51
|
Optimizing 3D Co-culture Models to Enhance Synergy Between Adipose-Derived Stem Cells and Chondrocytes for Cartilage Tissue Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00105-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
52
|
Vinod E, Kachroo U, Ozbey O, Sathishkumar S, Boopalan P. Comparison of human articular chondrocyte and chondroprogenitor cocultures and monocultures: To assess chondrogenic potential and markers of hypertrophy. Tissue Cell 2019; 57:42-48. [DOI: 10.1016/j.tice.2019.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/12/2019] [Accepted: 01/29/2019] [Indexed: 01/12/2023]
|
53
|
Xue K, Zhang X, Gao Z, Xia W, Qi L, Liu K. Cartilage progenitor cells combined with PHBV in cartilage tissue engineering. J Transl Med 2019; 17:104. [PMID: 30925884 PMCID: PMC6441183 DOI: 10.1186/s12967-019-1855-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/25/2019] [Indexed: 12/13/2022] Open
Abstract
Background Bone marrow-derived stem cells (BMSCs) and chondrocytes have been reported to present “dedifferentiation” and “phenotypic loss” during the chondrogenic differentiation process in cartilage tissue engineering, and cartilage progenitor cells (CPCs) are novel seeding cells for cartilage tissue engineering. In our previous study, cartilage progenitor cells from different subtypes of cartilage tissue were isolated and identified in vitro, but the study on in vivo chondrogenic characteristics of cartilage progenitor cells remained rarely. In the current study, we explored the feasibility of combining cartilage progenitor cells with poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) to produce tissue-engineered cartilage and compared the proliferation ability and chondrogenic characteristics of cartilage progenitor cells with those of bone marrow-derived stem cells and chondrocytes. Methods These three cells combined with PHBV were cultured in vitro for 1 week without chondrogenic induction and then transplanted subcutaneously into nude mice for 6 weeks. The cell-PHBV constructs were evaluated by gross observation, histological staining, glycosaminoglycan content measurement, biomechanical analysis and RT-PCR. Results The chondrocyte-PHBV constructs and CPC-PHBV constructs became an ivory-whitish cartilage-like tissue, while the BMSC-PHBV constructs became vascularized 6 weeks after the subcutaneous implantation. Histological examination showed that many typical cartilage structures were present in the chondrocyte group, some typical cartilage structures were observed in the CPC group, while no typical cartilage structures were observed in the BMSC group. Conclusions Cartilage progenitor cells may undergo chondrogenesis without chondrogenic induction and are better at chondrogenesis than BMSCs but worse than chondrocytes in the application of cartilage tissue engineering.
Collapse
Affiliation(s)
- Ke Xue
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, People's Republic of China
| | - Xiaodie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, People's Republic of China
| | - Zixu Gao
- The Second Clinical Medical College of Nanchang University, Jiangxi Medical College, Nanchang University, No. 461, Bayi Avenue, Nanchang, 330006, China
| | - Wanyao Xia
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, People's Republic of China
| | - Lin Qi
- Department of Radiology, Huadong Hospital, Fudan University, 221 West Yan-an Road, Shanghai, 200040, China.
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
54
|
Dragúňová J, Kabát P, Cucorová V, Hajská M, Koller J. Deep frozen amniotic membrane used as a scaffold and/or carrier for different cell types. Cell Tissue Bank 2019; 20:35-48. [DOI: 10.1007/s10561-018-09747-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/30/2018] [Indexed: 01/22/2023]
|
55
|
Bicho D, Ajami S, Liu C, Reis RL, Oliveira JM. Peptide-biofunctionalization of biomaterials for osteochondral tissue regeneration in early stage osteoarthritis: challenges and opportunities. J Mater Chem B 2019; 7:1027-1044. [DOI: 10.1039/c8tb03173h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Osteoarthritis is a degenerative joint disease characterized by the progressive deterioration of articular cartilage, synovial inflammation and changes in periarticular and subchondral bone, being a leading cause of disability.
Collapse
Affiliation(s)
- D. Bicho
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra
- Guimarães
- Portugal
- ICVS/3B's – PT Government Associate Laboratory
- Braga/Guimarães
| | - S. Ajami
- Institute of Orthopaedics and Musculo-Skeletal Sci, University College London, Royal National Orthopaedic Hospital
- Stanmore
- UK
| | - C. Liu
- Institute of Orthopaedics and Musculo-Skeletal Sci, University College London, Royal National Orthopaedic Hospital
- Stanmore
- UK
| | - R. L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra
- Guimarães
- Portugal
- ICVS/3B's – PT Government Associate Laboratory
- Braga/Guimarães
| | - J. M. Oliveira
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra
- Guimarães
- Portugal
- ICVS/3B's – PT Government Associate Laboratory
- Braga/Guimarães
| |
Collapse
|
56
|
Liu J, Wang X, Lu G, Tang JZ, Wang Y, Zhang B, Sun Y, Lin H, Wang Q, Liang J, Fan Y, Zhang X. Bionic cartilage acellular matrix microspheres as a scaffold for engineering cartilage. J Mater Chem B 2019; 7:640-650. [DOI: 10.1039/c8tb02999g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bionic cartilage acellular matrix microspheres (BCAMMs) made from decelluarized bionic cartilage microspheres (BCMs).
Collapse
|
57
|
Huang X, Das R, Patel A, Nguyen TD. Physical Stimulations for Bone and Cartilage Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018; 4:216-237. [PMID: 30740512 PMCID: PMC6366645 DOI: 10.1007/s40883-018-0064-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/07/2018] [Indexed: 12/26/2022]
Abstract
A wide range of techniques and methods are actively invented by clinicians and scientists who are dedicated to the field of musculoskeletal tissue regeneration. Biological, chemical, and physiological factors, which play key roles in musculoskeletal tissue development, have been extensively explored. However, physical stimulation is increasingly showing extreme importance in the processes of osteogenic and chondrogenic differentiation, proliferation and maturation through defined dose parameters including mode, frequency, magnitude, and duration of stimuli. Studies have shown manipulation of physical microenvironment is an indispensable strategy for the repair and regeneration of bone and cartilage, and biophysical cues could profoundly promote their regeneration. In this article, we review recent literature on utilization of physical stimulation, such as mechanical forces (cyclic strain, fluid shear stress, etc.), electrical and magnetic fields, ultrasound, shock waves, substrate stimuli, etc., to promote the repair and regeneration of bone and cartilage tissue. Emphasis is placed on the mechanism of cellular response and the potential clinical usage of these stimulations for bone and cartilage regeneration.
Collapse
|
58
|
Irawan V, Sung TC, Higuchi A, Ikoma T. Collagen Scaffolds in Cartilage Tissue Engineering and Relevant Approaches for Future Development. Tissue Eng Regen Med 2018; 15:673-697. [PMID: 30603588 PMCID: PMC6250655 DOI: 10.1007/s13770-018-0135-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/30/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cartilage tissue engineering (CTE) aims to obtain a structure mimicking native cartilage tissue through the combination of relevant cells, three-dimensional scaffolds, and extraneous signals. Implantation of 'matured' constructs is thus expected to provide solution for treating large injury of articular cartilage. Type I collagen is widely used as scaffolds for CTE products undergoing clinical trial, owing to its ubiquitous biocompatibility and vast clinical approval. However, the long-term performance of pure type I collagen scaffolds would suffer from its limited chondrogenic capacity and inferior mechanical properties. This paper aims to provide insights necessary for advancing type I collagen scaffolds in the CTE applications. METHODS Initially, the interactions of type I/II collagen with CTE-relevant cells [i.e., articular chondrocytes (ACs) and mesenchymal stem cells (MSCs)] are discussed. Next, the physical features and chemical composition of the scaffolds crucial to support chondrogenic activities of AC and MSC are highlighted. Attempts to optimize the collagen scaffolds by blending with natural/synthetic polymers are described. Hybrid strategy in which collagen and structural polymers are combined in non-blending manner is detailed. RESULTS Type I collagen is sufficient to support cellular activities of ACs and MSCs; however it shows limited chondrogenic performance than type II collagen. Nonetheless, type I collagen is the clinically feasible option since type II collagen shows arthritogenic potency. Physical features of scaffolds such as internal structure, pore size, stiffness, etc. are shown to be crucial in influencing the differentiation fate and secreting extracellular matrixes from ACs and MSCs. Collagen can be blended with native or synthetic polymer to improve the mechanical and bioactivities of final composites. However, the versatility of blending strategy is limited due to denaturation of type I collagen at harsh processing condition. Hybrid strategy is successful in maximizing bioactivity of collagen scaffolds and mechanical robustness of structural polymer. CONCLUSION Considering the previous improvements of physical and compositional properties of collagen scaffolds and recent manufacturing developments of structural polymer, it is concluded that hybrid strategy is a promising approach to advance further collagen-based scaffolds in CTE.
Collapse
Affiliation(s)
- Vincent Irawan
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2 Chome-12-1, Meguro-ku, Tokyo, 152-8550 Japan
| | - Tzu-Cheng Sung
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jung Da Rd., Chung-Li, Taoyuan, 320 Taiwan
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jung Da Rd., Chung-Li, Taoyuan, 320 Taiwan
| | - Toshiyuki Ikoma
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2 Chome-12-1, Meguro-ku, Tokyo, 152-8550 Japan
| |
Collapse
|
59
|
Kunisch E, Knauf AK, Hesse E, Freudenberg U, Werner C, Bothe F, Diederichs S, Richter W. StarPEG/heparin-hydrogel based in vivo engineering of stable bizonal cartilage with a calcified bottom layer. Biofabrication 2018; 11:015001. [PMID: 30376451 DOI: 10.1088/1758-5090/aae75a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Repaired cartilage tissue lacks the typical zonal structure of healthy native cartilage needed for appropriate function. Current grafts for treatment of full thickness cartilage defects focus primarily on a nonzonal design and this may be a reason why inferior nonzonal regeneration tissue developed in vivo. No biomaterial-based solutions have been developed so far to induce a proper zonal architecture into a non-mineralized and a calcified cartilage layer. The objective was to grow bizonal cartilage with a calcified cartilage bottom zone wherein main tissue development is occurring in vivo. We hypothesized that starPEG/heparin-hydrogel owing to the glycosaminoglycan heparin contained as a building-block would prevent mineralization of the upper cartilage zone and be beneficial in inhibiting long-term progression of calcified cartilage into bone. MSCs were pre-cultured as self-assembling non-mineralized cell discs before a chondrocyte-seeded fibrin- or starPEG/heparin-hydrogel layer was cast on top directly before ectopic implantation. Bizonal cartilage with a calcified bottom-layer developed in vivo showing stronger mineralization compared to in vitro samples, but the hydrogel strongly determined outcome. Zonal fibrin-constructs lost volume and allowed non-organized expansion of collagen type X, ALP-activity and mineralization from the bottom-layer into upper regions, whereas zonal starPEG/heparin-constructs were of stable architecture. While non-zonal MSCs-derived discs formed bone over 12 weeks, the starPEG/heparin-chondrocyte layer prevented further progression of calcified cartilage into bone tissue. Conclusively, starPEG/heparin-hydrogel-controlled and cell-type mediated spatiotemporal regulation allowed in vivo growth of bizonal cartilage with a stable calcified cartilage layer. Altogether our work is an important milestone encouraging direct in vivo growth of organized cartilage after biofabrication.
