51
|
Yang YR, Choi JH, Chang JS, Kwon HM, Jang HJ, Ryu SH, Suh PG. Diverse cellular and physiological roles of phospholipase C-γ1. Adv Biol Regul 2012; 52:138-151. [PMID: 21964416 DOI: 10.1016/j.advenzreg.2011.09.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 05/31/2023]
Affiliation(s)
- Yong Ryoul Yang
- School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
52
|
Tu CL, Chang W, Bikle DD. The calcium-sensing receptor-dependent regulation of cell-cell adhesion and keratinocyte differentiation requires Rho and filamin A. J Invest Dermatol 2011; 131:1119-28. [PMID: 21209619 PMCID: PMC3078217 DOI: 10.1038/jid.2010.414] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Extracellular Ca(2+) (Ca(2+)(o)) functioning through the calcium-sensing receptor (CaR) induces E-cadherin-mediated cell-cell adhesion and cellular signals mediating cell differentiation in epidermal keratinocytes. Previous studies indicate that CaR regulates cell-cell adhesion through Fyn/Src tyrosine kinases. In this study, we investigate whether Rho GTPase is a part of the CaR-mediated signaling cascade regulating cell adhesion and differentiation. Suppressing endogenous Rho A expression by small interfering RNA (siRNA)-mediated gene silencing blocked the Ca(2+)(o)-induced association of Fyn with E-cadherin and suppressed the Ca(2+)(o)-induced tyrosine phosphorylation of β-, γ-, and p120-catenin and formation of intercellular adherens junctions. Rho A silencing also decreased the Ca(2+)(o)-stimulated expression of terminal differentiation markers. Elevating the Ca(2+)(o) level induced interactions among CaR, Rho A, E-cadherin, and the scaffolding protein filamin A at the cell membrane. Inactivation of CaR expression by adenoviral expression of a CaR antisense complementary DNA inhibited Ca(2+)(o)-induced activation of endogenous Rho. Ca(2+)(o) activation of Rho required a direct interaction between CaR and filamin A. Interference of CaR-filamin interaction inhibited Ca(2+)(o)-induced Rho activation and the formation of cell-cell junctions. These results indicate that Rho is a downstream mediator of CaR in the regulation of Ca(2+)(o)-induced E-cadherin-mediated cell-cell adhesion and keratinocyte differentiation.
Collapse
Affiliation(s)
- Chia-Ling Tu
- Endocrine Unit, Veteran Affairs Medical Center and University of California, San Francisco, California 94121, USA.
| | | | | |
Collapse
|
53
|
Lee CM, Yang P, Chen LC, Chen CC, Wu SC, Cheng HY, Chang YS. A novel role of RASSF9 in maintaining epidermal homeostasis. PLoS One 2011; 6:e17867. [PMID: 21445300 PMCID: PMC3061870 DOI: 10.1371/journal.pone.0017867] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 02/16/2011] [Indexed: 02/05/2023] Open
Abstract
The physiological role of RASSF9, a member of the Ras-association domain family (RASSF), is currently unclear. Here, we report a mouse line in which an Epstein-Barr virus Latent Membrane Protein 1 (LMP1) transgene insertion has created a 7.2-kb chromosomal deletion, which abolished RASSF9 gene expression. The RASSF9-null mice exhibited interesting phenotypes that resembled human ageing, including growth retardation, short lifespan, less subcutaneous adipose layer and alopecia. In the wild-type mice, RASSF9 is predominantly expressed in the epidermal keratinocytes of skin, as determined by quantitative reverse-transcription PCR, immunofluorescence and in situ hybridization. In contrast, RASSF9-/- mice presented a dramatic change in epithelial organization of skin with increased proliferation and aberrant differentiation as detected by bromodeoxyuridine incorporation assays and immunofluorescence analyses. Furthermore, characteristic functions of RASSF9-/- versus wild type (WT) mouse primary keratinocytes showed significant proliferation linked to a reduction of p21Cip1 expression under growth or early differentiation conditions. Additionally, in RASSF9-/- keratinocytes there was a drastic down-modulation of terminal differentiation markers, which could be rescued by infection with a recombinant adenovirus, Adv/HA-RASSF9. Our results indicate a novel and significant role of RASSF9 in epidermal homeostasis.
Collapse
Affiliation(s)
- Chiou-Mei Lee
- Department of Medical Research and Development, Chang Gung Memorial Hospital at Lin-Kou, Taoyuan, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
54
|
The lytic activation of KSHV during keratinocyte differentiation is dependent upon a suprabasal position, the loss of integrin engagement, and calcium, but not the interaction of cadherins. Virology 2010; 410:17-29. [PMID: 21084105 DOI: 10.1016/j.virol.2010.10.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 08/04/2010] [Accepted: 10/13/2010] [Indexed: 12/15/2022]
Abstract
We previously found that KSHV (HHV-8) lytic activation occurs during differentiation of oral keratinocytes in organotypic raft cultures. To further investigate the spatial and temporal aspects of KSHV lytic activation and the roles of integrins, cadherins, and calcium, we used rKSHV.219-infected primary oral keratinocytes in submerged, suspension, and direct suprabasal plating, models of differentiation. We found that early keratinocyte differentiation did not activate lytic KSHV in cells attached to a substratum, with activation only occurring in suprabasal cells. Temporally, KSHV lytic expression occurred between the expression of early and late differentiation markers. Keratinocytes differentiated in suspension culture, which mimics substratum loss that occurs with stratification, activated lytic KSHV. This lytic activation was inhibited by integrin engagement, showing that integrins are a control point for KSHV reactivation. A role for cadherins was not found. Elevated extracellular calcium was necessary, but not sufficient, for lytic activation.
Collapse
|
55
|
Roberson ED, Bowcock AM. Psoriasis genetics: breaking the barrier. Trends Genet 2010; 26:415-23. [PMID: 20692714 PMCID: PMC2957827 DOI: 10.1016/j.tig.2010.06.006] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 06/28/2010] [Accepted: 06/28/2010] [Indexed: 12/22/2022]
Abstract
Psoriasis is a common incurable inflammatory skin disease affecting 2-3% of the European population. Psoriatic skin contains large numbers of immune cells which produce many cytokines, chemokines and inflammatory molecules. The epidermis divides much faster than normal and has a defective outer layer or barrier which under normal circumstances protects from infection and dehydration. Psoriatic skin is characterized by a distinct set of inflammation and epidermal proliferation and differentiation markers, and it has been unclear whether the genetic basis of psoriasis reflects defects of the immune system or of the skin. One genetic determinant lies within the major histocompatibility complex class 1 region. Genome-wide association studies have revealed genetic susceptibility factors that play a role in the formation of immune cells found in psoriasis lesions. Others affect epidermal proliferation and skin barrier formation. Hence, genetic components of both the immune system and the epidermis can predispose to disease.
