforts in designing bioreactors that allow for appropriate cell seeding and development of functional lung tissue over time. This review aims to present the current state-of-the-art progress for each of these areas and to discuss promising new ideas within the field of lung bioengineering.
Collapse
Affiliation(s)
- Martina M De Santis
- Lung Bioengineering and Regeneration, Dept of Experimental Medical Sciences, Lund University, Lund, Sweden.,Lung Repair and Regeneration (LRR), Comprehensive Pneumology Center (CPC), Helmholtz Zentrum Munich, Member of the German Center for Lung Research (DZL), Munich, Germany.,Stem Cell Centre, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Deniz A Bölükbas
- Lung Bioengineering and Regeneration, Dept of Experimental Medical Sciences, Lund University, Lund, Sweden.,Stem Cell Centre, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Sandra Lindstedt
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Dept of Cardiothoracic Surgery, Heart and Lung Transplantation, Lund University Hospital, Lund, Sweden
| | - Darcy E Wagner
- Lung Bioengineering and Regeneration, Dept of Experimental Medical Sciences, Lund University, Lund, Sweden .,Lung Repair and Regeneration (LRR), Comprehensive Pneumology Center (CPC), Helmholtz Zentrum Munich, Member of the German Center for Lung Research (DZL), Munich, Germany.,Stem Cell Centre, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
53
|
Bellezzia MA, Cruz FF, Martins V, de Castro LL, Lopes-Pacheco M, Vilanova EP, Mourão PA, Rocco PRM, Silva PL. Impact of different intratracheal flows during lung decellularization on extracellular matrix composition and mechanics. Regen Med 2018; 13:519-530. [DOI: 10.2217/rme-2018-0008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Aim: To evaluate different intratracheal flow rates on extracellular matrix content and lung mechanics in an established lung decellularization protocol. Materials & methods: Healthy mice were used: 15 for decellularization and five to serve as controls. Fluids were instilled at 5, 10 and 20 ml/min flow rates through tracheal cannula and right ventricular cavity (0.5 ml/min) in all groups. Results: The 20 ml/min rate better preserved collagen content in decellularized lungs. Elastic fiber content decreased at 5 and 10 ml/min, but not at 20 ml/min, compared with controls. Chondroitin, heparan and dermatan content was reduced after decellularization. Conclusion: An intratracheal flow rate of 20 ml/min was associated with lower resistance and greater preservation of collagen to that observed in ex vivo control lungs.
Collapse
Affiliation(s)
- Mariana Alves Bellezzia
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, RJ, Brazil
- National Institute of Science & Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, RJ, Brazil
- National Institute of Science & Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Vanessa Martins
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, RJ, Brazil
- Laboratory of Histomorphometry & Lung Genomics, University of São Paulo Faculty of Medicine, São Paulo, SP, Brazil
| | - Lígia Lins de Castro
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, RJ, Brazil
- National Institute of Science & Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, RJ, Brazil
- National Institute of Science & Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Eduardo Prata Vilanova
- Glycobiology Program, Leopoldo de Meis Medical Biochemistry Institute, Connective Tissue Laboratory, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, RJ, Brazil
| | - Paulo A Mourão
- Glycobiology Program, Leopoldo de Meis Medical Biochemistry Institute, Connective Tissue Laboratory, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, RJ, Brazil
| | - Patricia RM Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, RJ, Brazil
- National Institute of Science & Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, RJ, Brazil
- National Institute of Science & Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
54
|
Wrenn SM, Griswold ED, Uhl FE, Uriarte JJ, Park HE, Coffey AL, Dearborn JS, Ahlers BA, Deng B, Lam YW, Huston DR, Lee PC, Wagner DE, Weiss DJ. Avian lungs: A novel scaffold for lung bioengineering. PLoS One 2018; 13:e0198956. [PMID: 29949597 PMCID: PMC6021073 DOI: 10.1371/journal.pone.0198956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/28/2018] [Indexed: 02/07/2023] Open
Abstract
Allogeneic lung transplant is limited both by the shortage of available donor lungs and by the lack of suitable long-term lung assist devices to bridge patients to lung transplantation. Avian lungs have different structure and mechanics resulting in more efficient gas exchange than mammalian lungs. Decellularized avian lungs, recellularized with human lung cells, could therefore provide a powerful novel gas exchange unit for potential use in pulmonary therapeutics. To initially assess this in both small and large avian lung models, chicken (Gallus gallus domesticus) and emu (Dromaius novaehollandiae) lungs were decellularized using modifications of a detergent-based protocol, previously utilized with mammalian lungs. Light and electron microscopy, vascular and airway resistance, quantitation and gel analyses of residual DNA, and immunohistochemical and mass spectrometric analyses of remaining extracellular matrix (ECM) proteins demonstrated maintenance of lung structure, minimal residual DNA, and retention of major ECM proteins in the decellularized scaffolds. Seeding with human bronchial epithelial cells, human pulmonary vascular endothelial cells, human mesenchymal stromal cells, and human lung fibroblasts demonstrated initial cell attachment on decellularized avian lungs and growth over a 7-day period. These initial studies demonstrate that decellularized avian lungs may be a feasible approach for generating functional lung tissue for clinical therapeutics.
Collapse
Affiliation(s)
- Sean M. Wrenn
- Department of Surgery, University of Vermont, Burlington, VT, United States of America
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Ethan D. Griswold
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
- Rochester Institute of Technology, Rochester, NY, United States of America
| | - Franziska E. Uhl
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Juan J. Uriarte
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Heon E. Park
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
- Department of Mechanical Engineering, University of Vermont, Burlington, VT, United States of America
| | - Amy L. Coffey
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Jacob S. Dearborn
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Bethany A. Ahlers
- Department of Biology, University of Vermont, Burlington, VT, United States of America
| | - Bin Deng
- Department of Biology, University of Vermont, Burlington, VT, United States of America
| | - Ying-Wai Lam
- Department of Biology, University of Vermont, Burlington, VT, United States of America
| | - Dryver R. Huston
- Department of Mechanical Engineering, University of Vermont, Burlington, VT, United States of America
| | - Patrick C. Lee
- Department of Mechanical Engineering, University of Vermont, Burlington, VT, United States of America
| | - Darcy E. Wagner
- Comprehensive Pneumology Center, Ludwig Maximilians University Munich, Munich, Germany
- Department of Experimental Medical Science, Lung Bioengineering and Regeneration, Lund University, Lund, Sweden
| | - Daniel J. Weiss
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
- * E-mail:
| |
Collapse
|
55
|
Gilpin SE, Wagner DE. Acellular human lung scaffolds to model lung disease and tissue regeneration. Eur Respir Rev 2018; 27:27/148/180021. [PMID: 29875137 PMCID: PMC9488127 DOI: 10.1183/16000617.0021-2018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/05/2018] [Indexed: 11/25/2022] Open
Abstract
Recent advances in whole lung bioengineering have opened new doors for studying lung repair and regeneration ex vivo using acellular human derived lung tissue scaffolds. Methods to decellularise whole human lungs, lobes or resected segments from normal and diseased human lungs have been developed using both perfusion and immersion based techniques. Immersion based techniques allow laboratories without access to intact lobes the ability to generate acellular human lung scaffolds. Acellular human lung scaffolds can be further processed into small segments, thin slices or extracellular matrix extracts, to study cell behaviour such as viability, proliferation, migration and differentiation. Recent studies have offered important proof of concept of generating sufficient primary endothelial and lung epithelial cells to recellularise whole lobes that can be maintained for several days ex vivo in a bioreactor to study regeneration. In parallel, acellular human lung scaffolds have been increasingly used for studying cell–extracellular environment interactions. These studies have helped provide new insights into the role of the matrix and the extracellular environment in chronic human lung diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Acellular human lung scaffolds are a versatile new tool for studying human lung repair and regeneration ex vivo. Acellular human lung scaffolds can be used as diverse tools to study lung disease and tissue regeneration ex vivohttp://ow.ly/ZS0l30k9MEH
Collapse
Affiliation(s)
- Sarah E Gilpin
- Laboratory for Organ Engineering and Regeneration, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Darcy E Wagner
- Lund University, Dept of Experimental Medical Sciences, Lung Bioengineering and Regeneration, Lund, Sweden .,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Stem Cell Centre, Lund University, Lund, Sweden
| |
Collapse
|
56
|
Zhou Y, Horowitz JC, Naba A, Ambalavanan N, Atabai K, Balestrini J, Bitterman PB, Corley RA, Ding BS, Engler AJ, Hansen KC, Hagood JS, Kheradmand F, Lin QS, Neptune E, Niklason L, Ortiz LA, Parks WC, Tschumperlin DJ, White ES, Chapman HA, Thannickal VJ. Extracellular matrix in lung development, homeostasis and disease. Matrix Biol 2018. [PMID: 29524630 DOI: 10.1016/j.matbio.2018.03.005] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this review, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECM in normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. We identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases.