Collapse
Affiliation(s)
- Elke Kunisch
- Research Centre for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Dang W, Wang X, Li J, Deng C, Liu Y, Yao Q, Wang L, Chang J, Wu C. 3D printing of Mo-containing scaffolds with activated anabolic responses and bi-lineage bioactivities. Theranostics 2018; 8:4372-4392. [PMID: 30214627 PMCID: PMC6134938 DOI: 10.7150/thno.27088] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 06/30/2018] [Indexed: 12/24/2022] Open
Abstract
When osteochondral tissues suffer from focal or degenerative lesions caused by trauma or disorders, it is a tough challenge to regenerate them because of the limited self-healing capacity of articular cartilage. In this study, a series of Mo-doped bioactive glass ceramic (Mo-BGC) scaffolds were prepared and then systematically characterized. The released MoO42- ions from 7.5Mo-BGC scaffolds played a vital role in regenerating articular cartilage and subchondral bone synchronously. Methods: The Mo-BGC scaffolds were fabricated through employing both a sol-gel method and 3D printing technology. SEM, EDS, HRTEM, XRD, ICPAES and mechanical strength tests were respectively applied to analyze the physicochemical properties of Mo-BGC scaffolds. The proliferation and differentiation of rabbit chondrocytes (RCs) and human bone mesenchymal stem cells (HBMSCs) cultured with dilute solutions of 7.5Mo-BGC powder extract were investigated in vitro. The co-culture model was established to explore the possible mechanism of stimulatory effects of MoO42- ions on the RCs and HBMSCs. The efficacy of regenerating articular cartilage and subchondral bone using 7.5Mo-BGC scaffolds was evaluated in vivo. Results: The incorporation of Mo into BGC scaffolds effectively enhanced the compressive strength of scaffolds owing to the improved surface densification. The MoO42- ions released from the 7.5Mo-BGC powders remarkably promoted the proliferation and differentiation of both RCs and HBMSCs. The MoO42- ions in the co-culture system significantly stimulated the chondrogenic differentiation of RCs and meanwhile induced the chondrogenesis of HBMSCs. The chondrogenesis stimulated by MoO42- ions happened through two pathways: 1) MoO42- ions elicited anabolic responses through activating the HIF-1α signaling pathway; 2) MoO42- ions inhibited catabolic responses and protected cartilage matrix from degradation. The in vivo study showed that 7.5Mo-BGC scaffolds were able to significantly promote cartilage/bone regeneration when implanted into rabbit osteochondral defects for 8 and 12 weeks, displaying bi-lineage bioactivities. Conclusion: The 3D-printed Mo-BGC scaffolds with bi-lineage bioactivities and activated anabolic responses could offer an effective strategy for cartilage/bone interface regeneration.
Collapse
Affiliation(s)
- Wentao Dang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
- University of Chinese academy of Sciences, Beijing, People's Republic of China
| | - Xiaoya Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Jiayi Li
- Department of Orthopaedic Surgery Digital Medicine Institute, Nanjing Medical University, Nanjing Hospital. No. 68 Changle Road Nanjing, 210006, People's Republic of China
| | - Cuijun Deng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
- University of Chinese academy of Sciences, Beijing, People's Republic of China
| | - Yaqin Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
- University of Chinese academy of Sciences, Beijing, People's Republic of China
| | - Qingqiang Yao
- Department of Orthopaedic Surgery Digital Medicine Institute, Nanjing Medical University, Nanjing Hospital. No. 68 Changle Road Nanjing, 210006, People's Republic of China
| | - Liming Wang
- Department of Orthopaedic Surgery Digital Medicine Institute, Nanjing Medical University, Nanjing Hospital. No. 68 Changle Road Nanjing, 210006, People's Republic of China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| |
Collapse
|
61
|
Huang X, Zhong L, Post JN, Karperien M. Co-treatment of TGF-β3 and BMP7 is superior in stimulating chondrocyte redifferentiation in both hypoxia and normoxia compared to single treatments. Sci Rep 2018; 8:10251. [PMID: 29980690 PMCID: PMC6035177 DOI: 10.1038/s41598-018-27602-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/27/2018] [Indexed: 02/07/2023] Open
Abstract
Signaling by members of the transforming growth factor-β (TGF-β) superfamily, such as TGF-β3 and BMP7, and oxygen tension play a pivotal role in chondrocyte biology. The objective of this research was to investigate the endogenous BMP7 expression in human osteoarthritis (OA) cartilage and the effect of oxygen tension on the single or combined treatment with TGF-β3 and BMP7 on OA chondrocyte redifferentiation in three dimensional (3D) pellet cultures. The results showed the expression of BMP7 and its intracellular signaling target SMAD1/5/8 was decreased in early OA, while it was increased in later stages of OA. The combined treatment with TGF-β3 and BMP7, both in normoxia and hypoxia, was more effective than TGF-β3 or BMP7 alone in redifferentiating chondrocytes. This was reflected by Alcian blue/Safranin O staining and collagen type II protein expression, as well as by gene expression. Hypoxia elevated TGF-β3 and BMP7-induced matrix formation of OA chondrocytes and alleviated the catabolic gene expression. Interestingly, cells cultured under normoxia displayed mild signs of an inflammatory stress response, which was effectively counteracted by culturing the cells under low oxygen tension. Our data underscores the important modulatory role of oxygen tension on the chondrocyte's responsiveness to TGF-β3 and/or BMP7.
Collapse
Affiliation(s)
- Xiaobin Huang
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Leilei Zhong
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Janine N Post
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Marcel Karperien
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, 7500 AE, The Netherlands.
| |
Collapse
|
62
|
Pleumeekers MM, Nimeskern L, Koevoet JLM, Karperien M, Stok KS, van Osch GJVM. Trophic effects of adipose-tissue-derived and bone-marrow-derived mesenchymal stem cells enhance cartilage generation by chondrocytes in co-culture. PLoS One 2018; 13:e0190744. [PMID: 29489829 PMCID: PMC5830031 DOI: 10.1371/journal.pone.0190744] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 12/10/2017] [Indexed: 01/22/2023] Open
Abstract
AIMS Combining mesenchymal stem cells (MSCs) and chondrocytes has great potential for cell-based cartilage repair. However, there is much debate regarding the mechanisms behind this concept. We aimed to clarify the mechanisms that lead to chondrogenesis (chondrocyte driven MSC-differentiation versus MSC driven chondroinduction) and whether their effect was dependent on MSC-origin. Therefore, chondrogenesis of human adipose-tissue-derived MSCs (hAMSCs) and bone-marrow-derived MSCs (hBMSCs) combined with bovine articular chondrocytes (bACs) was compared. METHODS hAMSCs or hBMSCs were combined with bACs in alginate and cultured in vitro or implanted subcutaneously in mice. Cartilage formation was evaluated with biochemical, histological and biomechanical analyses. To further investigate the interactions between bACs and hMSCs, (1) co-culture, (2) pellet, (3) Transwell® and (4) conditioned media studies were conducted. RESULTS The presence of hMSCs-either hAMSCs or hBMSCs-increased chondrogenesis in culture; deposition of GAG was most evidently enhanced in hBMSC/bACs. This effect was similar when hMSCs and bAC were combined in pellet culture, in alginate culture or when conditioned media of hMSCs were used on bAC. Species-specific gene-expression analyses demonstrated that aggrecan was expressed by bACs only, indicating a predominantly trophic role for hMSCs. Collagen-10-gene expression of bACs was not affected by hBMSCs, but slightly enhanced by hAMSCs. After in-vivo implantation, hAMSC/bACs and hBMSC/bACs had similar cartilage matrix production, both appeared stable and did not calcify. CONCLUSIONS This study demonstrates that replacing 80% of bACs by either hAMSCs or hBMSCs does not influence cartilage matrix production or stability. The remaining chondrocytes produce more matrix due to trophic factors produced by hMSCs.
Collapse
Affiliation(s)
- M. M. Pleumeekers
- Department of Otorhinolaryngology, Head and Neck surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - L. Nimeskern
- Institute for Biomechanics, ETH, Zürich, Switzerland
| | - J. L. M. Koevoet
- Department of Otorhinolaryngology, Head and Neck surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - M. Karperien
- Department of Tissue Regeneration, MIRA-institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| | - K. S. Stok
- Institute for Biomechanics, ETH, Zürich, Switzerland
| | - G. J. V. M. van Osch
- Department of Otorhinolaryngology, Head and Neck surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- * E-mail:
| |
Collapse
|
63
|
Bao X, Li Z, Liu H, Feng K, Yin F, Li H, Qin J. Stimulation of chondrocytes and chondroinduced mesenchymal stem cells by osteoinduced mesenchymal stem cells under a fluid flow stimulus on an integrated microfluidic device. Mol Med Rep 2018; 17:2277-2288. [PMID: 29207069 PMCID: PMC5783459 DOI: 10.3892/mmr.2017.8153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to investigate the stimulation of osteoinduced mesenchymal stem cells (MSCs) into chondrogenically predifferentiated MSCs and chondrocytes in a mechanical environment. A novel two‑layer microfluidic chip was used to mimic the interstitial flow in the superficial zones of articular cartilage. The morphology, proliferation rate and the expression of collagen I, collagen II and aggrecan of chondrocytes and chondro‑MSCs were investigated. The results revealed that the cells in the bottom layer were influenced by the top layer's osteoinduced MSCs and the bottom layer's shear flow. The expression of collagen I, which may signify the effect of the shear stress on the dedifferentiation change, was weakened by the stimulation of osteoinduced MSCs on the top layer. The expression of collagen II and aggrecan was increased in the fluidic environment by osteoinduced MSCs. These results indicate that osteoinduced MSCs have a significant effect on the phenotype of chondro‑MSCs and chondrocytes in the fluidic microenvironment. The present study described a simple and promising way to rapidly evaluate cell responses to other cells in a fluidic environment, which may help to better promote the utilization of MSCs and chondrocytes in tissue engineering.
