51
|
The role of extracellular vesicles in neurodegenerative diseases. Biochem Biophys Res Commun 2017; 483:1178-1186. [DOI: 10.1016/j.bbrc.2016.09.090] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/08/2016] [Accepted: 09/18/2016] [Indexed: 01/09/2023]
|
52
|
Bonhoure A, Vallentin A, Martin M, Senff-Ribeiro A, Amson R, Telerman A, Vidal M. Acetylation of translationally controlled tumor protein promotes its degradation through chaperone-mediated autophagy. Eur J Cell Biol 2017; 96:83-98. [PMID: 28110910 DOI: 10.1016/j.ejcb.2016.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 12/22/2022] Open
Abstract
Translationally controlled tumor protein (Tpt1/TCTP) is a multi-functional cytosolic protein whose cellular levels are finely tuned. TCTP regulates protein behavior by favoring stabilization of protein partners or on the contrary by promoting degradation of others. TCTP has been shown to be transcriptionally and translationally regulated, but much less is known about its degradation process. In this study, we present evidence that chaperone-mediated autophagy (CMA) contributes to TCTP regulation. CMA allows lysosomal degradation of specific cytosolic proteins on a molecule-by-molecule basis. It contributes to cellular homeostasis especially by acting as a quality control for cytosolic proteins in response to stress and as a way of regulating the level of specific proteins. Using a variety of approaches, we show that CMA degradation of TCTP is Hsc70 and LAMP-2A dependent. Our data indicate that (i) TCTP directly interacts with Hsc70; (ii) silencing LAMP-2A in MEFs using siRNA leads to inhibition of TCTP downregulation; (iii) TCTP is relocalized from a diffuse cytosolic pattern to a punctate lysosomal pattern when CMA is upregulated; (iv) TCTP is degraded in vitro by purified lysosomes. Importantly, using lysine-mutated forms of TCTP, we show that acetylation of Lysine 19 generates a KFERQ-like motif and promotes binding to Hsc70, lysosome targeting and TCTP degradation by CMA. Altogether these results indicate that TCTP is degraded by chaperone-mediated autophagy in an acetylation dependent manner.
Collapse
Affiliation(s)
- Anne Bonhoure
- UMR 5235, CNRS, Université Montpellier, 34095 Montpellier, France
| | - Alice Vallentin
- UMR 5235, CNRS, Université Montpellier, 34095 Montpellier, France
| | - Marianne Martin
- UMR 5235, CNRS, Université Montpellier, 34095 Montpellier, France
| | - Andrea Senff-Ribeiro
- UMR 8113, École Normale Supérieure, 94235 Cachan, France; UMR 981, Institut Gustave Roussy, 94800 Villejuif, France
| | - Robert Amson
- UMR 8113, École Normale Supérieure, 94235 Cachan, France; UMR 981, Institut Gustave Roussy, 94800 Villejuif, France
| | - Adam Telerman
- UMR 8113, École Normale Supérieure, 94235 Cachan, France; UMR 981, Institut Gustave Roussy, 94800 Villejuif, France
| | - Michel Vidal
- UMR 5235, CNRS, Université Montpellier, 34095 Montpellier, France.
| |
Collapse
|
53
|
Betsch L, Savarin J, Bendahmane M, Szecsi J. Roles of the Translationally Controlled Tumor Protein (TCTP) in Plant Development. Results Probl Cell Differ 2017; 64:149-172. [PMID: 29149407 DOI: 10.1007/978-3-319-67591-6_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The Translationally Controlled Tumor Protein (TCTP) is a conserved protein which expression was associated with several biochemical and cellular functions. Loss-of-function mutants are lethal both in animals and in plants, making the identification of its exact role difficult. Recent data using the model plant Arabidopsis thaliana provided the first viable adult knockout for TCTP and helped addressing the biological role of TCTP during organ development and the functional conservation between plants and animals. This chapter summarizes our up to date knowledge about the role of TCTP in plants and discuss about conserved functions and mechanisms between plants and animals.
Collapse
Affiliation(s)
- Léo Betsch
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, 69342, Lyon, France
| | - Julie Savarin
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, 69342, Lyon, France
| | - Mohammed Bendahmane
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, 69342, Lyon, France.
| | - Judit Szecsi
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, 69342, Lyon, France.
| |
Collapse
|
54
|
Zhang J, Shim G, de Toledo SM, Azzam EI. The Translationally Controlled Tumor Protein and the Cellular Response to Ionizing Radiation-Induced DNA Damage. Results Probl Cell Differ 2017; 64:227-253. [DOI: 10.1007/978-3-319-67591-6_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
|
55
|
Abstract
Although tctp expression in many areas of the human brain was reported more than 15 years ago, little was known about how it functions in neurons. The early notion that Tctp is primarily expressed in mitotic cells, together with reports suggesting a relative low abundance in the brain, has perhaps potentiated this almost complete disregard for the study of Tctp in the context of neuron biology. However, recent evidence has challenged this view, as a number of independent genome-wide profiling studies identified tctp mRNA among the most enriched in the axonal compartment across diverse neuronal populations, including embryonic retinal ganglion cells. Considering the emerging parallels between axon guidance and cancer cell invasion, the axonal expression of cancer-associated tctp was suggestive of it holding an unexplored role in the wiring of neuronal circuits. Our study revealed that Tctp is necessary for the accurate and timely development of axon projections during the formation of vertebrate retinal circuits via its association with the survival machinery of the axon. Globally, the findings indicate that compromised pro-survival signaling in Tctp-deficient axons results in mitochondrial dysfunction and a subsequent decrease in axonal mitochondrial density. These effects likely translate into a metabolic state inadequate to support the normal guidance and extension processes of a developing axon.
Collapse
Affiliation(s)
- Cláudio Gouveia Roque
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.
| | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, England, UK
| |
Collapse
|
56
|
Bommer UA. The Translational Controlled Tumour Protein TCTP: Biological Functions and Regulation. Results Probl Cell Differ 2017; 64:69-126. [PMID: 29149404 DOI: 10.1007/978-3-319-67591-6_4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Translational Controlled Tumour Protein TCTP (gene symbol TPT1, also called P21, P23, Q23, fortilin or histamine-releasing factor, HRF) is a highly conserved protein present in essentially all eukaryotic organisms and involved in many fundamental cell biological and disease processes. It was first discovered about 35 years ago, and it took an extended period of time for its multiple functions to be revealed, and even today we do not yet fully understand all the details. Having witnessed most of this history, in this chapter, I give a brief overview and review the current knowledge on the structure, biological functions, disease involvements and cellular regulation of this protein.TCTP is able to interact with a large number of other proteins and is therefore involved in many core cell biological processes, predominantly in the response to cellular stresses, such as oxidative stress, heat shock, genotoxic stress, imbalance of ion metabolism as well as other conditions. Mechanistically, TCTP acts as an anti-apoptotic protein, and it is involved in DNA-damage repair and in cellular autophagy. Thus, broadly speaking, TCTP can be considered a cytoprotective protein. In addition, TCTP facilitates cell division through stabilising the mitotic spindle and cell growth through modulating growth signalling pathways and through its interaction with the proteosynthetic machinery of the cell. Due to its activities, both as an anti-apoptotic protein and in promoting cell growth and division, TCTP is also essential in the early development of both animals and plants.Apart from its involvement in various biological processes at the cellular level, TCTP can also act as an extracellular protein and as such has been involved in modulating whole-body defence processes, namely in the mammalian immune system. Extracellular TCTP, typically in its dimerised form, is able to induce the release of cytokines and other signalling molecules from various types of immune cells. There are also several examples, where TCTP was shown to be involved in antiviral/antibacterial defence in lower animals. In plants, the protein appears to have a protective effect against phytotoxic stresses, such as flooding, draught, too high or low temperature, salt stress or exposure to heavy metals. The finding for the latter stress condition is corroborated by earlier reports that TCTP levels are considerably up-regulated upon exposure of earthworms to high levels of heavy metals.Given the involvement of TCTP in many biological processes aimed at maintaining cellular or whole-body homeostasis, it is not surprising that dysregulation of TCTP levels may promote a range of disease processes, foremost cancer. Indeed a large body of evidence now supports a role of TCTP in at least the most predominant types of human cancers. Typically, this can be ascribed to both the anti-apoptotic activity of the protein and to its function in promoting cell growth and division. However, TCTP also appears to be involved in the later stages of cancer progression, such as invasion and metastasis. Hence, high TCTP levels in tumour tissues are often associated with a poor patient outcome. Due to its multiple roles in cancer progression, TCTP has been proposed as a potential target for the development of new anti-cancer strategies in recent pilot studies. Apart from its role in cancer, TCTP dysregulation has been reported to contribute to certain processes in the development of diabetes, as well as in diseases associated with the cardiovascular system.Since cellular TCTP levels are highly regulated, e.g. in response to cell stress or to growth signalling, and because deregulation of this protein contributes to many disease processes, a detailed understanding of regulatory processes that impinge on TCTP levels is required. The last section of this chapter summarises our current knowledge on the mechanisms that may be involved in the regulation of TCTP levels. Essentially, expression of the TPT1 gene is regulated at both the transcriptional and the translational level, the latter being particularly advantageous when a rapid adjustment of cellular TCTP levels is required, for example in cell stress responses. Other regulatory mechanisms, such as protein stability regulation, may also contribute to the regulation of overall TCTP levels.
Collapse
Affiliation(s)
- Ulrich-Axel Bommer
- School of Medicine, Graduate Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
57
|
Kubiak JZ, Kloc M. Elusive Role of TCTP Protein and mRNA in Cell Cycle and Cytoskeleton Regulation. Results Probl Cell Differ 2017; 64:217-225. [PMID: 29149411 DOI: 10.1007/978-3-319-67591-6_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Translationally Controlled Tumor-associated Protein (TCTP) is a small, 23 kDa multifunctional and ubiquitous protein localized both in the cytoplasm and in the nucleus of eukaryotic cells. It is evolutionarily highly conserved. Certain aspects of its structure show remarkable similarities to guanine nucleotide-free chaperons Mss4 and Dss4 suggesting that at least some functions of TCTP may depend on its chaperon-like action on other proteins. Besides other functions, TCTP is clearly involved in cell cycle regulation. It is also regulated in a cell-cycle-dependent manner suggesting a reciprocal interaction between this protein and the cell cycle-regulating machinery. TCTP also interacts with the cytoskeleton, mostly with actin microfilaments (MFs) and microtubules (MTs). It regulates the cytoskeleton organization and through this action it also influences cell shape and motility. The exact role of TCTP in cell cycle and cytoskeleton regulation is certainly not fully understood. In this chapter, we summarize recent data on cell cycle and cytoskeletal aspects of TCTP regulatory role.
