51
|
Gonçalves E, Segura‐Cabrera A, Pacini C, Picco G, Behan FM, Jaaks P, Coker EA, van der Meer D, Barthorpe A, Lightfoot H, Mironenko T, Beck A, Richardson L, Yang W, Lleshi E, Hall J, Tolley C, Hall C, Mali I, Thomas F, Morris J, Leach AR, Lynch JT, Sidders B, Crafter C, Iorio F, Fawell S, Garnett MJ. Drug mechanism-of-action discovery through the integration of pharmacological and CRISPR screens. Mol Syst Biol 2020; 16:e9405. [PMID: 32627965 PMCID: PMC7336273 DOI: 10.15252/msb.20199405] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/26/2022] Open
Abstract
Low success rates during drug development are due, in part, to the difficulty of defining drug mechanism-of-action and molecular markers of therapeutic activity. Here, we integrated 199,219 drug sensitivity measurements for 397 unique anti-cancer drugs with genome-wide CRISPR loss-of-function screens in 484 cell lines to systematically investigate cellular drug mechanism-of-action. We observed an enrichment for positive associations between the profile of drug sensitivity and knockout of a drug's nominal target, and by leveraging protein-protein networks, we identified pathways underpinning drug sensitivity. This revealed an unappreciated positive association between mitochondrial E3 ubiquitin-protein ligase MARCH5 dependency and sensitivity to MCL1 inhibitors in breast cancer cell lines. We also estimated drug on-target and off-target activity, informing on specificity, potency and toxicity. Linking drug and gene dependency together with genomic data sets uncovered contexts in which molecular networks when perturbed mediate cancer cell loss-of-fitness and thereby provide independent and orthogonal evidence of biomarkers for drug development. This study illustrates how integrating cell line drug sensitivity with CRISPR loss-of-function screens can elucidate mechanism-of-action to advance drug development.
Collapse
Affiliation(s)
| | - Aldo Segura‐Cabrera
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteHinxtonUK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Andrew R Leach
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteHinxtonUK
| | - James T Lynch
- Research and Early DevelopmentOncology R&DAstraZenecaCambridgeUK
| | - Ben Sidders
- Research and Early DevelopmentOncology R&DAstraZenecaCambridgeUK
| | - Claire Crafter
- Research and Early DevelopmentOncology R&DAstraZenecaCambridgeUK
| | - Francesco Iorio
- Wellcome Sanger InstituteHinxtonUK
- Human TechnopoleMilanoItaly
| | - Stephen Fawell
- Research and Early DevelopmentOncology R&DAstraZenecaWalthamMAUSA
| | | |
Collapse
|
52
|
Lee YC, Shi YJ, Wang LJ, Chiou JT, Huang CH, Chang LS. GSK3β suppression inhibits MCL1 protein synthesis in human acute myeloid leukemia cells. J Cell Physiol 2020; 236:570-586. [PMID: 32572959 DOI: 10.1002/jcp.29884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/27/2020] [Accepted: 06/04/2020] [Indexed: 01/09/2023]
Abstract
Previous studies have shown that glycogen synthase kinase 3β (GSK3β) suppression is a potential strategy for human acute myeloid leukemia (AML) therapy. However, the cytotoxic mechanism associated with GSK3β suppression remains unresolved. Thus, the underlying mechanism of N-(4-methoxybenzyl)-N'-(5-nitro-1,3-thiazol-2-yl)urea (AR-A014418)-elicited GSK3β suppression in the induction of AML U937 and HL-60 cell death was investigated in this study. Our study revealed that AR-A014418-induced MCL1 downregulation remarkably elicited apoptosis of U937 cells. Furthermore, the AR-A014418 treatment increased p38 MAPK phosphorylation and decreased the phosphorylated Akt and ERK levels. Activation of p38 MAPK subsequently evoked autophagic degradation of 4EBP1, while Akt inactivation suppressed mTOR-mediated 4EBP1 phosphorylation. Furthermore, AR-A014418-elicited ERK inactivation inhibited Mnk1-mediated eIF4E phosphorylation, which inhibited MCL1 mRNA translation in U937 cells. In contrast to GSK3α, GSK3β downregulation recapitulated the effect of AR-A014418 in U937 cells. Transfection of constitutively active GSK3β or cotransfection of constitutively activated MEK1 and Akt suppressed AR-A014418-induced MCL1 downregulation. Moreover, AR-A014418 sensitized U937 cells to ABT-263 (BCL2/BCL2L1 inhibitor) cytotoxicity owing to MCL1 suppression. Collectively, these results indicate that AR-A014418-induced GSK3β suppression inhibits ERK-Mnk1-eIF4E axis-modulated de novo MCL1 protein synthesis and thereby results in U937 cell apoptosis. Our findings also indicate a similar pathway underlying AR-A014418-induced death in human AML HL-60 cells.