Collapse
Affiliation(s)
- Xuanwen Bao
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
- Department of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Zhongyu Li
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
| | - Hui Liu
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
| | - Ke Feng
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
| | - Fangchao Yin
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
| | - Hongjing Li
- Department of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Jianhua Qin
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
| |
Collapse
|
64
|
Chen MJ, Whiteley JP, Please CP, Schwab A, Ehlicke F, Waters SL, Byrne HM. Inducing chondrogenesis in MSC/chondrocyte co-cultures using exogenous TGF-β: a mathematical model. J Theor Biol 2018; 439:1-13. [DOI: 10.1016/j.jtbi.2017.11.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/22/2017] [Accepted: 11/30/2017] [Indexed: 11/30/2022]
|
65
|
Chen CH, Kuo CY, Chen JP. Effect of Cyclic Dynamic Compressive Loading on Chondrocytes and Adipose-Derived Stem Cells Co-Cultured in Highly Elastic Cryogel Scaffolds. Int J Mol Sci 2018; 19:370. [PMID: 29373507 PMCID: PMC5855592 DOI: 10.3390/ijms19020370] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 12/23/2022] Open
Abstract
In this study, we first used gelatin/chondroitin-6-sulfate/hyaluronan/chitosan highly elastic cryogels, which showed total recovery from large strains during repeated compression cycles, as 3D scaffolds to study the effects of cyclic dynamic compressive loading on chondrocyte gene expression and extracellular matrix (ECM) production. Dynamic culture of porcine chondrocytes was studied at 1 Hz, 10% to 40% strain and 1 to 9 h/day stimulation duration, in a mechanical-driven multi-chamber bioreactor for 14 days. From the experimental results, we could identify the optimum dynamic culture condition (20% and 3 h/day) to enhance the chondrocytic phenotype of chondrocytes from the expression of marker (Col I, Col II, Col X, TNF-α, TGF-β1 and IGF-1) genes by quantitative real-time polymerase chain reactions (qRT-PCR) and production of ECM (GAGs and Col II) by biochemical analysis and immunofluorescence staining. With up-regulated growth factor (TGF-β1 and IGF-1) genes, co-culture of chondrocytes with porcine adipose-derived stem cells (ASCs) was employed to facilitate chondrogenic differentiation of ASCs during dynamic culture in cryogel scaffolds. By replacing half of the chondrocytes with ASCs during co-culture, we could obtain similar production of ECM (GAGs and Col II) and expression of Col II, but reduced expression of Col I, Col X and TNF-α. Subcutaneous implantation of cells/scaffold constructs in nude mice after mono-culture (chondrocytes or ASCs) or co-culture (chondrocytes + ASCs) and subject to static or dynamic culture condition in vitro for 14 days was tested for tissue-engineering applications. The constructs were retrieved 8 weeks post-implantation for histological analysis by Alcian blue, Safranin O and Col II immunohistochemical staining. The most abundant ectopic cartilage tissue was found for the chondrocytes and chondrocytes + ASCs groups using dynamic culture, which showed similar neo-cartilage formation capability with half of the chondrocytes replaced by ASCs for co-culture. This combined co-culture/dynamic culture strategy is expected to cut down the amount of donor chondrocytes needed for cartilage-tissue engineering.
Collapse
Affiliation(s)
- Chih-Hao Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan.
| | - Chang-Yi Kuo
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan.
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan.
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Kwei-San, Taoyuan 33302, Taiwan.
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan.
| |
Collapse
|
66
|
Spakova T, Plsikova J, Harvanova D, Lacko M, Stolfa S, Rosocha J. Influence of Kartogenin on Chondrogenic Differentiation of Human Bone Marrow-Derived MSCs in 2D Culture and in Co-Cultivation with OA Osteochondral Explant. Molecules 2018; 23:molecules23010181. [PMID: 29337871 PMCID: PMC6017512 DOI: 10.3390/molecules23010181] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/10/2018] [Accepted: 01/14/2018] [Indexed: 12/18/2022] Open
Abstract
Articular cartilage has limited capacity for natural regeneration and repair. In the present study, we evaluated kartogenin (KGN), a bioactive small heterocyclic molecule, for its effect on in vitro proliferation and chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hBMSCs) in monolayer culture and in co-culture models in vitro. OA osteochondral cylinders and hBMSCs were collected during total knee replacement. The effect of KGN on hBMSCs during 21 days of culture was monitored by real-time proliferation assay, immunofluorescence staining, histological assay, scanning electron microscopy (SEM) (imaging and multiplex enzyme-linked immunosorbent assay) ELISA assay. The rate of proliferation of hBMSCs was significantly increased by treatment with 10 µM KGN during nine days of culture. Histological and SEM analyses showed the ability of hBMSCs in the presence of KGN to colonize the surface of OA cartilage and to produce glycosaminoglycans and proteoglycans after 21 days of co-culture. KGN treated hBMSCs secreted higher concentrations of TIMPs and the secretion of pro-inflammatory molecules (MMP 13, TNF-α) were significantly suppressed in comparison with control without hBMSCs. Our preliminary results support the concept that 10 µM KGN enhances proliferation and chondrogenic differentiation of hBMSCs and suggest that KGN is a potential promoter for cell-based therapeutic application for cartilage regeneration.
Collapse
Affiliation(s)
- Timea Spakova
- Associated Tissue Bank of Faculty of Medicine of P. J. Safarik University and L. Pasteur University Hospital, Trieda SNP 1, 04011 Kosice, Slovakia.
| | - Jana Plsikova
- Associated Tissue Bank of Faculty of Medicine of P. J. Safarik University and L. Pasteur University Hospital, Trieda SNP 1, 04011 Kosice, Slovakia.
| | - Denisa Harvanova
- Associated Tissue Bank of Faculty of Medicine of P. J. Safarik University and L. Pasteur University Hospital, Trieda SNP 1, 04011 Kosice, Slovakia.
| | - Marek Lacko
- Department of Orthopaedics and Traumatology of Faculty of Medicine of P. J. Safarik University and L. Pasteur University Hospital, Trieda SNP 1, 04011 Kosice, Slovakia.
| | - Stefan Stolfa
- Department of Orthopaedics and Traumatology of Faculty of Medicine of P. J. Safarik University and L. Pasteur University Hospital, Trieda SNP 1, 04011 Kosice, Slovakia.
| | - Jan Rosocha
- Associated Tissue Bank of Faculty of Medicine of P. J. Safarik University and L. Pasteur University Hospital, Trieda SNP 1, 04011 Kosice, Slovakia.
| |
Collapse
|
67
|
Bicho D, Pina S, Oliveira JM, Reis RL. In Vitro Mimetic Models for the Bone-Cartilage Interface Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:373-394. [PMID: 29736583 DOI: 10.1007/978-3-319-76735-2_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In embryonic development, pure cartilage structures are in the basis of bone-cartilage interfaces. Despite this fact, the mature bone and cartilage structures can vary greatly in composition and function. Nevertheless, they collaborate in the osteochondral region to create a smooth transition zone that supports the movements and forces resulting from the daily activities. In this sense, all the hierarchical organization is involved in the maintenance and reestablishment of the equilibrium in case of damage. Therefore, this interface has attracted a great deal of interest in order to understand the mechanisms of regeneration or disease progression in osteoarthritis. With that purpose, in vitro tissue models (either static or dynamic) have been studied. Static in vitro tissue models include monocultures, co-cultures, 3D cultures, and ex vivo cultures, mostly cultivated in flat surfaces, while dynamic models involve the use of bioreactors and microfluidic systems. The latter have emerged as alternatives to study the cellular interactions in a more authentic manner over some disadvantages of the static models. The current alternatives of in vitro mimetic models for bone-cartilage interface regeneration are overviewed and discussed herein.
Collapse
Affiliation(s)
- Diana Bicho
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco, Guimarães, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Sandra Pina
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - J Miguel Oliveira
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Rui L Reis
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| |
Collapse
|
68
|
Ondrésik M, Oliveira JM, Reis RL. Advances for Treatment of Knee OC Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:3-24. [PMID: 29736567 DOI: 10.1007/978-3-319-76735-2_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Osteochondral (OC) defects are prevalent among young adults and are notorious for being unable to heal. Although they are traumatic in nature, they often develop silently. Detection of many OC defects is challenging, despite the criticality of early care. Current repair approaches face limitations and cannot provide regenerative or long-standing solution. Clinicians and researchers are working together in order to develop approaches that can regenerate the damaged tissues and protect the joint from developing osteoarthritis. The current concepts of tissue engineering and regenerative medicine, which have brought many promising applications to OC management, are overviewed herein. We will also review the types of stem cells that aim to provide sustainable cell sources overcoming the limitation of autologous chondrocyte-based applications. The various scaffolding materials that can be used as extracellular matrix mimetic and having functional properties similar to the OC unit are also discussed.
Collapse
Affiliation(s)
- Marta Ondrésik
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - J Miguel Oliveira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Barco, Guimarães, Portugal
| |
Collapse
|
69
|
Huang X, Hou Y, Zhong L, Huang D, Qian H, Karperien M, Chen W. Promoted Chondrogenesis of Cocultured Chondrocytes and Mesenchymal Stem Cells under Hypoxia Using In-situ Forming Degradable Hydrogel Scaffolds. Biomacromolecules 2017; 19:94-102. [PMID: 29211452 DOI: 10.1021/acs.biomac.7b01271] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We investigated the effects of different oxygen tension (21% and 2.5% O2) on the chondrogenesis of different cell systems cultured in pH-degradable PVA hydrogels, including human articular chondrocytes (hACs), human mesenchymal stem cells (hMSCs), and their cocultures with a hAC/hMSC ratio of 20/80. These hydrogels were prepared with vinyl ether acrylate-functionalized PVA (PVA-VEA) and thiolated PVA-VEA (PVA-VEA-SH) via Michael-type addition reaction. The rheology tests determined the gelation of the hydrogels was controlled within 2-7 min, dependent on the polymer concentrations. The different cell systems were cultured in the hydrogel scaffolds for 5 weeks, and the safranin O and GAG assay showed that hypoxia (2.5% O2) greatly promoted the cartilage matrix production with an order of hAC > hAC/hMSC > hMSC. The real time quantitative PCR (RT-PCR) revealed that the hMSC group exhibited the highest hypertrophic marker gene expression (COL10A1, ALPL, MMP13) as well as the dedifferentiated marker gene expression (COL1A1) under normoxia conditions (21% O2), while these expressions were greatly inhibited by coculturing with a 20% amount of hACs and significantly further repressed under hypoxia conditions, which was comparative to the sole hAC group. The enzyme-linked immunosorbent assay (ELISA) also showed that coculture of hMSC/hAC greatly reduced the catabolic gene expression of MMP1 and MMP3 compared with the hMSC group. It is obvious that the hypoxia conditions promoted the chondrogenesis of hMSC by adding a small amount of hACs, and also effectively inhibited their hypotrophy. We are convinced that coculture of hAC/hMSC using in situ forming hydrogel scaffolds is a promising approach to producing cell source for cartilage engineering without the huge needs of primary chondrocyte harvest and expansion.
