51
|
Herrada I, Samson C, Velours C, Renault L, Östlund C, Chervy P, Puchkov D, Worman HJ, Buendia B, Zinn-Justin S. Muscular Dystrophy Mutations Impair the Nuclear Envelope Emerin Self-assembly Properties. ACS Chem Biol 2015; 10:2733-42. [PMID: 26415001 DOI: 10.1021/acschembio.5b00648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
More than 100 genetic mutations causing X-linked Emery-Dreifuss muscular dystrophy have been identified in the gene encoding the integral inner nuclear membrane protein emerin. Most mutations are nonsense or frameshift mutations that lead to the absence of emerin in cells. Only very few cases are due to missense or short in-frame deletions. Molecular mechanisms explaining the corresponding emerin variants' loss of function are particularly difficult to identify because of the mostly intrinsically disordered state of the emerin nucleoplasmic region. We now demonstrate that this EmN region can be produced as a disordered monomer, as revealed by nuclear magnetic resonance, but rapidly self-assembles in vitro. Increases in concentration and temperature favor the formation of long curvilinear filaments with diameters of approximately 10 nm, as observed by electron microscopy. Assembly of these filaments can be followed by fluorescence through Thioflavin-T binding and by Fourier-transform Infrared spectrometry through formation of β-structures. Analysis of the assembly properties of five EmN variants reveals that del95-99 and Q133H impact filament assembly capacities. In cells, these variants are located at the nuclear envelope, but the corresponding quantities of emerin-emerin and emerin-lamin proximities are decreased compared to wild-type protein. Furthermore, variant P183H favors EmN aggregation in vitro, and variant P183T provokes emerin accumulation in cytoplasmic foci in cells. Substitution of residue Pro183 might systematically favor oligomerization, leading to emerin aggregation and mislocalization in cells. Our results suggest that emerin self-assembly is necessary for its proper function and that a loss of either the protein itself or its ability to self-assemble causes muscular dystrophy.
Collapse
Affiliation(s)
- Isaline Herrada
- Laboratoire
de Biologie Structurale et Radiobiologie, Institute for Integrative Biology of the Cell (I2BC), CEA Saclay Bât. 144, 91191 Gif-sur-Yvette Cedex, France
| | - Camille Samson
- Laboratoire
de Biologie Structurale et Radiobiologie, Institute for Integrative Biology of the Cell (I2BC), CEA Saclay Bât. 144, 91191 Gif-sur-Yvette Cedex, France
| | - Christophe Velours
- Laboratoire
d’Enzymologie et Biochimie Structurales, Institute for Integrative Biology of the Cell (I2BC), CNRS Bât.34, 1 avenue de
la terrasse, 91190 Gif-sur-Yvette, France
| | - Louis Renault
- Laboratoire
d’Enzymologie et Biochimie Structurales, Institute for Integrative Biology of the Cell (I2BC), CNRS Bât.34, 1 avenue de
la terrasse, 91190 Gif-sur-Yvette, France
| | - Cecilia Östlund
- Department
of Medicine and Department of Pathology and Cell Biology, College
of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, New York 10032, United States
| | - Pierre Chervy
- Laboratoire
de Biologie Structurale et Radiobiologie, Institute for Integrative Biology of the Cell (I2BC), CEA Saclay Bât. 144, 91191 Gif-sur-Yvette Cedex, France
| | - Dmytro Puchkov
- Department
of Molecular Pharmacology and Cell Biology, Leibniz-Institut für Molecular Pharmakologie (FMP), 13125 Berlin, Germany
| | - Howard J Worman
- Department
of Medicine and Department of Pathology and Cell Biology, College
of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, New York 10032, United States
| | - Brigitte Buendia
- Laboratoire
de Physiologie du Muscle Strié, Université Paris Diderot-Paris 7, CNRS, UMR 8251, Institut de Biologie
Fonctionnelle et Adaptative, 4 rue
M.A. Lagroua Weill Halle, 75205 Paris Cedex 13, France
| | - Sophie Zinn-Justin
- Laboratoire
de Biologie Structurale et Radiobiologie, Institute for Integrative Biology of the Cell (I2BC), CEA Saclay Bât. 144, 91191 Gif-sur-Yvette Cedex, France
| |
Collapse
|
52
|
Chang W, Antoku S, Östlund C, Worman HJ, Gundersen GG. Linker of nucleoskeleton and cytoskeleton (LINC) complex-mediated actin-dependent nuclear positioning orients centrosomes in migrating myoblasts. Nucleus 2015; 6:77-88. [PMID: 25587885 DOI: 10.1080/19491034.2015.1004947] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Myoblast migration is essential for muscle development and repair; however, the factors that contribute to the polarity of migrating myoblasts are relatively unknown. We find that randomly migrating C2C12 myoblasts orient their centrosomes in the direction of migration. Using wounded monolayers, we further show that centrosome orientation is stimulated by the serum factor lysophosphatidic acid (LPA) and involves the rearward movement of the nucleus while the centrosome is maintained at the cell centroid. The rate of nuclear movement correlated with that of actin retrograde flow and both cytochalasin D and blebbistatin prevented nuclear movement and centrosome orientation. Actin-dependent rearward nuclear movement in fibroblasts is mediated by assembly of nuclear membrane nesprin-2G and SUN2 LINC complexes into transmembrane actin-associated nuclear (TAN) lines anchored by A-type lamins and emerin. In C2C12 myoblasts, depletion of nesprin-2G, SUN2 or lamin A/C prevented nuclear movement and endogenous nesprin-2G and a chimeric GFP-mini-nesprin-2G formed TAN lines during nuclear movement. Depleting nesprin-2G strongly interfered with directed cell migration and reduced the efficiency of myoblast fusion into multinucleated myotubes. Our results show that nuclear movement contributes to centrosome orientation and polarity for efficient migration and fusion of myoblasts. Given that mutations in the genes encoding A-type lamins, nesprin-2 and SUN2 cause Emery-Dreifuss muscular dystrophy and related myopathies, our results have implications for understanding the mechanism of disease pathogenesis.