Collapse
Affiliation(s)
- Jacek Z Kubiak
- Institute of Genetics and Development of Rennes (IGDR), Cell Cycle Group, CNRS, UMR 6290, 35043, Rennes, France.
- Faculty of Medicine, University Rennes 1, UEB, IFR 140, 35043, Rennes, France.
- Laboratory of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland.
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
- University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
58
|
Abstract
The translationally controlled tumor protein (TCTP) is a highly conserved protein that is regulated due to a high number of extracellular stimuli. TCTP has an important role for cell cycle and normal development. On the other side, tumor reversion and malignant transformation have been associated with TCTP. TCTP has been found among the 12 genes that are differentially expressed during mouse oocyte maturation, and an overexpression of this gene was reported in a wide variety of different cancer types. Its antiapoptotic effect is indicated by the interaction with several proapoptotic proteins of the Bcl-2 family and the p53 tumor suppressor protein. In this article, we draw attention to the role of TCTP in cancer, especially, focusing on cell differentiation and tumor reversion, a biological process by which highly tumorigenic cells lose their malignant phenotype. This protein has been shown to be the most strongly downregulated protein in revertant cells compared to the parental cancer cells. Decreased expression of TCTP results either in the reprogramming of cancer cells into reversion or apoptosis. As conventional chemotherapy is frequently associated with the development of drug resistance and high toxicity, the urge for the development of new or additional scientific approaches falls into place. Differentiation therapy aims at reinducing differentiation backward to the nonmalignant cellular state. Here, different approaches have been reported such as the induction of retinoid pathways and the use of histone deacetylase inhibitors. Also, PPARγ agonists and the activation of the vitamin D receptor have been reported as potential targets in differentiation therapy. As TCTP is known as the histamine-releasing factor, antihistaminic drugs have been shown to target this protein. Antihistaminic compounds, hydroxyzine and promethazine, inhibited cell growth of cancer cells and decreased TCTP expression of breast cancer and leukemia cells. Recently, we found that two antihistaminics, levomepromazine and buclizine, inhibited cancer cell growth by direct binding to TCTP and induction of cell differentiation. These data confirmed that TCTP is an exquisite target for anticancer differentiation therapy and antihistaminics have potential to be lead compounds for the direct interaction with TCTP as new inhibitors of human TCTP and tumor growth.
Collapse
Affiliation(s)
- Ean-Jeong Seo
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Nicolas Fischer
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany.
| |
Collapse
|
59
|
Jing Y, He LL, Mei CL. Translationally-controlled tumor protein activates the transcription of Oct-4 in kidney-derived stem cells. Exp Ther Med 2016; 13:280-284. [PMID: 28123502 DOI: 10.3892/etm.2016.3955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/14/2016] [Indexed: 12/16/2022] Open
Abstract
The molecular mechanisms underlying translationally-controlled tumor protein (TCTP) in the activation of octamer-binding transcription factor 4 (Oct-4) in kidney-derived stem cells have not been characterized. The aim of the present study was to identify the transcriptional activation of Oct-4 by TCTP in kidney-derived stem cells. Homology-directed repair cDNA inserted into Fisher 344 transgenic (Tg) rats and the mouse strain 129/Svj were used for the experiments. Diphtheria toxin (DT; 10 ng/kg) injected into the Tg rats created the kidney injury, which was rapidly restored by the activation of kidney-derived stem cells. Kidney-derived stem cells were isolated from the DT-injured Tg rats using cell culture techniques. The co-expression of Oct-4 and TCTP were observed in the isolated kidney-derived stem cells. Immunoblotting and reverse transcription-polymerase chain reaction analysis of TCTP null mutant (TCTP-/-) embryos at day 9.5 (E9.5) demonstrated the absence of co-expression of Oct-4 and TCTP, but expression of paired box-2 was detected. This was in contrast with the E9.5 control embryos, which expressed all three proteins. In conclusion, the results of the present study demonstrated that TCTP activates the transcription of Oct-4 in kidney-derived stem cells, as TCTP-/- embryos exhibited knock down of TCTP and Oct-4 without disturbing the expression of Pax-2 The characteristics and functional nature of TCTP in association with Oct-4 in kidney-derived stem cells was identified.
Collapse
Affiliation(s)
- Ying Jing
- Kidney Institute of CPLA, Division of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Liang-Liang He
- Kidney Institute of CPLA, Division of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Chang-Lin Mei
- Kidney Institute of CPLA, Division of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
60
|
Li S, Chen M, Xiong Q, Zhang J, Cui Z, Ge F. Characterization of the Translationally Controlled Tumor Protein (TCTP) Interactome Reveals Novel Binding Partners in Human Cancer Cells. J Proteome Res 2016; 15:3741-3751. [PMID: 27607350 DOI: 10.1021/acs.jproteome.6b00556] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Translationally controlled tumor protein (TCTP) is a highly conserved housekeeping protein present in eukaryotic organisms. It is involved in regulating many fundamental processes and plays a critical role in tumor reversion and tumorigenesis. Increasing evidence suggests that TCTP plays a role in the regulation of cell fate determination and is a promising therapeutic target for cancer. To decipher the exact mechanisms by which TCTP functions and how all these functions are integrated, we analyzed the interactome of TCTP in HeLa cells by coimmunoprecipitation (IP) and mass spectrometry (MS). A total of 98 proteins were identified. We confirmed the in vitro and in vivo association of TCTP with six of the identified binding proteins using reciprocal IP and bimolecular fluorescence complementation (BiFC) analysis, respectively. Moreover, TCTP interacted with Y-box-binding protein 1 (YBX1), and their interaction was localized to the N-terminal region of TCTP and the 1-129 amino acid (aa) residues of YBX1. The YBX1 protein plays an important role in cell proliferation, RNA splicing, DNA repair, drug resistance, and stress response to extracellular signals. These data suggest that the interaction of TCTP with YBX1 might cooperate or coordinate their functions in the control of diverse regulatory pathways in cancer cells. Taken together, our results not only reveal a large number of TCTP-associated proteins that possess pleiotropic functions, but also provide novel insights into the molecular mechanisms of TCTP in tumorigenesis.
Collapse
Affiliation(s)
- Siting Li
- Graduate University, Chinese Academy of Sciences , Beijing 100049, China
| | - Minghai Chen
- Graduate University, Chinese Academy of Sciences , Beijing 100049, China
| | | | | | | | | |
Collapse
|
61
|
Shi H, Mu WD, Zhang B, Meng T, Zhang ST, Zhou DS. Potential role of S-adenosylmethionine in osteosarcoma development. Onco Targets Ther 2016; 9:3653-9. [PMID: 27382303 PMCID: PMC4920229 DOI: 10.2147/ott.s101408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The metastatic form of osteosarcoma is a life threatening one since it metastasizes to the lungs. The major cause of metastatic osteosarcoma is hypomethylation of numerous genes that undergo overexpression to enable the progression of the disease. In the present study, S-adenosylmethionine (SAM), a predominant methyl donor, was administered to find out its effects on osteosarcoma progression. As evidence of tumor suppression, the SAM-treated mouse tissue was analyzed histologically, which exemplifies the control that SAM has over abnormal cell proliferation, especially on primary osteosarcoma, but it lacks positive effects on metastatic osteosarcoma. At the molecular level, the successful inhibition of primary osteosarcoma was found to be associated with a lower expression of Sox2, a protein highly expressed in osteosarcoma stem cells, along with an upregulated expression of TCTP. The data suggest that the administration of SAM has a positive role in treating primary osteosarcoma, but it has no role in suppressing metastatic osteosarcoma. The decreased expression of Sox2 together with upregulation of TCTP following SAM administration indicates that SAM has a control over primary osteosarcoma.
Collapse
Affiliation(s)
- Hui Shi
- Department of Traumatic Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan; Department of Bone and Joint Surgery
| | - Wei-Dong Mu
- Department of Traumatic Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
| | - Bing Zhang
- Department of Urology Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Tao Meng
- Department of Bone and Joint Surgery
| | | | - Dong-Sheng Zhou
- Department of Traumatic Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
| |
Collapse
|
62
|
Wang JY, Chen SY, Sun CN, Chien T, Chern Y. A central role of TRAX in the ATM-mediated DNA repair. Oncogene 2016; 35:1657-1670. [PMID: 26096928 DOI: 10.1038/onc.2015.228] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/04/2015] [Accepted: 05/18/2015] [Indexed: 12/21/2022]
Abstract
DNA repair is critical for the maintenance of genome stability. Upon genotoxic stress, dysregulated DNA repair may induce apoptosis. Translin-associated factor X (TRAX), which was initially identified as a binding partner of Translin, has been implicated in genome stability. However, the exact role of TRAX in DNA repair remains largely unknown. Here, we showed that TRAX participates in the ATM/H2AX-mediated DNA repair machinery by interacting with ATM and stabilizing the MRN complex at double-strand breaks. The exogenous expression of wild-type (WT) TRAX, but not a TRAX variant lacking the nuclear localization signal (NLS), rescued the vulnerability of TRAX-null mouse embryo fibroblasts (MEFs). This finding confirms the importance of the nuclear localization of TRAX in the repair of DNA damage. Compared with WT MEFs, TRAX-null MEFs exhibited impaired DNA repair (for example, reduced phosphorylation of ATM and H2AX) after treatment with ultra violet-C or γ-ray irradiation and a higher incidence of p53-mediated apoptosis. Our findings demonstrate that TRAX is required for MRN complex-ATM-H2AX signaling, which optimizes DNA repair by interacting with the activated ATM and protects cells from genotoxic stress-induced apoptosis.
Collapse
Affiliation(s)
- J-Y Wang
- Department of Neurology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Neuroscience Division, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - S-Y Chen
- Neuroscience Division, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - C-N Sun
- Neuroscience Division, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - T Chien
- Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Y Chern
- Neuroscience Division, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
63
|
Roque CG, Wong HHW, Lin JQ, Holt CE. Tumor protein Tctp regulates axon development in the embryonic visual system. Development 2016; 143:1134-48. [PMID: 26903505 PMCID: PMC4852495 DOI: 10.1242/dev.131060] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/11/2016] [Indexed: 12/11/2022]
Abstract
The transcript encoding translationally controlled tumor protein (Tctp), a molecule associated with aggressive breast cancers, was identified among the most abundant in genome-wide screens of axons, suggesting that Tctp is important in neurons. Here, we tested the role of Tctp in retinal axon development in Xenopus laevis. We report that Tctp deficiency results in stunted and splayed retinotectal projections that fail to innervate the optic tectum at the normal developmental time owing to impaired axon extension. Tctp-deficient axons exhibit defects associated with mitochondrial dysfunction and we show that Tctp interacts in the axonal compartment with myeloid cell leukemia 1 (Mcl1), a pro-survival member of the Bcl2 family. Mcl1 knockdown gives rise to similar axon misprojection phenotypes, and we provide evidence that the anti-apoptotic activity of Tctp is necessary for the normal development of the retinotectal projection. These findings suggest that Tctp supports the development of the retinotectal projection via its regulation of pro-survival signalling and axonal mitochondrial homeostasis, and establish a novel and fundamental role for Tctp in vertebrate neural circuitry assembly. Highlighted article: The cancer-associated protein Tctp controls neural circuitry in Xenopus via its regulation of pro-survival signalling and axonal mitochondrial homeostasis.