Collapse
Affiliation(s)
- Elisha D.O. Roberson
- Division of Human Genetics, Department of Genetics, Washington University School of Medicine, 4559 Scott Avenue, St. Louis, Missouri, 63110, U.S.A
| | - Anne M. Bowcock
- Division of Human Genetics, Department of Genetics, Washington University School of Medicine, 4559 Scott Avenue, St. Louis, Missouri, 63110, U.S.A
| |
Collapse
|
56
|
Xie Z, Peng J, Pennypacker SD, Chen Y. Critical role for the catalytic activity of phospholipase C-gamma1 in epidermal growth factor-induced cell migration. Biochem Biophys Res Commun 2010; 399:425-8. [PMID: 20674545 PMCID: PMC2933433 DOI: 10.1016/j.bbrc.2010.07.098] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Accepted: 07/26/2010] [Indexed: 01/09/2023]
Abstract
Phospholipase C-gamma1 (PLC-gamma1), a tyrosine kinase substrate, has been implicated in the pathway for the epidermal growth factor receptor (EGFR)-induced cell migration. However, the underlying mechanism by which PLC-gamma1 mediates EGFR-induced cell migration remains elusive. In the present study, we sought to determine whether the lipase activity of PLC-gamma1 is required for EGFR-induced cell migration. We found that overexpression of PLC-gamma1 in squamous cell carcinoma SCC4 cells markedly enhanced EGF-induced PLC-gamma1 activation, intracellular calcium rise, and cell migration. This enhancement was abolished by mutational inactivation of the catalytic domain of PLC-gamma1. Inhibition of the downstream signaling processes mediated by the activity of phospholipase C (PLC) using IP(3) receptor inhibitor or intracellular calcium chelator blocked EGF-induced cell migration. These data indicate that EGF-induced cell migration is mediated by the lipase domain of PLC-gamma1 and the subsequent IP(3) generation and intracellular calcium mobilization.
Collapse
Affiliation(s)
- Zhongjian Xie
- Endocrine Unit, Veterans Affairs Medical Center, Northern California Institute for Research and Education, University of California, San Francisco, CA 94121, USA.
| | | | | | | |
Collapse
|
57
|
Xie Z, Chen Y, Pennypacker SD, Zhou Z, Peng D. The SH3 domain, but not the catalytic domain, is required for phospholipase C-gamma1 to mediate epidermal growth factor-induced mitogenesis. Biochem Biophys Res Commun 2010; 398:719-22. [PMID: 20621058 PMCID: PMC2918663 DOI: 10.1016/j.bbrc.2010.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 07/02/2010] [Indexed: 11/17/2022]
Abstract
Phospholipase C-gamma1 (PLC-gamma1) is a multiple-domain protein and plays an important role in epidermal growth factor (EGF)-induced cell mitogenesis, but the underlying mechanism is unclear. We have previously demonstrated that PLC-gamma1 is required for EGF-induced mitogenesis of squamous cell carcinoma (SCC) cells, but the mitogenic function of PLC-gamma1 is independent of its lipase activity. Earlier studies suggest that the Src homology 3 (SH3) domain of PLC-gamma1 possesses mitogenic activity. In the present study, we sought to determine the role of the SH3 domain of PLC-gamma1 in EGF-induced SCC cell mitogenesis. We examined the effect of overexpression of PLC-gamma1, a catalytically active PLC-gamma1 mutant lacking the SH3 domain or a catalytically inactive PLC-gamma1 mutant lacking the X domain on EGF-induced SCC4 (tongue squamous cell carcinoma) cell mitogenesis. We found that overexpression of PLC-gamma1 enhanced EGF-induced SCC4 cell mitogenesis. This enhancement was abolished by deletion of the SH3 domain but not by deletion of the X catalytic domain. These data suggest that the SH3 domain, but not the catalytic domain, is required for PLC-gamma1 to mediate EGF-induced SCC4 cell mitogenesis.
Collapse
Affiliation(s)
- Zhongjian Xie
- Endocrine Unit, Veterans Affairs Medical Center, Northern California Institute for Research and Education, University of California, San Francisco, CA 94121, USA.
| | | | | | | | | |
Collapse
|
58
|
Xie Z, Chen Y, Liao EY, Jiang Y, Liu FY, Pennypacker SD. Phospholipase C-gamma1 is required for the epidermal growth factor receptor-induced squamous cell carcinoma cell mitogenesis. Biochem Biophys Res Commun 2010; 397:296-300. [PMID: 20510673 PMCID: PMC2901589 DOI: 10.1016/j.bbrc.2010.05.103] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 05/21/2010] [Indexed: 11/17/2022]
Abstract
The epidermal growth factor receptor (EGFR) is a key driver in the process of squamous cell carcinoma (SCC) cell mitogenesis. Phospholipase C-gamma1 (PLC-gamma1) is a downstream target of EGFR signaling, but the role and necessity of PLC-gamma1 in EGFR-induced cell mitogenesis remain unclear. In the present study, we report an elevated expression of PLC-gamma1 in human SCC biopsies relative to adjacent normal epidermis, and in human SCC cell lines compared to normal human keratinocytes. EGFR-induced SCC cell mitogenesis was blocked by small interfering RNA knockdown of PLC-gamma1. However, inhibition of the catalytic activity of phospholipase C had no effect on EGFR-induced SCC cell mitogenesis. In response to the EGFR ligand epidermal growth factor (EGF), PLC-gamma1 was translocated not only to the plasma membrane but also to the nucleus. These data suggest that PLC-gamma1 is required for EGFR-induced SCC cell mitogenesis and the mitogenic function of PLC-gamma1 is independent of its lipase activity.