Collapse
Affiliation(s)
- Wakam Chang
- a Department of Pathology and Cell Biology ; College of Physicians and Surgeons; Columbia University ; New York , NY USA
| | | | | | | | | |
Collapse
|
53
|
Burridge K, Guilluy C. Focal adhesions, stress fibers and mechanical tension. Exp Cell Res 2015; 343:14-20. [PMID: 26519907 PMCID: PMC4891215 DOI: 10.1016/j.yexcr.2015.10.029] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/23/2015] [Indexed: 12/22/2022]
Abstract
Stress fibers and focal adhesions are complex protein arrays that produce, transmit and sense mechanical tension. Evidence accumulated over many years led to the conclusion that mechanical tension generated within stress fibers contributes to the assembly of both stress fibers themselves and their associated focal adhesions. However, several lines of evidence have recently been presented against this model. Here we discuss the evidence for and against the role of mechanical tension in driving the assembly of these structures. We also consider how their assembly is influenced by the rigidity of the substratum to which cells are adhering. Finally, we discuss the recently identified connections between stress fibers and the nucleus, and the roles that these may play, both in cell migration and regulating nuclear function.
Collapse
Affiliation(s)
- Keith Burridge
- Department of Cell Biology and Physiology, and Lineberger Comprehensive Cancer Center, 12-016 Lineberger, CB#7295, University of North Carolina, Chapel Hill, NC, USA.
| | - Christophe Guilluy
- Inserm UMR_S1087, CNRS UMR_C6291, L'institut du Thorax, and Université de Nantes, Nantes, France.
| |
Collapse
|
54
|
Abstract
Molecular tethers span the nuclear envelope to mechanically connect the cytoskeleton and nucleoskeleton. These bridge-like tethers, termed linkers of nucleoskeleton and cytoskeleton (LINC) complexes, consist of SUN proteins at the inner nuclear membrane and KASH proteins at the outer nuclear membrane. LINC complexes are central to a variety of cell activities including nuclear positioning and mechanotransduction, and LINC-related abnormalities are associated with a spectrum of tissue-specific diseases, termed laminopathies or envelopathies. Protocols used to study the biochemical and structural characteristics of core elements of SUN-KASH complexes are described here to facilitate further studies in this new field of cell biology.
Collapse
|
55
|
Thomas DG, Yenepalli A, Denais CM, Rape A, Beach JR, Wang YL, Schiemann WP, Baskaran H, Lammerding J, Egelhoff TT. Non-muscle myosin IIB is critical for nuclear translocation during 3D invasion. J Cell Biol 2015; 210:583-94. [PMID: 26261182 PMCID: PMC4539979 DOI: 10.1083/jcb.201502039] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/01/2015] [Indexed: 01/22/2023] Open
Abstract
Non-muscle myosin II (NMII) is reported to play multiple roles during cell migration and invasion. However, the exact biophysical roles of different NMII isoforms during these processes remain poorly understood. We analyzed the contributions of NMIIA and NMIIB in three-dimensional (3D) migration and in generating the forces required for efficient invasion by mammary gland carcinoma cells. Using traction force microscopy and microfluidic invasion devices, we demonstrated that NMIIA is critical for generating force during active protrusion, and NMIIB plays a major role in applying force on the nucleus to facilitate nuclear translocation through tight spaces. We further demonstrate that the nuclear membrane protein nesprin-2 is a possible linker coupling NMIIB-based force generation to nuclear translocation. Together, these data reveal a central biophysical role for NMIIB in nuclear translocation during 3D invasive migration, a result with relevance not only to cancer metastasis but for 3D migration in other settings such as embryonic cell migration and wound healing.