Collapse
Affiliation(s)
- Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, United States.
| | - Jeffrey C Horowitz
- Division of Pulmonary and Critical Care Medicine, University of Michigan, United States.
| | - Alexandra Naba
- Department of Physiology & Biophysics, University of Illinois at Chicago, United States.
| | | | - Kamran Atabai
- Lung Biology Center, University of California, San Francisco, United States.
| | | | | | - Richard A Corley
- Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, United States.
| | - Bi-Sen Ding
- Weill Cornell Medical College, United States.
| | - Adam J Engler
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, United States.
| | - Kirk C Hansen
- Biochemistry & Molecular Genetics, University of Colorado Denver, United States.
| | - James S Hagood
- Pediatric Respiratory Medicine, University of California San Diego, United States.
| | - Farrah Kheradmand
- Division of Pulmonary and Critical Care, Baylor College of Medicine, United States.
| | - Qing S Lin
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, United States.
| | - Enid Neptune
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, United States.
| | - Laura Niklason
- Department of Anesthesiology, Yale University, United States.
| | - Luis A Ortiz
- Division of Environmental and Occupational Health, University of Pittsburgh, United States.
| | - William C Parks
- Department of Medicine, Cedars-Sinai Medical Center, United States.
| | - Daniel J Tschumperlin
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, United States.
| | - Eric S White
- Division of Pulmonary and Critical Care Medicine, University of Michigan, United States.
| | - Harold A Chapman
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, United States.
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, United States.
| |
Collapse
|
57
|
|
58
|
An Official American Thoracic Society Workshop Report 2015. Stem Cells and Cell Therapies in Lung Biology and Diseases. Ann Am Thorac Soc 2018; 13:S259-78. [PMID: 27509163 DOI: 10.1513/annalsats.201606-466st] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The University of Vermont College of Medicine, in collaboration with the NHLBI, Alpha-1 Foundation, American Thoracic Society, Cystic Fibrosis Foundation, European Respiratory Society, International Society for Cellular Therapy, and the Pulmonary Fibrosis Foundation, convened a workshop, "Stem Cells and Cell Therapies in Lung Biology and Lung Diseases," held July 27 to 30, 2015, at the University of Vermont. The conference objectives were to review the current understanding of the role of stem and progenitor cells in lung repair after injury and to review the current status of cell therapy and ex vivo bioengineering approaches for lung diseases. These are all rapidly expanding areas of study that both provide further insight into and challenge traditional views of mechanisms of lung repair after injury and pathogenesis of several lung diseases. The goals of the conference were to summarize the current state of the field, discuss and debate current controversies, and identify future research directions and opportunities for both basic and translational research in cell-based therapies for lung diseases. This 10th anniversary conference was a follow up to five previous biennial conferences held at the University of Vermont in 2005, 2007, 2009, 2011, and 2013. Each of those conferences, also sponsored by the National Institutes of Health, American Thoracic Society, and respiratory disease foundations, has been important in helping guide research and funding priorities. The major conference recommendations are summarized at the end of the report and highlight both the significant progress and major challenges in these rapidly progressing fields.
Collapse
|
59
|
Zscheppang K, Berg J, Hedtrich S, Verheyen L, Wagner DE, Suttorp N, Hippenstiel S, Hocke AC. Human Pulmonary 3D Models For Translational Research. Biotechnol J 2018; 13:1700341. [PMID: 28865134 PMCID: PMC7161817 DOI: 10.1002/biot.201700341] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Lung diseases belong to the major causes of death worldwide. Recent innovative methodological developments now allow more and more for the use of primary human tissue and cells to model such diseases. In this regard, the review covers bronchial air-liquid interface cultures, precision cut lung slices as well as ex vivo cultures of explanted peripheral lung tissue and de-/re-cellularization models. Diseases such as asthma or infections are discussed and an outlook on further areas for development is given. Overall, the progress in ex vivo modeling by using primary human material could make translational research activities more efficient by simultaneously fostering the mechanistic understanding of human lung diseases while reducing animal usage in biomedical research.
Collapse
Affiliation(s)
- Katja Zscheppang
- Dept. of Internal Medicine/Infectious and Respiratory DiseasesCharité − Universitätsmedizin BerlinCharitèplatz 1Berlin 10117Germany
| | - Johanna Berg
- Department of BiotechnologyTechnical University of BerlinGustav‐Meyer‐Allee 25Berlin 13335Germany
| | - Sarah Hedtrich
- Institute for PharmacyPharmacology and ToxicologyFreie Universität BerlinBerlinGermany
| | - Leonie Verheyen
- Institute for PharmacyPharmacology and ToxicologyFreie Universität BerlinBerlinGermany
| | - Darcy E. Wagner
- Helmholtz Zentrum Munich, Lung Repair and Regeneration Unit, Comprehensive Pneumology CenterMember of the German Center for Lung ResearchMunichGermany
| | - Norbert Suttorp
- Dept. of Internal Medicine/Infectious and Respiratory DiseasesCharité − Universitätsmedizin BerlinCharitèplatz 1Berlin 10117Germany
| | - Stefan Hippenstiel
- Dept. of Internal Medicine/Infectious and Respiratory DiseasesCharité − Universitätsmedizin BerlinCharitèplatz 1Berlin 10117Germany
| | - Andreas C. Hocke
- Dept. of Internal Medicine/Infectious and Respiratory DiseasesCharité − Universitätsmedizin BerlinCharitèplatz 1Berlin 10117Germany
| |
Collapse
|
60
|
Yesmin S, Paget MB, Murray HE, Downing R. Bio-scaffolds in organ-regeneration: Clinical potential and current challenges. Curr Res Transl Med 2017; 65:103-113. [PMID: 28916449 DOI: 10.1016/j.retram.2017.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022]
Abstract
Cadaveric organ transplantation represents the definitive treatment option for end-stage disease but is restricted by the shortage of clinically-viable donor organs. This limitation has, in part, driven current research efforts for in vitro generation of transplantable tissue surrogates. Recent advances in organ reconstruction have been facilitated by the re-purposing of decellularized whole organs to serve as three-dimensional bio-scaffolds. Notably, studies in rodents indicate that such scaffolds retain native extracellular matrix components that provide appropriate biochemical, mechanical and physical stimuli for successful tissue/organ reconstruction. As such, they support the migration, adhesion and differentiation of reseeded primary and/or pluripotent cell populations, which mature and achieve functionality through short-term conditioning within specialized tissue bioreactors. Whilst these findings are encouraging, significant challenges remain to up-scale the present technology to accommodate human-sized organs and thereby further the translation of this approach towards clinical use. Of note, the diverse structural and cellular composition of large mammalian organ systems mean that a "one-size fits all" approach cannot be adopted either to the methods used for their decellularization or the cells required for subsequent re-population, to create fully functional entities. The present review seeks to highlight the clinical potential of decellularized organ bio-scaffolds as a route to further advance the field of tissue- and organ-regeneration, and to discuss the challenges which are yet to be addressed if such a technology is ever to become a credible rival to conventional organ allo-transplantation.
Collapse
Affiliation(s)
- S Yesmin
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, WR5 1HN, UK
| | - M B Paget
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, WR5 1HN, UK
| | - H E Murray
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, WR5 1HN, UK.
| | - R Downing
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, WR5 1HN, UK
| |
Collapse
|
61
|
Artificial Cardiac Muscle with or without the Use of Scaffolds. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8473465. [PMID: 28875152 PMCID: PMC5569873 DOI: 10.1155/2017/8473465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/31/2017] [Accepted: 06/27/2017] [Indexed: 12/17/2022]
Abstract
During the past several decades, major advances and improvements now promote better treatment options for cardiovascular diseases. However, these diseases still remain the single leading cause of death worldwide. The rapid development of cardiac tissue engineering has provided the opportunity to potentially restore the contractile function and retain the pumping feature of injured hearts. This conception of cardiac tissue engineering can enable researchers to produce autologous and functional biomaterials which represents a promising technique to benefit patients with cardiovascular diseases. Such an approach will ultimately reshape existing heart transplantation protocols. Notable efforts are accelerating the development of cardiac tissue engineering, particularly to create larger tissue with enhanced functionality. Decellularized scaffolds, polymer synthetics fibrous matrix, and natural materials are used to build robust cardiac tissue scaffolds to imitate the morphological and physiological patterns of natural tissue. This ultimately helps cells to implant properly to obtain endogenous biological capacity. However, newer designs such as the hydrogel scaffold-free matrix can increase the applicability of artificial tissue to engineering strategies. In this review, we summarize all the methods to produce artificial cardiac tissue using scaffold and scaffold-free technology, their advantages and disadvantages, and their relevance to clinical practice.
Collapse
|
62
|
Tatsumi K, Okano T. Hepatocyte Transplantation: Cell Sheet Technology for Liver Cell Transplantation. CURRENT TRANSPLANTATION REPORTS 2017; 4:184-192. [PMID: 28932649 PMCID: PMC5577064 DOI: 10.1007/s40472-017-0156-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose of Review We will review the recent developments of cell sheet technology as a feasible tissue engineering approach. Specifically, we will focus on the technological advancement for engineering functional liver tissue using cell sheet technology, and the associated therapeutic effect of cell sheets for liver diseases, highlighting hemophilia. Recent Findings Cell-based therapies using hepatocytes have recently been explored as a new therapeutic modality for patients with many forms of liver disease. We have developed a cell sheet technology, which allows cells to be harvested in a monolithic layer format. We have succeeded in fabricating functional liver tissues in mice by stacking the cell sheets composed of primary hepatocytes. As a curative measure for hemophilia, we have also succeeded in treating hemophilia mice by transplanting of cells sheets composed of genetically modified autologous cells. Summary Tissue engineering using cell sheet technology provides the opportunity to create new therapeutic options for patients with various types of liver diseases.