Collapse
Affiliation(s)
- Cláudio Gouveia Roque
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| | - Hovy Ho-Wai Wong
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Julie Qiaojin Lin
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| |
Collapse
|
64
|
Thébault S, Agez M, Chi X, Stojko J, Cura V, Telerman SB, Maillet L, Gautier F, Billas-Massobrio I, Birck C, Troffer-Charlier N, Karafin T, Honoré J, Senff-Ribeiro A, Montessuit S, Johnson CM, Juin P, Cianférani S, Martinou JC, Andrews DW, Amson R, Telerman A, Cavarelli J. TCTP contains a BH3-like domain, which instead of inhibiting, activates Bcl-xL. Sci Rep 2016; 6:19725. [PMID: 26813996 PMCID: PMC4728560 DOI: 10.1038/srep19725] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/17/2015] [Indexed: 01/28/2023] Open
Abstract
Translationally Controlled Tumor Protein (TCTP) is anti-apoptotic, key in development and cancer, however without the typical Bcl2 family members’ structure. Here we report that TCTP contains a BH3-like domain and forms heterocomplexes with Bcl-xL. The crystal structure of a Bcl-xL deletion variant-TCTP11–31 complex reveals that TCTP refolds in a helical conformation upon binding the BH3-groove of Bcl-xL, although lacking the h1-subregion interaction. Experiments using in vitro-vivo reconstituted systems and TCTP+/− mice indicate that TCTP activates the anti-apoptotic function of Bcl-xL, in contrast to all other BH3-proteins. Replacing the non-conserved h1 of TCTP by that of Bax drastically increases the affinity of this hybrid for Bcl-xL, modifying its biological properties. This work reveals a novel class of BH3-proteins potentiating the anti-apoptotic function of Bcl-xL.
Collapse
Affiliation(s)
- Stéphanie Thébault
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR 7104, INSERM U964, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France.,CNRS-UMR 8113, LBPA, École Normale Supérieure, 61 avenue du Président Wilson, 94235 Cachan, France
| | - Morgane Agez
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR 7104, INSERM U964, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France.,Institut Gustave Roussy, Unité Inserm U981, Bâtiment B2M, 114 rue Édouard-Vaillant, 94805 Villejuif, France
| | - Xiaoke Chi
- Sunnybrook Research Institute and Departments of Biochemistry and Medical Biophysics, University of Toronto, 2075 Bayview Ave., Toronto, Ontario, M4N 3M5, Canada.,Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W. Hamilton, Ontario, L8N 3Z5, Canada
| | - Johann Stojko
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg, CNRS, UMR7178, 25 rue Becquerel, 67087 Strasbourg, France
| | - Vincent Cura
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR 7104, INSERM U964, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Stéphanie B Telerman
- King's College London Centre for Stem Cells and Regenerative Medicine, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.,MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Laurent Maillet
- Center for Cancer Research Nantes-Angers, UMR 892 Inserm - 6299 CNRS/Université de Nantes, IRS-UN, 8 Quai Moncousu - BP 70721, 44007 Nantes Cedex 1
| | - Fabien Gautier
- Center for Cancer Research Nantes-Angers, UMR 892 Inserm - 6299 CNRS/Université de Nantes, IRS-UN, 8 Quai Moncousu - BP 70721, 44007 Nantes Cedex 1.,Institut de Cancérologie de l'Ouest, Centre René Gauducheau Bd Jacques Monod, 44805 Saint Herblain-Nantes cedex
| | - Isabelle Billas-Massobrio
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR 7104, INSERM U964, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Catherine Birck
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR 7104, INSERM U964, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Nathalie Troffer-Charlier
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR 7104, INSERM U964, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Teele Karafin
- CNRS-UMR 8113, LBPA, École Normale Supérieure, 61 avenue du Président Wilson, 94235 Cachan, France.,Institut Gustave Roussy, Unité Inserm U981, Bâtiment B2M, 114 rue Édouard-Vaillant, 94805 Villejuif, France
| | - Joane Honoré
- Institut Gustave Roussy, Unité Inserm U981, Bâtiment B2M, 114 rue Édouard-Vaillant, 94805 Villejuif, France
| | - Andrea Senff-Ribeiro
- CNRS-UMR 8113, LBPA, École Normale Supérieure, 61 avenue du Président Wilson, 94235 Cachan, France.,Institut Gustave Roussy, Unité Inserm U981, Bâtiment B2M, 114 rue Édouard-Vaillant, 94805 Villejuif, France
| | - Sylvie Montessuit
- Department of Cell Biology, University of Geneva, 30, quai Ansermet, 1211 Geneva 4, Switzerland
| | - Christopher M Johnson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Philippe Juin
- Center for Cancer Research Nantes-Angers, UMR 892 Inserm - 6299 CNRS/Université de Nantes, IRS-UN, 8 Quai Moncousu - BP 70721, 44007 Nantes Cedex 1.,Institut de Cancérologie de l'Ouest, Centre René Gauducheau Bd Jacques Monod, 44805 Saint Herblain-Nantes cedex
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg, CNRS, UMR7178, 25 rue Becquerel, 67087 Strasbourg, France
| | - Jean-Claude Martinou
- Department of Cell Biology, University of Geneva, 30, quai Ansermet, 1211 Geneva 4, Switzerland
| | - David W Andrews
- Sunnybrook Research Institute and Departments of Biochemistry and Medical Biophysics, University of Toronto, 2075 Bayview Ave., Toronto, Ontario, M4N 3M5, Canada.,Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W. Hamilton, Ontario, L8N 3Z5, Canada
| | - Robert Amson
- CNRS-UMR 8113, LBPA, École Normale Supérieure, 61 avenue du Président Wilson, 94235 Cachan, France.,Institut Gustave Roussy, Unité Inserm U981, Bâtiment B2M, 114 rue Édouard-Vaillant, 94805 Villejuif, France
| | - Adam Telerman
- CNRS-UMR 8113, LBPA, École Normale Supérieure, 61 avenue du Président Wilson, 94235 Cachan, France.,Institut Gustave Roussy, Unité Inserm U981, Bâtiment B2M, 114 rue Édouard-Vaillant, 94805 Villejuif, France
| | - Jean Cavarelli
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR 7104, INSERM U964, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| |
Collapse
|
65
|
Jeon HJ, You SY, Park YS, Chang JW, Kim JS, Oh JS. TCTP regulates spindle microtubule dynamics by stabilizing polar microtubules during mouse oocyte meiosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:630-7. [PMID: 26802898 DOI: 10.1016/j.bbamcr.2016.01.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 01/09/2023]
Abstract
Dynamic changes in spindle structure and function are essential for maintaining genomic integrity during the cell cycle. Spindle dynamics are highly dependent on several microtubule-associated proteins that coordinate the dynamic behavior of microtubules, including microtubule assembly, stability and organization. Here, we show that translationally controlled tumor protein (TCTP) is a novel microtubule-associated protein that regulates spindle dynamics during meiotic maturation. TCTP was expressed and widely distributed in the cytoplasm with strong enrichment at the spindle microtubules during meiosis. TCTP was found to be phosphorylated during meiotic maturation, and was exclusively localized to the spindle poles. Knockdown of TCTP impaired spindle organization without affecting chromosome alignment. These spindle defects were mostly due to the destabilization of the polar microtubules. However, the stability of kinetochore microtubules attached to chromosomes was not affected by TCTP knockdown. Overexpression of a nonphosphorylable mutant of TCTP disturbed meiotic maturation, stabilizing the spindle microtubules. In addition, Plk1 was decreased by TCTP knockdown. Taken together, our results demonstrate that TCTP is a microtubule-associating protein required to regulate spindle microtubule dynamics during meiotic maturation in mouse oocytes.
Collapse
Affiliation(s)
- Hyuk-Joon Jeon
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seung Yeop You
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yong Seok Park
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong Wook Chang
- Stem Cell & Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Jae-Sung Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Jeong Su Oh
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
66
|
Lucibello M, Adanti S, Antelmi E, Dezi D, Ciafrè S, Carcangiu ML, Zonfrillo M, Nicotera G, Sica L, De Braud F, Pierimarchi P. Phospho-TCTP as a therapeutic target of Dihydroartemisinin for aggressive breast cancer cells. Oncotarget 2016; 6:5275-91. [PMID: 25779659 PMCID: PMC4467148 DOI: 10.18632/oncotarget.2971] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/16/2014] [Indexed: 01/09/2023] Open
Abstract
Upregulation of Translationally Controlled Tumor Protein (TCTP) is associated with poorly differentiated aggressive tumors, including breast cancer, but the underlying mechanism(s) are still debated. Here, we show that in breast cancer cell lines TCTP is primarily localized in the nucleus, mostly in the phosphorylated form. The effects of Dihydroartemisinin (DHA), an anti-malaria agent that binds TCTP, were tested on breast cancer cells. DHA decreases cell proliferation and induces apoptotic cell death by targeting the phosphorylated form of TCTP. Remarkably, DHA enhances the anti-tumor effects of Doxorubicin in triple negative breast cancer cells resulting in an increased level of apoptosis. DHA also synergizes with Trastuzumab, used to treat HER2/neu positive breast cancers, to induce apoptosis of tumor cells. Finally, we present new clinical data that nuclear phospho-TCTP overexpression in primary breast cancer tissue is associated with high histological grade, increase expression of Ki-67 and with ER-negative breast cancer subtypes. Notably, phospho-TCTP expression levels increase in trastuzumab-resistant breast tumors, suggesting a possible role of phospho-TCTP as a new prognostic marker. In conclusion, the anti-tumor effect of DHA in vitro with conventional chemotherapeutics suggests a novel therapeutic strategy and identifies phospho-TCTP as a new promising target for advanced breast cancer.