Collapse
Affiliation(s)
- Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yi-Jun Shi
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chia-Hui Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
53
|
The mystery of mitochondria-ER contact sites in physiology and pathology: A cancer perspective. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165834. [PMID: 32437958 DOI: 10.1016/j.bbadis.2020.165834] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria-associated membranes (MAM), physical platforms that enable communication between mitochondria and the endoplasmic reticulum (ER), are enriched with many proteins and enzymes involved in several crucial cellular processes, such as calcium (Ca2+) homeostasis, lipid synthesis and trafficking, autophagy and reactive oxygen species (ROS) production. Accumulating studies indicate that tumor suppressors and oncogenes are present at these intimate contacts between mitochondria and the ER, where they influence Ca2+ flux between mitochondria and the ER or affect lipid homeostasis at MAM, consequently impacting cell metabolism and cell fate. Understanding these fundamental roles of mitochondria-ER contact sites as important domains for tumor suppressors and oncogenes can support the search for new and more precise anticancer therapies. In the present review, we summarize the current understanding of basic MAM biology, composition and function and discuss the possible role of MAM-resident oncogenes and tumor suppressors.
Collapse
|
54
|
MCL-1 Matrix maintains neuronal survival by enhancing mitochondrial integrity and bioenergetic capacity under stress conditions. Cell Death Dis 2020; 11:321. [PMID: 32371858 PMCID: PMC7200794 DOI: 10.1038/s41419-020-2498-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
Abstract
Mitochondria play a crucial role in neuronal survival through efficient energy metabolism. In pathological conditions, mitochondrial stress leads to neuronal death, which is regulated by the anti-apoptotic BCL-2 family of proteins. MCL-1 is an anti-apoptotic BCL-2 protein localized to mitochondria either in the outer membrane (OM) or inner membrane (Matrix), which have distinct roles in inhibiting apoptosis and promoting bioenergetics, respectively. While the anti-apoptotic role for Mcl1 is well characterized, the protective function of MCL-1 Matrix remains poorly understood. Here, we show MCL-1OM and MCL-1Matrix prevent neuronal death through distinct mechanisms. We report that MCL-1Matrix functions to preserve mitochondrial energy transduction and improves respiratory chain capacity by modulating mitochondrial oxygen consumption in response to mitochondrial stress. We show that MCL-1Matrix protects neurons from stress by enhancing respiratory function, and by inhibiting mitochondrial permeability transition pore opening. Taken together, our results provide novel insight into how MCL-1Matrix may confer neuroprotection under stress conditions involving loss of mitochondrial function.