Collapse
Affiliation(s)
- Zhongjian Xie
- Endocrine Unit, Veterans Affairs Medical Center, Northern California Institute for Research and Education, University of California, San Francisco, CA 94121, USA.
| | | | | | | | | | | |
Collapse
|
59
|
Expression of the homeobox gene, HOPX, is modulated by cell differentiation in human keratinocytes and is involved in the expression of differentiation markers. Eur J Cell Biol 2010; 89:537-46. [PMID: 20226564 DOI: 10.1016/j.ejcb.2010.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 12/30/2009] [Accepted: 01/15/2010] [Indexed: 11/20/2022] Open
Abstract
Homeodomain only protein X (HOPX), an unusual homeodomain protein, was originally identified as a key regulator of cardiac development. We first demonstrated that the expression of HOPX was dependent on the differentiation of human keratinocytes and has an effect on the expression of differentiation markers. HOPX was suppressed in proliferating human keratinocytes and was gradually induced by calcium-triggered differentiation of human keratinocytes. In the epidermis, HOPX is highly expressed in the terminally differentiated suprabasal layers. Among the transcript variants of HOPX, the variant 3 driven by promoter A was the main transcript and it was regulated by cell differentiation in human keratinocytes. The expression of HOPX was induced through the phorbol-12-myristate-13-acetate (PMA)-dependent protein kinase C (PKC) signaling pathway, and not by the demethylating agent, 5-aza-dC (5-aza-2'-deoxycitidine) suggesting the suppression of HOPX is not associated with DNA methylation in human keratinocytes. The RNA interference (RNAi) silencing experiment showed that the knockdown of HOPX expression resulted in the increase of such differentiation markers as involucrin and loricrin. Exogenous expression of HOPX down-regulated the expression of differentiation marker genes in immortalized human keratinocytes (HaCaT). Collectively, HOPX is modulated by cell differentiation in human keratinocytes and this might contribute to homeostasis of keratinocytes by controlling differentiation-dependent genes.
Collapse
|
60
|
Abstract
Calcium signaling plays a key role in bone turnover, regulating both osteoblasts and osteoclasts. Despite this the role of calmodulin, the primary intracellular calcium receptor regulatory protein, has received little attention. In this brief review, the function of Ca(2+)/calmodulin signaling in osteoclast development, function, and apoptosis is reviewed. Considerable evidence supports an important regulatory role for Ca(2+)/calmodulin signaling in each of these processes. The overall role of Ca(2+)/calmodulin in regulating bone turnover is also supported by animal and human studies showing that calmodulin antagonists preserve bone mass.
Collapse
Affiliation(s)
- John P Williams
- National Institute on Aging, Division of Aging Biology, Bethesda, MD, USA.
| | | | | |
Collapse
|
61
|
Nakamura Y, Fukami K. Roles of Phospholipase C Isozymes in Organogenesis and Embryonic Development. Physiology (Bethesda) 2009; 24:332-41. [DOI: 10.1152/physiol.00031.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phosphoinositide metabolism is an important intracellular signaling system that regulates a variety of cellular functions. Phospholipase C (PLC) is a key enzyme in this system. Recent studies on genetically manipulated mice have clarified the functions of PLC in vivo. This review focuses on the roles of PLC in organogenesis and embryonic development.
Collapse
Affiliation(s)
- Yoshikazu Nakamura
- Laboratory of Genome and Biosignal, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignal, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
62
|
Klasen K, Corey EA, Kuck F, Wetzel CH, Hatt H, Ache BW. Odorant-stimulated phosphoinositide signaling in mammalian olfactory receptor neurons. Cell Signal 2009; 22:150-7. [PMID: 19781634 DOI: 10.1016/j.cellsig.2009.09.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 09/14/2009] [Indexed: 01/28/2023]
Abstract
Recent evidence has revived interest in the idea that phosphoinositides (PIs) may play a role in signal transduction in mammalian olfactory receptor neurons (ORNs). To provide direct evidence that odorants indeed activate PI signaling in ORNs, we used adenoviral vectors carrying two different fluorescently tagged probes, the pleckstrin homology (PH) domains of phospholipase C delta 1 (PLC delta 1) and the general receptor of phosphoinositides (GRP1), to monitor PI activity in the dendritic knobs of ORNs in vivo. Odorants mobilized PI(4,5)P(2)/IP(3) and PI(3,4,5)P(3), the substrates and products of PLC and PI3K. We then measured odorant activation of PLC and PI3K in olfactory ciliary-enriched membranes in vitro using a phospholipid overlay assay and ELISAs. Odorants activated both PLC and PI3K in the olfactory cilia within 2s of odorant stimulation. Odorant-dependent activation of PLC and PI3K in the olfactory epithelium could be blocked by enzyme-specific inhibitors. Odorants activated PLC and PI3K with partially overlapping specificity. These results provide direct evidence that odorants indeed activate PI signaling in mammalian ORNs in a manner that is consistent with the idea that PI signaling plays a role in olfactory transduction.
Collapse
Affiliation(s)
- K Klasen
- Whitney Laboratory, Center for Smell and Taste, and McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | | | | | | | | | | |
Collapse
|
63
|
Xie Z, Chang SM, Pennypacker SD, Liao EY, Bikle DD. Phosphatidylinositol-4-phosphate 5-kinase 1alpha mediates extracellular calcium-induced keratinocyte differentiation. Mol Biol Cell 2009; 20:1695-704. [PMID: 19158393 DOI: 10.1091/mbc.e08-07-0756] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Extracellular calcium (Cao) is a major regulator of keratinocyte differentiation, but the mechanism is unclear. Phosphatidylinositol-4-phosphate 5-kinase 1alpha (PIP5K1alpha) is critical in synthesizing phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. In this study, we sought to determine whether PIP5K1alpha plays a role in mediating the ability of Cao to induce keratinocyte differentiation. We found that treatment of human keratinocytes in culture with Cao resulted in increased PIP5K1alpha level and activity, as well as PI(4,5)P2 level, binding of phosphatidylinositol 3,4,5-triphosphate [PI(3,4,5)P3] to and activation of phospholipase C-gamma1 (PLC-gamma1), with the resultant increase in inositol 1,4,5-trisphosphate (IP3) and intracellular calcium (Cai). Knockdown of PIP5K1alpha in human keratinocytes blocked Cao-induced increases in the binding of PI(3,4,5)P3 to PLC-gamma1; PLC-gamma1 activity; levels of PI(4,5)P2, IP3, and Cai; and induction of keratinocyte differentiation markers. Coimmunoprecipitation and confocal studies revealed that Cao stimulated PIP5K1alpha recruitment to the E-cadherin-catenin complex in the plasma membrane. Knockdown of E-cadherin or beta-catenin blocked Cao-induced activation of PIP5K1alpha. These results indicate that after Cao stimulation PIP5K1alpha is recruited by the E-cadherin-catenin complex to the plasma membrane where it provides the substrate PI(4,5)P2 for both PI3K and PLC-gamma1. This signaling pathway is critical for Cao-induced generation of the second messengers IP3 and Cai and keratinocyte differentiation.