Collapse
Affiliation(s)
- Maria Lucibello
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Sara Adanti
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Ester Antelmi
- Medical Oncology Department, Pathology and Molecular Biology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Dario Dezi
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Stefania Ciafrè
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Maria Luisa Carcangiu
- Medical Oncology Department, Pathology and Molecular Biology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Manuela Zonfrillo
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Giuseppe Nicotera
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Lorenzo Sica
- Medical Oncology Department, Pathology and Molecular Biology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo De Braud
- Medical Oncology Department, Pathology and Molecular Biology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | |
Collapse
|
67
|
Toscano-Morales R, Xoconostle-Cázares B, Martínez-Navarro AC, Ruiz-Medrano R. AtTCTP2 mRNA and protein movement correlates with formation of adventitious roots in tobacco. PLANT SIGNALING & BEHAVIOR 2016; 11:e1071003. [PMID: 26237533 PMCID: PMC4883931 DOI: 10.1080/15592324.2015.1071003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/01/2015] [Accepted: 07/04/2015] [Indexed: 05/11/2023]
Abstract
The Translationally Controlled Tumor Proteins, or TCTP, is a superfamily of exclusively eukaryotic proteins essential in the regulation of proliferation and general growth. However, it is clear that these are multifunctional proteins given (1) the pleiotropic effects of its mutations, and (2), the multiple processes in which this protein is involved. TCTP function in general is conserved, since Arabidopsis AtTCTP1 can rescue a Drosophila mutant, and vice versa. It has become clear, however, that these proteins may have "taxon-specific" functions. In the case of plants, mRNA and/or proteins have been found in the phloem translocation stream of different species, suggesting a role in long-distance signaling. We have found that a second Arabidopsis TCTP gene, AtTCTP2, codes for a protein that moves long-distance through a graft union in tobacco. Interestingly, the mRNA is also transported long-distance. Both mRNA and protein move long-distance; interestingly, the movement, while more efficient from source to sink tissues, also occurs in the opposite direction. The protein reaches the nuclei of parenchyma cells and adventitious roots. Furthermore, it is clear that the long-distance delivery of AtTCTP2 protein and mRNA is required for the induction of adventitious roots. A model is presented that accounts for these observations.
Collapse
Affiliation(s)
| | | | | | - Roberto Ruiz-Medrano
- Department of Biotechnology and Bioengineering; CINVESTAV; Zacatenco, Mexico DF, Mexico
| |
Collapse
|
68
|
Kloc M, Liu Y, Zhang L, Tejpal N, Kubiak J, Ghobrial R, Li X. TCTP Silencing in Ovarian Cancer Cells Results in Actin Cytoskeleton Remodeling and Motility Increase. ACTA ACUST UNITED AC 2015. [DOI: 10.6000/1927-7229.2015.04.04.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
69
|
Jin H, Zhang X, Su J, Teng Y, Ren H, Yang L. RNA interference‑mediated knockdown of translationally controlled tumor protein induces apoptosis, and inhibits growth and invasion in glioma cells. Mol Med Rep 2015; 12:6617-25. [PMID: 26328748 PMCID: PMC4626190 DOI: 10.3892/mmr.2015.4280] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 06/11/2015] [Indexed: 12/20/2022] Open
Abstract
Translationally controlled tumor protein (TCTP) is a highly conserved, growth-associated and small molecule protein, which is highly expressed in various types of tumor cell. TCTP can promote the growth and suppress apoptosis of tumor cels. However, few studies have reported the effects of TCTP in gliomas. In the present study, a glioma cell line was established, which was stably transfected with TCTP short hairpin ribonucleic acid (shRNA), to investigate the impact of downregulated expression of TCTP on the proliferation, apoptosis and invasion of glioma cells. Western blot and reverse transcription-quantitative polymerase chain reaction analyses demonstrated that TCTP shRNA effectively reduced the expression of TCTP in the U251 glioma cell line. MTT and colony formation assays revealed that downregulated expression of TCTP significantly inhibited glioma cell proliferation. Cell cycle analysis using flow cytometry revealed that the cells in the pRNA-H1.1-TCTP group were arrested in the G0/G1 phase of the cell cycle. Western blot analysis detected downregulated expression levels of cyclins, including Cyclin D1, Cyclin E and Cyclin B. Annexin V-fluorescein isothiocyanate/propidium iodide and Hoechst staining demonstrated that the apoptotic rate of the cells in the pRNA-H1.1-TCTP group was significantly higher than that of the cells in the pRNA-H1.1-control group, with upregulated expression levels of B-cell-associated X protein and cleaved-caspase-3 and downregulated expression of B-cell lmyphoma-2 in the apoptotic process. Wound healing and Transwell assays revealed that downregulated expression of TCTP significantly inhibited the migration and invasiveness of the glioma cells; and the expression levels and activities of matrix metalloproteinase (MMP)-2 and MMP-9 were also significantly affected. In conclusion, the present study demonstrated that downregulated expression of TCTP significantly inhibited proliferation and invasion, and induced apoptosis in the glioma cells. These results suggested that TCTP may be important in glioma development and metastasis. Therefore, TCTP is expected to become an effective target for glioma gene therapy.
Collapse
Affiliation(s)
- Hua Jin
- Department of Immunology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xuexin Zhang
- Department of Neurosurgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150040, P.R. China
| | - Jun Su
- Department of Neurosurgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150040, P.R. China
| | - Yueqiu Teng
- Stem Cell Research Institute, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Huan Ren
- Department of Immunology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Lizhuang Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
70
|
TCTP Expression After Rat Spinal Cord Injury: Implications for Astrocyte Proliferation and Migration. J Mol Neurosci 2015; 57:366-75. [PMID: 26266488 DOI: 10.1007/s12031-015-0628-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/20/2015] [Indexed: 10/23/2022]
Abstract
Translationally controlled tumor protein (TCTP) is a ubiquitous and highly conserved protein which plays a role in cell proliferation and growth, apoptosis, and cell cycle regulation. However, its expression and function in spinal cord injury (SCI) are still unknown. Here, we demonstrated that expression of TCTP was dynamic changed after acute spinal cord injury. Our results showed that TCTP gradually increased, reached a peak at 3 day, and then declined to basal levels at 14 days after spinal cord injury. Upregulation of TCTP was accompanied with an increase in the levels of proliferation proteins such as PCNA. Immunofluorescent labeling also showed that TCTP located in astrocytes and traumatic SCI induced TCTP colocalizated with PCNA. These results indicated that TCTP might play an important role in astrocyte proliferation. To further probe the role of TCTP, TCTP-specific siRNA-transfected astrocytes showed significant decrease of primary astrocyte proliferation. Surprisingly, TCTP knockdown also reduced primary astrocyte migration, as the reorganization of microtubules and F-actin was disturbed after siRNA transfection. All above indicated that TCTP might play a crucial role in astrocyte proliferation and migration. Collectively, our data suggested that TCTP might play important roles in CNS pathophysiology after SCI.
Collapse
|
71
|
Lv P, Wang Y, Ma J, Wang Z, Li JL, Hong CS, Zhuang Z, Zeng YX. Inhibition of protein phosphatase 2A with a small molecule LB100 radiosensitizes nasopharyngeal carcinoma xenografts by inducing mitotic catastrophe and blocking DNA damage repair. Oncotarget 2015; 5:7512-24. [PMID: 25245035 PMCID: PMC4202140 DOI: 10.18632/oncotarget.2258] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC), while uncommon worldwide, is a major health problem in China. Although local radiation and surgery provide good control of NPC, better treatments that permit reductions in radiation dosing are needed. Inhibition of protein phosphatase 2A (PP2A), a ubiquitous multifunctional enzyme with critical roles in cell cycle regulation and DNA-damage response, reportedly sensitizes cancer cells to radiation and chemotherapy. We studied PP2A inhibition with LB100, a small molecule currently in a Phase I clinical trial, on radiosensitization of two human nasopharyngeal cell lines: CNE1, which is reportedly radioresistant, and CNE2. In both cell lines, LB100 exposure increased intracellular p-Plk1, TCTP, and Cdk1 and decreased p53, changes associated with cell cycle arrest, mitotic catastrophe and radio-inhibition of cell proliferation. Mice bearing subcutaneous xenografts of either cell line were administered 1.5 mg/kg LB100 daily for three days and a single dose of 20 Gy radiation (day 3), which produced marked and prolonged tumor mass regression (dose enhancement factors of 2.98 and 2.27 for CNE1 and CNE2 xenografts, respectively). Treatment with either LB100 or radiation alone only transiently inhibited xenograft growth. Our results support further exploration of PP2A inhibition as part of radiotherapy regimens for NPC and potentially other solid tumors.
Collapse
Affiliation(s)
- Peng Lv
- Cancer Institute and Hospital, Chinese Academy of Medical Sciences (CAMS) ,Beijing , People's Republic of China. Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| | - Yue Wang
- Institute for Medical Device Standardization Administration, National Institutes for Food and Drug Control, Beijing , People's Republic of China
| | - Jie Ma
- Cancer Institute and Hospital, Chinese Academy of Medical Sciences (CAMS) ,Beijing , People's Republic of China
| | - Zheng Wang
- Cancer Institute and Hospital, Chinese Academy of Medical Sciences (CAMS) ,Beijing , People's Republic of China
| | - Jing-Li Li
- Institute for Medical Device Standardization Administration, National Institutes for Food and Drug Control, Beijing , People's Republic of China
| | - Christopher S Hong
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD ,USA
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD ,USA
| | - Yi-Xin Zeng
- Cancer Institute and Hospital, Chinese Academy of Medical Sciences (CAMS) ,Beijing , People's Republic of China. Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong , People's Republic of China. State Key Laboratory of Oncology in Southern China, Guangzhou, Guangdong , People's Republic of China
| |
Collapse
|
72
|
Bommer UA, Iadevaia V, Chen J, Knoch B, Engel M, Proud CG. Growth-factor dependent expression of the translationally controlled tumour protein TCTP is regulated through the PI3-K/Akt/mTORC1 signalling pathway. Cell Signal 2015; 27:1557-68. [PMID: 25936523 DOI: 10.1016/j.cellsig.2015.04.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/21/2015] [Accepted: 04/25/2015] [Indexed: 11/21/2022]
Abstract
Translationally controlled tumour protein TCTP (gene symbol: TPT1) is a highly-conserved, cyto-protective protein implicated in many physiological and disease processes, in particular cancer, where it is associated with poor patient outcomes. To understand the mechanisms underlying the accumulation of high TCTP levels in cancer cells, we studied the signalling pathways that control translation of TCTP mRNA, which contains a 5'-terminal oligopyrimidine tract (5'-TOP). In HT29 colon cancer cells and in HeLa cells, serum increases the expression of TCTP two- and four-fold, respectively, and this is inhibited by rapamycin or mTOR kinase inhibitors. Polysome profiling and mRNA quantification indicate that these effects occur at the level of mRNA translation. Blocking this pathway upstream of mTOR complex 1 (mTORC1) by inhibiting Akt also prevented increases in TCTP levels in both HeLa and HT29 colon cancer cells, whereas knockout of TSC2, a negative regulator of mTORC1, led to derepression of TCTP synthesis under serum starvation. Overexpression of eIF4E enhanced the polysomal association of the TCTP mRNA, although it did not protect its translation from inhibition by rapamycin. Conversely, expression of a constitutively-active mutant of the eIF4E inhibitor 4E-BP1, which is normally inactivated by mTORC1, inhibited TCTP mRNA translation in HEK293 cells. Our results demonstrate that TCTP mRNA translation is regulated by signalling through the PI3-K/Akt/mTORC1 pathway. This explains why TCTP levels are frequently increased in cancers, since mTORC1 signalling is hyperactive in ~80% of tumours.