Collapse
Affiliation(s)
- Xiaobin Huang
- Department of Developmental BioEngineering, MIRA-Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Yong Hou
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, Berlin 14195, Germany
| | - LeiLei Zhong
- Department of Developmental BioEngineering, MIRA-Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| | - Marcel Karperien
- Department of Developmental BioEngineering, MIRA-Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University , Nanjing 210009, People's Republic of China.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, Berlin 14195, Germany
| |
Collapse
|
70
|
Liu J, Yu C, Chen Y, Cai H, Lin H, Sun Y, Liang J, Wang Q, Fan Y, Zhang X. Fast fabrication of stable cartilage-like tissue using collagen hydrogel microsphere culture. J Mater Chem B 2017; 5:9130-9140. [PMID: 32264594 DOI: 10.1039/c7tb02535a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Mesenchymal stem cells (MSCs) had been increasingly regarded as a potent cell source for cartilage repair. However, due to the instability of MSC-derived chondrocyte phenotype and ossification of the synthesised cartilage matrix, regenerating a stable cartilage tissue by MSCs is still challenging. The fate of chondrogenesis from MSCs is regulated by their local microenvironment, which is of vital importance to the cell behaviours, chondrogenic phenotype and matrix synthesis. In this study, we fabricated cartilage-like tissues by the chondrogenesis of MSC in three different microenvironments, including cell pellets, collagen hydrogel bulk (CHB) and collagen hydrogel microspheres (CHMs) in vitro. After 15 days in culture, the cell number was increased to 472.6% in CHMs, compared to a 58.6% decrease in CHB and a 46.6% decrease in pellets; resulting in a 230% increase in CHM size, but a 36.8% decrease in CHB and only a 20.1% increase in pellets. Histological staining demonstrated a more intensive but less homogeneous glycosaminoglycan (GAG) pattern in pellets than in CHMs. The outer area of CHB showed a stronger GAG staining than its inner area from day 5 to day 15, but the staining was weaker than that in both pellets and CHMs. The PCR results showed that CHMs achieved a significantly higher chondrogenic gene (AGG, COL2A1, SOX9) expression and a lower hypertrophic gene (COL10A1) expression than pellets and CHB, suggesting a better chondrogenic differentiation potential with a more stable phenotype in CHMs. In summary, this study highlights the advantages of CHM microenvironments over those of CHB and pellets by a better mimicking of the natural MSC proliferation process and enhancing mass exchange in vitro. The CHM culture demonstrated potential to fabricate stable cartilage-like tissue in MSC based cartilage tissue regeneration.
Collapse
Affiliation(s)
- Jun Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Wangjiang Road 29, Chengdu 610064, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Khurshid M, Mulet-Sierra A, Adesida A, Sen A. Osteoarthritic human chondrocytes proliferate in 3D co-culture with mesenchymal stem cells in suspension bioreactors. J Tissue Eng Regen Med 2017; 12:e1418-e1432. [PMID: 28752579 DOI: 10.1002/term.2531] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is a painful disease, characterized by progressive surface erosion of articular cartilage. The use of human articular chondrocytes (hACs) sourced from OA patients has been proposed as a potential therapy for cartilage repair, but this approach is limited by the lack of scalable methods to produce clinically relevant quantities of cartilage-generating cells. Previous studies in static culture have shown that hACs co-cultured with human mesenchymal stem cells (hMSCs) as 3D pellets can upregulate proliferation and generate neocartilage with enhanced functional matrix formation relative to that produced from either cell type alone. However, because static culture flasks are not readily amenable to scale up, scalable suspension bioreactors were investigated to determine if they could support the co-culture of hMSCs and OA hACs under serum-free conditions to facilitate clinical translation of this approach. When hACs and hMSCs (1:3 ratio) were inoculated at 20,000 cells/ml into 125-ml suspension bioreactors and fed weekly, they spontaneously formed 3D aggregates and proliferated, resulting in a 4.75-fold increase over 16 days. Whereas the apparent growth rate was lower than that achieved during co-culture as a 2D monolayer in static culture flasks, bioreactor co-culture as 3D aggregates resulted in a significantly lower collagen I to II mRNA expression ratio and more than double the glycosaminoglycan/DNA content (5.8 vs. 2.5 μg/μg). The proliferation of hMSCs and hACs as 3D aggregates in serum-free suspension culture demonstrates that scalable bioreactors represent an accessible platform capable of supporting the generation of clinical quantities of cells for use in cell-based cartilage repair.
Collapse
Affiliation(s)
- Madiha Khurshid
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Aillette Mulet-Sierra
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Adetola Adesida
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Arindom Sen
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
72
|
Lam J, Lee EJ, Clark EC, Mikos AG. Honing Cell and Tissue Culture Conditions for Bone and Cartilage Tissue Engineering. Cold Spring Harb Perspect Med 2017; 7:a025734. [PMID: 28348176 PMCID: PMC5710100 DOI: 10.1101/cshperspect.a025734] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An avenue of tremendous interest and need in health care encompasses the regeneration of bone and cartilage. Over the years, numerous tissue engineering strategies have contributed substantial progress toward the realization of clinically relevant therapies. Cell and tissue culture protocols, however, show many variations that make experimental results among different publications challenging to compare. This collection surveys prevalent cell sources, soluble factors, culture medium formulations, environmental factors, and genetic modification approaches in the literature. The intent of consolidating this information is to provide a starting resource for scientists considering how to optimize the parameters for cell differentiation and tissue culture procedures within the context of bone and cartilage tissue engineering.
Collapse
Affiliation(s)
- Johnny Lam
- Department of Bioengineering, Rice University, Houston, Texas 77251
| | - Esther J Lee
- Department of Bioengineering, Rice University, Houston, Texas 77251
| | - Elisa C Clark
- Department of Bioengineering, Rice University, Houston, Texas 77251
| | - Antonios G Mikos
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77251
| |
Collapse
|
73
|
Levy D, de Melo TC, Ruiz JL, Bydlowski SP. Oxysterols and mesenchymal stem cell biology. Chem Phys Lipids 2017; 207:223-230. [DOI: 10.1016/j.chemphyslip.2017.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 02/08/2023]
|
74
|
Xu L, Wu Y, Liu Y, Zhou Y, Ye Z, Tan WS. Non-contact Coculture Reveals a Comprehensive Response of Chondrocytes Induced by Mesenchymal Stem Cells Through Trophic Secretion. Tissue Eng Regen Med 2017; 15:37-48. [PMID: 30603533 DOI: 10.1007/s13770-017-0084-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/04/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022] Open
Abstract
Coculture between mesenchymal stem cells (MSCs) and chondrocytes has significant implications in cartilage regeneration. However, a conclusive understanding remains elusive. Previously, we reported that rabbit bone marrow-derived MSCs (rbBMSCs) could downregulate the differentiated phenotype of rabbit articular chondrocytes (rbACs) in a non-contact coculture system for the first time. In the present study, a systemic investigation was performed to understand the biological characteristics of chondrocytes in coculture with MSCs. Firstly, cells (MSCs and chondrocytes) from different origins were cocultured in transwell system. Different chondrocytes, when cocultured with different MSCs respectively, consistently demonstrated stimulated proliferation, transformed morphology and declined glycosaminoglycan secretion of chondrocytes. Next, cell surface molecules and the global gene expression of rbACs were characterized. It was found that cocultured rbACs showed a distinct surface molecule profile and global gene expression compared to both dedifferentiated rbACs and rbBMSCs. In the end, cocultured rbACs were passaged and induced to undergo the chondrogenic redifferentiation. Better growth and chondrogenesis ability were confirmed compared with control cells without coculture. Together, chondrocytes display comprehensive changes in coculture with MSCs and the cocultured rbACs are beneficial for cartilage repair.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei-Long Road, P. O. Box 309#, Shanghai, 200237 People's Republic of China
| | - Yuxi Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei-Long Road, P. O. Box 309#, Shanghai, 200237 People's Republic of China
| | - Yanli Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei-Long Road, P. O. Box 309#, Shanghai, 200237 People's Republic of China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei-Long Road, P. O. Box 309#, Shanghai, 200237 People's Republic of China
| | - Zhaoyang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei-Long Road, P. O. Box 309#, Shanghai, 200237 People's Republic of China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei-Long Road, P. O. Box 309#, Shanghai, 200237 People's Republic of China
| |
Collapse
|
75
|
Chawla S, Kumar A, Admane P, Bandyopadhyay A, Ghosh S. Elucidating role of silk-gelatin bioink to recapitulate articular cartilage differentiation in 3D bioprinted constructs. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.bprint.2017.05.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
76
|
Cao Z, Dou C, Dong S. Curcumin Inhibits Chondrocyte Hypertrophy of Mesenchymal Stem Cells through IHH and Notch Signaling Pathways. Chem Pharm Bull (Tokyo) 2017; 65:762-767. [PMID: 28768930 DOI: 10.1248/cpb.c17-00225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using tissue engineering technique to repair cartilage damage caused by osteoarthritis is a promising strategy. However, the regenerated tissue usually is fibrous cartilage, which has poor mechanical characteristics compared to hyaline cartilage. Chondrocyte hypertrophy plays an important role in this process. Thus, it is very important to find out a suitable way to maintain the phenotype of chondrocytes and inhibit chondrocyte hypertrophy. Curcumin deriving from turmeric was reported with anti-inflammatory and anti-tumor pharmacological effects. However, the role of curcumin in metabolism of chondrocytes, especially in the chondrocyte hypertrophy remains unclear. Mesenchymal stem cells (MSCs) are widely used in cartilage tissue engineering as seed cells. So we investigated the effect of curcumin on chondrogenesis and chondrocyte hypertrophy in MSCs through examination of cell viability, glycosaminoglycan synthesis and specific gene expression. We found curcumin had no effect on expression of chondrogenic markers including Sox9 and Col2a1 while hypertrophic markers including Runx2 and Col10a1 were down-regulated. Further exploration showed that curcumin inhibited chondrocyte hypertrophy through Indian hedgehog homolog (IHH) and Notch signalings. Our results indicated curcumin was a potential agent in modulating cartilage homeostasis and maintaining chondrocyte phenotype.
Collapse
Affiliation(s)
- Zhen Cao
- Department of Anatomy, Third Military Medical University.,Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University
| | - Ce Dou
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University
| |
Collapse
|
77
|
Owida HA, De Las Heras Ruiz T, Dhillon A, Yang Y, Kuiper NJ. Co-culture of chondrons and mesenchymal stromal cells reduces the loss of collagen VI and improves extracellular matrix production. Histochem Cell Biol 2017; 148:625-638. [PMID: 28821957 DOI: 10.1007/s00418-017-1602-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2017] [Indexed: 12/01/2022]
Abstract
Adult articular chondrocytes are surrounded by a pericellular matrix (PCM) to form a chondron. The PCM is rich in hyaluronan, proteoglycans, and collagen II, and it is the exclusive location of collagen VI in articular cartilage. Collagen VI anchors the chondrocyte to the PCM. It has been suggested that co-culture of chondrons with mesenchymal stromal cells (MSCs) might enhance extracellular matrix (ECM) production. This co-culture study investigates whether MSCs help to preserve the PCM and increase ECM production. Primary bovine chondrons or chondrocytes or rat MSCs were cultured alone to establish a baseline level for ECM production. A xenogeneic co-culture monolayer model using rat MSCs (20, 50, and 80%) was established. PCM maintenance and ECM production were assessed by biochemical assays, immunofluorescence, and histological staining. Co-culture of MSCs with chondrons enhanced ECM matrix production, as compared to chondrocyte or chondron only cultures. The ratio 50:50 co-culture of MSCs and chondrons resulted in the highest increase in GAG production (18.5 ± 0.54 pg/cell at day 1 and 11 ± 0.38 pg/cell at day 7 in 50:50 co-culture versus 16.8 ± 0.61 pg/cell at day 1 and 10 ± 0.45 pg/cell at day 7 in chondron monoculture). The co-culture of MSCs with chondrons appeared to decelerate the loss of the PCM as determined by collagen VI expression, whilst the expression of high-temperature requirement serine protease A1 (HtrA1) demonstrated an inverse relationship to that of the collagen VI. Together, this implies that MSCs directly or indirectly inhibited HtrA1 activity and the co-culture of MSCs with chondrons enhanced ECM synthesis and the preservation of the PCM.