Collapse
Affiliation(s)
- Zhongjian Xie
- Endocrine Unit, Veterans Affairs Medical Center, Northern California Institute for Research and Education and University of California at San Francisco, San Francisco, CA 94121, USA.
| | | | | | | | | |
Collapse
|
64
|
Abstract
This paper reviews the current understanding of the vitamin D-induced differentiation of neoplastic cells, which results in the generation of cells that acquire near-normal, mature phenotype. Examples of the criteria by which differentiation is recognized in each cell type are provided, and only those effects of 1alpha,25-dihydroxyvitamin D(3) (1,25D) on cell proliferation and survival that are associated with the differentiation process are emphasized. The existing knowledge, often fragmentary, of the signaling pathways that lead to vitamin D-induced differentiation of colon, breast, prostate, squamous cell carcinoma, osteosarcoma, and myeloid leukemia cancer cells is outlined. The important distinctions between the different mechanisms of 1,25D-induced differentiation that are cell-type and cell-context specific are pointed out where known. There is a considerable body of evidence that the principal human cancer cells can be suitable candidates for chemoprevention or differentiation therapy with vitamin D. However, further studies are needed to fully understand the underlying mechanisms in order to improve the therapeutic approaches.
Collapse
Affiliation(s)
- Elzbieta Gocek
- Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - George P. Studzinski
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
65
|
Abstract
Phospholipase C-beta (PLC-beta) isozymes are key effectors in G protein-coupled signaling pathways. Previously, we showed that PLC-beta1 and PLC-beta3 bound immobilized PIP(3). In this study, PIP(3) was found to potentiate Ca(2+)-stimulated PLC-beta activities using an in vitro reconstitution assay. LY294002, a specific PI 3-kinase inhibitor, significantly inhibited 10 min of agonist-stimulated total IP accumulation. Both LY294002 and wortmannin inhibited 90 sec of agonist-stimulated IP(3) accumulation in intact cells. Moreover, transfected p110CAAX, a constitutively activated PI 3-kinase catalytic subunit, increased 90 sec of oxytocin-stimulated IP(3) accumulation. Receptor-ligand binding assays indicated that LY294002 did not affect G protein-coupled receptors directly, suggesting a physiological role for PIP(3) in directly potentiating PLC-beta activity. When coexpressed with p110CAAX, fluorescence-tagged PLC-beta3 was increasingly localized to the plasma membrane. Additional observations suggest that the PH domain of PLC-beta is not important for p110CAAX-induced membrane association.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331
- Department of Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331
| | - Sun Hyung Kwon
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331
| | - Walter K. Vogel
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331
| | - Theresa M. Filtz
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331
- Department of Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
66
|
Roberts DW, Newton RA, Leonard JH, Sturm RA. Melanocytes expressing MC1R polymorphisms associated with red hair color have altered MSH-ligand activated pigmentary responses in coculture with keratinocytes. J Cell Physiol 2008; 215:344-55. [PMID: 17960564 DOI: 10.1002/jcp.21318] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The occurrence of red hair and pale skin in individuals, which is associated with UV-radiation sensitivity and increased skin cancer risk, is mainly due to polymorphisms in the melanocortin-1 receptor (MC1R) expressed in melanocytes. We have established a serum free human melanocyte-keratinocyte coculture system to study the behavior and functional abilities of melanocytes expressing MC1R red hair color (RHC) variants in order to identify differences from their wild type (WT) counterparts. This model revealed the importance of elevated calcium levels in promoting strong melanocyte interaction with the surrounding keratinocytes and resulted in a dendritic melanocyte morphology similar to that in skin. However, the dendricity response following agonist activation of the MC1R receptor by NDP-MSH peptide, was markedly enhanced in WT melanocytes in comparison to RHC strains. Analysis of mRNA expression and protein levels of the major pigmentation markers following NDP-MSH treatment distinguished the enzyme dopachrome tautomerase as preferentially upregulated in cocultures of WT strains, with negligible or a much reduced response in melanocytes with RHC variant alleles. These results highlight the use of the coculture system in determining fundamental differences in the physiology of melanocytes expressing RHC MC1R receptors and those of WT genotype, which are likely to contribute to the increased skin cancer risk for individuals that carry these variants.
Collapse
Affiliation(s)
- Donald W Roberts
- Melanogenix Group, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | | | | | | |
Collapse
|
67
|
Tu CL, Chang W, Xie Z, Bikle DD. Inactivation of the calcium sensing receptor inhibits E-cadherin-mediated cell-cell adhesion and calcium-induced differentiation in human epidermal keratinocytes. J Biol Chem 2007; 283:3519-3528. [PMID: 18065418 DOI: 10.1074/jbc.m708318200] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Extracellular Ca(2+) (Ca(2+)(o)) is a critical regulator that promotes differentiation in epidermal keratinocytes. The calcium sensing receptor (CaR) is essential for mediating Ca(2+) signaling during Ca(2+)(o)-induced differentiation. Inactivation of the endogenous CaR-encoding gene CASR by adenoviral expression of a CaR antisense cDNA inhibited the Ca(2+)(o)-induced increase in intracellular free calcium (Ca(2+)(i)) and expression of terminal differentiation genes, while promoting apoptosis. Ca(2+)(o) also instigates E-cadherin-mediated cell-cell adhesion, which plays a critical role in orchestrating cellular signals mediating cell survival and differentiation. Raising Ca(2+)(o) concentration ([Ca(2+)](o)) from 0.03 to 2 mm rapidly induced the co-localization of alpha-, beta-, and p120-catenin with E-cadherin in the intercellular adherens junctions (AJs). To assess whether CaR is required for the Ca(2+)(o)-induced activation of E-cadherin signaling, we examined the impact of CaR inactivation on AJ formation. Decreased CaR expression suppressed the Ca(2+)(o)-induced AJ formation, membrane translocation, and the complex formation of E-cadherin, catenins, and the phosphatidylinositol 3-kinase (PI3K), although the expression of these proteins was not affected. The assembly of the E-cadherin-catenin-PI3K complex was sensitive to the pharmacologic inhibition of Src family tyrosine kinases but was not affected by inhibition of Ca(2+)(o)-induced rise in Ca(2+)(i). Inhibition of CaR expression blocked the Ca(2+)(o)-induced tyrosine phosphorylation of beta-, gamma-, and p120-catenin, PI3K, and the tyrosine kinase Fyn and the association of Fyn with E-cadherin and PI3K. Our results indicate that the CaR regulates cell survival and Ca(2+)(o)-induced differentiation in keratinocytes at least in part by activating the E-cadherin/PI3K pathway through a Src family tyrosine kinase-mediated signaling.