Collapse
Affiliation(s)
- Dustin G Thomas
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 441195 Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195
| | - Aishwarya Yenepalli
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 441195
| | - Celine Marie Denais
- Department of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Andrew Rape
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720
| | - Jordan R Beach
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yu-Li Wang
- Department of Biomedical Engineering, Carnegie Melon University, Pittsburgh, PA 15219
| | - William P Schiemann
- General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106
| | - Harihara Baskaran
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Jan Lammerding
- Department of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Thomas T Egelhoff
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 441195 Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195
| |
Collapse
|
56
|
Neelam S, Dickinson RB, Lele TP. New approaches for understanding the nuclear force balance in living, adherent cells. Methods 2015; 94:27-32. [PMID: 26115785 DOI: 10.1016/j.ymeth.2015.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 05/26/2015] [Accepted: 06/15/2015] [Indexed: 02/08/2023] Open
Abstract
Cytoskeletal forces are transmitted to the nucleus to position and shape it. Linkages mediated by the LINC (linker of nucleoskeleton and cytoskeleton) complex transfer these forces to the nuclear envelope. Nuclear position and shape can be thought to be determined by a balance of cytoskeletal forces generated by microtubule motors that shear the nuclear surface, actomyosin forces that can pull, push and shear the nucleus, and intermediate filaments that may passively resist nuclear decentering and deformation. Parsing contributions of these different forces to nuclear mechanics is a very challenging task. Here we review new approaches that can be used in living cells to probe and understand the nuclear force balance.
Collapse
Affiliation(s)
- Srujana Neelam
- Department of Biomedical Engineering, University of Florida, Gainesville FL 32611, United States
| | - Richard B Dickinson
- Department of Chemical Engineering, University of Florida, Gainesville FL 32611, United States
| | - Tanmay P Lele
- Department of Chemical Engineering, University of Florida, Gainesville FL 32611, United States.
| |
Collapse
|
57
|
Antoku S, Zhu R, Kutscheidt S, Fackler OT, Gundersen GG. Reinforcing the LINC complex connection to actin filaments: the role of FHOD1 in TAN line formation and nuclear movement. Cell Cycle 2015; 14:2200-5. [PMID: 26083340 DOI: 10.1080/15384101.2015.1053665] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Positioning the nucleus is critical for many cellular processes including cell division, migration and differentiation. The linker of nucleoskeleton and cytoskeleton (LINC) complex spans the inner and outer nuclear membranes and has emerged as a major factor in connecting the nucleus to the cytoskeleton for movement and positioning. Recently, we discovered that the diaphanous formin family member FHOD1 interacts with the LINC complex component nesprin-2 giant (nesprin-2G) and that this interaction plays essential roles in the formation of transmembrane actin-dependent nuclear (TAN) lines and nuclear movement during cell polarization in fibroblasts. We found that FHOD1 strengthens the connection between nesprin-2G and rearward moving dorsal actin cables by providing a second site of interaction between nesprin-2G and the actin cable. These results indicate that the LINC complex connection to the actin cytoskeleton can be enhanced by cytoplasmic factors and suggest a new model for TAN line formation. We discuss how the nesprin-2G-FHOD1 interaction may be regulated and its possible functional significance for development and disease.
Collapse
Key Words
- ABS, actin binding site
- ANC-1, Syne homology
- CH, calponin homology
- DAD, diaphanous autoregulatory domain
- DID, diaphanous inhibitory domain
- DRF, diaphanous related formin
- EDMD, Emery-Dreifuss muscular dystrophy
- Emery-Dreifuss muscular dystrophy
- FH, formin homology
- FHOD1
- GBD, GTPase binding domain
- GFP-mN2G, GFP-mini-nesprin-2G
- KASH, Klarsicht
- LINC Complex
- LINC, linker of nucleoskeleton and cytoskeleton
- LPA, lysophosphatidic acid
- SR, spectrin repeat
- TAN lines
- TAN lines, transmembrane actin-dependent nuclear lines
- actin filaments
- formin
- nesprin
- nesprin-2G, nesprin-2 giant
- nuclear movement
Collapse
Affiliation(s)
- Susumu Antoku
- a Department of Pathology & Cell Biology ; Columbia University ; New York , NY USA
| | | | | | | | | |
Collapse
|
58
|
Zaidel-Bar R, Zhenhuan G, Luxenburg C. The contractome – a systems view of actomyosin contractility in non-muscle cells. J Cell Sci 2015; 128:2209-17. [DOI: 10.1242/jcs.170068] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/27/2015] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
Actomyosin contractility is a highly regulated process that affects many fundamental biological processes in each and every cell in our body. In this Cell Science at a Glance article and the accompanying poster, we mined the literature and databases to map the contractome of non-muscle cells. Actomyosin contractility is involved in at least 49 distinct cellular functions that range from providing cell architecture to signal transduction and nuclear activity. Containing over 100 scaffolding and regulatory proteins, the contractome forms a highly complex network with more than 230 direct interactions between its components, 86 of them involving phosphorylation. Mapping these interactions, we identify the key regulatory pathways involved in the assembly of actomyosin structures and in activating myosin to produce contractile forces within non-muscle cells at the exact time and place necessary for cellular function.