Collapse
|
55
|
c-Mpl and TPO expression in the human central nervous system neurons inhibits neuronal apoptosis. Aging (Albany NY) 2020; 12:7397-7410. [PMID: 32341206 PMCID: PMC7202501 DOI: 10.18632/aging.103086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Abstract
Thrombopoietin (TPO) is a growth factor for the megakaryocytic/platelet lineage. In this study, we investigated the expression of TPO and its receptor, c-Mpl, in the human central nervous system (CNS) and their roles after a neural insult. Our results demonstrate that both TPO and c-Mpl are expressed in the neurons of the human CNS. TPO was also detected in human cerebrospinal fluid. TPO was found to be neuroprotective in hypoxic-ischemic neonatal rat brain models. In these rat models, treatment with TPO reduced brain damage and improved sensorimotor functions. In addition, TPO promoted C17.2 cell proliferation through activation of the PI3K/Akt signaling pathway. Via the Bcl-2/BAX signaling pathway, TPO exerted an antiapoptotic effect by suppressing mitochondrial membrane potentials. Taken together, our results indicate that TPO is neuroprotective in the CNS.
Collapse
|
56
|
Chong SJF, Marchi S, Petroni G, Kroemer G, Galluzzi L, Pervaiz S. Noncanonical Cell Fate Regulation by Bcl-2 Proteins. Trends Cell Biol 2020; 30:537-555. [PMID: 32307222 DOI: 10.1016/j.tcb.2020.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022]
Abstract
Bcl-2 proteins are widely known as key controllers of mitochondrial outer membrane permeabilization, arguably the most important step of intrinsic apoptosis. Accumulating evidence indicate that most, if not all, members of the Bcl-2 protein family also mediate a number of apoptosis-unrelated functions. Intriguingly, many of these functions ultimately impinge on cell fate decisions via apoptosis-dependent or -independent mechanisms, delineating a complex network through which Bcl-2 family members regulate cell survival and death. Here, we critically discuss the mechanisms through which Bcl-2 proteins influence cell fate as they regulate autophagy, cellular senescence, inflammation, bioenergetic metabolism, Ca2+ fluxes, and redox homeostasis.
Collapse
Affiliation(s)
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Giulia Petroni
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Guido Kroemer
- Equipe Labellisée par la Ligue Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-, HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China; Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden; Université de Paris, Paris, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Université de Paris, Paris, France; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.
| | - Shazib Pervaiz
- Université de Paris, Paris, France; Department of Physiology, YLL School of Medicine and NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore.
| |
Collapse
|
57
|
Ivanova H, Vervliet T, Monaco G, Terry LE, Rosa N, Baker MR, Parys JB, Serysheva II, Yule DI, Bultynck G. Bcl-2-Protein Family as Modulators of IP 3 Receptors and Other Organellar Ca 2+ Channels. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035089. [PMID: 31501195 DOI: 10.1101/cshperspect.a035089] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The pro- and antiapoptotic proteins belonging to the B-cell lymphoma-2 (Bcl-2) family exert a critical control over cell-death processes by enabling or counteracting mitochondrial outer membrane permeabilization. Beyond this mitochondrial function, several Bcl-2 family members have emerged as critical modulators of intracellular Ca2+ homeostasis and dynamics, showing proapoptotic and antiapoptotic functions. Bcl-2 family proteins specifically target several intracellular Ca2+-transport systems, including organellar Ca2+ channels: inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs), Ca2+-release channels mediating Ca2+ flux from the endoplasmic reticulum, as well as voltage-dependent anion channels (VDACs), which mediate Ca2+ flux across the mitochondrial outer membrane into the mitochondria. Although the formation of protein complexes between Bcl-2 proteins and these channels has been extensively studied, a major advance during recent years has been elucidating the complex interaction of Bcl-2 proteins with IP3Rs. Distinct interaction sites for different Bcl-2 family members were identified in the primary structure of IP3Rs. The unique molecular profiles of these Bcl-2 proteins may account for their distinct functional outcomes when bound to IP3Rs. Furthermore, Bcl-2 inhibitors used in cancer therapy may affect IP3R function as part of their proapoptotic effect and/or as an adverse effect in healthy cells.