Collapse
Affiliation(s)
- Chia-Ling Tu
- Endocrine Unit, Veteran Affairs Medical Center, University of California, San Francisco, California 94121; University of California, San Francisco, California 94121.
| | - Wenhan Chang
- Endocrine Unit, Veteran Affairs Medical Center, University of California, San Francisco, California 94121; University of California, San Francisco, California 94121
| | - Zhongjian Xie
- Endocrine Unit, Veteran Affairs Medical Center, University of California, San Francisco, California 94121; Northern California Institute for Research and Education, University of California, San Francisco, California 94121
| | - Daniel D Bikle
- Endocrine Unit, Veteran Affairs Medical Center, University of California, San Francisco, California 94121; University of California, San Francisco, California 94121
| |
Collapse
|
68
|
Morris VL, Chan BMC. Interaction of epidermal growth factor, Ca2+, and matrix metalloproteinase-9 in primary keratinocyte migration. Wound Repair Regen 2007; 15:907-15. [DOI: 10.1111/j.1524-475x.2007.00315.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
69
|
O’Neill BT, Kim J, Wende AR, Theobald HA, Tuinei J, Buchanan J, Guo A, Zaha VG, Davis DK, Schell JC, Boudina S, Wayment B, Litwin SE, Shioi T, Izumo S, Birnbaum MJ, Abel ED. A conserved role for phosphatidylinositol 3-kinase but not Akt signaling in mitochondrial adaptations that accompany physiological cardiac hypertrophy. Cell Metab 2007; 6:294-306. [PMID: 17908558 PMCID: PMC2084219 DOI: 10.1016/j.cmet.2007.09.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 03/16/2007] [Accepted: 09/11/2007] [Indexed: 11/27/2022]
Abstract
Physiological cardiac hypertrophy is associated with mitochondrial adaptations that are characterized by activation of PGC-1alpha and increased fatty acid oxidative (FAO) capacity. It is widely accepted that phosphatidylinositol 3-kinase (PI3K) signaling to Akt1 is required for physiological cardiac growth. However, the signaling pathways that coordinate physiological hypertrophy and metabolic remodeling are incompletely understood. We show here that activation of PI3K is sufficient to increase myocardial FAO capacity and that inhibition of PI3K signaling prevents mitochondrial adaptations in response to physiological hypertrophic stimuli despite increased expression of PGC-1alpha. We also show that activation of the downstream kinase Akt is not required for the mitochondrial adaptations that are secondary to PI3K activation. Thus, in physiological cardiac growth, PI3K is an integrator of cellular growth and metabolic remodeling. Although PI3K signaling to Akt1 is required for cellular growth, Akt-independent pathways mediate the accompanying mitochondrial adaptations.
Collapse
Affiliation(s)
- Brian T. O’Neill
- Program in Human Molecular Biology and Genetics and Division of Endocrinology, Metabolism, and Diabetes; University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Jaetaek Kim
- Program in Human Molecular Biology and Genetics and Division of Endocrinology, Metabolism, and Diabetes; University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Adam R. Wende
- Program in Human Molecular Biology and Genetics and Division of Endocrinology, Metabolism, and Diabetes; University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Heather A. Theobald
- Program in Human Molecular Biology and Genetics and Division of Endocrinology, Metabolism, and Diabetes; University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Joseph Tuinei
- Program in Human Molecular Biology and Genetics and Division of Endocrinology, Metabolism, and Diabetes; University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Jonathan Buchanan
- Program in Human Molecular Biology and Genetics and Division of Endocrinology, Metabolism, and Diabetes; University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Aili Guo
- Program in Human Molecular Biology and Genetics and Division of Endocrinology, Metabolism, and Diabetes; University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Vlad G. Zaha
- Program in Human Molecular Biology and Genetics and Division of Endocrinology, Metabolism, and Diabetes; University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Don K. Davis
- Program in Human Molecular Biology and Genetics and Division of Endocrinology, Metabolism, and Diabetes; University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - John C. Schell
- Program in Human Molecular Biology and Genetics and Division of Endocrinology, Metabolism, and Diabetes; University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Sihem Boudina
- Program in Human Molecular Biology and Genetics and Division of Endocrinology, Metabolism, and Diabetes; University of Utah, School of Medicine, Salt Lake City, UT 84112
| | | | | | - Tetsuo Shioi
- Department of Internal Medicine and Cardiology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Seigo Izumo
- Novartis Institutes for Biomedical Research, Cambridge, MA
| | | | - E. Dale Abel
- Program in Human Molecular Biology and Genetics and Division of Endocrinology, Metabolism, and Diabetes; University of Utah, School of Medicine, Salt Lake City, UT 84112
| |
Collapse
|
70
|
Shen E, Fan J, Chen R, Yee SP, Peng T. Phospholipase Cgamma1 signalling regulates lipopolysaccharide-induced cyclooxygenase-2 expression in cardiomyocytes. J Mol Cell Cardiol 2007; 43:308-18. [PMID: 17655858 DOI: 10.1016/j.yjmcc.2007.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2007] [Revised: 06/10/2007] [Accepted: 06/12/2007] [Indexed: 11/15/2022]
Abstract
Lipopolysaccharide (LPS) induces cyclooxygenase-2 (COX-2) expression in cardiomyocytes, which plays a role in myocardial depression during endotoxemia. The purpose of this study was to investigate the role of phosphatidylinositol (PI)-phospholipase Cgamma1 (PLCgamma1) in cardiac COX-2 expression in vitro and in vivo. In cultured mouse neonatal cardiomyocytes, LPS increased PLCgamma1 phosphorylation and COX-2 expression. Knockdown of PLCgamma1 with specific siRNA or inhibition of PI-PLC with U73122 attenuated COX-2 mRNA and protein expression induced by LPS (1 microg/ml). PLCgamma1 activation by LPS also increased ERK1/2 MAPK phosphorylation, and inhibition of ERK1/2 MAPK blocked the effect of PLCgamma1 on COX-2 expression. Furthermore, activation of PLCgamma1 is a consequence of the Src family activation since inhibition of Src abrogated whereas over-expression of Src enhanced PLCgamma1 phosphorylation and COX-2 expression in LPS-stimulated cardiomyocytes. To investigate the role of PLCgamma1 in endotoxemia, wild-type and PLCgamma1(+/-) adult mice were pre-treated with U73122, or its inactive analog, U73343 (9 mg/kg, i.p.), or vehicle for 15 min followed by LPS (4 mg/kg, i.p.) for 4 h. U73122 or heterozygous deletion of PLCgamma1 decreased cardiac COX-2 expression. The phosphorylation of ERK1/2 MAPK induced by LPS was also attenuated in U73122- or PLCgamma1(+/-) compared to U73343-treated or wild-type littermate hearts, respectively. In conclusion, our study suggests that PLCgamma1 signalling represents a novel pathway regulating cardiac COX-2 expression during LPS stimulation. The Src family is responsible for PLCgamma1 activation, which signals the ERK1/2 MAPK pathway, resulting in COX-2 production in LPS-stimulated cardiomyocytes.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Animals, Newborn