Collapse
Affiliation(s)
- Kohei Tatsumi
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511 Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan.,Cell Sheet Tissue Engineering Center and Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112 USA
| |
Collapse
|
63
|
Natural Scaffolds for Regenerative Medicine: Direct Determination of Detergents Entrapped in Decellularized Heart Valves. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9274135. [PMID: 28676861 PMCID: PMC5476881 DOI: 10.1155/2017/9274135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/31/2017] [Accepted: 05/02/2017] [Indexed: 12/19/2022]
Abstract
The increasing urgency for replacement of pathological heart valves is a major stimulus for research on alternatives to glutaraldehyde-treated grafts. New xenogeneic acellular heart valve substitutes that can be repopulated by host cells are currently under investigation. Anionic surfactants, including bile acids, have been widely used to eliminate the resident cell components chiefly responsible for the immunogenicity of the tissue, even if detergent toxicity might present limitations to the survival and/or functional expression of the repopulating cells. To date, the determination of residual detergent has been carried out almost exclusively on the washings following cell removal procedures. Here, a novel HPLC-based procedure is proposed for the direct quantification of detergent (cholate, deoxycholate, and taurodeoxycholate) residues entrapped in the scaffold of decellularized porcine aortic and pulmonary valves. The method was demonstrated to be sensitive, reproducible, and extendable to different types of detergent. This assessment also revealed that cell-depleted heart valve scaffolds prepared according to procedures currently considered for clinical use might contain significant amount of surfactant.
Collapse
|
64
|
Wu T, Economopoulos KP, Ott HC. Engineering Bioartificial Lungs for Transplantation. CURRENT STEM CELL REPORTS 2017. [DOI: 10.1007/s40778-017-0082-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
65
|
Modification of Rat Lung Decellularization Protocol Based on Dynamic Conductometry of Working Solution. Bull Exp Biol Med 2017; 162:703-706. [DOI: 10.1007/s10517-017-3692-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Indexed: 12/14/2022]
|
66
|
Uhl FE, Wagner DE, Weiss DJ. Preparation of Decellularized Lung Matrices for Cell Culture and Protein Analysis. Methods Mol Biol 2017; 1627:253-283. [PMID: 28836208 PMCID: PMC7456164 DOI: 10.1007/978-1-4939-7113-8_18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The limited available treatment options for patients with chronic lung diseases, such as fibrosis, lead to poor prognosis after diagnosis and short survival rates. An exciting new bioengineering approach utilizes de- and recellularization of lung tissue to potentially overcome donor organ shortage and immune reactions toward the received transplant. The goal of decellularization is to create a scaffold which contains the necessary framework for stability and functionality for regenerating lung tissue while removing immunomodulatory factors by removal of cells. After decellularization, the scaffold could be re-functionalized by repopulation with the patient's own stem/progenitor cells to create a fully functional organ or can be used as ex vivo models of disease. In this chapter the decellularization of lung tissue from multiple species (i.e., rodents, pigs, and humans) as well as disease states such as fibrosis is described. We discuss and describe the various quality control measures which should be used to characterize decellularized scaffolds, methods for protein analysis of the remaining scaffold, and methods for recellularization of scaffolds.
Collapse
Affiliation(s)
- Franziska E Uhl
- Department of Med-Pulmonary, College of Medicine, University of Vermont, Burlington, VT, USA.
| | - Darcy E Wagner
- Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Daniel J Weiss
- Department of Med-Pulmonary, College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
67
|
Alaribe FN, Manoto SL, Motaung SCKM. Scaffolds from biomaterials: advantages and limitations in bone and tissue engineering. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0056] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
68
|
Abstract
PURPOSE OF REVIEW Whole lung tissue engineering is a relatively new area of investigation. In a short time, however, the field has advanced quickly beyond proof of concept studies in rodents and now stands on the cusp of wide-spread scale up to large animal studies. Therefore, this technology is ever closer to being directly clinically relevant. RECENT FINDINGS The main themes in the literature include refinement of the fundamental components of whole lung engineering and increasing effort to direct induced pluripotent stem cells and lung progenitor cells toward use in lung regeneration. There is also increasing need for and emphasis on functional evaluation in the lab and in vivo, and the use of all of these tools to construct and evaluate forthcoming clinically scaled engineered lung. SUMMARY Ultimately, the goal of the research described herein is to create a useful clinical product. In the intermediate time, however, the tools described here may be employed to advance our knowledge of lung biology and the organ-specific regenerative capacity of lung stem and progenitor cells.
Collapse
|
69
|
Calle EA, Hill RC, Leiby KL, Le AV, Gard AL, Madri JA, Hansen KC, Niklason LE. Targeted proteomics effectively quantifies differences between native lung and detergent-decellularized lung extracellular matrices. Acta Biomater 2016; 46:91-100. [PMID: 27693690 DOI: 10.1016/j.actbio.2016.09.043] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/25/2016] [Accepted: 09/28/2016] [Indexed: 12/16/2022]
Abstract
Extracellular matrix is a key component of many products in regenerative medicine. Multiple regenerative medicine products currently in the clinic are comprised of human or xenogeneic extracellular matrix. In addition, whole-organ regeneration exploits decellularized native organs as scaffolds for organotypic cell culture. However, precise understanding of the constituents of such extracellular matrix-based implants and scaffolds has sorely lagged behind their use. We present here an advanced protein extraction method using known quantities of proteotypic 13C-labeled peptides to quantify matrix proteins in native and decellularized lung tissues. Using quantitative proteomics that produce picomole-level measurements of a large number of matrix proteins, we show that a mild decellularization technique ("Triton/SDC") results in near-native retention of laminins, proteoglycans, and other basement membrane and ECM-associated proteins. Retention of these biologically important glycoproteins and proteoglycans is quantified to be up to 27-fold higher in gently-decellularized lung scaffolds compared to scaffolds generated using a previously published decellularization regimen. Cells seeded onto this new decellularized matrix also proliferate robustly, showing positive staining for proliferating cell nuclear antigen (PCNA). The high fidelity of the gently decellularized scaffold as compared to the original lung extracellular matrix represents an important step forward in the ultimate recapitulation of whole organs using tissue-engineering techniques. This method of ECM and scaffold protein analysis allows for better understanding, and ultimately quality control, of matrices that are used for tissue engineering and human implantation. These results should advance regenerative medicine in general, and whole organ regeneration in particular. STATEMENT OF SIGNIFICANCE The extracellular matrix (ECM) in large part defines the biochemical and mechanical properties of tissues and organs; these inherent cues make acellular ECM scaffolds potent substrates for tissue regeneration. As such, they are increasingly prevalent in the clinic and the laboratory. However, the exact composition of these scaffolds has been difficult to ascertain. This paper uses targeted proteomics to definitively quantify 71 proteins present in acellular lung ECM scaffolds. We use this technique to compare two decellularization methods and demonstrate superior retention of ECM proteins important for cell adhesion, migration, proliferation, and differentiation in scaffolds treated with low-concentration detergent solutions. In the long term, the ability to acquire quantitative biochemical data about biological substrates will facilitate the rational design of engineered tissues and organs based on precise cell-matrix interactions.
Collapse
|
70
|
Nonaka PN, Uriarte JJ, Campillo N, Oliveira VR, Navajas D, Farré R. Lung bioengineering: physical stimuli and stem/progenitor cell biology interplay towards biofabricating a functional organ. Respir Res 2016; 17:161. [PMID: 27894293 PMCID: PMC5126992 DOI: 10.1186/s12931-016-0477-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/22/2016] [Indexed: 01/18/2023] Open
Abstract
A current approach to obtain bioengineered lungs as a future alternative for transplantation is based on seeding stem cells on decellularized lung scaffolds. A fundamental question to be solved in this approach is how to drive stem cell differentiation onto the different lung cell phenotypes. Whereas the use of soluble factors as agents to modulate the fate of stem cells was established from an early stage of the research with this type of cells, it took longer to recognize that the physical microenvironment locally sensed by stem cells (e.g. substrate stiffness, 3D architecture, cyclic stretch, shear stress, air-liquid interface, oxygenation gradient) also contributes to their differentiation. The potential role played by physical stimuli would be particularly relevant in lung bioengineering since cells within the organ are physiologically subjected to two main stimuli required to facilitate efficient gas exchange: air ventilation and blood perfusion across the organ. The present review focuses on describing how the cell mechanical microenvironment can modulate stem cell differentiation and how these stimuli could be incorporated into lung bioreactors for optimizing organ bioengineering.
Collapse
Affiliation(s)
- Paula N Nonaka
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Juan J Uriarte
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Noelia Campillo
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Vinicius R Oliveira
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Daniel Navajas
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.,CIBER Enfermedades Respiratorias, Madrid, Spain.,Institut de Bioenginyeria de Catalunya, Barcelona, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain. .,CIBER Enfermedades Respiratorias, Madrid, Spain. .,Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain.
| |
Collapse
|
71
|
Doryab A, Amoabediny G, Salehi-Najafabadi A. Advances in pulmonary therapy and drug development: Lung tissue engineering to lung-on-a-chip. Biotechnol Adv 2016; 34:588-596. [DOI: 10.1016/j.biotechadv.2016.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 02/04/2016] [Accepted: 02/10/2016] [Indexed: 12/21/2022]
|
72
|
Wrona EA, Peng R, Amin MR, Branski RC, Freytes DO. Extracellular Matrix for Vocal Fold Lamina Propria Replacement: A Review. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:421-429. [PMID: 27316784 DOI: 10.1089/ten.teb.2016.0015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The vocal folds (VFs) are exposed to a number of injurious stimuli that frequently lead to aberrant structural alterations and altered biomechanical properties that clinically manifest as voice disorders. Therapies to restore both structure and function of this delicate tissue are ideal. However, such methods have not been adequately developed. Our group and others hypothesize that tissue engineering and regenerative medicine approaches, previously described for other tissue systems, hold significant promise for the VFs. In this review, we explore the concept of tissue engineering as it relates to the VFs, as well as recent studies employing both naturally and synthetically derived biomaterials, including those from laryngeal and nonlaryngeal sources, in combination with stem cells for a tissue-engineered approach to VF repair.