Collapse
Affiliation(s)
- Hristina Ivanova
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Tim Vervliet
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Giovanni Monaco
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Lara E Terry
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642
| | - Nicolas Rosa
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Mariah R Baker
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Structural Biology Imaging Center, Houston, Texas 77030
| | - Jan B Parys
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Structural Biology Imaging Center, Houston, Texas 77030
| | - David I Yule
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
58
|
Rasmussen ML, Taneja N, Neininger AC, Wang L, Robertson GL, Riffle SN, Shi L, Knollmann BC, Burnette DT, Gama V. MCL-1 Inhibition by Selective BH3 Mimetics Disrupts Mitochondrial Dynamics Causing Loss of Viability and Functionality of Human Cardiomyocytes. iScience 2020; 23:101015. [PMID: 32283523 PMCID: PMC7155208 DOI: 10.1016/j.isci.2020.101015] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/25/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022] Open
Abstract
MCL-1 is a well-characterized inhibitor of cell death that has also been shown to be a regulator of mitochondrial dynamics in human pluripotent stem cells. We used cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) to uncover whether MCL-1 is crucial for cardiac function and survival. Inhibition of MCL-1 by BH3 mimetics resulted in the disruption of mitochondrial morphology and dynamics as well as disorganization of the actin cytoskeleton. Interfering with MCL-1 function affects the homeostatic proximity of DRP-1 and MCL-1 at the outer mitochondrial membrane, resulting in decreased functionality of hiPSC-CMs. Cardiomyocytes display abnormal cardiac performance even after caspase inhibition, supporting a nonapoptotic activity of MCL-1 in hiPSC-CMs. BH3 mimetics targeting MCL-1 are promising anti-tumor therapeutics. Progression toward using BCL-2 family inhibitors, especially targeting MCL-1, depends on understanding its canonical function not only in preventing apoptosis but also in the maintenance of mitochondrial dynamics and function. BH3 mimetics targeting MCL-1 disrupt the mitochondrial network of human iPSC-CMs The BH3-mimetic-mediated effects on mitochondrial dynamics are DRP-1-dependent Targeting MCL-1 affects the survival and function of human cardiomyocytes Human iPSC-derived cardiomyocytes can be used to reveal toxicity of MCL-1 inhibitors
Collapse
Affiliation(s)
- Megan L Rasmussen
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Nilay Taneja
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Abigail C Neininger
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Lili Wang
- Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Nashville, TN 37232, USA
| | - Gabriella L Robertson
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Stellan N Riffle
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Linzheng Shi
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Bjorn C Knollmann
- Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Nashville, TN 37232, USA
| | - Dylan T Burnette
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Vivian Gama
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
59
|
Rasmussen ML, Gama V. A connection in life and death: The BCL-2 family coordinates mitochondrial network dynamics and stem cell fate. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 353:255-284. [PMID: 32381177 DOI: 10.1016/bs.ircmb.2019.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The B cell CLL/lymphoma-2 (BCL-2) family of proteins control the mitochondrial pathway of apoptosis, also known as intrinsic apoptosis. Direct binding between members of the BCL-2 family regulates mitochondrial outer membrane permeabilization (MOMP) after an apoptotic insult. The ability of the cell to sense stress and translate it into a death signal has been a major theme of research for nearly three decades; however, other mechanisms by which the BCL-2 family coordinates cellular homeostasis beyond its role in initiating apoptosis are emerging. One developing area of research is understanding how the BCL-2 family of proteins regulate development using pluripotent stem cells as a model system. Understanding BCL-2 family-mediated regulation of mitochondrial homeostasis in cell death and beyond would uncover new facets of stem cell maintenance and differentiation potential.