Collapse
Affiliation(s)
- Ulrich-Axel Bommer
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522 NSW, Australia; Graduate School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong 2522 NSW, Australia.
| | | | - Jiezhong Chen
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522 NSW, Australia
| | - Bianca Knoch
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522 NSW, Australia
| | - Martin Engel
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522 NSW, Australia
| | | |
Collapse
|
73
|
Jirachotikoon C, Tannukit S, Kedjarune-Leggat U. Expression of translationally controlled tumor protein in heat-stressed human dental pulp cells. Arch Oral Biol 2015; 60:1474-81. [PMID: 26263535 DOI: 10.1016/j.archoralbio.2015.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 04/14/2015] [Accepted: 07/13/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the effects of heat stress on cell viability, translationally controlled tumor protein (TCTP) expression, and the effects of recombinant TCTP on heat-stressed human dental pulp cells (HDPCs). METHODS HDPCs were isolated from human teeth and cultured at 37°C. For heat stress, HPDCs were incubated at 43°C for 45min. After heat stress, recombinant TCTP were added to HDPCs and cultured for various periods of time at 37°C. Heat-treated cells were then analyzed by DNA staining with Hoechst 33258, MTT, and caspase 3 activity assays. TCTP expression level was assessed by real-time PCR and western blot analysis. RESULTS Heat-treated cells displayed lower cell density and nuclear morphology resembling apoptotic body. Heat stress significantly decreased cell viability and induced activity of caspase 3. The effect of recombinant TCTP on pulp cell death from heat stress varied depending on each subject and TCTP concentration. Heat stress up-regulated TCTP mRNA expression level. In contrast, TCTP protein level remained unchanged. Recombinant TCTP did not affect TCTP mRNA expression but down-regulated TCTP protein in heat-treated cells. CONCLUSIONS Heat stress induces caspase 3 activation and up-regulates TCTP mRNA expression in HDPCs. TCTP did not play a key role on pulp cell recovery from heat stress.
Collapse
Affiliation(s)
- Canussanun Jirachotikoon
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Sissada Tannukit
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand.
| | - Ureporn Kedjarune-Leggat
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
74
|
Dibble CC, Cantley LC. Regulation of mTORC1 by PI3K signaling. Trends Cell Biol 2015; 25:545-55. [PMID: 26159692 DOI: 10.1016/j.tcb.2015.06.002] [Citation(s) in RCA: 607] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 06/08/2015] [Accepted: 06/08/2015] [Indexed: 11/29/2022]
Abstract
The class I phosphoinositide 3-kinase (PI3K)-mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) signaling network directs cellular metabolism and growth. Activation of mTORC1 [composed of mTOR, regulatory-associated protein of mTOR (Raptor), mammalian lethal with SEC13 protein 8(mLST8), 40-kDa proline-rich Akt substrate (PRAS40), and DEP domain-containing mTOR-interacting protein (DEPTOR)] depends on the Ras-related GTPases (Rags) and Ras homolog enriched in brain (Rheb) GTPase and requires signals from amino acids, glucose, oxygen, energy (ATP), and growth factors (including cytokines and hormones such as insulin). Here we discuss the signal transduction mechanisms through which growth factor-responsive PI3K signaling activates mTORC1. We focus on how PI3K-dependent activation of Akt and spatial regulation of the tuberous sclerosis complex (TSC) complex (TSC complex) [composed of TSC1, TSC2, and Tre2-Bub2-Cdc16-1 domain family member 7 (TBC1D7)] switches on Rheb at the lysosome, where mTORC1 is activated. Integration of PI3K- and amino acid-dependent signals upstream of mTORC1 at the lysosome is detailed in a working model. A coherent understanding of the PI3K-mTORC1 network is imperative as its dysregulation has been implicated in diverse pathologies including cancer, diabetes, autism, and aging.
Collapse
Affiliation(s)
- Christian C Dibble
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
75
|
He J, Hao S, Zhang H, Guo F, Huang L, Xiao X, He D. Chronological protein synthesis in regenerating rat liver. Electrophoresis 2015; 36:1622-32. [DOI: 10.1002/elps.201500019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/05/2015] [Accepted: 04/02/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Jinjun He
- Key Laboratory of Cell Proliferation and Regulation Biology Ministry of Education; Universities of the Confederated Institute for Proteomics, Beijing Normal University; Beijing P. R. China
| | - Shuai Hao
- Key Laboratory of Cell Proliferation and Regulation Biology Ministry of Education; Universities of the Confederated Institute for Proteomics, Beijing Normal University; Beijing P. R. China
| | - Hao Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology Ministry of Education; Universities of the Confederated Institute for Proteomics, Beijing Normal University; Beijing P. R. China
| | - Fuzheng Guo
- Key Laboratory of Cell Proliferation and Regulation Biology Ministry of Education; Universities of the Confederated Institute for Proteomics, Beijing Normal University; Beijing P. R. China
| | - Lingyun Huang
- Key Laboratory of Cell Proliferation and Regulation Biology Ministry of Education; Universities of the Confederated Institute for Proteomics, Beijing Normal University; Beijing P. R. China
| | - Xueyuan Xiao
- Key Laboratory of Cell Proliferation and Regulation Biology Ministry of Education; Universities of the Confederated Institute for Proteomics, Beijing Normal University; Beijing P. R. China
| | - Dacheng He
- Key Laboratory of Cell Proliferation and Regulation Biology Ministry of Education; Universities of the Confederated Institute for Proteomics, Beijing Normal University; Beijing P. R. China
| |
Collapse
|
76
|
He S, Huang Y, Wang Y, Tang J, Song Y, Yu X, Ma J, Wang S, Yin H, Li Q, Ji L, Xu X. Histamine-releasing factor/translationally controlled tumor protein plays a role in induced cell adhesion, apoptosis resistance and chemoresistance in non-Hodgkin lymphomas. Leuk Lymphoma 2015; 56:2153-61. [PMID: 25363345 DOI: 10.3109/10428194.2014.981173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mounting evidence has proved that cellular adhesion confers resistance to chemotherapy in multiple lymphomas. The molecular mechanism underlying cell adhesion-mediated drug resistance (CAM-DR) is, however, poorly understood. In this study, we investigated the expression and biologic function of histamine-releasing factor (HRF) in non-Hodgkin lymphomas (NHLs). Clinically, by immunohistochemistry analysis we observed obvious up-regulation of HRF in NHLs including diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL) and natural killer (NK)/T-cell lymphoma. Functionally, overexpression and knockdown of HRF demonstrated the antiapoptotic effect of HRF in NHL cells, which may be associated with activation of the p-CREB/BCL-2 signaling pathway. Moreover, cell adhesion assay demonstrated that adhesion to fibronectin (FN) or HS-5 up-regulated HRF expression, while knockdown of HRF resulted in decreased cell adhesion, which led to reversed CAM-DR. Our finding supports the role of HRF in NHL cell apoptosis, adhesion and drug resistance, and may provide a clinical therapeutic target for CAM-DR in NHL.
Collapse
Affiliation(s)
- Song He
- Department of Oncology, Affiliated Cancer Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target , Nantong, Jiangsu , China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Ligand binding reveals a role for heme in translationally-controlled tumor protein dimerization. PLoS One 2014; 9:e112823. [PMID: 25396429 PMCID: PMC4232476 DOI: 10.1371/journal.pone.0112823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/16/2014] [Indexed: 11/19/2022] Open
Abstract
The translationally-controlled tumor protein (TCTP) is a highly conserved, ubiquitously expressed, abundant protein that is broadly distributed among eukaryotes. Its biological function spans numerous cellular processes ranging from regulation of the cell cycle and microtubule stabilization to cell growth, transformation, and death processes. In this work, we propose a new function for TCTP as a “buffer protein” controlling cellular homeostasis. We demonstrate that binding of hemin to TCTP is mediated by a conserved His-containing motif (His76His77) followed by dimerization, an event that involves ligand-mediated conformational changes and that is necessary to trigger TCTP's cytokine-like activity. Mutation in both His residues to Ala prevents hemin from binding and abrogates oligomerization, suggesting that the ligand site localizes at the interface of the oligomer. Unlike heme, binding of Ca2+ ligand to TCTP does not alter its monomeric state; although, Ca2+ is able to destabilize an existing TCTP dimer created by hemin addition. In agreement with TCTP's proposed buffer function, ligand binding occurs at high concentration, allowing the “buffer” condition to be dissociated from TCTP's role as a component of signal transduction mechanisms.
Collapse
|
78
|
Osteoclastogenic activity of translationally-controlled tumor protein (TCTP) with reciprocal repression of p21. FEBS Lett 2014; 588:4026-31. [PMID: 25263704 DOI: 10.1016/j.febslet.2014.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/29/2014] [Accepted: 09/16/2014] [Indexed: 11/24/2022]
Abstract
Translationally-controlled tumor protein (TCTP) plays a role in a number of cellular processes, but there is limited information about its function in cell differentiation. Previous observations of a twofold induction of TCTP mRNA during osteoclast differentiation prompted us to investigate its involvement in osteoclast differentiation. The osteoclastogenicity of TCTP gradually expressed during osteoclast differentiation was confirmed in mouse and human cells using loss-of-function studies and TCTP heterogeneous mice and transgenic mice. Higher expression ratios of TCTP to p21 could represent TCTP-mediated phenotypic induction of osteoclast differentiation accompanied by p21 down-regulation, attenuating the proliferation of osteoclast precursor cells.