Collapse
Affiliation(s)
- Ronen Zaidel-Bar
- Mechanobiology Institute, National University of Singapore, T-lab building #05-01, 5A Engineering Drive 1, 117411, Singapore
| | - Guo Zhenhuan
- Mechanobiology Institute, National University of Singapore, T-lab building #05-01, 5A Engineering Drive 1, 117411, Singapore
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 39040, Tel Aviv 69978, Israel
| |
Collapse
|
59
|
Alam SG, Lovett D, Kim DI, Roux KJ, Dickinson RB, Lele TP. The nucleus is an intracellular propagator of tensile forces in NIH 3T3 fibroblasts. J Cell Sci 2015; 128:1901-11. [PMID: 25908852 DOI: 10.1242/jcs.161703] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 03/24/2015] [Indexed: 01/14/2023] Open
Abstract
Nuclear positioning is a crucial cell function, but how a migrating cell positions its nucleus is not understood. Using traction-force microscopy, we found that the position of the nucleus in migrating fibroblasts closely coincided with the center point of the traction-force balance, called the point of maximum tension (PMT). Positioning of the nucleus close to the PMT required nucleus-cytoskeleton connections through linker of nucleoskeleton-to-cytoskeleton (LINC) complexes. Although the nucleus briefly lagged behind the PMT following spontaneous detachment of the uropod during migration, the nucleus quickly repositioned to the PMT within a few minutes. Moreover, traction-generating spontaneous protrusions deformed the nearby nucleus surface to pull the nuclear centroid toward the new PMT, and subsequent retraction of these protrusions relaxed the nuclear deformation and restored the nucleus to its original position. We propose that the protruding or retracting cell boundary transmits a force to the surface of the nucleus through the intervening cytoskeletal network connected by the LINC complexes, and that these forces help to position the nucleus centrally and allow the nucleus to efficiently propagate traction forces across the length of the cell during migration.
Collapse
Affiliation(s)
- Samer G Alam
- Department of Chemical Engineering, University of Florida, Bldg. 723, Gainesville, FL 32611, USA
| | - David Lovett
- Department of Chemical Engineering, University of Florida, Bldg. 723, Gainesville, FL 32611, USA
| | - Dae In Kim
- Sanford Children's Health Research Center, University of South Dakota, Sioux Falls, SD 57104, USA
| | - Kyle J Roux
- Sanford Children's Health Research Center, University of South Dakota, Sioux Falls, SD 57104, USA
| | - Richard B Dickinson
- Department of Chemical Engineering, University of Florida, Bldg. 723, Gainesville, FL 32611, USA
| | - Tanmay P Lele
- Department of Chemical Engineering, University of Florida, Bldg. 723, Gainesville, FL 32611, USA
| |
Collapse
|
60
|
Barton LJ, Soshnev AA, Geyer PK. Networking in the nucleus: a spotlight on LEM-domain proteins. Curr Opin Cell Biol 2015; 34:1-8. [PMID: 25863918 DOI: 10.1016/j.ceb.2015.03.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 11/29/2022]
Abstract
Proteins resident in the inner nuclear membrane and underlying nuclear lamina form a network that regulates nuclear functions. This review highlights a prominent family of nuclear lamina proteins that carries the LAP2-emerin-MAN1-domain (LEM-D). LEM-D proteins share an ability to bind lamins and tether repressive chromatin at the nuclear periphery. The importance of this family is underscored by findings that loss of individual LEM-D proteins causes progressive, tissue-restricted diseases, known as laminopathies. Diverse functions of LEM-D proteins are linked to interactions with unique and overlapping partners including signal transduction effectors, transcription factors and architectural proteins. Recent investigations suggest that LEM-D proteins form hubs within the nuclear lamina that integrate external signals important for tissue homeostasis and maintenance of progenitor cell populations.