- Cells, Cultured
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Gene Expression Regulation, Enzymologic
- Heterozygote
- Lipopolysaccharides/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Biological
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/virology
- Phospholipase C gamma/metabolism
- RNA, Messenger/analysis
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
Collapse
Affiliation(s)
- E Shen
- Center for Critical Illness Research, Lawson Health Research Institute, London Health Sciences Center, University of Western Ontario, London, Ontario, Canada N6A 4G5
| | | | | | | | | |
Collapse
|
71
|
Cui QL, Almazan G. IGF-I-induced oligodendrocyte progenitor proliferation requires PI3K/Akt, MEK/ERK, and Src-like tyrosine kinases. J Neurochem 2007; 100:1480-93. [PMID: 17348861 DOI: 10.1111/j.1471-4159.2006.04329.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Insulin-like growth factor-I (IGF-I) is required for the growth of oligodendrocytes, although the underlying mechanisms are not fully understood. Our aim was to investigate the role of phosphatidylinositol 3-kinase (PI3K), mitogen-activated protein kinase kinase (MEK1), and Src family tyrosine kinases in IGF-I-stimulated proliferation of oligodendrocyte progenitors. IGF-I treatment increased the proliferation of cultured oligodendrocyte progenitors as determined by measuring incorporation of [(3)H]-thymidine and bromodeoxy-uridine (BrdU). IGF-I stimulated a transient phosphorylation of 3-phosphoinositide-dependent kinase-1 (PDK1) and extracellular signal-regulated kinases (ERK1/2) (targets of MEK1), as well as a rapid and sustained activation of Akt (a target of PI3K). Furthermore, inhibitors of PI3K (LY294002 and Wortmannin), MEK1 (PD98059 and U0126), and Src family tyrosine kinases (PP2) decreased IGF-I-induced proliferation, and blocked ERK1/2 activation. LY294002, Wortmannin and PP2 also blocked Akt activation. To further determine whether Akt is required for IGF-I stimulated oligodendrocyte progenitor proliferation, cultures were infected with adenovirus vectors expressing dominant-negative mutants of Akt or treated with pharmacological inhibitors of Akt. All treatments reduced IGF-I-induced oligodendrocyte progenitor proliferation. Our data indicate that stimulation of oligodendrocyte progenitor proliferation by IGF-I requires Src-like tyrosine kinases as well as the PI3K/Akt and MEK1/ERK signaling pathways.
Collapse
Affiliation(s)
- Qiao-Ling Cui
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
72
|
Tu CL, Chang W, Bikle DD. The Role of the Calcium Sensing Receptor in Regulating Intracellular Calcium Handling in Human Epidermal Keratinocytes. J Invest Dermatol 2007; 127:1074-83. [PMID: 17124506 DOI: 10.1038/sj.jid.5700633] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Calcium is critical for controlling the balance of proliferation and differentiation in epidermal keratinocytes. We previously reported that the calcium sensing receptor (CaR) is required for mediating Ca2+ signaling and extracellular Ca2+ (Ca2+(o))-induced differentiation. In this study, we investigated the mechanism by which CaR regulates intracellular Ca2+ (Ca2+(i)) and its role in differentiation. Membrane fractionation, fluorescence immunolocalization, and co-immunoprecipitation studies were performed to assess potential interactions between CaR and other regulators of Ca2+ stores and channels. We found that the glycosylated form of CaR forms a complex with phospholipase C gamma1, IP3 receptor (IP3R), and the Golgi Ca2+-ATPase, secretory pathway Ca2+-ATPase 1, in the trans-Golgi. Inactivation of the endogenous CaR gene by adenoviral expression of a CaR antisense cDNA inhibited Ca2+(i) response to Ca2+(o), decreased Ca2+(i) stores, decreased Ca2+(o)-induced differentiation, but augmented store-operated channel activity and Ca2+ uptake by intracellular organelles. Our results indicate that CaR regulates keratinocyte differentiation in part by modulating Ca2+(i) stores via interactions with Ca2+ pumps and channels that regulate those stores.
Collapse
Affiliation(s)
- Chia-Ling Tu
- Endocrine Unit, Department of Medicine, Veteran Affairs Medical Center and University of California, San Francisco, California 94121, USA.
| | | | | |
Collapse
|
73
|
Fang NX, Gu W, Ding J, Saunders NA, Frazer IH, Zhao KN. Calcium enhances mouse keratinocyte differentiation in vitro to differentially regulate expression of papillomavirus authentic and codon modified L1 genes. Virology 2007; 365:187-97. [PMID: 17462691 DOI: 10.1016/j.virol.2007.03.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 02/12/2007] [Accepted: 03/19/2007] [Indexed: 11/27/2022]
Abstract
Here, we first wished to establish for mouse primary keratinocytes (KCs) the Ca(2+) concentrations that were associated with KC differentiation in vitro. Using the range of Ca(2+) concentrations (0-6 mM) to differentiate primary KCs in culture to varying extents for 2 days, we then examined how KC differentiation impacted on expression of papillomavirus (PV) native (Nat) and codon modified (Mod) L1 genes. L1 mRNAs transcribed from either Nat or Mod L1 genes were present in similar amounts in KCs exposed to six Ca(2+) concentrations. However, expression of the L1 proteins from two Mod L1 genes were down-regulated, with no L1 signal detected in KCs exposed to 6 mM Ca(2+). In contrast, L1 proteins expressed from the two Nat L1 genes were not detectable in KCs without Ca(2+), but dramatically up-regulated as the KC cultures exposed to Ca(2+) from 0.5 to 2 mM, then down-regulated in KCs exposed to Ca(2+) from 4 to 6 mM. The different regulatory roles of the Ca(2+) in L1 protein expression from Nat and Mod L1 genes in cultured KCs were confirmed by TGF-beta1 experiments. We observed that aminoacyl-tRNAs (aa-tRNAs) from the 2 mM Ca(2+)-treated KCs only significantly enhanced the Nat L1 mRNAs translation in vitro, suggesting that aa-tRNAs play a differentially regulatory role in translations of the PV Nat and Mod L1 mRNAs. Importantly, the Ca(2+) experimental model provides evidence that mouse primary KCs could be transiently infected by BPV1 virus to express L1 mRNA and protein, which is very useful for future HPV virus infection study.