Collapse
Affiliation(s)
- H A Owida
- Institute of Science and Technology in Medicine, University of Keele, Stoke-on-Trent, ST4 7QB, UK
| | - T De Las Heras Ruiz
- Institute of Science and Technology in Medicine, University of Keele, Stoke-on-Trent, ST4 7QB, UK
| | - A Dhillon
- Institute of Science and Technology in Medicine, University of Keele, Stoke-on-Trent, ST4 7QB, UK
| | - Y Yang
- Institute of Science and Technology in Medicine, University of Keele, Stoke-on-Trent, ST4 7QB, UK.
| | - N J Kuiper
- Institute of Science and Technology in Medicine, University of Keele, Stoke-on-Trent, ST4 7QB, UK
| |
Collapse
|
78
|
Sun AX, Lin H, Fritch MR, Shen H, Alexander PG, DeHart M, Tuan RS. Chondrogenesis of human bone marrow mesenchymal stem cells in 3-dimensional, photocrosslinked hydrogel constructs: Effect of cell seeding density and material stiffness. Acta Biomater 2017; 58:302-311. [PMID: 28611002 DOI: 10.1016/j.actbio.2017.06.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/31/2017] [Accepted: 06/09/2017] [Indexed: 12/16/2022]
Abstract
Three-dimensional hydrogel constructs incorporated with live stem cells that support chondrogenic differentiation and maintenance offer a promising regenerative route towards addressing the limited self-repair capabilities of articular cartilage. In particular, hydrogel scaffolds that augment chondrogenesis and recapitulate the native physical properties of cartilage, such as compressive strength, can potentially be applied in point-of-care procedures. We report here the synthesis of two new materials, [poly-l-lactic acid/polyethylene glycol/poly-l-lactic acid] (PLLA-PEG 1000) and [poly-d,l-lactic acid/polyethylene glycol/poly-d,l-lactic acid] (PDLLA-PEG 1000), that are biodegradable, biocompatible (>80% viability post fabrication), and possess high, physiologically relevant mechanical strength (∼1500 to 1800kPa). This study examined the effects of physiologically relevant cell densities (4, 8, 20, and 50×106/mL) and hydrogel stiffnesses (∼150kPa to∼1500kPa Young's moduli) on chondrogenesis of human bone marrow stem cells incorporated in hydrogel constructs fabricated with these materials and a previously characterized PDLLA-PEG 4000. Results showed that 20×106cells/mL, under a static culture condition, was the most efficient cell seeding density for extracellular matrix (ECM) production on the basis of hydroxyproline and glycosaminoglycan content. Interestingly, material stiffness did not significantly affect chondrogenesis, but rather material concentration was correlated to chondrogenesis with increasing levels at lower concentrations based on ECM production, chondrogenic gene expression, and histological analysis. These findings establish optimal cell densities for chondrogenesis within three-dimensional cell-incorporated hydrogels, inform hydrogel material development for cartilage tissue engineering, and demonstrate the efficacy and potential utility of PDLLA-PEG 1000 for point-of-care treatment of cartilage defects. STATEMENT OF SIGNIFICANCE Engineering cartilage with physiologically relevant mechanical properties for point-of-care applications represents a major challenge in orthopedics, given the generally low mechanical strengths of traditional hydrogels used in cartilage tissue engineering. In this study, we characterized a new material that possesses high mechanical strength similar to native cartilage, and determined the optimal cell density and scaffold stiffness to achieve the most efficient chondrogenic response from seeded human bone marrow stem cells. Results show robust chondrogenesis and strongly suggest the potential of this material to be applied clinically for point-of-care repair of cartilage defects.
Collapse
Affiliation(s)
- Aaron X Sun
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, USA; Medical Scientist Training Program, University of Pittsburgh School of Medicine, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, USA
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, USA
| | - Madalyn R Fritch
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, USA
| | - He Shen
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, USA; Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, China
| | - Pete G Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, USA
| | - Michael DeHart
- Department of Biology, University of Pittsburgh Dietrich School of Arts and Sciences, Pittsburgh, PA, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, USA.
| |
Collapse
|
79
|
Carballo CB, Nakagawa Y, Sekiya I, Rodeo SA. Basic Science of Articular Cartilage. Clin Sports Med 2017; 36:413-425. [DOI: 10.1016/j.csm.2017.02.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
80
|
Go G, Han J, Zhen J, Zheng S, Yoo A, Jeon MJ, Park JO, Park S. A Magnetically Actuated Microscaffold Containing Mesenchymal Stem Cells for Articular Cartilage Repair. Adv Healthc Mater 2017; 6. [PMID: 28481009 DOI: 10.1002/adhm.201601378] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/15/2017] [Indexed: 12/21/2022]
Abstract
This study proposes a magnetically actuated microscaffold with the capability of targeted mesenchymal stem cell (MSC) delivery for articular cartilage regeneration. The microscaffold, as a 3D porous microbead, is divided into body and surface portions according to its materials and fabrication methods. The microscaffold body, which consists of poly(lactic-co-glycolic acid) (PLGA), is formed through water-in-oil-in-water emulsion templating, and its surface is coated with amine functionalized magnetic nanoparticles (MNPs) via amino bond formation. The porous PLGA structure of the microscaffold can assist in cell adhesion and migration, and the MNPs on the microscaffold can make it possible to steer using an electromagnetic actuation system that provides external magnetic fields for the 3D locomotion of the microscaffold. As a fundamental test of the magnetic response of the microscaffold, it is characterized in terms of the magnetization curve, velocity, and 3D locomotion of a single microscaffold. In addition, its function with a cargo of MSCs for cartilage regeneration is demonstrated from the proliferation, viability, and chondrogenic differentiation of D1 mouse MSCs that are cultured on the microscaffold. For the feasibility tests for cartilage repair, 2D/3D targeting of multiple microscaffolds with the MSCs is performed to demonstrate targeted stem cell delivery using the microscaffolds and their swarm motion.
Collapse
Affiliation(s)
- Gwangjun Go
- Medical Microrobot Center (MRC); Robot Research Initiative (RRI); Chonnam National University; Gwangju 500-480 South Korea
- School of Mechanical Systems Engineering; Chonnam National University; Gwangju 500-757 South Korea
| | - Jiwon Han
- Medical Microrobot Center (MRC); Robot Research Initiative (RRI); Chonnam National University; Gwangju 500-480 South Korea
| | - Jin Zhen
- Medical Microrobot Center (MRC); Robot Research Initiative (RRI); Chonnam National University; Gwangju 500-480 South Korea
- School of Mechanical Systems Engineering; Chonnam National University; Gwangju 500-757 South Korea
| | - Shaohui Zheng
- Medical Microrobot Center (MRC); Robot Research Initiative (RRI); Chonnam National University; Gwangju 500-480 South Korea
- School of Mechanical Systems Engineering; Chonnam National University; Gwangju 500-757 South Korea
| | - Ami Yoo
- Medical Microrobot Center (MRC); Robot Research Initiative (RRI); Chonnam National University; Gwangju 500-480 South Korea
| | - Mi-Jeong Jeon
- Medical Microrobot Center (MRC); Robot Research Initiative (RRI); Chonnam National University; Gwangju 500-480 South Korea
| | - Jong-Oh Park
- Medical Microrobot Center (MRC); Robot Research Initiative (RRI); Chonnam National University; Gwangju 500-480 South Korea
- School of Mechanical Systems Engineering; Chonnam National University; Gwangju 500-757 South Korea
| | - Sukho Park
- School of Mechanical Systems Engineering; Chonnam National University; Gwangju 500-757 South Korea
- Department of Robotics Engineering; Daegu Gyeongbuk Institute of Science and Technology; Daegu 711-873 South Korea
| |
Collapse
|
81
|
Arora A, Sriram M, Kothari A, Katti DS. Co-culture of infrapatellar fat pad-derived mesenchymal stromal cells and articular chondrocytes in plasma clot for cartilage tissue engineering. Cytotherapy 2017; 19:881-894. [PMID: 28479049 DOI: 10.1016/j.jcyt.2017.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/23/2017] [Accepted: 04/07/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Cell source plays a deterministic role in defining the outcome of a cell-based cartilage regenerative therapy and its clinical translational ability. Recent efforts in the direction of co-culture of two or more cell types attempt to combine the advantages of constituent cell types and negate their demerits. METHODS We examined the potential of co-culture of infrapatellar fat pad-derived mesenchymal stromal cells (IFP MSCs) and articular chondrocytes (ACs) in plasma clots in terms of their ratios and culture formats for cartilage tissue engineering. RESULTS AND DISCUSSION It was observed that IFP MSCs and ACs interact positively to produce a better quality hyaline cartilage-like matrix. While a supra-additive deposition of sulfated Glycosaminoglycans (sGAG), collagen type II, aggrecan and link protein was observed, deposition of collagen type I and X was sub-additive. (Immuno)-histologically similar cartilage was generated in vitro in IFP MSC:AC ratio of 50:50 and pure AC groups thus yielding a hyaline cartilage with 50% reduced requirement of ACs. Subsequently, we investigated if this response could be improved further by enabling better cell-cell interactions using scaffold-free systems such as self-assembled cartilage or by encapsulating cellular micro-aggregates in plasma clot. However, it was inferred that while self-assembly may have enabled better cell-cell interaction, poor cell survival negated its overall beneficial role, whereas the micro-aggregate group demonstrated highly heterogeneous matrix deposition within the construct, thus diminishing its translational utility. Overall, it was concluded that co-culture of IFP MSCs and ACs at a ratio of 50:50 within plasma clots demonstrated potential for cell-based cartilage regenerative therapy.
Collapse
Affiliation(s)
- Aditya Arora
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur, Kanpur, Uttar Pradesh, India
| | - M Sriram
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur, Kanpur, Uttar Pradesh, India
| | - Anjaney Kothari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur, Kanpur, Uttar Pradesh, India
| | - Dhirendra S Katti
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
82
|
Shi Q, Qian Z, Liu D, Sun J, Xu J, Guo X. Maintaining the Phenotype Stability of Chondrocytes Derived from MSCs by C-Type Natriuretic Peptide. Front Physiol 2017; 8:143. [PMID: 28337152 PMCID: PMC5340764 DOI: 10.3389/fphys.2017.00143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/23/2017] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) play a critical role in cartilage tissue engineering. However, MSCs-derived chondrocytes or cartilage tissues are not stable and easily lose the cellular and cartilage phenotype during long-term culture in vitro or implantation in vivo. As a result, chondrocytes phenotypic instability can contribute to accelerated ossification. Thus, it is a big challenge to maintain their correct phenotype for engineering hyaline cartilage. As one member of the natriuretic peptide family, C-type natriuretic peptide (CNP) is found to correlate with the development of the cartilage, affect the chondrocytes proliferation and differentiation. Besides, based on its biological effects on protection of extracellular matrix of cartilage and inhibition of mineralization, we hypothesize that CNP may contribute to the stability of chondrocyte phenotype of MSCs-derived chondrocytes.