Collapse
Affiliation(s)
- Lacy J Barton
- Department of Biochemistry, University of Iowa, College of Medicine, Iowa City, IA 52242, USA; Skirball Institute, Department of Cell Biology, NYU School of Medicine, NYU Langone Medical Center, New York, NY 10016, USA
| | - Alexey A Soshnev
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, 10065, USA
| | - Pamela K Geyer
- Department of Biochemistry, University of Iowa, College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
61
|
Groen CM, Jayo A, Parsons M, Tootle TL. Prostaglandins regulate nuclear localization of Fascin and its function in nucleolar architecture. Mol Biol Cell 2015; 26:1901-17. [PMID: 25808493 PMCID: PMC4436834 DOI: 10.1091/mbc.e14-09-1384] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/18/2015] [Indexed: 01/14/2023] Open
Abstract
Fascin, a conserved actin-bundling protein, is not only cytoplasmic but also localizes to the nucleus and nuclear periphery in both Drosophila and mammalian cell contexts. In Drosophila, prostaglandin signaling regulates this localization. In addition, Fascin plays a critical role in nucleolar architecture in both Drosophila and mammalian cells. Fascin, a highly conserved actin-bundling protein, localizes and functions at new cellular sites in both Drosophila and multiple mammalian cell types. During Drosophila follicle development, in addition to being cytoplasmic, Fascin is in the nuclei of the germline-derived nurse cells during stages 10B–12 (S10B–12) and at the nuclear periphery during stage 13 (S13). This localization is specific to Fascin, as other actin-binding proteins, Villin and Profilin, do not exhibit the same subcellular distribution. In addition, localization of fascin1 to the nucleus and nuclear periphery is observed in multiple mammalian cell types. Thus the regulation and function of Fascin at these new cellular locations is likely to be highly conserved. In Drosophila, loss of prostaglandin signaling causes a global reduction in nuclear Fascin and a failure to relocalize to the nuclear periphery. Alterations in nuclear Fascin levels result in defects in nucleolar morphology in both Drosophila follicles and cultured mammalian cells, suggesting that nuclear Fascin plays an important role in nucleolar architecture. Given the numerous roles of Fascin in development and disease, including cancer, our novel finding that Fascin has functions within the nucleus sheds new light on the potential roles of Fascin in these contexts.
Collapse
Affiliation(s)
- Christopher M Groen
- Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Asier Jayo
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom
| | - Tina L Tootle
- Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
62
|
Abstract
The intermediate filament proteins, A- and B-type lamins, form the nuclear lamina scaffold adjacent to the inner nuclear membrane. Lamins also contribute to chromatin regulation and various signaling pathways affecting gene expression. In this review, Osmanagic-Myers et al. focus on the role of nuclear lamins in mechanosensing and also discuss how disease-linked lamin mutants may impair the response of cells to mechanical stimuli and influence the properties of the extracellular matrix. The intermediate filament proteins, A- and B-type lamins, form the nuclear lamina scaffold adjacent to the inner nuclear membrane. B-type lamins confer elasticity, while A-type lamins lend viscosity and stiffness to nuclei. Lamins also contribute to chromatin regulation and various signaling pathways affecting gene expression. The mechanical roles of lamins and their functions in gene regulation are often viewed as independent activities, but recent findings suggest a highly cross-linked and interdependent regulation of these different functions, particularly in mechanosignaling. In this newly emerging concept, lamins act as a “mechanostat” that senses forces from outside and responds to tension by reinforcing the cytoskeleton and the extracellular matrix. A-type lamins, emerin, and the linker of the nucleoskeleton and cytoskeleton (LINC) complex directly transmit forces from the extracellular matrix into the nucleus. These mechanical forces lead to changes in the molecular structure, modification, and assembly state of A-type lamins. This in turn activates a tension-induced “inside-out signaling” through which the nucleus feeds back to the cytoskeleton and the extracellular matrix to balance outside and inside forces. These functions regulate differentiation and may be impaired in lamin-linked diseases, leading to cellular phenotypes, particularly in mechanical load-bearing tissues.
Collapse
|
63
|
Chang W, Worman HJ, Gundersen GG. Accessorizing and anchoring the LINC complex for multifunctionality. ACTA ACUST UNITED AC 2015; 208:11-22. [PMID: 25559183 PMCID: PMC4284225 DOI: 10.1083/jcb.201409047] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex, composed of outer and inner nuclear membrane Klarsicht, ANC-1, and Syne homology (KASH) and Sad1 and UNC-84 (SUN) proteins, respectively, connects the nucleus to cytoskeletal filaments and performs diverse functions including nuclear positioning, mechanotransduction, and meiotic chromosome movements. Recent studies have shed light on the source of this diversity by identifying factors associated with the complex that endow specific functions as well as those that differentially anchor the complex within the nucleus. Additional diversity may be provided by accessory factors that reorganize the complex into higher-ordered arrays. As core components of the LINC complex are associated with several diseases, understanding the role of accessory and anchoring proteins could provide insights into pathogenic mechanisms.
Collapse
Affiliation(s)
- Wakam Chang
- Department of Pathology and Cell Biology and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Howard J Worman
- Department of Pathology and Cell Biology and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032 Department of Pathology and Cell Biology and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
64
|
Abstract
Mutations in genes encoding nuclear envelope proteins cause a wide range of inherited diseases, many of which are neurological. We review the genetic causes and what little is known about pathogenesis of these nuclear envelopathies that primarily affect striated muscle, peripheral nerve and the central nervous system. We conclude by providing examples of experimental therapeutic approaches to these rare but important neuromuscular diseases.