Collapse
Affiliation(s)
- Megan L Rasmussen
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Vivian Gama
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, United States; Neuroscience Program, Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States.
| |
Collapse
|
60
|
Lim SG, Suk K, Lee WH. LETMD1 Regulates Phagocytosis and Inflammatory Responses to Lipopolysaccharide via Reactive Oxygen Species Generation and NF-κB Activation in Macrophages. THE JOURNAL OF IMMUNOLOGY 2020; 204:1299-1309. [PMID: 31980577 DOI: 10.4049/jimmunol.1900551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/23/2019] [Indexed: 01/10/2023]
Abstract
LETM1 domain-containing protein 1 (LETMD1), also known as HCCR-1, is a mitochondrial protein and is known to regulate p53 and STAT3 activities in cancer cells. In this study, we present, for the first time (to our knowledge), data indicating that LETMD1 suppresses multiple immune responses in monocyte/macrophage lineage cells and mouse primary macrophages. Attenuation of LETMD1 expression with specific small interfering RNA and short hairpin RNA constructs enhanced LPS-induced expressions of inflammatory mediators in macrophages. In addition, LETMD1 attenuation caused potentiation of phagocytosis as well as migration in a macrophage-like cell line, U937. These enhancing effects were associated with altered activation of signaling adaptors (such as NF-κB, MAPKs, p53, and JAK-STAT) involved in TLR4 signaling. Especially, LETMD1 selectively regulated TLR4-induced NF-κB activation via MyD88 but not via TIR-domain-containing adapter-inducing IFN-β (TRIF). Attenuation of LETMD1 expression caused mitochondrial hyperpolarization and subsequent decrease in ATP production and increase in mitochondrial/cellular reactive oxygen species (ROS) and intracellular calcium levels. LETMD1 attenuation also enhanced LPS-induced expression of NADPH oxidase (NOX) 2, the main producer of cellular ROS in phagocytes, through augmenting IFN regulatory factor 1. Accordingly, treatment with ROS scavenger, NOX2 suppressing agents, or calcium chelators resulted in suppression of LPS-induced cytokine production as well as NF-κB activation in cells with LETMD1 attenuation. These findings reveal a previously unknown function of LETMD1 and provide evidences showing LETMD1 negatively regulates macrophage functions by modulating mitochondrial function, subsequent ROS generation, and NF-κB activation.
Collapse
Affiliation(s)
- Su-Geun Lim
- School of Life Sciences, Brain Korea 21 Plus/Kyungpook National University Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; and
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, Brain Korea 21 Plus/Kyungpook National University Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, Brain Korea 21 Plus/Kyungpook National University Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; and
| |
Collapse
|
61
|
Yu R, Lendahl U, Nistér M, Zhao J. Regulation of Mammalian Mitochondrial Dynamics: Opportunities and Challenges. Front Endocrinol (Lausanne) 2020; 11:374. [PMID: 32595603 PMCID: PMC7300174 DOI: 10.3389/fendo.2020.00374] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/12/2020] [Indexed: 01/01/2023] Open
Abstract
Mitochondria are highly dynamic organelles and important for a variety of cellular functions. They constantly undergo fission and fusion events, referred to as mitochondrial dynamics, which affects the shape, size, and number of mitochondria in the cell, as well as mitochondrial subcellular transport, mitochondrial quality control (mitophagy), and programmed cell death (apoptosis). Dysfunctional mitochondrial dynamics is associated with various human diseases. Mitochondrial dynamics is mediated by a set of mitochondria-shaping proteins in both yeast and mammals. In this review, we describe recent insights into the potential molecular mechanisms underlying mitochondrial fusion and fission, particularly highlighting the coordinating roles of different mitochondria-shaping proteins in the processes, as well as the roles of the endoplasmic reticulum (ER), the actin cytoskeleton and membrane phospholipids in the regulation of mitochondrial dynamics. We particularly focus on emerging roles for the mammalian mitochondrial proteins Fis1, Mff, and MIEFs (MIEF1 and MIEF2) in regulating the recruitment of the cytosolic Drp1 to the surface of mitochondria and how these proteins, especially Fis1, mediate crosstalk between the mitochondrial fission and fusion machineries. In summary, this review provides novel insights into the molecular mechanisms of mammalian mitochondrial dynamics and the involvement of these mechanisms in apoptosis and autophagy.