Collapse
Affiliation(s)
- Ning-Xia Fang
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, The University of Queensland, Research Extension, Building 1, Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Queensland 4102, Australia
| | | | | | | | | | | |
Collapse
|
74
|
Xie Z, Bikle DD. The recruitment of phosphatidylinositol 3-kinase to the E-cadherin-catenin complex at the plasma membrane is required for calcium-induced phospholipase C-gamma1 activation and human keratinocyte differentiation. J Biol Chem 2007; 282:8695-703. [PMID: 17242406 DOI: 10.1074/jbc.m609135200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Calcium induces epidermal keratinocyte differentiation, but the mechanism is not completely understood. We have previously demonstrated that calcium-induced human keratinocyte differentiation requires an intracellular calcium rise caused by phosphatidylinositol 3-kinase (PI3K)-dependent activation of phospholipase C-gamma1. In this study we sought to identify the upstream signaling pathway necessary for calcium activation of PI3K and its subsequent activation of phospholipase C-gamma1. We found that calcium induces the recruitment of PI3K to the E-cadherin-catenin complex at the plasma membrane of human keratinocytes. Knocking-down E-cadherin, beta-catenin, or p120-catenin expression blocked calcium activation of PI3K and phospholipase C-gamma1 and calcium-induced keratinocyte differentiation. However, knocking-down gamma-catenin expression had no effect. Calcium-induced PI3K recruitment to E-cadherin stabilized by p120-catenin at the plasma membrane requires beta-catenin but not gamma-catenin. These data indicate that the recruitment of PI3K to the E-cadherin/beta-catenin/p120-catenin complex via beta-catenin at the plasma membrane is required for calcium-induced phospholipase C-gamma1 activation and, ultimately, keratinocyte differentiation.
Collapse
Affiliation(s)
- Zhongjian Xie
- Endocrine Unit, Veterans Affairs Medical Center, Northern California Institute for Research and Education and University of California, San Francisco, California 94121, USA.
| | | |
Collapse
|
75
|
Schindler EM, Baumgartner M, Gribben EM, Li L, Efimova T. The role of proline-rich protein tyrosine kinase 2 in differentiation-dependent signaling in human epidermal keratinocytes. J Invest Dermatol 2007; 127:1094-106. [PMID: 17205062 DOI: 10.1038/sj.jid.5700662] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Non-receptor tyrosine kinase proline-rich protein tyrosine kinase 2 (Pyk2) functions as an integrator of multiple signaling pathways involved in the regulation of fundamental cellular processes. Pyk2 expression, regulation, and functions in skin have not been examined. Here we investigated the expression and subcellular localization of Pyk2 in human epidermis and in primary human keratinocytes, and studied the mechanisms of Pyk2 activation by differentiation-inducing stimuli, and the role of Pyk2 as a regulator of keratinocyte differentiation. We demonstrate that Pyk2 is abundantly expressed in skin keratinocytes. Notably, the endogenous Pyk2 protein is predominantly localized in keratinocyte nuclei throughout all layers of healthy human epidermis, and in cultured human keratinocytes. Pyk2 is activated by treatment with keratinocyte-differentiating agents, 12-O-tetradecanoylphorbol-13-acetate and calcium via a mechanism that requires intracellular calcium release and functional protein kinase C (PKC) and Src activities. Particularly, differentiation-promoting PKC delta and PKC eta elicit Pyk2 activation. Our data show that Pyk2 increases promoter activity and endogenous protein levels of involucrin, a marker of keratinocyte terminal differentiation. This regulation is associated with increased expression of Fra-1 and JunD, activator protein-1 transcription factors known to be required for involucrin expression. Altogether, these results provide insights into Pyk2 signaling in epidermis and reveal a novel role for Pyk2 in regulation of keratinocyte differentiation.
Collapse
Affiliation(s)
- Eva M Schindler
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
76
|
Su YC, Lu D, Tan XD, Dong AR, Tian HY, Luo SQ, Deng QK. Mathematical model of phosphatidylinositol-4,5-bisphosphate hydrolysis mediated by epidermal growth factor receptor generating diacylglycerol. J Biotechnol 2006; 124:574-91. [PMID: 16533541 DOI: 10.1016/j.jbiotec.2006.01.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 01/07/2006] [Accepted: 01/20/2006] [Indexed: 10/24/2022]
Abstract
Phosphatidylinositol-4,5-bisphosphate (PIP2) is hydrolyzed in response to the tyrosine phosphorylation of the epidermal growth factor receptor (EGFR) and plays an important role in regulating cell proliferation and differentiation through the generation of second messengers diacylglycerol (DAG) and trisphosphate inositol (IP3) which lead to the activation of protein kinase C (PKC) and increased levels of intracellular calcium, respectively. In the paper, a mathematical model was established to simulate the accumulation of DAG due to PIP2 hydrolysis mediated by EGFR. Molecular mechanisms between DAG, PIP2, EGFR and phosphatidylinositol transfer protein (PITP) were explained successfully, and positive cooperativity which existed between phospholipase C-gamma1 (PLC-gamma1) and PIP2 was also explained. In the model the effects of parameters on simulation of PIP2 hydrolysis were analyzed and the efficacies of some molecular intervention strategies were predicted. To test the coherence between the model and the biological response to epidermal growth factor (EGF) in cells, the levels of DAG and the tyrosine phosphorylation-EGFRs in NIH3T3 mouse embryonic fibroblast (MEF) were determined by biochemical experiments which showed that the accumulation of DAG was a sigmoidal function of phosphorylation-EGFR concentration, and the consistency between the mathematical model and experimental results was confirmed. In brief, this mathematical model provided a new idea for the further study of the dynamic change of biological characteristics in inositol phospholipid hydrolysis, predicting the efficacy of molecular intervention and the relationship between the metabolisms of inositol phospholipid and other signal transduction pathways.
Collapse
Affiliation(s)
- Yong-chun Su
- Department of Medical Physics, South Medical University, Guangzhou 510515, PR China
| | | | | | | | | | | | | |
Collapse
|
77
|
Katsu Y, Iguchi T. Tissue-specific expression of Clec2g in mice. Eur J Cell Biol 2006; 85:345-54. [PMID: 16460835 DOI: 10.1016/j.ejcb.2005.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 12/28/2005] [Accepted: 12/28/2005] [Indexed: 12/30/2022] Open
Abstract
Estrogens regulate the proliferation and differentiation of mouse vaginal epithelial cells. We examined the temporal and spatial expression of DDV10, a novel C-type lectin during stratification and cornification of the vaginal epithelium. DDV10 was expressed in vagina but not uterus in ovariectomized mice treated with 17beta-estradiol (E2). In mouse stomach, the expression of DDV10 was detected in pars proventricularis but not in pars glandularis. Furthermore, the DDV10 gene was found to possess two transcripts, a long form (DDV10) and a short form (OCILrP1, osteoclast inhibitory lectin-related protein 1). DDV10 mRNA but not OCILrP1 mRNA was expressed in the stratified and cornified epithelial tissues. DDV10 mRNA was first detected between 12 and 18 h after E2 treatment in the vaginal epithelium, and was detected in the vagina of the neonatally diethylstilbestrol (DES)-treated mouse. Recently, a unified name was registered in GenBank (C-type lectin domain family 2, member g; Clec2 g). Taken together, these data suggest that DDV10 is the long form of Clec2 g (Clec2g-L), and DDV10/Clec2g-L may play a role in the stratification and/or cornification of epithelial cells during differentiation.