Collapse
Affiliation(s)
- Howard J. Worman
- />Department of Medicine and Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032 USA
| | - William T. Dauer
- />Department of Neurology and Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109 USA
| |
Collapse
|
65
|
Elric J, Etienne-Manneville S. Centrosome positioning in polarized cells: common themes and variations. Exp Cell Res 2014; 328:240-8. [PMID: 25218948 DOI: 10.1016/j.yexcr.2014.09.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 09/01/2014] [Indexed: 12/17/2022]
Abstract
The centrosome position is tightly regulated during the cell cycle and during differentiated cellular functions. Because centrosome organizes the microtubule network to coordinate both intracellular organization and cell signaling, centrosome positioning is crucial to determine either the axis of cell division, the direction of cell migration or the polarized immune response of lymphocytes. Since alteration of centrosome positioning seems to promote cell transformation and tumor spreading, the molecular mechanisms controlling centrosome movement in response to extracellular and intracellular cues are under intense investigation. Evolutionary conserved pathways involving polarity proteins and cytoskeletal rearrangements are emerging as common regulators of centrosome positioning in a wide variety of cellular contexts.
Collapse
Affiliation(s)
- Julien Elric
- Institut Pasteur - CNRS URA 2582, Cell Polarity, Migration and Cancer Unit, 25 rue du Dr Roux, 75724 Paris Cedex 15, France; Université Pierre et Marie Curie, Cellule Pasteur UPMC, rue du Dr Roux, 75015 Paris, France
| | - Sandrine Etienne-Manneville
- Institut Pasteur - CNRS URA 2582, Cell Polarity, Migration and Cancer Unit, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
66
|
Berk JM, Simon DN, Jenkins-Houk CR, Westerbeck JW, Grønning-Wang LM, Carlson CR, Wilson KL. The molecular basis of emerin-emerin and emerin-BAF interactions. J Cell Sci 2014; 127:3956-69. [PMID: 25052089 DOI: 10.1242/jcs.148247] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Emerin is a conserved membrane component of nuclear lamina structure. Here, we report an advance in understanding the molecular basis of emerin function: intermolecular emerin-emerin association. There were two modes: one mediated by association of residues 170-220 in one emerin molecule to residues 170-220 in another, and the second involving residues 170-220 and 1-132. Deletion analysis showed residues 187-220 contain a positive element essential for intermolecular association in cells. By contrast, deletion of residues 168-186 inactivated a proposed negative element, required to limit or control association. Association of GFP-emerin with nuclear BAF in cells required the LEM domain (residues 1-47) and the positive element. Emerin peptide arrays revealed direct binding of residues 170-220 to residues 206-225 (the proposed positive element), residues 147-174 (particularly P(153)MYGRDSAYQSITHYRP(169)) and the LEM domain. Emerin residues 1-132 and 159-220 were each sufficient to bind lamin A or B1 tails in vitro, identifying two independent regions of molecular contact with lamins. These results, and predicted emerin intrinsic disorder, support the hypothesis that there are multiple 'backbone' and LEM-domain configurations in a proposed intermolecular emerin network at the nuclear envelope.
Collapse
Affiliation(s)
- Jason M Berk
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 USA
| | - Dan N Simon
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 USA
| | - Clifton R Jenkins-Houk
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 USA
| | - Jason W Westerbeck
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 USA
| | - Line M Grønning-Wang
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - Cathrine R Carlson
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0450 Oslo, Norway
| | - Katherine L Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 USA
| |
Collapse
|
67
|
Huelsmann S, Brown NH. Nuclear positioning by actin cables and perinuclear actin: Special and general? Nucleus 2014; 5:219-23. [PMID: 24905988 DOI: 10.4161/nucl.29405] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nuclear positioning is an important process during development and homeostasis. Depending on the affected tissue, mislocalized nuclei can alter cellular processes such as polarization, differentiation, or migration and lead ultimately to diseases. Many cells actively control the position of their nucleus using their cytoskeleton and motor proteins. We have recently shown that during Drosophila oogenesis, nurse cells employ cytoplasmic actin cables in association with perinuclear actin to position their nucleus. Here, we briefly summarize our work and discuss why nuclear positioning in nurse cells is specialized but the molecular mechanisms are likely to be more generally used.