Collapse
Affiliation(s)
- Quan Shi
- Department of Stomatology, Chinese People's Liberation Army General HospitalBeijing, China; Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical SciencesBeijing, China
| | - Zhiyong Qian
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical SciencesBeijing, China; School of Biological Science and Medical Engineering, Beihang UniversityBeijing, China
| | - Donghua Liu
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences Beijing, China
| | - Jie Sun
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical SciencesBeijing, China; Stomatology Center, General Hospital of Armed Police ForcesBeijing, China
| | - Juan Xu
- Department of Stomatology, Chinese People's Liberation Army General Hospital Beijing, China
| | - Ximin Guo
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences Beijing, China
| |
Collapse
|
83
|
Wang M, Yuan Z, Ma N, Hao C, Guo W, Zou G, Zhang Y, Chen M, Gao S, Peng J, Wang A, Wang Y, Sui X, Xu W, Lu S, Liu S, Guo Q. Advances and Prospects in Stem Cells for Cartilage Regeneration. Stem Cells Int 2017; 2017:4130607. [PMID: 28246531 PMCID: PMC5299204 DOI: 10.1155/2017/4130607] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/24/2016] [Accepted: 12/26/2016] [Indexed: 12/16/2022] Open
Abstract
The histological features of cartilage call attention to the fact that cartilage has a little capacity to repair itself owing to the lack of a blood supply, nerves, or lymphangion. Stem cells have emerged as a promising option in the field of cartilage tissue engineering and regenerative medicine and could lead to cartilage repair. Much research has examined cartilage regeneration utilizing stem cells. However, both the potential and the limitations of this procedure remain controversial. This review presents a summary of emerging trends with regard to using stem cells in cartilage tissue engineering and regenerative medicine. In particular, it focuses on the characterization of cartilage stem cells, the chondrogenic differentiation of stem cells, and the various strategies and approaches involving stem cells that have been used in cartilage repair and clinical studies. Based on the research into chondrocyte and stem cell technologies, this review discusses the damage and repair of cartilage and the clinical application of stem cells, with a view to increasing our systematic understanding of the application of stem cells in cartilage regeneration; additionally, several advanced strategies for cartilage repair are discussed.
Collapse
Affiliation(s)
- Mingjie Wang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Zhiguo Yuan
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Ning Ma
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Chunxiang Hao
- Anesthesiology Department, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Weimin Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Gengyi Zou
- Medical College, Nankai University, Tianjin, 300071, China
| | - Yu Zhang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Mingxue Chen
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shuang Gao
- Center for Biomedical Material and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiang Peng
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Aiyuan Wang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yu Wang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Xiang Sui
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Wenjing Xu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shibi Lu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shuyun Liu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Quanyi Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| |
Collapse
|
84
|
Chen CH, Kuo CY, Wang YJ, Chen JP. Dual Function of Glucosamine in Gelatin/Hyaluronic Acid Cryogel to Modulate Scaffold Mechanical Properties and to Maintain Chondrogenic Phenotype for Cartilage Tissue Engineering. Int J Mol Sci 2016; 17:1957. [PMID: 27886065 PMCID: PMC5133951 DOI: 10.3390/ijms17111957] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/26/2016] [Accepted: 11/08/2016] [Indexed: 12/14/2022] Open
Abstract
Glucosamine (GlcN) fulfills many of the requirements as an ideal component in scaffolds used in cartilage tissue engineering. The incorporation of GlcN in a gelatin/hyaluronic acid (GH) cryogel scaffold could provide biological cues in maintaining the phenotype of chondrocytes. Nonetheless, substituting gelatin with GlcN may also decrease the crosslinking density and modulate the mechanical properties of the cryogel scaffold, which may be beneficial as physical cues for chondrocytes in the scaffold. Thus, we prepared cryogel scaffolds containing 9% GlcN (GH-GlcN9) and 16% GlcN (GH-GlcN16) by carbodiimide-mediated crosslinking reactions at -16 °C. The crosslinking density and the mechanical properties of the cryogel matrix could be tuned by adjusting the content of GlcN used during cryogel preparation. In general, incorporation of GlcN did not influence scaffold pore size and ultimate compressive strain but increased porosity. The GH-GlcN16 cryogel showed the highest swelling ratio and degradation rate in hyaluronidase and collagenase solutions. On the contrary, the Young's modulus, storage modulus, ultimate compressive stress, energy dissipation level, and rate of stress relaxation decreased by increasing the GlcN content in the cryogel. The release of GlcN from the scaffolds in the culture medium of chondrocytes could be sustained for 21 days for GH-GlcN16 in contrast to only 7 days for GH-GlcN9. In vitro cell culture experiments using rabbit articular chondrocytes revealed that GlcN incorporation affected cell proliferation, morphology, and maintenance of chondrogenic phenotype. Overall, GH-GlcN16 showed the best performance in maintaining chondrogenic phenotype with reduced cell proliferation rate but enhanced glycosaminoglycans (GAGs) and type II collagen (COL II) secretion. Quantitative real-time polymerase chain reaction also showed time-dependent up-regulation of cartilage-specific marker genes (COL II, aggrecan and Sox9) for GH-GlcN16. Implantation of chondrocytes/GH-GlcN16 constructs into full-thickness articular cartilage defects of rabbits could regenerate neocartilage with positive staining for GAGs and COL II. The GH-GlcN16 cryogel will be suitable as a scaffold for the treatment of articular cartilage defects.
Collapse
Affiliation(s)
- Chih-Hao Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Kwei-San, Taoyuan 33305, Taiwan.
| | - Chang-Yi Kuo
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
| | - Yan-Jie Wang
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Kwei-San, Taoyuan 33305, Taiwan.
- Graduate Institute of Health Industry and Technology, Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kwei-San, Taoyuan 33302, Taiwan.
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan.
| |
Collapse
|
85
|
Zhu Y, Wu X, Liang Y, Gu H, Song K, Zou X, Zhou G. Repair of cartilage defects in osteoarthritis rats with induced pluripotent stem cell derived chondrocytes. BMC Biotechnol 2016; 16:78. [PMID: 27829414 PMCID: PMC5103600 DOI: 10.1186/s12896-016-0306-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 10/18/2016] [Indexed: 12/19/2022] Open
Abstract
Background The incapacity of articular cartilage (AC) for self-repair after damage ultimately leads to the development of osteoarthritis. Stem cell-based therapy has been proposed for the treatment of osteoarthritis (OA) and induced pluripotent stem cells (iPSCs) are becoming a promising stem cell source. Results Three steps were developed to differentiate human iPSCs into chondrocytes which were transplanted into rat OA models induced by monosodium iodoacetate (MIA). After 6 days embryonic body (EB) formation and 2 weeks differentiation, the gene and protein expression of Col2A1, GAG and Sox9 has significantly increased compare to undifferentiated hiPSCs. After 15 weeks transplantation, no immune responses were observed, micro-CT showed gradual engraftment and the improvement of subchondrol plate integrity, and histological examinations demonstrated articular cartilage matrix production. Conclusions hiPSC could be an efficient and clinically translatable approach for cartilage tissue regeneration in OA cartilages.
Collapse
Affiliation(s)
- Yanxia Zhu
- Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| | - Xiaomin Wu
- Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Yuhong Liang
- Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Hongsheng Gu
- Department of Spinal Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518060, China
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xuenong Zou
- Department of Spinal Surgery, Orthopaedic Research Institute, Huangpu Division, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Guangqian Zhou
- Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
86
|
Zhong L, Huang X, Rodrigues ED, Leijten JCH, Verrips T, El Khattabi M, Karperien M, Post JN. Endogenous DKK1 and FRZB Regulate Chondrogenesis and Hypertrophy in Three-Dimensional Cultures of Human Chondrocytes and Human Mesenchymal Stem Cells. Stem Cells Dev 2016; 25:1808-1817. [PMID: 27733096 PMCID: PMC5124737 DOI: 10.1089/scd.2016.0222] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hypertrophic differentiation occurs during in vitro chondrogenesis of mesenchymal stem cells (MSCs), decreasing the quality of the cartilage construct. Previously we identified WNT pathway antagonists Dickkopf 1 homolog (DKK1) and frizzled-related protein (FRZB) as key factors in blocking hypertrophic differentiation of human MSCs (hMSCs). In this study, we investigated the role of endogenously expressed DKK1 and FRZB in chondrogenesis of hMSC and chondrocyte redifferentiation and in preventing cell hypertrophy using three relevant human cell based systems, isolated hMSCs, isolated primary human chondrocytes (hChs), and cocultures of hMSCs with hChs for which we specifically designed neutralizing nano-antibodies. We selected and tested variable domain of single chain heavy chain only antibodies (VHH) for their ability to neutralize the function of DKK1 or FRZB. In the presence of DKK1 and FRZB neutralizing VHH, glycosaminoglycan and collagen type II staining were significantly reduced in monocultured hMSCs and monocultured chondrocytes. Furthermore, in cocultures, cells in pellets showed hypertrophic differentiation. In conclusion, endogenous expression of the WNT antagonists DKK1 and FRZB is necessary for multiple steps during chondrogenesis: first DKK1 and FRZB are indispensable for the initial steps of chondrogenic differentiation of hMSCs, second they are necessary for chondrocyte redifferentiation, and finally in preventing hypertrophic differentiation of articular chondrocytes.