Collapse
|
79
|
A comparative proteomic analysis of parthenogenetic lines and amphigenetic lines of silkworm. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-014-0099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
80
|
TCTP directly regulates ATM activity to control genome stability and organ development in Drosophila melanogaster. Nat Commun 2014; 4:2986. [PMID: 24352200 DOI: 10.1038/ncomms3986] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 11/21/2013] [Indexed: 02/03/2023] Open
Abstract
Translationally controlled tumour protein (TCTP) is implicated in growth regulation and cancer. Recently, human TCTP has been suggested to play a role in the DNA damage response by forming a complex with ataxia telangiectasia-mutated (ATM) kinase . However, the exact nature of this interaction and its roles in vivo remained unclear. Here, we utilize Drosophila as an animal model to study the nuclear function of Drosophila TCTP (dTCTP). dTCTP mutants show increased radiation sensitivity during development as well as strong genetic interaction with dATM mutations, resulting in severe defects in developmental timing, organ size and chromosome stability. We identify Drosophila ATM (dATM) as a direct binding partner of dTCTP and describe a mechanistic basis for dATM activation by dTCTP. Altogether, this study provides the first in vivo evidence for direct modulation of dATM activity by dTCTP in the control of genome stability and organ development.
Collapse
|
81
|
Up-regulation of Rhoa/Rho kinase pathway by translationally controlled tumor protein in vascular smooth muscle cells. Int J Mol Sci 2014; 15:10365-76. [PMID: 24918292 PMCID: PMC4100156 DOI: 10.3390/ijms150610365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/30/2014] [Accepted: 06/03/2014] [Indexed: 11/19/2022] Open
Abstract
Translationally controlled tumor protein (TCTP), a repressor for Na,K-ATPase has been implicated in the development of systemic hypertension, as proved by TCTP-over-expressing transgenic (TCTP-TG) mice. Aorta of TCTP-TG exhibited hypercontractile response compared to that of non-transgenic mice (NTG) suggesting dys-regulation of signaling pathways involved in the vascular contractility by TCTP. Because dys-regulation of RhoA/Rho kinase pathway is implicated in increased vascular contractility, we examined whether TCTP induces alterations in RhoA pathway in vascular smooth muscle cells (VSMCs). We found that TCTP over-expression by adenovirus infection up-regulated RhoA pathway including the expression of RhoA, and its downstream signalings, phosphorylation of myosin phosphatase target protein (MYPT-1), and myosin light chain (MLC). Conversely, lentiviral silencing of TCTP reduced the RhoA expression and Rho kinase signalings. Using immunohistochemical and Western blotting studies on aortas from TCTP-TG confirmed the elevated expression of RhoA and increase in p-MLC (phosphorylated MLC). In contrast, down-regulation of RhoA and p-MLC were found in aortas from heterozygous mice with deleted allele of TCTP (TCTP+/−). We conclude that up-regulation of TCTP induces RhoA-mediated pathway, and that TCTP-induced RhoA plays a role in the regulation in vasculature. Modulation of TCTP may offer a therapeutic target for hypertension and in vascular contractility dysfunction.
Collapse
|
82
|
Chen K, Huang C, Yuan J, Cheng H, Zhou R. Long-term artificial selection reveals a role of TCTP in autophagy in mammalian cells. Mol Biol Evol 2014; 31:2194-211. [PMID: 24890374 DOI: 10.1093/molbev/msu181] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Understanding genomic variation and detecting selection signatures in a genome under selection have been great challenges for a century. Activation, development/exhaustion of primordial follicles in mammalian ovary determines reproductive success, menopause/end of female reproductive life. However, molecular mechanisms underlying oogenesis, particularly under artificial selection, are largely unknown. We report that a proteome-wide scan for selection signatures in the genome over 9,000 years of artificial pressure on the ovary revealed a general picture of selection signatures in the genome, especially genomic variations through artificial selection were detected in promoter and intron regions. Crossbreeding between domestic and wild species results in more than half of the protein spots exhibiting heterosis. Translationally controlled tumor protein (TCTP) is upregulated by artificial selection and positively regulates autophagy through the AMP-activated protein kinase pathway. Notably, TCTP interacts with ATG16 complex. In addition to cytoplasmic autophagy, nucleophagy occurs in the nuclei of granulosa and cumulus cells in ovaries, indicating an importance of the nuclear material for degradation by nucleophagy. Our findings provide insight into cellular and molecular mechanisms relevant for improvement of ovary functions, and identify selection signatures in the genome for ovary function over long-term artificial selection pressure.
Collapse
Affiliation(s)
- Ke Chen
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Chunhua Huang
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Jia Yuan
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Hanhua Cheng
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Rongjia Zhou
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
83
|
Recent advances in the understanding of brown spider venoms: From the biology of spiders to the molecular mechanisms of toxins. Toxicon 2014; 83:91-120. [DOI: 10.1016/j.toxicon.2014.02.023] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/19/2013] [Accepted: 02/27/2014] [Indexed: 11/22/2022]
|
84
|
Chen W, Wang H, Tao S, Zheng Y, Wu W, Lian F, Jaramillo M, Fang D, Zhang DD. Tumor protein translationally controlled 1 is a p53 target gene that promotes cell survival. Cell Cycle 2014; 12:2321-8. [PMID: 24067374 DOI: 10.4161/cc.25404] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Tumor suppressor p53 maintains genome stability by differentially activating target genes that control diverse cellular responses, such as the antioxidant response, cell cycle arrest and apoptosis. Despite the fact that many p53 downstream genes have been well characterized, novel p53 target genes are continuously being identified. Here, we report that Tpt1 is a direct target gene of p53. We found that p53 upregulates the transcription of Tpt1 and identified a p53-responsive element in the promoter of the mouse Tpt1 gene. Furthermore, p53-dependent induction of Tpt1 was able to reduce oxidative stress, minimize apoptosis, and promote cell survival in response to H 2O2 challenge. In addition, a positive correlation between the expression of p53 and Tpt1 only existed in normal lung tissues, not in lung tumors. Such positive correlation was also found in lung cell lines that contain wild-type p53, but not mutated p53. Based on the important role of Tpt1 in cancer development, chemoresistance, and cancer reversion, identification of Tpt1 as a direct target gene of p53 not only adds to the complexity of the p53 network, but may also open up a new avenue for cancer prevention and intervention.
Collapse
Affiliation(s)
- Weimin Chen
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Acunzo J, Baylot V, So A, Rocchi P. TCTP as therapeutic target in cancers. Cancer Treat Rev 2014; 40:760-9. [PMID: 24650927 DOI: 10.1016/j.ctrv.2014.02.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 01/07/2023]
Abstract
The translationally controlled tumor protein (TCTP) is a highly conserved protein present in eukaryotic organisms. This protein, located both in the cytoplasmic and the nucleus, is expressed in various tissues and is regulated in response to a wide range of extracellular stimuli. TCTP interacts with itself and other protein including MCL1 and p53. TCTP has been shown to play an important role in physiological events, such as cell proliferation, cell death and immune responses but also in stress response and tumor reversion. Moreover, TCTP expression is associated with malignancy and chemoresistance. In this review, we will evaluate pathways regulated by TCTP and current inhibitory strategy to target TCTP in cancerous diseases.
Collapse
Affiliation(s)
- Julie Acunzo
- (a)Inserm, U1068, CRCM, Marseille F-13009, France; (b)Institut Paoli-Calmettes, Marseille F-13009, France; (c)Aix-Marseille Univ., Marseille F-13284, France; (d)CNRS, UMR7258, Marseille F-13009, France
| | - Virginie Baylot
- (a)Inserm, U1068, CRCM, Marseille F-13009, France; (b)Institut Paoli-Calmettes, Marseille F-13009, France; (c)Aix-Marseille Univ., Marseille F-13284, France; (d)CNRS, UMR7258, Marseille F-13009, France
| | - Alan So
- (e)University of British Columbia, The Vancouver Prostate Centre 2660- Oak St Vancouver, BC V6H3Z6, Canada
| | - Palma Rocchi
- (a)Inserm, U1068, CRCM, Marseille F-13009, France; (b)Institut Paoli-Calmettes, Marseille F-13009, France; (c)Aix-Marseille Univ., Marseille F-13284, France; (d)CNRS, UMR7258, Marseille F-13009, France.
| |
Collapse
|
86
|
Tsai MJ, Yang-Yen HF, Chiang MK, Wang MJ, Wu SS, Chen SH. TCTP is essential for β-cell proliferation and mass expansion during development and β-cell adaptation in response to insulin resistance. Endocrinology 2014; 155:392-404. [PMID: 24248465 DOI: 10.1210/en.2013-1663] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The perinatal period is critical for β-cell mass establishment, which is characterized by a transient burst in proliferation to increase β-cell mass in response to the need for glucose homeostasis throughout life. In adulthood, the ability of β-cells to grow, proliferate, and expand their mass is also characteristic of pathological states of insulin resistance. Translationally controlled tumor-associated protein (TCTP), an evolutionarily highly conserved protein that is implicated in cell growth and proliferation, has been identified as a novel glucose-regulated survival-supporting protein in pancreatic β-cells. In this study, the enhanced β-cell proliferation detected both during the perinatal developmental period and in insulin-resistant states in high-fat diet-fed mice was found to parallel the expression of TCTP in pancreatic β-cells. Specific knockout of TCTP in β-cells led to increased expression of total and nuclear Forkhead box protein O1 and tumor suppressor protein 53, and decreased expression of p70S6 kinase phosphorylation and cyclin D2 and cyclin-dependent kinase 2. This resulted in decreased β-cell proliferation and growth, reduced β-cell mass, and insulin secretion. Together, these effects led to hyperglycemia. These observations suggest that TCTP is essential for β-cell mass expansion during development and β-cell adaptation in response to insulin resistance.