Collapse
Affiliation(s)
- Emily A Wrona
- 1 UNC-Chapel Hill/NCSU Joint Department of Biomedical Engineering, North Carolina State University , Raleigh, North Carolina.,2 The New York Stem Cell Foundation Research Institute , New York, New York
| | - Robert Peng
- 3 Department of Otolaryngology-Head and Neck Surgery, NYU Voice Center, New York University School of Medicine , New York, New York
| | - Milan R Amin
- 3 Department of Otolaryngology-Head and Neck Surgery, NYU Voice Center, New York University School of Medicine , New York, New York
| | - Ryan C Branski
- 3 Department of Otolaryngology-Head and Neck Surgery, NYU Voice Center, New York University School of Medicine , New York, New York
| | - Donald O Freytes
- 1 UNC-Chapel Hill/NCSU Joint Department of Biomedical Engineering, North Carolina State University , Raleigh, North Carolina.,2 The New York Stem Cell Foundation Research Institute , New York, New York
| |
Collapse
|
73
|
Balestrini JL, Gard AL, Gerhold KA, Wilcox EC, Liu A, Schwan J, Le AV, Baevova P, Dimitrievska S, Zhao L, Sundaram S, Sun H, Rittié L, Dyal R, Broekelmann TJ, Mecham RP, Schwartz MA, Niklason LE, White ES. Comparative biology of decellularized lung matrix: Implications of species mismatch in regenerative medicine. Biomaterials 2016; 102:220-30. [PMID: 27344365 DOI: 10.1016/j.biomaterials.2016.06.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 06/03/2016] [Accepted: 06/12/2016] [Indexed: 01/14/2023]
Abstract
Lung engineering is a promising technology, relying on re-seeding of either human or xenographic decellularized matrices with patient-derived pulmonary cells. Little is known about the species-specificity of decellularization in various models of lung regeneration, or if species dependent cell-matrix interactions exist within these systems. Therefore decellularized scaffolds were produced from rat, pig, primate and human lungs, and assessed by measuring residual DNA, mechanical properties, and key matrix proteins (collagen, elastin, glycosaminoglycans). To study intrinsic matrix biologic cues, human endothelial cells were seeded onto acellular slices and analyzed for markers of cell health and inflammation. Despite similar levels of collagen after decellularization, human and primate lungs were stiffer, contained more elastin, and retained fewer glycosaminoglycans than pig or rat lung scaffolds. Human endothelial cells seeded onto human and primate lung tissue demonstrated less expression of vascular cell adhesion molecule and activation of nuclear factor-κB compared to those seeded onto rodent or porcine tissue. Adhesion of endothelial cells was markedly enhanced on human and primate tissues. Our work suggests that species-dependent biologic cues intrinsic to lung extracellular matrix could have profound effects on attempts at lung regeneration.
Collapse
Affiliation(s)
- Jenna L Balestrini
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Anesthesiolgy, Yale University, New Haven, CT, USA
| | - Ashley L Gard
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | | - Elise C Wilcox
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Angela Liu
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Jonas Schwan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Andrew V Le
- Department of Anesthesiolgy, Yale University, New Haven, CT, USA
| | - Pavlina Baevova
- Department of Anesthesiolgy, Yale University, New Haven, CT, USA
| | | | - Liping Zhao
- Department of Anesthesiolgy, Yale University, New Haven, CT, USA
| | - Sumati Sundaram
- Department of Anesthesiolgy, Yale University, New Haven, CT, USA
| | - Huanxing Sun
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Laure Rittié
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Rachel Dyal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tom J Broekelmann
- Department of Cell Biology and Physiology, Washington University St. Louis, St. Louis, MO, USA
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University St. Louis, St. Louis, MO, USA
| | - Martin A Schwartz
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Cell Biology, Yale University, New Haven, CT, USA
| | - Laura E Niklason
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Anesthesiolgy, Yale University, New Haven, CT, USA
| | - Eric S White
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
74
|
Willenberg BJ, Oca-Cossio J, Cai Y, Brown AR, Clapp WL, Abrahamson DR, Terada N, Ellison GW, Mathews CE, Batich CD, Ross EA. Repurposed biological scaffolds: kidney to pancreas. Organogenesis 2016; 11:47-57. [PMID: 26252820 DOI: 10.1080/15476278.2015.1067354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Advances in organ regeneration have been facilitated by gentle decellularization protocols that maintain distinct tissue compartments, and thereby allow seeding of blood vessels with endothelial lineages separate from populations of the parenchyma with tissue-specific cells. We hypothesized that a reconstituted vasculature could serve as a novel platform for perfusing cells derived from a different organ: thus discordance of origin between the vascular and functional cells, leading to a hybrid repurposed organ. The need for a highly vascular bed is highlighted by tissue engineering approaches that involve transplantation of just cells, as attempted for insulin production to treat human diabetes. Those pancreatic islet cells present unique challenges since large numbers are needed to allow the cell-to-cell signaling required for viability and proper function; however, increasing their number is limited by inadequate perfusion and hypoxia. As proof of principle of the repurposed organ methodology we harnessed the vasculature of a kidney scaffold while seeding the collecting system with insulin-producing cells. Pig kidneys were decellularized by sequential detergent, enzymatic and rinsing steps. Maintenance of distinct vascular and collecting system compartments was demonstrated by both fluorescent 10 micron polystyrene microspheres and cell distributions in tissue sections. Sterilized acellular scaffolds underwent seeding separately via the artery (fibroblasts or endothelioma cells) and retrograde (murine βTC-tet cells) up the ureter. After three-day bioreactor incubation, histology confirmed separation of cells in the vasculature from those in the collecting system. βTC-tet clusters survived in tubules, glomerular Bowman's space, demonstrated insulin immunolabeling, and thereby supported the feasibility of kidney-to-pancreas repurposing.
Collapse
|
75
|
|
76
|
Schilders KAA, Eenjes E, van Riet S, Poot AA, Stamatialis D, Truckenmüller R, Hiemstra PS, Rottier RJ. Regeneration of the lung: Lung stem cells and the development of lung mimicking devices. Respir Res 2016; 17:44. [PMID: 27107715 PMCID: PMC4842297 DOI: 10.1186/s12931-016-0358-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/25/2016] [Indexed: 01/07/2023] Open
Abstract
Inspired by the increasing burden of lung associated diseases in society and an growing demand to accommodate patients, great efforts by the scientific community produce an increasing stream of data that are focused on delineating the basic principles of lung development and growth, as well as understanding the biomechanical properties to build artificial lung devices. In addition, the continuing efforts to better define the disease origin, progression and pathology by basic scientists and clinicians contributes to insights in the basic principles of lung biology. However, the use of different model systems, experimental approaches and readout systems may generate somewhat conflicting or contradictory results. In an effort to summarize the latest developments in the lung epithelial stem cell biology, we provide an overview of the current status of the field. We first describe the different stem cells, or progenitor cells, residing in the homeostatic lung. Next, we focus on the plasticity of the different cell types upon several injury-induced activation or repair models, and highlight the regenerative capacity of lung cells. Lastly, we summarize the generation of lung mimics, such as air-liquid interface cultures, organoids and lung on a chip, that are required to test emerging hypotheses. Moreover, the increasing collaboration between distinct specializations will contribute to the eventual development of an artificial lung device capable of assisting reduced lung function and capacity in human patients.
Collapse
Affiliation(s)
- Kim A A Schilders
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Evelien Eenjes
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Sander van Riet
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - André A Poot
- Department of Biomaterials Science and Technology, University of Twente, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, P.O Box 217, 7500 AE, Enschede, The Netherlands
| | - Dimitrios Stamatialis
- Department of Biomaterials Science and Technology, University of Twente, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, P.O Box 217, 7500 AE, Enschede, The Netherlands
| | - Roman Truckenmüller
- Department of Complex Tissue Regeneration, Maastricht University, Faculty of Health, Medicine and Life Sciences, MERLN Institute for Technology-Inspired Regenerative Medicine, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Robbert J Rottier
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
77
|
Zvarova B, Uhl FE, Uriarte JJ, Borg ZD, Coffey AL, Bonenfant NR, Weiss DJ, Wagner DE. Residual Detergent Detection Method for Nondestructive Cytocompatibility Evaluation of Decellularized Whole Lung Scaffolds. Tissue Eng Part C Methods 2016; 22:418-28. [PMID: 26905643 DOI: 10.1089/ten.tec.2015.0439] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The development of reliable tissue engineering methods using decellularized cadaveric or donor lungs could potentially provide a new source of lung tissue. The vast majority of current lung decellularization protocols are detergent based and incompletely removed residual detergents may have a deleterious impact on subsequent scaffold recellularization. Detergent removal and quality control measures that rigorously and reliably confirm removal, ideally utilizing nondestructive methods, are thus critical for generating optimal acellular scaffolds suitable for potential clinical translation. Using a modified and optimized version of a methylene blue-based detergent assay, we developed a straightforward, noninvasive method for easily and reliably detecting two of the most commonly utilized anionic detergents, sodium deoxycholate (SDC) and sodium dodecyl sulfate (SDS), in lung decellularization effluents. In parallel studies, we sought to determine the threshold of detergent concentration that was cytotoxic using four different representative human cell types utilized in the study of lung recellularization: human bronchial epithelial cells, human pulmonary vascular endothelial cells (CBF12), human lung fibroblasts, and human mesenchymal stem cells. Notably, different cells have varying thresholds for either SDC or SDS-based detergent-induced cytotoxicity. These studies demonstrate the importance of reliably removing residual detergents and argue that multiple cell lines should be tested in cytocompatibility-based assessments of acellular scaffolds. The detergent detection assay presented here is a useful nondestructive tool for assessing detergent removal in potential decellularization schemes or for use as a potential endpoint in future clinical schemes, generating acellular lungs using anionic detergent-based decellularization protocols.