Collapse
Affiliation(s)
- Sven Huelsmann
- The Gurdon Institute and Department of Physiology, Development, and Neuroscience; University of Cambridge; Cambridge, UK; Department of Biological and Environmental Science; University of Jyväskylä; Jyväskylä, Finland
| | - Nicholas H Brown
- The Gurdon Institute and Department of Physiology, Development, and Neuroscience; University of Cambridge; Cambridge, UK
| |
Collapse
|
68
|
Kutscheidt S, Zhu R, Antoku S, Luxton GWG, Stagljar I, Fackler OT, Gundersen GG. FHOD1 interaction with nesprin-2G mediates TAN line formation and nuclear movement. Nat Cell Biol 2014; 16:708-15. [PMID: 24880667 PMCID: PMC4113092 DOI: 10.1038/ncb2981] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/30/2014] [Indexed: 12/26/2022]
Abstract
Active positioning of the nucleus is integral to division, migration, and differentiation of mammalian cells1. Fibroblasts polarizing for migration orient their centrosomes by actin-dependent nuclear movement2. This nuclear movement depends on nesprin-2 giant (N2G), a large, actin-binding outer nuclear membrane component of transmembrane actin-associated (TAN) lines that couple nuclei to moving actin cables3. Here, we identify the diaphanous formin FHOD1 as an interaction partner of N2G. Silencing FHOD1 expression or expression of fragments containing binding sites of N2G or FHOD1 disrupted nuclear movement and centrosome orientation in polarizing fibroblasts. Unexpectedly, silencing of FHOD1 expression did not affect the formation or rearward flow of dorsal actin cables required for nuclear positioning. Rather, N2G-FHOD1 interaction provided a second connection to actin cables essential for TAN line formation and thus nuclear movement. These results reveal a unique function for a formin in coupling an organelle to actin filaments for translocation and suggest that TAN lines require multi-point attachments to actin cables to resist the large forces necessary to move the nucleus.
Collapse
Affiliation(s)
- Stefan Kutscheidt
- 1] Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, INF 324, 69120 Heidelberg, Germany [2]
| | - Ruijun Zhu
- 1] Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA [2]
| | - Susumu Antoku
- 1] Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA [2]
| | - G W Gant Luxton
- 1] Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA [2]
| | - Igor Stagljar
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, INF 324, 69120 Heidelberg, Germany
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| |
Collapse
|
69
|
Cau P, Navarro C, Harhouri K, Roll P, Sigaudy S, Kaspi E, Perrin S, De Sandre-Giovannoli A, Lévy N. WITHDRAWN: Nuclear matrix, nuclear envelope and premature aging syndromes in a translational research perspective. Semin Cell Dev Biol 2014:S1084-9521(14)00058-5. [PMID: 24685615 DOI: 10.1016/j.semcdb.2014.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/03/2014] [Accepted: 03/09/2014] [Indexed: 10/25/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.semcdb.2014.03.022. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Pierre Cau
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(2).
| | - Claire Navarro
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1)
| | - Karim Harhouri
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1)
| | - Patrice Roll
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(2)
| | - Sabine Sigaudy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(3)
| | - Elise Kaspi
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(2)
| | - Sophie Perrin
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1)
| | - Annachiara De Sandre-Giovannoli
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(3)
| | - Nicolas Lévy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(3).
| |
Collapse
|
70
|
Cau P, Navarro C, Harhouri K, Roll P, Sigaudy S, Kaspi E, Perrin S, De Sandre-Giovannoli A, Lévy N. Nuclear matrix, nuclear envelope and premature aging syndromes in a translational research perspective. Semin Cell Dev Biol 2014; 29:125-47. [PMID: 24662892 DOI: 10.1016/j.semcdb.2014.03.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lamin A-related progeroid syndromes are genetically determined, extremely rare and severe. In the past ten years, our knowledge and perspectives for these diseases has widely progressed, through the progressive dissection of their pathophysiological mechanisms leading to precocious and accelerated aging, from the genes mutations discovery until therapeutic trials in affected children. A-type lamins are major actors in several structural and functional activities at the nuclear periphery, as they are major components of the nuclear lamina. However, while this is usually poorly considered, they also play a key role within the rest of the nucleoplasm, whose defects are related to cell senescence. Although nuclear shape and nuclear envelope deformities are obvious and visible events, nuclear matrix disorganization and abnormal composition certainly represent the most important causes of cell defects with dramatic pathological consequences. Therefore, lamin-associated diseases should be better referred as laminopathies instead of envelopathies, this later being too restrictive, considering neither the key structural and functional roles of soluble lamins in the entire nucleoplasm, nor the nuclear matrix contribution to the pathophysiology of lamin-associated disorders and in particular in defective lamin A processing-associated aging diseases. Based on both our understanding of pathophysiological mechanisms and the biological and clinical consequences of progeria and related diseases, therapeutic trials have been conducted in patients and were terminated less than 10 years after the gene discovery, a quite fast issue for a genetic disease. Pharmacological drugs have been repurposed and used to decrease the toxicity of the accumulated, unprocessed and truncated prelaminA in progeria. To date, none of them may be considered as a cure for progeria and these clinical strategies were essentially designed toward reducing a subset of the most dramatic and morbid features associated to progeria. New therapeutic strategies under study, in particular targeting the protein expression pathway at the mRNA level, have shown a remarkable efficacy both in vitro in cells and in vivo in mice models. Strategies intending to clear the toxic accumulated proteins from the nucleus are also under evaluation. However, although exceedingly rare, improving our knowledge of genetic progeroid syndromes and searching for innovative and efficient therapies in these syndromes is of paramount importance as, even before they can be used to save lives, they may significantly (i) expand the affected childrens' lifespan and preserve their quality of life; (ii) improve our understanding of aging-related disorders and other more common diseases; and (iii) expand our fundamental knowledge of physiological aging and its links with major physiological processes such as those involved in oncogenesis.