Collapse
Affiliation(s)
- Leilei Zhong
- 1 Department of Developmental BioEngineering, Faculty of Science and Technology, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| | - Xiaobin Huang
- 1 Department of Developmental BioEngineering, Faculty of Science and Technology, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| | - Emilie Dooms Rodrigues
- 1 Department of Developmental BioEngineering, Faculty of Science and Technology, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| | - Jeroen C H Leijten
- 1 Department of Developmental BioEngineering, Faculty of Science and Technology, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| | | | | | - Marcel Karperien
- 1 Department of Developmental BioEngineering, Faculty of Science and Technology, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| | - Janine N Post
- 1 Department of Developmental BioEngineering, Faculty of Science and Technology, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| |
Collapse
|
87
|
Burnsed OA, Schwartz Z, Marchand KO, Hyzy SL, Olivares-Navarrete R, Boyan BD. Hydrogels derived from cartilage matrices promote induction of human mesenchymal stem cell chondrogenic differentiation. Acta Biomater 2016; 43:139-149. [PMID: 27449339 DOI: 10.1016/j.actbio.2016.07.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 07/17/2016] [Accepted: 07/19/2016] [Indexed: 12/01/2022]
Abstract
UNLABELLED Limited supplies of healthy autologous or allogeneic cartilage sources have inspired a growing interest in xenogeneic cartilage matrices as biological scaffolds for cartilage tissue engineering. The objectives of this study were to determine if shark and pig cartilage extracellular matrix (ECM) hydrogels can stimulate chondrocytic differentiation of mesenchymal stem cells (MSCs) without exogenous growth factors and to determine if the soluble factors retained by these ECM hydrogels are responsible. Human MSCs cultured on hydrogels from shark skull cartilage, pig articular cartilage, and pig auricular cartilage ECM had increased expression of chondrocyte markers and decreased secretion of angiogenic factors VEGF-A and FGF2 in comparison to MSCs cultured on tissue culture polystyrene (TCPS) at one week. MSCs grown on shark ECM gels had decreased type-1 collagen mRNA as compared to all other groups. Degradation products of the cartilage ECM gels and soluble factors released by the matrices increased chondrogenic and decreased angiogenic mRNA levels, indicating that the processed ECM retains biochemically active proteins that can stimulate chondrogenic differentiation. In conclusion, this work supports the use of cartilage matrix-derived hydrogels for chondrogenic differentiation of MSCs and cartilage tissue engineering. Longer-term studies and positive controls will be needed to support these results to definitively demonstrate stimulation of chondrocyte differentiation, and particularly to verify that calcification without endochondral ossification does not occur as it does in shark cartilage. STATEMENT OF SIGNIFICANCE The objectives of this study were to determine if shark and pig cartilage extracellular matrix (ECM) hydrogels can stimulate chondrocytic differentiation of mesenchymal stem cells (MSCs) without exogenous growth factors and to determine if the soluble factors retained by these ECM hydrogels are responsible for this induction. Sharks are an especially interesting model for cartilage regeneration because their entire skeleton is composed of cartilage and they do not undergo endochondral ossification. Culturing human MSCs on porcine and shark cartilage ECM gels directly, with ECM gel conditioned media, or degradation products increased mRNA levels of chondrogenic factors while decreasing angiogenic factors. These studies indicate that xenogeneic cartilage ECMs have potential as biodegradable scaffolds capable of stimulating chondrogenesis while preventing angiogenesis for regenerative medicine applications and that ECM species selection can yield differential effects.
Collapse
Affiliation(s)
- Olivia A Burnsed
- Wallace H. Coulter Department of Biomedical Engineering and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA; Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Katherine O Marchand
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sharon L Hyzy
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Barbara D Boyan
- Wallace H. Coulter Department of Biomedical Engineering and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
88
|
Xu L, Wu Y, Xiong Z, Zhou Y, Ye Z, Tan WS. Mesenchymal Stem Cells Reshape and Provoke Proliferation of Articular Chondrocytes by Paracrine Secretion. Sci Rep 2016; 6:32705. [PMID: 27596239 PMCID: PMC5011711 DOI: 10.1038/srep32705] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/08/2016] [Indexed: 01/03/2023] Open
Abstract
Coculture between mesenchymal stem cells (MSCs) and articular chondrocytes (ACs) represents a promising strategy for cartilage regeneration. This study aimed at elaborating how ACs were regulated by MSCs. Rabbit ACs (rACs) and rabbit MSCs (rMSCs) were seeded separately in a Transwell system to initiate non-contact coculture in growth medium without chondrogenic factors. Cell morphology, cell proliferation, production of extracellular matrix (ECM), and gene expression of rACs were characterized. Upon coculture, rACs underwent a morphological transition from a rounded or polygonal shape into a fibroblast-like one and proliferation was provoked simultaneously. Such effects were dependent on the amount of rMSCs. Along with these changes, ECM production and gene expression of rACs were also perturbed. Importantly, when a ROCK inhibitor (Y27632) was supplemented to coculture, the effects except that on cell proliferation were inhibited, suggesting the involvement of RhoA/ROCK signaling. By applying an inhibitor (BIBF1120) of VEGFR1/2/3, FGFR1/2/3 and PDGFRα/β in coculture, or supplementing FGF-1, VEGF-A and PDGFbb in monoculture, it was confirmed that the paracrine factors by rMSCs mediated the compounding effects on rACs. These findings shed light on MSCs-ACs interactions and might confer an insight view on cell-based cartilage regeneration.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuxi Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhimiao Xiong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhaoyang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
89
|
Mamidi MK, Das AK, Zakaria Z, Bhonde R. Mesenchymal stromal cells for cartilage repair in osteoarthritis. Osteoarthritis Cartilage 2016; 24:1307-16. [PMID: 26973328 DOI: 10.1016/j.joca.2016.03.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 02/09/2016] [Accepted: 03/03/2016] [Indexed: 02/08/2023]
Abstract
Treatment for articular cartilage damage is quite challenging as it shows limited repair and regeneration following injury. Non-operative and classical surgical techniques are inefficient in restoring normal anatomy and function of cartilage in osteoarthritis (OA). Thus, investigating new and effective strategies for OA are necessary to establish feasible therapeutic solutions. The emergence of the new discipline of regenerative medicine, having cell-based therapy as its primary focus, may enable us to achieve repair and restore the damaged articular cartilage. This review describes progress and development of employing mesenchymal stromal cell (MSC)-based therapy as a promising alternative for OA treatment. The objective of this review is to first, discuss how in vitro MSC chondrogenic differentiation mimics in vivo embryonic cartilage development, secondly, to describe various chondrogenic differentiation strategies followed by pre-clinical and clinical studies demonstrating their feasibility and efficacy. However, several challenges need to be tackled before this research can be translated to the clinics. In particular, better understanding of the post-transplanted cell behaviour and learning to enhance their potency in the disease microenvironment is essential. Final objective is to underscore the importance of isolation, storage, cell shipment, route of administration, optimum dosage and control batch to batch variations to realise the full potential of MSCs in OA clinical trials.
Collapse
Affiliation(s)
- M K Mamidi
- School of Regenerative Medicine, Manipal University, Bangalore 560065, India
| | - A K Das
- Department of Surgery, Taylor's University School of Medicine, Sungai Buloh Hospital, Selangor, Malaysia
| | - Z Zakaria
- Hematology Unit, Cancer Research Centre, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| | - R Bhonde
- School of Regenerative Medicine, Manipal University, Bangalore 560065, India.
| |
Collapse
|
90
|
Recha-Sancho L, Semino CE. Chondroitin Sulfate- and Decorin-Based Self-Assembling Scaffolds for Cartilage Tissue Engineering. PLoS One 2016; 11:e0157603. [PMID: 27315119 PMCID: PMC4912132 DOI: 10.1371/journal.pone.0157603] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/01/2016] [Indexed: 12/14/2022] Open
Abstract
Cartilage injury and degenerative tissue progression remain poorly understood by the medical community. Therefore, various tissue engineering strategies aim to recover areas of damaged cartilage by using non-traditional approaches. To this end, the use of biomimetic scaffolds for recreating the complex in vivo cartilage microenvironment has become of increasing interest in the field. In the present study, we report the development of two novel biomaterials for cartilage tissue engineering (CTE) with bioactive motifs, aiming to emulate the native cartilage extracellular matrix (ECM). We employed a simple mixture of the self-assembling peptide RAD16-I with either Chondroitin Sulfate (CS) or Decorin molecules, taking advantage of the versatility of RAD16-I. After evaluating the structural stability of the bi-component scaffolds at a physiological pH, we characterized these materials using two different in vitro assessments: re-differentiation of human articular chondrocytes (AC) and induction of human adipose derived stem cells (ADSC) to a chondrogenic commitment. Interestingly, differences in cellular morphology and viability were observed between cell types and culture conditions (control and chondrogenic). In addition, both cell types underwent a chondrogenic commitment under inductive media conditions, and this did not occur under control conditions. Remarkably, the synthesis of important ECM constituents of mature cartilage, such as type II collagen and proteoglycans, was confirmed by gene and protein expression analyses and toluidine blue staining. Furthermore, the viscoelastic behavior of ADSC constructs after 4 weeks of culture was more similar to that of native articular cartilage than to that of AC constructs. Altogether, this comparative study between two cell types demonstrates the versatility of our novel biomaterials and suggests a potential 3D culture system suitable for promoting chondrogenic differentiation.
Collapse
Affiliation(s)
- Lourdes Recha-Sancho
- Tissue Engineering Laboratory, Department of Bioengineering, IQS School of Engineering, Ramon Llull University, Barcelona, Spain
| | - Carlos E. Semino
- Tissue Engineering Laboratory, Department of Bioengineering, IQS School of Engineering, Ramon Llull University, Barcelona, Spain
- * E-mail:
| |
Collapse
|
91
|
Rodenas-Rochina J, Kelly DJ, Gómez Ribelles JL, Lebourg M. Compositional changes to synthetic biodegradable scaffolds modulate the influence of hydrostatic pressure on chondrogenesis of mesenchymal stem cells. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/3/035005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
92
|
Nazempour A, Van Wie BJ. Chondrocytes, Mesenchymal Stem Cells, and Their Combination in Articular Cartilage Regenerative Medicine. Ann Biomed Eng 2016; 44:1325-54. [PMID: 26987846 DOI: 10.1007/s10439-016-1575-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/17/2016] [Indexed: 01/05/2023]
Abstract
Articular cartilage (AC) is a highly organized connective tissue lining, covering the ends of bones within articulating joints. Its highly ordered structure is essential for stable motion and provides a frictionless surface easing load transfer. AC is vulnerable to lesions and, because it is aneural and avascular, it has limited self-repair potential which often leads to osteoarthritis. To date, no fully successful treatment for osteoarthritis has been reported. Thus, the development of innovative therapeutic approaches is desperately needed. Autologous chondrocyte implantation, the only cell-based surgical intervention approved in the United States for treating cartilage defects, has limitations because of de-differentiation of articular chondrocytes (AChs) upon in vitro expansion. De-differentiation can be abated if initial populations of AChs are co-cultured with mesenchymal stem cells (MSCs), which not only undergo chondrogenesis themselves but also support chondrocyte vitality. In this review we summarize studies utilizing AChs, non-AChs, and MSCs and compare associated outcomes. Moreover, a comprehensive set of recent human studies using chondrocytes to direct MSC differentiation, MSCs to support chondrocyte re-differentiation and proliferation in co-culture environments, and exploratory animal intra- and inter-species studies are systematically reviewed and discussed in an innovative manner allowing side-by-side comparisons of protocols and outcomes. Finally, a comprehensive set of recommendations are made for future studies.