Collapse
Affiliation(s)
- Yoshinao Katsu
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | | |
Collapse
|
78
|
Harada K, Truong AB, Cai T, Khavari PA. The class II phosphoinositide 3-kinase C2beta is not essential for epidermal differentiation. Mol Cell Biol 2006; 25:11122-30. [PMID: 16314532 PMCID: PMC1316983 DOI: 10.1128/mcb.25.24.11122-11130.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) regulate an array of cellular processes and are comprised of three classes. Class I PI3Ks include the well-studied agonist-sensitive p110 isoforms; however, the functions of class II and III PI3Ks are less well characterized. Of the three class II PI3Ks, C2alpha and C2beta are widely expressed in many tissues, including the epidermis, while C2gamma is confined to the liver. In contrast to the class I PI3K p110alpha, which is expressed throughout the epidermis, C2beta was found to be localized in suprabasal cells, suggesting a potential role for C2beta in epidermal differentiation. Overexpressing C2beta in epidermal cells in vitro induced differentiation markers. To study a role for C2beta in tissue, we generated transgenic mice overexpressing C2beta in both suprabasal and basal epidermal layers. These mice lacked epidermal abnormalities. Mice deficient in C2beta were then generated by targeted gene deletion. C2beta knockout mice were viable and fertile and displayed normal epidermal growth, differentiation, barrier function, and wound healing. To exclude compensation by C2alpha, RNA interference was then used to knock down both C2alpha and C2beta in epidermal cells simultaneously. Induction of differentiation markers was unaffected in the absence of C2alpha and C2beta. These findings indicate that class II PI3Ks are not essential for epidermal differentiation.
Collapse
|
79
|
Zhang B, Cao H, Rao GN. Fibroblast growth factor-2 is a downstream mediator of phosphatidylinositol 3-kinase-Akt signaling in 14,15-epoxyeicosatrienoic acid-induced angiogenesis. J Biol Chem 2005; 281:905-14. [PMID: 16286479 DOI: 10.1074/jbc.m503945200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To determine the efficacy of cytochrome P450 2C9 metabolites of arachidonic acid, viz. 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs), in inducing angiogenesis, we have studied their effects on human dermal microvascular endothelial cell (HDMVEC) tube formation and migration. All four EETs stimulated HDMVEC tube formation and migration in a dose-dependent manner. Because 14,15-EET was found to be slightly more efficacious than 5,6-, 8,9-, and 11,12-EETs in stimulating HDMVEC tube formation and migration, we next focused on elucidation of the signaling mechanisms underlying its angiogenic activity. 14,15-EET stimulated Akt and S6K1 phosphorylation in Src- and phosphatidylinositol 3-kinase (PI3K)-dependent manner in HDMVECs. Inhibition of Src and PI3K-Akt-mTOR signaling by both pharmacological and dominant-negative mutant approaches suppressed 14,15-EET-induced HDMVEC tube formation and migration in vitro and Matrigel plug angiogenesis in vivo. In addition, 14,15-EET induced the expression of fibroblast growth factor-2 (FGF-2) in Src- and PI3K-Akt-dependent and mTOR-independent manner in HDMVECs. Neutralizing anti-FGF-2 antibodies completely suppressed 14,15-EET-induced HDMVEC tube formation and migration in vitro and Matrigel plug angiogenesis in vivo. Together, these results show for the first time that Src and PI3K-Akt signaling via targeting in parallel with FGF-2 expression and mTOR-S6K1 activation plays an indispensable role in 14,15-EET-induced angiogenesis.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Animals
- Cell Movement
- Cells, Cultured
- Collagen/chemistry
- Collagen/pharmacology
- Dose-Response Relationship, Drug
- Drug Combinations
- Endothelium, Vascular/cytology
- Fibroblast Growth Factor 2/metabolism
- Fibroblast Growth Factor 2/physiology
- Genetic Vectors
- Green Fluorescent Proteins/metabolism
- Humans
- Laminin/chemistry
- Laminin/pharmacology
- Mice
- Mice, Inbred C57BL
- Microcirculation
- Neovascularization, Pathologic
- Oxygen/chemistry
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Protein Kinases/metabolism
- Proteoglycans/chemistry
- Proteoglycans/pharmacology
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/metabolism
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- Signal Transduction
- TOR Serine-Threonine Kinases
Collapse
Affiliation(s)
- Baolin Zhang
- Department of Physiology, University of Tennessee Health Science Center, Memphis, 38163, USA
| | | | | |
Collapse
|
80
|
Abstract
The skin is the major source of Vitamin D(3) (cholecalciferol), and ultraviolet light (UV) is critical for its formation. Keratinocytes, the major cell in the epidermis, can further convert Vitamin D(3) to its hormonal form, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] (calcitriol). 1,25(OH)(2)D(3) in turn stimulates the differentiation of keratinocytes, raising the hope that 1,25(OH)(2)D(3) may prevent the development of malignancies in these cells. Skin cancers (squamous cell carcinoma (SCC), basal cell carcinoma (BCC), and melanomas) are the most common cancers afflicting humans. UV exposure is linked to the incidence of these cancers-UV is thus good and bad for epidermal health. Our focus is on the mechanisms by which 1,25(OH)(2)D(3) regulates the differentiation of keratinocytes, and how this regulation breaks down in transformed cells. Skin cancers produce 1,25(OH)(2)D(3), contain ample amounts of the Vitamin D receptor (VDR), and respond to 1,25(OH)(2)D(3) with respect to induction of the 24-hydroxylase, but fail to differentiate in response to 1,25(OH)(2)D(3). Why not? The explanation may lie in the overexpression of the DRIP complex, which by interfering with the normal transition from DRIP to SRC as coactivators of the VDR during differentiation, block the induction of genes required for 1,25(OH)(2)D(3)-induced differentiation.
Collapse
Affiliation(s)
- Daniel D Bikle
- Endocrine Research Unit, Veterans Affairs Medical Center (111N), University of California, 4150 Clement Street, San Francisco, CA 94121, USA.
| | | | | |
Collapse
|