Collapse
Affiliation(s)
- Barbora Zvarova
- 1 Department of Medicine, University of Vermont , Burlington, Vermont
| | - Franziska E Uhl
- 1 Department of Medicine, University of Vermont , Burlington, Vermont
| | - Juan J Uriarte
- 2 Unit of Biophysics and Bioengineering, University of Barcelona, Barcelona, Spain .,3 CIBER Enfermedades Respiratorias , Madrid, Spain
| | - Zachary D Borg
- 1 Department of Medicine, University of Vermont , Burlington, Vermont
| | - Amy L Coffey
- 1 Department of Medicine, University of Vermont , Burlington, Vermont
| | | | - Daniel J Weiss
- 1 Department of Medicine, University of Vermont , Burlington, Vermont
| | - Darcy E Wagner
- 1 Department of Medicine, University of Vermont , Burlington, Vermont.,4 Comprehensive Pneumology Center, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern , Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
78
|
Fernandez-Moure JS, Van Eps JL, Rhudy JR, Cabrera FJ, Acharya GS, Tasciotti E, Sakamoto J, Nichols JE. Porcine acellular lung matrix for wound healing and abdominal wall reconstruction: A pilot study. J Tissue Eng 2016; 7:2041731415626018. [PMID: 26977287 PMCID: PMC4765834 DOI: 10.1177/2041731415626018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/08/2015] [Indexed: 01/15/2023] Open
Abstract
Surgical wound healing applications require bioprosthetics that promote cellular infiltration and vessel formation, metrics associated with increased mechanical strength and resistance to infection. Porcine acellular lung matrix is a novel tissue scaffold known to promote cell adherence while minimizing inflammatory reactions. In this study, we evaluate the capacity of porcine acellular lung matrix to sustain cellularization and neovascularization in a rat model of subcutaneous implantation and chronic hernia repair. We hypothesize that, compared to human acellular dermal matrix, porcine acellular lung matrix would promote greater cell infiltration and vessel formation. Following pneumonectomy, porcine lungs were processed and characterized histologically and by scanning electron microscopy to demonstrate efficacy of the decellularization. Using a rat model of subcutaneou implantation, porcine acellular lung matrices (n = 8) and human acellular dermal matrices (n = 8) were incubated in vivo for 6 weeks. To evaluate performance under mechanically stressed conditions, porcine acellular lung matrices (n = 7) and human acellular dermal matrices (n = 7) were implanted in a rat model of chronic ventral incisional hernia repair for 6 weeks. After 6 weeks, tissues were evaluated using hematoxylin and eosin and Masson’s trichrome staining to quantify cell infiltration and vessel formation. Porcine acellular lung matrices were shown to be successfully decellularized. Following subcutaneous implantation, macroscopic vessel formation was evident. Porcine acellular lung matrices demonstrated sufficient incorporation and showed no evidence of mechanical failure after ventral hernia repair. Porcine acellular lung matrices demonstrated significantly greater cellular density and vessel formation when compared to human acellular dermal matrix. Vessel sizes were similar across all groups. Cell infiltration and vessel formation are well-characterized metrics of incorporation associated with improved surgical outcomes. Porcine acellular lung matrices are a novel class of acellular tissue scaffold. The increased cell and vessel density may promote long-term improved incorporation and mechanical properties. These findings may be due to the native lung scaffold architecture guiding cell migration and vessel formation. Porcine acellular lung matrices represent a new alternative for surgical wound healing applications where increased cell density and vessel formation are sought.
Collapse
Affiliation(s)
- Joseph S Fernandez-Moure
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA; Surgical Advanced Technologies Lab, Department of Biomimetic and Regenerative Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Jeffrey L Van Eps
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA; Surgical Advanced Technologies Lab, Department of Biomimetic and Regenerative Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Jessica R Rhudy
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Fernando J Cabrera
- Surgical Advanced Technologies Lab, Department of Biomimetic and Regenerative Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Ghanashyam S Acharya
- Neurosensory Center, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Ennio Tasciotti
- Surgical Advanced Technologies Lab, Department of Biomimetic and Regenerative Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Jason Sakamoto
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Joan E Nichols
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
79
|
An official American Thoracic Society workshop report: stem cells and cell therapies in lung biology and diseases. Ann Am Thorac Soc 2016; 12:S79-97. [PMID: 25897748 DOI: 10.1513/annalsats.201502-086st] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The University of Vermont College of Medicine and the Vermont Lung Center, in collaboration with the NHLBI, Alpha-1 Foundation, American Thoracic Society, European Respiratory Society, International Society for Cell Therapy, and the Pulmonary Fibrosis Foundation, convened a workshop, "Stem Cells and Cell Therapies in Lung Biology and Lung Diseases," held July 29 to August 1, 2013 at the University of Vermont. The conference objectives were to review the current understanding of the role of stem and progenitor cells in lung repair after injury and to review the current status of cell therapy and ex vivo bioengineering approaches for lung diseases. These are all rapidly expanding areas of study that both provide further insight into and challenge traditional views of mechanisms of lung repair after injury and pathogenesis of several lung diseases. The goals of the conference were to summarize the current state of the field, discuss and debate current controversies, and identify future research directions and opportunities for both basic and translational research in cell-based therapies for lung diseases. This conference was a follow-up to four previous biennial conferences held at the University of Vermont in 2005, 2007, 2009, and 2011. Each of those conferences, also sponsored by the National Institutes of Health, American Thoracic Society, and Respiratory Disease Foundations, has been important in helping guide research and funding priorities. The major conference recommendations are summarized at the end of the report and highlight both the significant progress and major challenges in these rapidly progressing fields.
Collapse
|
80
|
Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches. Int J Mol Sci 2016; 17:ijms17010128. [PMID: 26797607 PMCID: PMC4730369 DOI: 10.3390/ijms17010128] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 12/25/2022] Open
Abstract
The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases.
Collapse
|
81
|
Capulli AK, MacQueen LA, Sheehy SP, Parker KK. Fibrous scaffolds for building hearts and heart parts. Adv Drug Deliv Rev 2016; 96:83-102. [PMID: 26656602 PMCID: PMC4807693 DOI: 10.1016/j.addr.2015.11.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 12/14/2022]
Abstract
Extracellular matrix (ECM) structure and biochemistry provide cell-instructive cues that promote and regulate tissue growth, function, and repair. From a structural perspective, the ECM is a scaffold that guides the self-assembly of cells into distinct functional tissues. The ECM promotes the interaction between individual cells and between different cell types, and increases the strength and resilience of the tissue in mechanically dynamic environments. From a biochemical perspective, factors regulating cell-ECM adhesion have been described and diverse aspects of cell-ECM interactions in health and disease continue to be clarified. Natural ECMs therefore provide excellent design rules for tissue engineering scaffolds. The design of regenerative three-dimensional (3D) engineered scaffolds is informed by the target ECM structure, chemistry, and mechanics, to encourage cell infiltration and tissue genesis. This can be achieved using nanofibrous scaffolds composed of polymers that simultaneously recapitulate 3D ECM architecture, high-fidelity nanoscale topography, and bio-activity. Their high porosity, structural anisotropy, and bio-activity present unique advantages for engineering 3D anisotropic tissues. Here, we use the heart as a case study and examine the potential of ECM-inspired nanofibrous scaffolds for cardiac tissue engineering. We asked: Do we know enough to build a heart? To answer this question, we tabulated structural and functional properties of myocardial and valvular tissues for use as design criteria, reviewed nanofiber manufacturing platforms and assessed their capabilities to produce scaffolds that meet our design criteria. Our knowledge of the anatomy and physiology of the heart, as well as our ability to create synthetic ECM scaffolds have advanced to the point that valve replacement with nanofibrous scaffolds may be achieved in the short term, while myocardial repair requires further study in vitro and in vivo.