Collapse
Affiliation(s)
- Ming-Jen Tsai
- PhD Program in Pharmacology and Toxicology (M.J.-T., S.-H.C.) and Department of Pharmacology (S.-S.W., S.-H.C.), School of Medicine, Tzu Chi University, Hualien 970, Taiwan; Departments of Emergency Medicine (M.J.-T.) and Medical Research (M.-J.W.), Neuro-Medical Scientific Center, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan; Institutes of Molecular Biology (H.-F.Y.-Y.), Academia Sinica, Taipei 115, Taiwan; and Department of Life Science and Institute of Molecular Biology (M.-K.C.), National Chung-Cheng University, Chia-Yi 621, Taiwan
| | | | | | | | | | | |
Collapse
|
87
|
Santa Brígida AB, dos Reis SP, de Nazaré Monteiro Costa C, Cardoso CMY, Lima AM, de Souza CRB. Molecular cloning and characterization of a cassava translationally controlled tumor protein gene potentially related to salt stress response. Mol Biol Rep 2014; 41:1787-97. [DOI: 10.1007/s11033-014-3028-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 01/03/2014] [Indexed: 12/28/2022]
|
88
|
Nayarisseri A, Yadav M, Wishard R. Computational evaluation of new homologous down regulators of translationally controlled tumor protein (TCTP) targeted for tumor reversion. Interdiscip Sci 2014; 5:274-9. [DOI: 10.1007/s12539-013-0183-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 06/18/2012] [Accepted: 06/25/2012] [Indexed: 01/13/2023]
|
89
|
Toscano-Morales R, Xoconostle-Cázares B, Martínez-Navarro AC, Ruiz-Medrano R. Long distance movement of an Arabidopsis Translationally Controlled Tumor Protein (AtTCTP2) mRNA and protein in tobacco. FRONTIERS IN PLANT SCIENCE 2014; 5:705. [PMID: 25566280 PMCID: PMC4269120 DOI: 10.3389/fpls.2014.00705] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/25/2014] [Indexed: 05/21/2023]
Abstract
Translationally Controlled Tumor Protein (TCTP) is an almost ubiquitous protein found in eukaryotes, fundamental for the regulation of development and general growth. The multiple functions of TCTP have been inferred from its involvement in several cell pathways, but the specific function of TCTP is still not known in detail. On the other hand, TCTP seems to respond to a plethora of external signals, and appears to be regulated at the transcriptional and/or translational levels by mechanisms yet to be determined. In the present work, we analyzed the capacity of AtTCTP2 gene products (mRNA and protein) to translocate long distance through tobacco heterografts (transgenic/WT and WT/transgenic). The results indicate that both AtTCTP2 mRNA and protein are capable of moving long distance in both directions (stock-scion and scion-stock) with a tendency for movement from source to sink tissue (stock to scion). Interestingly, aerial roots emerged only in heterografts where the protein was detected in both stock and scion, suggesting a correlation between the presence of AtTCTP2 and aerial root appearance. More detailed analysis showed that these aerial roots harbored the transgene and expressed both transcript and protein. In addition, the protein localization pattern in transgenic aerial and primary roots was basically the same, indicating specific nuclear destination in roots, but also in leaves. These findings provide an approach to understand the role of long-distance movement in the function of plant TCTPs, supporting the notion that some of these act in a non-cell autonomous manner, as the human counterpart, the Histamine Releasing Factor (HRF).
Collapse
Affiliation(s)
| | | | | | - Roberto Ruiz-Medrano
- *Correspondence: Roberto Ruiz-Medrano, Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ave., IPN 2508, Zacatenco, 07360 Mexico DF, Mexico e-mail:
| |
Collapse
|
90
|
Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells using the CRISPR-Cas9 system. Science 2013; 343:80-4. [PMID: 24336569 DOI: 10.1126/science.1246981] [Citation(s) in RCA: 2095] [Impact Index Per Article: 174.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system for genome editing has greatly expanded the toolbox for mammalian genetics, enabling the rapid generation of isogenic cell lines and mice with modified alleles. Here, we describe a pooled, loss-of-function genetic screening approach suitable for both positive and negative selection that uses a genome-scale lentiviral single-guide RNA (sgRNA) library. sgRNA expression cassettes were stably integrated into the genome, which enabled a complex mutant pool to be tracked by massively parallel sequencing. We used a library containing 73,000 sgRNAs to generate knockout collections and performed screens in two human cell lines. A screen for resistance to the nucleotide analog 6-thioguanine identified all expected members of the DNA mismatch repair pathway, whereas another for the DNA topoisomerase II (TOP2A) poison etoposide identified TOP2A, as expected, and also cyclin-dependent kinase 6, CDK6. A negative selection screen for essential genes identified numerous gene sets corresponding to fundamental processes. Last, we show that sgRNA efficiency is associated with specific sequence motifs, enabling the prediction of more effective sgRNAs. Collectively, these results establish Cas9/sgRNA screens as a powerful tool for systematic genetic analysis in mammalian cells.
Collapse
Affiliation(s)
- Tim Wang
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
91
|
Gu X, Yao L, Ma G, Cui L, Li Y, Liang W, Zhao B, Li K. TCTP promotes glioma cell proliferation in vitro and in vivo via enhanced β-catenin/TCF-4 transcription. Neuro Oncol 2013; 16:217-27. [PMID: 24311645 DOI: 10.1093/neuonc/not194] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background The translationally controlled tumor protein (TCTP) is a multifunctional protein that plays important roles in immune responses, cell proliferation, tumorigenicity and cell apoptosis. Here, we examined the clinical value of TCTP in glioma patient survival and investigated the functional roles and mechanism of TCTP in glioma development. Methods TCTP expression was determined through immunohistochemical staining, immunoblotting, and quantitative real-time PCR (qRT-PCR). TCTP or TCF-4 expression was silenced using short hairpin (sh) RNA. In vitro cell proliferation was detected using MTT, BrdU and colony formation assays, and in vivo tumor growth was performed using the xenograft model. TCTP/TCF-4/β-catenin association was detected using a co-immunoprecipitation (co-IP) assay. TCF-4 transcription activity was detected using a TOPflash/FOPflash report gene assay. Wnt/β-catenin-targeted gene expression was detected through Western blotting. Results TCTP protein levels were significantly elevated in high-grade gliomas compared with low-grade gliomas and normal brain tissues. Importantly, the expression of TCTP was significantly associated with poorer overall survival and disease-free survival, and TCTP also reduced the survival rate after treatment with radiotherapy and temozolomide (RT-TMZ) for glioma patients. The ectopic expression of TCTP enhanced glioma cell proliferation both in vitro and in vivo, whereas the knockdown of TCTP inhibited this effect. Similarly, the overexpression of TCTP increased β-catenin binding to TCF-4, TOPflash report gene transcription activity, and the expression of Wnt/β-catenin signaling target genes including c-Myc and cyclin D1; notably, the knockdown of TCTP reduced these effects. The knockdown of TCF-4 using shRNA rescued the enhanced cell proliferation induced by the overexpression of TCTP. Conclusion TCTP is associated with reduced survival of glioma patients and induces glioma tumor growth through enhanced Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Xuefeng Gu
- Corresponding authors: Keshen Li, MD, PhD, Institute of Neurology, Guangdong Medical College, Zhanjiang 524001, China. ); Bin Zhao, MD, PhD, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China (
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Zhang ZX, Geng DY, Han Q, Liang SD, Guo HR. The C-terminal cysteine of turbot Scophthalmus maximus translationally controlled tumour protein plays a key role in antioxidation and growth-promoting functions. JOURNAL OF FISH BIOLOGY 2013; 83:1287-1301. [PMID: 24124757 DOI: 10.1111/jfb.12231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 08/10/2013] [Indexed: 06/02/2023]
Abstract
The translationally controlled tumour protein (TCTP) of turbot Scophthalmus maximus (SmTCTP) contains only one cysteine (Cys¹⁷⁰) at the C-terminal end. The biological role of this C-terminal Cys¹⁷⁰ in the antioxidation and growth-promoting functions of SmTCTP was examined by site-directed mutation of C170A (Cys¹⁷⁰ →Ala¹⁷⁰). It was found that C170A mutation not only obviously decreased the antioxidation capacity of the mutant-smtctp-transformed bacteria exposed to 0·22 mM hydrogen peroxide, but also significantly interrupted the normal growth and survival of the mutant-smtctp-transformed bacteria and flounder Paralichthys olivaceus gill (FG) cells, indicating a key role played by Cys¹⁷⁰ in the antioxidation and growth-promoting functions of SmTCTP. This study also suggested that the self-dimerization or dimerization with other interacting proteins is critical to the growth-promoting function of SmTCTP.
Collapse
Affiliation(s)
- Z-X Zhang
- Department of Marine Biology, Ocean University of China, Qingdao, 266003, P. R. China
| | | | | | | | | |
Collapse
|
93
|
Hinojosa-Moya JJ, Xoconostle-Cázares B, Toscano-Morales R, Ramírez-Ortega F, Luis Cabrera-Ponce J, Ruiz-Medrano R. Characterization of the pumpkin Translationally-Controlled Tumor Protein CmTCTP. PLANT SIGNALING & BEHAVIOR 2013; 8:e26477. [PMID: 24065051 PMCID: PMC4091340 DOI: 10.4161/psb.26477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/13/2013] [Indexed: 05/17/2023]
Abstract
In higher plants, the phloem plays a central role in the delivery of nutrients and signals from source to sink tissues. These signals likely coordinate different aspects of plant development, as well as its response to environmental cues. Although some phloem-transported proteins and RNAs may function as signaling molecules in plants, their mode of action remains poorly understood. Previous analysis of transcripts from CMV-infected pumpkin (Cucurbita maxima cv Big Max) identified a Translationally-Controlled Tumor Protein (TCTP) mRNA homolog, designated CmTCTP. In the present work this transcript was analyzed in terms of its expression pattern. This RNA accumulates, both in healthy and CMV-infected plants, in developing and mature phloem in petiole and roots, as well as in apices at high levels. The protein was present at lower levels in most cell types, and almost no signal was detected in apices, suggesting translational regulation of this RNA. Additionally, CmTCTP harbored by Agrobacterium rhizogenes is capable of inducing whole plant regeneration. These data suggest a role for CmTCTP in growth regulation, possibly through long-distance signaling.