Collapse
Affiliation(s)
- A Nazempour
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164-6515, USA
| | - B J Van Wie
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164-6515, USA.
| |
Collapse
|
93
|
Duan L, Liang Y, Ma B, Zhu W, Wang D. Epigenetic regulation in chondrocyte phenotype maintenance for cell-based cartilage repair. Am J Transl Res 2015; 7:2127-2140. [PMID: 26807163 PMCID: PMC4697695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/11/2015] [Indexed: 06/05/2023]
Abstract
Loss of hyaline chondrocyte phenotype during the monolayer culture in vitro is a major obstacle for cell-based articular cartilage repair. Increasing evidence implicates an important role of the epigenetic regulation in maintaining the chondrocyte phenotype. DNA methylation, histone modifications and microRNAs have all been shown to contribute to chondrocyte dedifferentiation and hypertrophy. Moreover, the interplay among epigenetic regulators forms a complicated epigenetic network in regulating chondrocyte dedifferentiation. This review provides a detailed overview of the epigenetic regulation in maintaining the chondrocyte phenotype for chondrocyte-based cartilage repair.
Collapse
Affiliation(s)
- Li Duan
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
- Department of Orthopedics, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
| | - Yujie Liang
- School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate SchoolShenzhen 518000, Guangdong Province, China
| | - Bin Ma
- Division of Immunology, University Children’s Hospital ZurichZurich 8032, Switzerland
| | - Weimin Zhu
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
- Department of Orthopedics, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
| | - Daping Wang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
- Department of Orthopedics, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
| |
Collapse
|
94
|
Shahin K, Mahmoudifar N, Doran PM. Human Fetal and Adult Chondrocytes. Methods Mol Biol 2015; 1340:25-40. [PMID: 26445828 DOI: 10.1007/978-1-4939-2938-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
As the only cell type found in healthy adult cartilage, chondrocytes are the obvious and most direct starting point for cartilage tissue engineering. Human adult, juvenile, neonatal, and fetal chondrocytes have all been demonstrated to produce cartilage matrix components in vitro for production of engineered tissues. In this chapter, procedures are outlined for isolation of chondrocytes from human fetal and adult cartilage. Methods for expansion and cryopreservation of the cells and characterization of gene expression using quantitative polymerase chain reaction (Q-PCR) analysis are also described.
Collapse
Affiliation(s)
- Kifah Shahin
- Westmead Millennium Institute for Medical Research, University of Sydney, Westmead, NSW, 2145, Australia.
| | - Nastaran Mahmoudifar
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Pauline M Doran
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, P.O. Box 218, Hawthorn, Melbourne, VIC, 3122, Australia
| |
Collapse
|
95
|
Mirza EH, Pan-Pan C, Wan Ibrahim WMAB, Djordjevic I, Pingguan-Murphy B. Chondroprotective effect of zinc oxide nanoparticles in conjunction with hypoxia on bovine cartilage-matrix synthesis. J Biomed Mater Res A 2015; 103:3554-63. [DOI: 10.1002/jbm.a.35495] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/01/2015] [Accepted: 04/30/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Eraj Humayun Mirza
- Faculty of Engineering; Department of Biomedical Engineering; University of Malaya; Kuala Lumpur 50603 Kuala Lumpur Malaysia
- Department of Biomedical Technology, College of Applied Medical Sciences; King Saud University; Riyadh Kingdom of Saudi Arabia
| | - Chong Pan-Pan
- Faculty of Medicine, Department of Orthopaedic Surgery; Tissue Engineering Group (TEG); National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Wan Mohd Azhar Bin Wan Ibrahim
- Faculty of Engineering; Department of Biomedical Engineering; University of Malaya; Kuala Lumpur 50603 Kuala Lumpur Malaysia
| | - Ivan Djordjevic
- Faculty of Engineering; Department of Biomedical Engineering; University of Malaya; Kuala Lumpur 50603 Kuala Lumpur Malaysia
| | - Belinda Pingguan-Murphy
- Faculty of Engineering; Department of Biomedical Engineering; University of Malaya; Kuala Lumpur 50603 Kuala Lumpur Malaysia
| |
Collapse
|
96
|
Engineered cartilaginous tubes for tracheal tissue replacement via self-assembly and fusion of human mesenchymal stem cell constructs. Biomaterials 2015; 52:452-62. [PMID: 25818451 DOI: 10.1016/j.biomaterials.2015.01.073] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/22/2015] [Accepted: 01/25/2015] [Indexed: 01/14/2023]
Abstract
There is a critical need to engineer a neotrachea because currently there are no long-term treatments for tracheal stenoses affecting large portions of the airway. In this work, a modular tracheal tissue replacement strategy was developed. High-cell density, scaffold-free human mesenchymal stem cell-derived cartilaginous rings and tubes were successfully generated through employment of custom designed culture wells and a ring-to-tube assembly system. Furthermore, incorporation of transforming growth factor-β1-delivering gelatin microspheres into the engineered tissues enhanced chondrogenesis with regard to tissue size and matrix production and distribution in the ring- and tube-shaped constructs, as well as luminal rigidity of the tubes. Importantly, all engineered tissues had similar or improved biomechanical properties compared to rat tracheas, which suggests they could be transplanted into a small animal model for airway defects. The modular, bottom up approach used to grow stem cell-based cartilaginous tubes in this report is a promising platform to engineer complex organs (e.g., trachea), with control over tissue size and geometry, and has the potential to be used to generate autologous tissue implants for human clinical applications.
Collapse
|
97
|
Abstract
Due to a blood supply shortage, articular cartilage has a limited capacity for self-healing once damaged. Articular chondrocytes, cartilage progenitor cells, embryonic stem cells, and mesenchymal stem cells are candidate cells for cartilage regeneration. Significant current attention is paid to improving chondrogenic differentiation capacity; unfortunately, the potential chondrogenic hypertrophy of differentiated cells is largely overlooked. Consequently, the engineered tissue is actually a transient cartilage rather than a permanent one. The development of hypertrophic cartilage ends with the onset of endochondral bone formation which has inferior mechanical properties. In this review, current strategies for inhibition of chondrogenic hypertrophy are comprehensively summarized; the impact of cell source options is discussed; and potential mechanisms underlying these strategies are also categorized. This paper aims to provide guidelines for the prevention of hypertrophy in the regeneration of cartilage tissue. This knowledge may also facilitate the retardation of osteophytes in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Song Chen
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA
- Department of Joint Surgery, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Peiliang Fu
- Department of Joint Surgery, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Ruijun Cong
- Department of Orthopaedics, The 10th People's Hospital of Shanghai, Affiliated with Tongji University, Shanghai 200072, China
| | - HaiShan Wu
- Department of Joint Surgery, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA
- Exercise Physiology, West Virginia University, Morgantown, WV 26506, USA
- Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506, USA
- Corresponding author. Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, One Medical Center Drive, Morgantown, WV 26506-9196, USA. Tel.: +1 304 293 1072; fax: +1 304 293 7070.
| |
Collapse
|
98
|
Abstract
Many technologies that underpin tissue engineering as a research field were developed with the aim of producing functional human cartilage in vitro. Much of our practical experience with three-dimensional cultures, tissue bioreactors, scaffold materials, stem cells, and differentiation protocols was gained using cartilage as a model system. Despite these advances, however, generation of engineered cartilage matrix with the composition, structure, and mechanical properties of mature articular cartilage has not yet been achieved. Currently, the major obstacles to synthesis of clinically useful cartilage constructs are our inability to control differentiation to the extent needed, and the failure of engineered and host tissues to integrate after construct implantation. The aim of this chapter is to distil from the large available body of literature the seminal approaches and experimental techniques developed for cartilage tissue engineering and to identify those specific areas requiring further research effort.
Collapse
Affiliation(s)
- Pauline M Doran
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, 218, Hawthorn, Melbourne, VIC, 3122, Australia.
| |
Collapse
|
99
|
Periodontal ligament mesenchymal stromal cells increase proliferation and glycosaminoglycans formation of temporomandibular joint derived fibrochondrocytes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:410167. [PMID: 25436212 PMCID: PMC4243606 DOI: 10.1155/2014/410167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/07/2014] [Accepted: 09/08/2014] [Indexed: 01/01/2023]
Abstract
Objectives. Temporomandibular joint (TMJ) disorders are common disease in maxillofacial surgery. The aim of this study is to regenerate fibrocartilage with a mixture of TMJ fibrochondrocytes and periodontal ligament derived mesenchymal stem cells (PD-MSCs). Materials and Methods. Fibrochondrocytes and PD-MSC were cocultured (ratio 1 : 1) for 3 weeks. Histology and glycosaminoglycans (GAGs) assay were performed to examine the deposition of GAG. Green florescent protein (GFP) was used to track PD-MSC. Conditioned medium of PD-MSCs was collected to study the soluble factors. Gene expression of fibrochondrocytes cultured in conditioned medium was tested by quantitative PCR (qPCR). Results. Increased proliferation of TMJ-CH was observed in coculture pellets when compared to monoculture. Enhanced GAG production in cocultures was shown by histology and GAG quantification. Tracing of GFP revealed the fact that PD-MSC disappears after coculture with TMJ-CH for 3 weeks. In addition, conditioned medium of PD-MSC was also shown to increase the proliferation and GAG deposition of TMJ-CH. Meanwhile, results of qPCR demonstrated that conditioned medium enhanced the expression levels of matrix-related genes in TMJ-CH. Conclusions. Results from this study support the mechanism of MSC-chondrocyte interaction, in which MSCs act as secretor of soluble factors that stimulate proliferation and extracellular matrix deposition of chondrocytes.
Collapse
|
100
|
Dahlin RL, Kinard LA, Lam J, Needham CJ, Lu S, Kasper FK, Mikos AG. Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model. Biomaterials 2014; 35:7460-9. [PMID: 24927682 DOI: 10.1016/j.biomaterials.2014.05.055] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/20/2014] [Indexed: 01/15/2023]
Abstract
This work investigated the ability of co-cultures of articular chondrocytes and mesenchymal stem cells (MSCs) to repair articular cartilage in osteochondral defects. Bovine articular chondrocytes and rat MSCs were seeded in isolation or in co-culture onto electrospun poly(ɛ-caprolactone) (PCL) scaffolds and implanted into an osteochondral defect in the trochlear groove of 12-week old Lewis rats. Additionally, a blank PCL scaffold and untreated defect were investigated. After 12 weeks, the extent of cartilage repair was analyzed through histological analysis, and the extent of bone healing was assessed by quantifying the total volume of mineralized bone in the defect through microcomputed tomography. Histological analysis revealed that the articular chondrocytes and co-cultures led to repair tissue that consisted of more hyaline-like cartilage tissue that was thicker and possessed more intense Safranin O staining. The MSC, blank PCL scaffold, and empty treatment groups generally led to the formation of fibrocartilage repair tissue. Microcomputed tomography revealed that while there was an equivalent amount of mineralized bone formation in the MSC, blank PCL, and empty treatment groups, the defects treated with chondrocytes or co-cultures had negligible mineralized bone formation. Overall, even with a reduced number of chondrocytes, co-cultures led to an equal level of cartilage repair compared to the chondrocyte samples, thus demonstrating the potential for the use of co-cultures of articular chondrocytes and MSCs for the in vivo repair of cartilage defects.
Collapse
Affiliation(s)
| | - Lucas A Kinard
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Johnny Lam
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Clark J Needham
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Steven Lu
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - F Kurtis Kasper
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|