Collapse
Affiliation(s)
- A K Capulli
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - L A MacQueen
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Sean P Sheehy
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - K K Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
82
|
Nichols JE, La Francesca S, Vega SP, Niles JA, Argueta LB, Riddle M, Sakamoto J, Vargas G, Pal R, Woodson L, Rhudy J, Lee D, Seanor D, Campbell G, Schnadig V, Cortiella J. Giving new life to old lungs: methods to produce and assess whole human paediatric bioengineered lungs. J Tissue Eng Regen Med 2016; 11:2136-2152. [DOI: 10.1002/term.2113] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/12/2015] [Accepted: 11/18/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Joan E. Nichols
- Department of Internal Medicine, Infectious Diseases; University of Texas Medical Branch (UTMB); Galveston TX USA
| | | | | | - Jean A. Niles
- Department of Internal Medicine, Infectious Diseases; University of Texas Medical Branch (UTMB); Galveston TX USA
| | - Lissenya B. Argueta
- Department of Immunology; Weill Cornell Medical College New York; New York NY USA
| | | | | | - Grace Vargas
- Department of Biomedical Engineering; UTMB; Galveston TX USA
| | - Rahul Pal
- Department of Biomedical Engineering; UTMB; Galveston TX USA
| | - Lee Woodson
- Shiners Hospital for Children; Galveston TX USA
| | - Jessica Rhudy
- Methodist Hospital Research Institute; Houston TX USA
| | - Dan Lee
- Methodist Hospital Research Institute; Houston TX USA
| | - David Seanor
- Hospital Clinical Engineering; UTMB; Galveston TX USA
| | | | | | | |
Collapse
|
83
|
Serbo JV, Kuo S, Lewis S, Lehmann M, Li J, Gracias DH, Romer LH. Patterning of Fibroblast and Matrix Anisotropy within 3D Confinement is Driven by the Cytoskeleton. Adv Healthc Mater 2016; 5:146-58. [PMID: 26033825 PMCID: PMC5817161 DOI: 10.1002/adhm.201500030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/12/2015] [Indexed: 12/16/2022]
Abstract
Effects of 3D confinement on cellular growth and matrix assembly are important in tissue engineering, developmental biology, and regenerative medicine. Polydimethylsiloxane wells with varying anisotropy are microfabicated using soft-lithography. Microcontact printing of bovine serum albumin is used to block cell adhesion to surfaces between wells. The orientations of fibroblast stress fibers, microtubules, and fibronectin fibrils are examined 1 day after cell seeding using laser scanning confocal microscopy, and anisotropy is quantified using a custom autocorrelation analysis. Actin, microtubules, and fibronectin exhibit higher anisotropy coefficients for cells grown in rectangular wells with aspect ratios of 1:4 and 1:8, as compared to those in wells with lower aspect ratios or in square wells. The effects of disabling individual cytoskeletal components on fibroblast responses to anisotropy are then tested by applying actin or microtubule polymerization inhibitors, Rho kinase inhibitor, or by siRNA-mediated knockdown of AXL or cofilin-1. Latrunculin A decreases cytoskeletal and matrix anisotropy, nocodazole ablates both, and Y27632 mutes cellular polarity while decreasing matrix anisotropy. AXL siRNA knockdown has little effect, as does siRNA knockdown of cofilin-1. These data identify several specific cytoskeletal strategies as targets for the manipulation of anisotropy in 3D tissue constructs.
Collapse
Affiliation(s)
- Janna V. Serbo
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Scot Kuo
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shawna Lewis
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew Lehmann
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jiuru Li
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Lewis H. Romer
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
84
|
Abstract
Extracellular matrix (ECM) is a tissue-specific macromolecular structure that provides physical support to tissues and is essential for normal organ function. In the lung, ECM plays an active role in shaping cell behavior both in health and disease by virtue of the contextual clues it imparts to cells. Qualities including dimensionality, molecular composition, and intrinsic stiffness all promote normal function of the lung ECM. Alterations in composition and/or modulation of stiffness of the focally injured or diseased lung ECM microenvironment plays a part in reparative processes performed by fibroblasts. Under conditions of remodeling or in disease states, inhomogeneous stiffening (or softening) of the pathologic ECM may both precede modifications in cell behavior and be a result of disease progression. The ability of ECM to stimulate further ECM production by fibroblasts and drive disease progression has potentially significant implications for mesenchymal stromal cell-based therapies; in the setting of pathologic ECM stiffness or composition, the therapeutic intent of progenitor cells may be subverted. Taken together, current data suggest that lung ECM actively contributes to health and disease; thus, mediators of cell-ECM signaling or factors that influence ECM stiffness may represent viable therapeutic targets in many lung disorders.
Collapse
|
85
|
Crupi A, Costa A, Tarnok A, Melzer S, Teodori L. Inflammation in tissue engineering: The Janus between engraftment and rejection. Eur J Immunol 2015; 45:3222-36. [DOI: 10.1002/eji.201545818] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 10/07/2015] [Accepted: 11/05/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Annunziata Crupi
- Department of Fusion and Technologies for Nuclear Safety and Security; Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA; Frascati-Rome Italy
- Fondazione San Raffaele; Ceglie Messapica Italy
| | - Alessandra Costa
- Department of Surgery; McGowan Institute; University of Pittsburgh Medical Center; Pittsburgh PA USA
| | - Attila Tarnok
- Department of Pediatric Cardiology; Heart Center GmbH Leipzig; and Translational Center for Regenerative Medicine; University Leipzig; Leipzig Germany
| | - Susanne Melzer
- Department of Pediatric Cardiology; Heart Center GmbH Leipzig; and Translational Center for Regenerative Medicine; University Leipzig; Leipzig Germany
| | - Laura Teodori
- Department of Fusion and Technologies for Nuclear Safety and Security; Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA; Frascati-Rome Italy
- Fondazione San Raffaele; Ceglie Messapica Italy
| |
Collapse
|
86
|
Zhou P, Huang Y, Guo Y, Wang L, Ling C, Guo Q, Wang Y, Zhu S, Fan X, Zhu M, Huang H, Lu Y, Wang Z. Decellularization and Recellularization of Rat Livers With Hepatocytes and Endothelial Progenitor Cells. Artif Organs 2015; 40:E25-38. [PMID: 26637111 DOI: 10.1111/aor.12645] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Pengcheng Zhou
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
- Department of Emergency Surgery; Affiliated Hospital of Nantong University; Nantong China
| | - Yan Huang
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
| | - Yibing Guo
- Surgical Comprehensive Laboratory; Affiliated Hospital of Nantong University; Nantong China
| | - Lei Wang
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
| | - Changchun Ling
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
| | - Qingsong Guo
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
| | - Yao Wang
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
| | - Shajun Zhu
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
| | - Xiangjun Fan
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
| | - Mingyan Zhu
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
| | - Hua Huang
- Department of Pathology; Affiliated Hospital of Nantong University; Nantong China
| | - Yuhua Lu
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
- Surgical Comprehensive Laboratory; Affiliated Hospital of Nantong University; Nantong China
| | - Zhiwei Wang
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
| |
Collapse
|
87
|
Perfusion Decellularization of Discarded Human Kidneys: A Valuable Platform for Organ Regeneration. Transplantation 2015. [PMID: 26203856 DOI: 10.1097/tp.0000000000000810] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
88
|
Balestrini JL, Gard AL, Liu A, Leiby KL, Schwan J, Kunkemoeller B, Calle EA, Sivarapatna A, Lin T, Dimitrievska S, Cambpell SG, Niklason LE. Production of decellularized porcine lung scaffolds for use in tissue engineering. Integr Biol (Camb) 2015; 7:1598-610. [PMID: 26426090 DOI: 10.1039/c5ib00063g] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
There is a growing body of work dedicated to producing acellular lung scaffolds for use in regenerative medicine by decellularizing donor lungs of various species. These scaffolds typically undergo substantial matrix damage due to the harsh conditions required to remove cellular material (e.g., high pH, strong detergents), lengthy processing times, or pre-existing tissue contamination from microbial colonization. In this work, a new decellularization technique is described that maintains the global tissue architecture, key matrix components, mechanical composition and cell-seeding potential of lung tissue while effectively removing resident cellular material. Acellular lung scaffolds were produced from native porcine lungs using a combination of Triton X-100 and sodium deoxycholate (SDC) at low concentrations in 24 hours. We assessed the effect of matrix decellularization by measuring residual DNA, biochemical composition, mechanical characteristics, tissue architecture, and recellularization capacity.
Collapse
Affiliation(s)
- Jenna L Balestrini
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Stabler CT, Lecht S, Mondrinos MJ, Goulart E, Lazarovici P, Lelkes PI. Revascularization of decellularized lung scaffolds: principles and progress. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1273-85. [PMID: 26408553 DOI: 10.1152/ajplung.00237.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/23/2015] [Indexed: 02/07/2023] Open
Abstract
There is a clear unmet clinical need for novel biotechnology-based therapeutic approaches to lung repair and/or replacement, such as tissue engineering of whole bioengineered lungs. Recent studies have demonstrated the feasibility of decellularizing the whole organ by removal of all its cellular components, thus leaving behind the extracellular matrix as a complex three-dimensional (3D) biomimetic scaffold. Implantation of decellularized lung scaffolds (DLS), which were recellularized with patient-specific lung (progenitor) cells, is deemed the ultimate alternative to lung transplantation. Preclinical studies demonstrated that, upon implantation in rodent models, bioengineered lungs that were recellularized with airway and vascular cells were capable of gas exchange for up to 14 days. However, the long-term applicability of this concept is thwarted in part by the failure of current approaches to reconstruct a physiologically functional, quiescent endothelium lining the entire vascular tree of reseeded lung scaffolds, as inferred from the occurrence of hemorrhage into the airway compartment and thrombosis in the vasculature in vivo. In this review, we explore the idea that successful whole lung bioengineering will critically depend on 1) preserving and/or reestablishing the integrity of the subendothelial basement membrane, especially of the ultrathin respiratory membrane separating airways and capillaries, during and following decellularization and 2) restoring vascular physiological functionality including the barrier function and quiescence of the endothelial lining following reseeding of the vascular compartment. We posit that physiological reconstitution of the pulmonary vascular tree in its entirety will significantly promote the clinical translation of the next generation of bioengineered whole lungs.