Collapse
Affiliation(s)
- Pierre Cau
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France.
| | - Claire Navarro
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Karim Harhouri
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Patrice Roll
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Sabine Sigaudy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Elise Kaspi
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Sophie Perrin
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Annachiara De Sandre-Giovannoli
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Nicolas Lévy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France.
| |
Collapse
|
71
|
Kaminski A, Fedorchak GR, Lammerding J. The cellular mastermind(?)-mechanotransduction and the nucleus. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 126:157-203. [PMID: 25081618 PMCID: PMC4591053 DOI: 10.1016/b978-0-12-394624-9.00007-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells respond to mechanical stimulation by activation of specific signaling pathways and genes that allow the cell to adapt to its dynamic physical environment. How cells sense the various mechanical inputs and translate them into biochemical signals remains an area of active investigation. Recent reports suggest that the cell nucleus may be directly implicated in this cellular mechanotransduction process. Taken together, these findings paint a picture of the nucleus as a central hub in cellular mechanotransduction-both structurally and biochemically-with important implications in physiology and disease.
Collapse
Affiliation(s)
- Ashley Kaminski
- Department of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
| | - Gregory R Fedorchak
- Department of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
| | - Jan Lammerding
- Department of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
72
|
Alam S, Lovett DB, Dickinson RB, Roux KJ, Lele TP. Nuclear forces and cell mechanosensing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 126:205-15. [PMID: 25081619 DOI: 10.1016/b978-0-12-394624-9.00008-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cells respond to mechanical signals, but the subcellular mechanisms are not well understood. The nucleus has recently emerged as an important mechanosensory organelle in the cell, as it is intimately connected to the cytoskeleton. Mechanical forces applied to cells that act on membrane-embedded receptors are transmitted through the cytoskeleton to the nuclear surface. Interfering with linkers of the nucleus to the cytoskeleton causes defects in cell mechanosensing and cell function. In this chapter, we discuss recent work in this area, highlighting the role that the nuclear linkages with the cytoskeleton play in cellular mechanotransduction.
Collapse
Affiliation(s)
- Samer Alam
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - David B Lovett
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Richard B Dickinson
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Kyle J Roux
- Sanford Children's Health Research Center, University of South Dakota, Sioux Falls, South Dakota, USA
| | - Tanmay P Lele
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
73
|
Folker ES, Baylies MK. Nuclear positioning in muscle development and disease. Front Physiol 2013; 4:363. [PMID: 24376424 PMCID: PMC3859928 DOI: 10.3389/fphys.2013.00363] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/23/2013] [Indexed: 11/13/2022] Open
Abstract
Muscle disease as a group is characterized by muscle weakness, muscle loss, and impaired muscle function. Although the phenotype is the same, the underlying cellular pathologies, and the molecular causes of these pathologies, are diverse. One common feature of many muscle disorders is the mispositioning of myonuclei. In unaffected individuals, myonuclei are spaced throughout the periphery of the muscle fiber such that the distance between nuclei is maximized. However, in diseased muscles, the nuclei are often clustered within the center of the muscle cell. Although this phenotype has been acknowledged for several decades, it is often ignored as a contributor to muscle weakness. Rather, these nuclei are taken only as a sign of muscle repair. Here we review the evidence that mispositioned myonuclei are not merely a symptom of muscle disease but also a cause. Additionally, we review the working models for how myonuclei move from two different perspectives: from that of the nuclei and from that of the cytoskeleton. We further compare and contrast these mechanisms with the mechanisms of nuclear movement in other cell types both to draw general themes for nuclear movement and to identify muscle-specific considerations. Finally, we focus on factors that can be linked to muscle disease and find that genes that regulate myonuclear movement and positioning have been linked to muscular dystrophy. Although the cause-effect relationship is largely speculative, recent data indicate that the position of nuclei should no longer be considered only a means to diagnose muscle disease.
Collapse
Affiliation(s)
- Eric S Folker
- Department of Biology, Boston College Chestnut Hill, MA, USA
| | - Mary K Baylies
- Department of Developmental Biology, Sloan-Kettering Institute New York, NY, USA
| |
Collapse
|