Collapse
Affiliation(s)
- J Jesús Hinojosa-Moya
- Departamento de Biotecnología y Bioingeniería; CINVESTAV- IPN; Zacatenco, D.F. Mexico
- Facultad de Ingeniería Química; Benemérita Universidad Autónoma de Puebla; Colonia San Manuel; Ciudad Universitaria; Puebla, México
| | | | | | | | - José Luis Cabrera-Ponce
- Departamento de Ingeniería Genética de Plantas; CINVESTAV-IPN Unidad Guanajuato; Irapuato, Guanajuato México
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería; CINVESTAV- IPN; Zacatenco, D.F. Mexico
| |
Collapse
|
94
|
Pinkaew D, Le RJ, Chen Y, Eltorky M, Teng BB, Fujise K. Fortilin reduces apoptosis in macrophages and promotes atherosclerosis. Am J Physiol Heart Circ Physiol 2013; 305:H1519-29. [PMID: 24043250 DOI: 10.1152/ajpheart.00570.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Atherosclerosis, a deadly disease insufficiently addressed by cholesterol-lowering drugs, needs new therapeutic strategies. Fortilin, a 172-amino acid multifunctional polypeptide, binds p53 and blocks its transcriptional activation of Bax, thereby exerting potent antiapoptotic activity. Although fortilin-overexpressing mice reportedly exhibit hypertension and accelerated atherosclerosis, it remains unknown if fortilin, not hypertension, facilitates atherosclerosis. Our objective was to test the hypothesis that fortilin in and of itself facilitates atherosclerosis by protecting macrophages against apoptosis. We generated fortilin-deficient (fortilin(+/-)) mice and wild-type counterparts (fortilin(+/+)) on a LDL receptor (Ldlr)(-/-) apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (Apobec1)(-/-) hypercholesterolemic genetic background, incubated them for 10 mo on a normal chow diet, and assessed the degree and extent of atherosclerosis. Despite similar blood pressure and lipid profiles, fortilin(+/-) mice exhibited significantly less atherosclerosis in their aortae than their fortilin(+/+) littermate controls. Quantitative immunostaining and flow cytometry analyses showed that the atherosclerotic lesions of fortilin(+/-) mice contained fewer macrophages than those of fortilin(+/+) mice. In addition, there were more apoptotic cells in the intima of fortilin(+/-) mice than in the intima of fortilin(+/+) mice. Furthermore, peritoneal macrophages from fortilin(+/-) mice expressed more Bax and underwent increased apoptosis, both at the baseline level and in response to oxidized LDL. Finally, hypercholesterolemic sera from Ldlr(-/-)Apobec1(-/-) mice induced fortilin in peritoneal macrophages more robustly than sera from control mice. In conclusion, fortilin, induced in the proatherosclerotic microenvironment in macrophages, protects macrophages against Bax-induced apoptosis, allows them to propagate, and accelerates atherosclerosis. Anti-fortilin therapy thus may represent a promising next generation antiatherosclerotic therapeutic strategy.
Collapse
Affiliation(s)
- Decha Pinkaew
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | | | | | | | | | | |
Collapse
|
95
|
cDNA cloning, genomic organization and expression analysis during somatic embryogenesis of the translationally controlled tumor protein (TCTP) gene from Japanese larch (Larix leptolepis). Gene 2013; 529:150-8. [PMID: 23933269 DOI: 10.1016/j.gene.2013.07.076] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/01/2013] [Accepted: 07/22/2013] [Indexed: 11/22/2022]
Abstract
A full-length cDNA and genomic sequences of a translationally controlled tumor protein (TCTP) gene were isolated from Japanese larch (Larix leptolepis) and designated LaTCTP. The length of the cDNA was 1, 043 bp and contained a 504 bp open reading frame that encodes a predicted protein of 167 amino acids, characterized by two signature sequences of the TCTP protein family. Analysis of the LaTCTP gene structure indicated four introns and five exons, and it is the largest of all currently known TCTP genes in plants. The 5'-flanking promoter region of LaTCTP was cloned using an improved TAIL-PCR technique. In this region we identified many important potential cis-acting elements, such as a Box-W1 (fungal elicitor responsive element), a CAT-box (cis-acting regulatory element related to meristem expression), a CGTCA-motif (cis-acting regulatory element involved in MeJA-responsiveness), a GT1-motif (light responsive element), a Skn-1-motif (cis-acting regulatory element required for endosperm expression) and a TGA-element (auxin-responsive element), suggesting that expression of LaTCTP is highly regulated. Expression analysis demonstrated ubiquitous localization of LaTCTP mRNA in the roots, stems and needles, high mRNA levels in the embryonal-suspensor mass (ESM), browning embryogenic cultures and mature somatic embryos, and low levels of mRNA at day five during somatic embryogenesis. We suggest that LaTCTP might participate in the regulation of somatic embryo development. These results provide a theoretical basis for understanding the molecular regulatory mechanism of LaTCTP and lay the foundation for artificial regulation of somatic embryogenesis.
Collapse
|
96
|
Kaarbø M, Storm ML, Qu S, Wæhre H, Risberg B, Danielsen HE, Saatcioglu F. TCTP is an androgen-regulated gene implicated in prostate cancer. PLoS One 2013; 8:e69398. [PMID: 23894469 PMCID: PMC3718683 DOI: 10.1371/journal.pone.0069398] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/10/2013] [Indexed: 11/19/2022] Open
Abstract
TCTP has been implicated in a plethora of important cellular processes related to cell growth, cell cycle progression, malignant transformation and inhibition of apoptosis. In addition to these intracellular functions, TCTP has extracellular functions and plays an important role in immune cells. TCTP expression was previously shown to be deregulated in prostate cancer, but its function in prostate cancer cells is largely unknown. Here we show that TCTP expression is regulated by androgens in LNCaP prostate cancer cells in vitro as well as human prostate cancer xenografts in vivo. Knockdown of TCTP reduced colony formation and increased apoptosis in LNCaP cells, implicating it as an important factor for prostate cancer cell growth. Global gene expression profiling in TCTP knockdown LNCaP cells showed that several interferon regulated genes are regulated by TCTP, suggesting that it may have a role in regulating immune function in prostate cancer. In addition, recombinant TCTP treatment increased colony formation in LNCaP cells suggesting that secreted TCTP may function as a proliferative factor in prostate cancer. These results suggest that TCTP may have a role in prostate cancer development.
Collapse
Affiliation(s)
- Mari Kaarbø
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Su Qu
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Håkon Wæhre
- Institute for Medical Informatics, Oslo University Hospital, Oslo, Norway
| | - Bjørn Risberg
- Institute for Medical Informatics, Oslo University Hospital, Oslo, Norway
- Division of Pathology, Oslo University Hospital, Oslo, Norway
| | - Håvard E. Danielsen
- Institute for Medical Informatics, Oslo University Hospital, Oslo, Norway
- Center for Cancer Biomedicine, Oslo University Hospital, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Fahri Saatcioglu
- Department of Biosciences, University of Oslo, Oslo, Norway
- Institute for Medical Informatics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
97
|
Wang F, Hu C, Hua X, Song L, Xia Q. Translationally controlled tumor protein, a dual functional protein involved in the immune response of the silkworm, Bombyx mori. PLoS One 2013; 8:e69284. [PMID: 23894441 PMCID: PMC3718729 DOI: 10.1371/journal.pone.0069284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/07/2013] [Indexed: 12/20/2022] Open
Abstract
Insect gut immunity is the first line of defense against oral infection. Although a few immune-related molecules in insect intestine has been identified by genomics or proteomics approach with comparison to well-studied tissues, such as hemolymph or fat body, our knowledge about the molecular mechanism underlying the gut immunity which would involve a variety of unidentified molecules is still limited. To uncover additional molecules that might take part in pathogen recognition, signal transduction or immune regulation in insect intestine, a T7 phage display cDNA library of the silkworm midgut is constructed. By use of different ligands for biopanning, Translationally Controlled Tumor Protein (TCTP) has been selected. BmTCTP is produced in intestinal epithelial cells and released into the gut lumen. The protein level of BmTCTP increases at the early time points during oral microbial infection and declines afterwards. In vitro binding assay confirms its activity as a multi-ligand binding molecule and it can further function as an opsonin that promotes the phagocytosis of microorganisms. Moreover, it can induce the production of anti-microbial peptide via a signaling pathway in which ERK is required and a dynamic tyrosine phosphorylation of certain cytoplasmic membrane protein. Taken together, our results characterize BmTCTP as a dual-functional protein involved in both the cellular and the humoral immune response of the silkworm, Bombyx mori.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Cuimei Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xiaoting Hua
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Liang Song
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
98
|
TCTP overexpression is associated with the development and progression of glioma. Tumour Biol 2013; 34:3357-61. [DOI: 10.1007/s13277-013-0906-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 05/29/2013] [Indexed: 01/08/2023] Open
|
99
|
Abstract
PURPOSE OF REVIEW Tumor reversion is the biological process by which highly tumorigenic cells lose at great extent or entirely their malignant phenotype. The purpose of our research is to understand the molecular program of tumor reversion and its clinical application. We first established biological models of reversion, which was done by deriving revertant cells from different tumors. Secondly, the molecular program that could override the malignant phenotype was assessed. Differential gene-expression profiling showed that at least 300 genes are implicated in this reversion process such as SIAH-1, PS1, TSAP6, and, most importantly, translationally controlled tumor protein (TPT1/TCTP). Decreasing TPT1/TCTP is key in reprogramming malignant cells, including cancer stem cells. RECENT FINDINGS Recent findings indicate that TPT1/TCTP regulates the P53-MDM2-Numb axis. Notably, TPT1/TCTP and p53 are implicated in a reciprocal negative-feedback loop. TPT1/TCTP is a highly significant prognostic factor in breast cancer. Sertraline and thioridazine interfere with this repressive feedback by targeting directly TPT1/TCTP and inhibiting its binding to MDM2, restoring wildtype p53 function. Combining sertraline with classical drugs such as Ara-C in acute myeloid leukemia may be also beneficial. SUMMARY In this review, we discuss some of these reversion pathways and how this approach could open a new route to cancer treatment.
Collapse
|
100
|
Chen K, Chen S, Huang C, Cheng H, Zhou R. TCTP increases stability of hypoxia-inducible factor 1α by interaction with and degradation of the tumour suppressor VHL. Biol Cell 2013; 105:208-218. [PMID: 23387829 DOI: 10.1111/boc.201200080] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/30/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND INFORMATION The translationally controlled tumour protein (TCTP) plays an important role in maintaining cell proliferation and its high expression is associated with many tumours. The tumour suppressor von Hippel-Lindau protein (VHL) has been shown to function as an E3 ubiquitin ligase. Although great progress has been made, biological roles of these factors and relevant molecular mechanisms remain largely unknown. RESULTS In this study, we have shown that TCTP specifically binds to VHL through its β domain and competes with hypoxia-inducible factor-1α (HIF1α). TCTP over-expression decreased the protein level of VHL and the inhibition of TCTP expression by miRNA resulted in an increase of the VHL protein level. Moreover, TCTP over-expression promoted the K48-linked ubiquitination of VHL, thus degradation through the ubiquitin-proteasome pathway. In addition, we showed that TCTP increased the protein level of HIF1α, which promoted both vascular endothelial growth factor-hypoxic response element-promoter-driven luciferase reporter and endogenous VEGF expression. CONCLUSIONS These data have demonstrated that TCTP binds to the β domain of VHL through competition with HIF1α, which promotes VHL degradation by the ubiquitin-proteasome system and HIF1α stability.
Collapse
Affiliation(s)
- Ke Chen
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Shuliang Chen
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Chunhua Huang
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Hanhua Cheng
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Rongjia Zhou
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|