Collapse
Affiliation(s)
- Collin T Stabler
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Shimon Lecht
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Mark J Mondrinos
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ernesto Goulart
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; and
| | - Philip Lazarovici
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Peter I Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania;
| |
Collapse
|
90
|
Ren X, Moser PT, Gilpin SE, Okamoto T, Wu T, Tapias LF, Mercier FE, Xiong L, Ghawi R, Scadden DT, Mathisen DJ, Ott HC. Engineering pulmonary vasculature in decellularized rat and human lungs. Nat Biotechnol 2015; 33:1097-102. [PMID: 26368048 DOI: 10.1038/nbt.3354] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 08/08/2015] [Indexed: 11/09/2022]
Abstract
Bioengineered lungs produced from patient-derived cells may one day provide an alternative to donor lungs for transplantation therapy. Here we report the regeneration of functional pulmonary vasculature by repopulating the vascular compartment of decellularized rat and human lung scaffolds with human cells, including endothelial and perivascular cells derived from induced pluripotent stem cells. We describe improved methods for delivering cells into the lung scaffold and for maturing newly formed endothelium through co-seeding of endothelial and perivascular cells and a two-phase culture protocol. Using these methods we achieved ∼75% endothelial coverage in the rat lung scaffold relative to that of native lung. The regenerated endothelium showed reduced vascular resistance and improved barrier function over the course of in vitro culture and remained patent for 3 days after orthotopic transplantation in rats. Finally, we scaled our approach to the human lung lobe and achieved efficient cell delivery, maintenance of cell viability and establishment of perfusable vascular lumens.
Collapse
Affiliation(s)
- Xi Ren
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Philipp T Moser
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah E Gilpin
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Tatsuya Okamoto
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Tong Wu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Luis F Tapias
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Francois E Mercier
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Linjie Xiong
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Raja Ghawi
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Harvard College, Cambridge, Massachusetts, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Douglas J Mathisen
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Harald C Ott
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
91
|
Price AP, Godin LM, Domek A, Cotter T, D'Cunha J, Taylor DA, Panoskaltsis-Mortari A. Automated decellularization of intact, human-sized lungs for tissue engineering. Tissue Eng Part C Methods 2015; 21:94-103. [PMID: 24826875 DOI: 10.1089/ten.tec.2013.0756] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We developed an automated system that can be used to decellularize whole human-sized organs and have shown lung as an example. Lungs from 20 to 30 kg pigs were excised en bloc with the trachea and decellularized with our established protocol of deionized water, detergents, sodium chloride, and porcine pancreatic DNase. A software program was written to control a valve manifold assembly that we built for selection and timing of decellularization fluid perfusion through the airway and the vasculature. This system was interfaced with a prototypic bioreactor chamber that was connected to another program, from a commercial source, which controlled the volume and flow pressure of fluids. Lung matrix that was decellularized by the automated method was compared to a manual method previously used by us and others. Automation resulted in more consistent acellular matrix preparations as demonstrated by measuring levels of DNA, hydroxyproline (collagen), elastin, laminin, and glycosaminoglycans. It also proved highly beneficial in saving time as the decellularization procedure was reduced from days down to just 24 h. Developing a rapid, controllable, automated system for production of reproducible matrices in a closed system is a major step forward in whole-organ tissue engineering.
Collapse
Affiliation(s)
- Andrew P Price
- 1 Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota Cancer Center, University of Minnesota , Minneapolis, Minnesota
| | | | | | | | | | | | | |
Collapse
|
92
|
Melo E, Kasper JY, Unger RE, Farré R, Kirkpatrick CJ. Development of a Bronchial Wall Model: Triple Culture on a Decellularized Porcine Trachea. Tissue Eng Part C Methods 2015; 21:909-21. [DOI: 10.1089/ten.tec.2014.0543] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Esther Melo
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Bunyola, Spain
- Institut Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| | - Jennifer Y. Kasper
- Institute of Pathology, University Medical Center, Johannes-Guttenberg-University Mainz, Mainz, Germany
| | - Ronald E. Unger
- Institute of Pathology, University Medical Center, Johannes-Guttenberg-University Mainz, Mainz, Germany
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Bunyola, Spain
- Institut Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| | - Charles James Kirkpatrick
- Institute of Pathology, University Medical Center, Johannes-Guttenberg-University Mainz, Mainz, Germany
| |
Collapse
|
93
|
Prakash YS, Tschumperlin DJ, Stenmark KR. Coming to terms with tissue engineering and regenerative medicine in the lung. Am J Physiol Lung Cell Mol Physiol 2015; 309:L625-38. [PMID: 26254424 DOI: 10.1152/ajplung.00204.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/04/2015] [Indexed: 01/10/2023] Open
Abstract
Lung diseases such as emphysema, interstitial fibrosis, and pulmonary vascular diseases cause significant morbidity and mortality, but despite substantial mechanistic understanding, clinical management options for them are limited, with lung transplantation being implemented at end stages. However, limited donor lung availability, graft rejection, and long-term problems after transplantation are major hurdles to lung transplantation being a panacea. Bioengineering the lung is an exciting and emerging solution that has the ultimate aim of generating lung tissues and organs for transplantation. In this article we capture and review the current state of the art in lung bioengineering, from the multimodal approaches, to creating anatomically appropriate lung scaffolds that can be recellularized to eventually yield functioning, transplant-ready lungs. Strategies for decellularizing mammalian lungs to create scaffolds with native extracellular matrix components vs. de novo generation of scaffolds using biocompatible materials are discussed. Strengths vs. limitations of recellularization using different cell types of various pluripotency such as embryonic, mesenchymal, and induced pluripotent stem cells are highlighted. Current hurdles to guide future research toward achieving the clinical goal of transplantation of a bioengineered lung are discussed.
Collapse
Affiliation(s)
- Y S Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota;
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Division of Pulmonary Medicine, Mayo Clinic, Rochester, Minnesota; and
| | - Kurt R Stenmark
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| |
Collapse
|
94
|
Stem Cells and Regenerative Medicine: Myth or Reality of the 21th Century. Stem Cells Int 2015; 2015:734731. [PMID: 26300923 PMCID: PMC4537770 DOI: 10.1155/2015/734731] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/22/2015] [Accepted: 05/24/2015] [Indexed: 02/07/2023] Open
Abstract
Since the 1960s and the therapeutic use of hematopoietic stem cells of bone marrow origin, there has been an increasing interest in the study of undifferentiated progenitors that have the ability to proliferate and differentiate into various tissues. Stem cells (SC) with different potency can be isolated and characterised. Despite the promise of embryonic stem cells, in many cases, adult or even fetal stem cells provide a more interesting approach for clinical applications. It is undeniable that mesenchymal stem cells (MSC) from bone marrow, adipose tissue, or Wharton's Jelly are of potential interest for clinical applications in regenerative medicine because they are easily available without ethical problems for their uses. During the last 10 years, these multipotent cells have generated considerable interest and have particularly been shown to escape to allogeneic immune response and be capable of immunomodulatory activity. These properties may be of a great interest for regenerative medicine. Different clinical applications are under study (cardiac insufficiency, atherosclerosis, stroke, bone and cartilage deterioration, diabetes, urology, liver, ophthalmology, and organ's reconstruction). This review focuses mainly on tissue and organ regeneration using SC and in particular MSC.
Collapse
|
95
|
Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods 2015; 84:25-34. [DOI: 10.1016/j.ymeth.2015.03.005] [Citation(s) in RCA: 367] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/02/2015] [Accepted: 03/09/2015] [Indexed: 02/07/2023] Open
|
96
|
Rana D, Zreiqat H, Benkirane-Jessel N, Ramakrishna S, Ramalingam M. Development of decellularized scaffolds for stem cell-driven tissue engineering. J Tissue Eng Regen Med 2015; 11:942-965. [PMID: 26119160 DOI: 10.1002/term.2061] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/22/2015] [Accepted: 05/04/2015] [Indexed: 12/19/2022]
Abstract
Organ transplantation is an effective treatment for chronic organ dysfunctioning conditions. However, a dearth of available donor organs for transplantation leads to the death of numerous patients waiting for a suitable organ donor. The potential of decellularized scaffolds, derived from native tissues or organs in the form of scaffolds has been evolved as a promising approach in tissue-regenerative medicine for translating functional organ replacements. In recent years, donor organs, such as heart, liver, lung and kidneys, have been reported to provide acellular extracellular matrix (ECM)-based scaffolds through the process called 'decellularization' and proved to show the potential of recellularization with selected cell populations, particularly with stem cells. In fact, decellularized stem cell matrix (DSCM) has also emerged as a potent biological scaffold for controlling stem cell fate and function during tissue organization. Despite the proven potential of decellularized scaffolds in tissue engineering, the molecular mechanism responsible for stem cell interactions with decellularized scaffolds is still unclear. Stem cells interact with, and respond to, various signals/cues emanating from their ECM. The ability to harness the regenerative potential of stem cells via decellularized ECM-based scaffolds has promising implications for tissue-regenerative medicine. Keeping these points in view, this article reviews the current status of decellularized scaffolds for stem cells, with particular focus on: (a) concept and various methods of decellularization; (b) interaction of stem cells with decellularized scaffolds; (c) current recellularization strategies, with associated challenges; and (iv) applications of the decellularized scaffolds in stem cell-driven tissue engineering and regenerative medicine. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Deepti Rana
- Centre for Stem Cell Research (CSCR), Institute for Stem Cell Biology and Regenerative Medicine (Bengaluru) Christian Medical College Campus, Vellore, India
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, Faculty of Engineering and Bosch Institute, University of Sydney, NSW, Australia
| | - Nadia Benkirane-Jessel
- INSERM, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, UMR 1109, Faculté de Médecine, Strasbourg, France
| | - Seeram Ramakrishna
- Centre for Nanofibres and Nanotechnology, Department of Mechanical Engineering, National University of Singapore
| | - Murugan Ramalingam
- Centre for Stem Cell Research (CSCR), Institute for Stem Cell Biology and Regenerative Medicine (Bengaluru) Christian Medical College Campus, Vellore, India
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| |
Collapse
|
97
|
Isobe KI, Cheng Z, Nishio N, Suganya T, Tanaka Y, Ito S. Reprint of "iPSCs, aging and age-related diseases". N Biotechnol 2015; 32:169-79. [PMID: 25479728 DOI: 10.1016/j.nbt.2014.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human histocompatibility antigens are quite heterogeneous and promote the rejection of transplanted tissue. Recent advances in stem cell research that enable the use of a patient's own stem cells for transplantation are very important because rejection could be avoided. In particular, Yamanaka’s group in Japan gave new hope to patients with incurable diseases when they developed induced murine pluripotent stem cells (iPSCs) in 2006 and human iPSCs in 2007. Whereas embryonic stem cells (ESCs) are derived from the inner cell mass and are supported in culture by LIF, iPSCs are derived from fetal or adult somatic cells. Through the application of iPSC technology, adult somatic cells can develop a pluripotent state. One advantage of using iPSCs instead of ESCs in regenerative medicine is that (theoretically) immune rejection could be avoided, although there is some debate about immune rejection of a patient's own iPSCs. Many diseases occur in elderly patients. In order to use regenerative medicine with the elderly, it is important to demonstrate that iPSCs can indeed be generated from older patients. Recent findings have shown that iPSCs can be established from aged mice and aged humans. These iPSCs can differentiate to cells from all three germ layers. However, it is not known whether iPSCs from aged mice or humans show early senescence. Before clinical use of iPSCs, issues related to copy number variation, tumorigenicity and immunogenicity must be resolved. It is particularly important that researchers have succeeded in generating iPSCs that have differentiated to somatic cells related to specific diseases of the elderly, including atherosclerosis, diabetes, Alzheimer's disease and Parkinson's disease. These efforts will facilitate the use of personalized stem cell transplantation therapy for currently incurable diseases.
Collapse
Affiliation(s)
- Ken-ichi Isobe
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | | | | | | | | | | |
Collapse
|
98
|
Rapid porcine lung decellularization using a novel organ regenerative control acquisition bioreactor. ASAIO J 2015; 61:71-7. [PMID: 25303798 DOI: 10.1097/mat.0000000000000159] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To regenerate discarded lungs that would not normally be used for transplant, ex vivo reseeding after decellularization may produce organs suitable for clinical transplantation and therefore close the donor gap. Organ regenerative control acquisition (Harvard Biosciences, Holliston, MA), a novel bioreactor system that simulates physiological conditions, was used to evaluate a method of rapid decellularization. Although most current decellularization methods are 24-72 hours, we hypothesized that perfusing porcine lungs with detergents at higher pressures for less time would yield comparable bioscaffolds suitable for future experimentation. Methods involved perfusion of 1% Triton X-100 (Triton) and 0.1% sodium dodecyl sulfate at varied physiological flow rates. Architecture of native and decellularized lungs was analyzed with hematoxylin and eosin (H&E) staining, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Dry gas and liquid ventilation techniques were introduced. Our 7 hour decellularization procedure removes nuclear material while maintaining architecture. Bioscaffolds have the microarchitecture for reseeding of stem cells. Hematoxylin and eosin staining suggested removal of nuclear material, whereas SEM and TEM imaging demonstrated total removal of cells with structural architecture preserved. This process can lead to clinical implementation, thereby increasing the availability of human lungs for transplantation.
Collapse
|
99
|
Crabbé A, Liu Y, Sarker SF, Bonenfant NR, Barrila J, Borg ZD, Lee JJ, Weiss DJ, Nickerson CA. Recellularization of decellularized lung scaffolds is enhanced by dynamic suspension culture. PLoS One 2015; 10:e0126846. [PMID: 25962111 PMCID: PMC4427280 DOI: 10.1371/journal.pone.0126846] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/08/2015] [Indexed: 12/20/2022] Open
Abstract
Strategies are needed to improve repopulation of decellularized lung scaffolds with stromal and functional epithelial cells. We demonstrate that decellularized mouse lungs recellularized in a dynamic low fluid shear suspension bioreactor, termed the rotating wall vessel (RWV), contained more cells with decreased apoptosis, increased proliferation and enhanced levels of total RNA compared to static recellularization conditions. These results were observed with two relevant mouse cell types: bone marrow-derived mesenchymal stromal (stem) cells (MSCs) and alveolar type II cells (C10). In addition, MSCs cultured in decellularized lungs under static but not bioreactor conditions formed multilayered aggregates. Gene expression and immunohistochemical analyses suggested differentiation of MSCs into collagen I-producing fibroblast-like cells in the bioreactor, indicating enhanced potential for remodeling of the decellularized scaffold matrix. In conclusion, dynamic suspension culture is promising for enhancing repopulation of decellularized lungs, and could contribute to remodeling the extracellular matrix of the scaffolds with subsequent effects on differentiation and functionality of inoculated cells.
Collapse
Affiliation(s)
- Aurélie Crabbé
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Yulong Liu
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Shameema F. Sarker
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Nicholas R. Bonenfant
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Jennifer Barrila
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Zachary D. Borg
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - James J. Lee
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, United States of America
| | - Daniel J. Weiss
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Cheryl A. Nickerson
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
100
|
da Palma RK, Campillo N, Uriarte JJ, Oliveira LVF, Navajas D, Farré R. Pressure- and flow-controlled media perfusion differently modify vascular mechanics in lung decellularization. J Mech Behav Biomed Mater 2015; 49:69-79. [PMID: 26002417 DOI: 10.1016/j.jmbbm.2015.04.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/18/2015] [Accepted: 04/23/2015] [Indexed: 01/07/2023]
Abstract
Organ biofabrication is a potential future alternative for obtaining viable organs for transplantation. Achieving intact scaffolds to be recellularized is a key step in lung bioengineering. Perfusion of decellularizing media through the pulmonary artery has shown to be effective. How vascular perfusion pressure and flow vary throughout lung decellularization, which is not well known, is important for optimizing the process (minimizing time) while ensuring scaffold integrity (no barotrauma). This work was aimed at characterizing the pressure/flow relationship at the pulmonary vasculature and at how effective vascular resistance depends on pressure- and flow-controlled variables when applying different methods of media perfusion for lung decellularization. Lungs from 43 healthy mice (C57BL/6; 7-8 weeks old) were investigated. After excision and tracheal cannulation, lungs were inflated at 10 cmH2O airway pressure and subjected to conventional decellularization with a solution of 1% sodium dodecyl sulfate (SDS). Pressure (PPA) and flow (V'PA) at the pulmonary artery were continuously measured. Decellularization media was perfused through the pulmonary artery: (a) at constant PPA=20 cmH2O or (b) at constant V'PA=0.5 and 0.2 ml/min. Effective vascular resistance was computed as Rv=PPA/V'PA. Rv (in cmH2O/(ml/min)); mean±SE) considerably varied throughout lung decellularization, particularly for pressure-controlled perfusion (from 29.1±3.0 in baseline to a maximum of 664.1±164.3 (p<0.05), as compared with flow-controlled perfusion (from 49.9±3.3 and 79.5±5.1 in baseline to a maximum of 114.4±13.9 and 211.7±70.5 (p<0.05, both), for V'PA of 0.5 and 0.2 ml/min respectively. Most of the media infused to the pulmonary artery throughout decellularization circulated to the airways compartment across the alveolar-capillary membrane. This study shows that monitoring perfusion mechanics throughout decellularization provides information relevant for optimizing the process time while ensuring that vascular pressure is kept within a safety range to preserve the organ scaffold integrity.
Collapse
Affiliation(s)
- Renata K da Palma
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Master's and Doctoral Degree Programs in Rehabilitation Sciences, Nove de Julho University, Sao Paulo, Brazil
| | - Noelia Campillo
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institut de Bioenginyeria de Catalunya, Barcelona, Spain
| | - Juan J Uriarte
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; CIBER Enfermedades Respiratorias, Madrid, Spain
| | - Luis V F Oliveira
- Master's and Doctoral Degree Programs in Rehabilitation Sciences, Nove de Julho University, Sao Paulo, Brazil
| | - Daniel Navajas
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institut de Bioenginyeria de Catalunya, Barcelona, Spain; CIBER Enfermedades Respiratorias, Madrid, Spain
| | - Ramon Farré
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; CIBER Enfermedades Respiratorias, Madrid, Spain; Institut Investigacions Biomediques August Pi Sunyer, Barcelona, Spain.
| |
Collapse
|