Collapse
Affiliation(s)
- Rong Yu
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Monica Nistér
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
- *Correspondence: Monica Nistér
| | - Jian Zhao
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
- Jian Zhao
| |
Collapse
|
62
|
Chiou JT, Lee YC, Huang CH, Shi YJ, Wang LJ, Chang LS. Autophagic HuR mRNA degradation induces survivin and MCL1 downregulation in YM155-treated human leukemia cells. Toxicol Appl Pharmacol 2020; 387:114857. [DOI: 10.1016/j.taap.2019.114857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/24/2022]
|
63
|
Sastre D, Baiochi J, de Souza Lima IM, Canto de Souza F, Corveloni AC, Thomé CH, Faça VM, Schiavinato JLDS, Covas DT, Panepucci RA. Focused screening reveals functional effects of microRNAs differentially expressed in colorectal cancer. BMC Cancer 2019; 19:1239. [PMID: 31864341 PMCID: PMC6925883 DOI: 10.1186/s12885-019-6468-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is still a leading cause of death worldwide. Recent studies have pointed to an important role of microRNAs in carcinogenesis. Several microRNAs are described as aberrantly expressed in CRC tissues and in the serum of patients. However, functional outcomes of microRNA aberrant expression still need to be explored at the cellular level. Here, we aimed to investigate the effects of microRNAs aberrantly expressed in CRC samples in the proliferation and cell death of a CRC cell line. METHODS We transfected 31 microRNA mimics into HCT116 cells. Total number of live propidium iodide negative (PI-) and dead (PI+) cells were measured 4 days post-transfection by using a high content screening (HCS) approach. HCS was further used to evaluate apoptosis (via Annexin V and PI staining), and to discern between intrinsic and extrinsic apoptotic pathways, by detecting cleaved Caspase 9 and 8, respectively. To reveal mRNA targets and potentially involved mechanisms, we performed microarray gene expression and functional pathway enrichment analysis. Quantitative PCR and western blot were used to validate potential mRNA targets. RESULTS Twenty microRNAs altered the proliferation of HCT116 cells in comparison to control. miR-22-3p, miR-24-3p, and miR-101-3p significantly repressed cell proliferation and induced cell death. Interestingly, all anti-proliferative microRNAs in our study had been previously described as poorly expressed in the CRC samples. Predicted miR-101-3p targets that were also downregulated by in our microarray were enriched for genes associated with Wnt and cancer pathways, including MCL-1, a member of the BCL-2 family, involved in apoptosis. Interestingly, miR-101-3p preferentially downregulated the long anti-apoptotic MCL-1 L isoform, and reduced cell survival specifically by activating the intrinsic apoptosis pathway. Moreover, miR-101-3p also downregulated IL6ST, STAT3A/B, and MYC mRNA levels, genes associated with stemness properties of CRC cells. CONCLUSIONS microRNAs upregulated in CRC tend to induce proliferation in vitro, whereas microRNAs poorly expressed in CRC halt proliferation and induce cell death. We provide novel evidence linking preferential inhibition of the anti-apoptotic MCL-1 L isoform by miR-101-3p and consequent activation of the intrinsic apoptotic pathway as potential mechanisms for its antitumoral activity, likely due to the inhibition of the IL-6/JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Danuta Sastre
- Laboratory of Human and Medical Genetics, Federal University of Pará, Rua Augusto Corrêa, 01. Guamá., Belém, Pará CEP 66075-110 Brazil
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| | - João Baiochi
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| | - Ildercilio Mota de Souza Lima
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| | - Felipe Canto de Souza
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| | - Amanda Cristina Corveloni
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| | - Carolina Hassib Thomé
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Av. Bandeirantes, 3900 - Vila Monte Alegre, Ribeirão Preto, SP 14049-900 Brazil
| | - Vitor Marcel Faça
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Av. Bandeirantes, 3900 - Vila Monte Alegre, Ribeirão Preto, SP 14049-900 Brazil
| | - Josiane Lilian dos Santos Schiavinato
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| | - Dimas Tadeu Covas
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| | - Rodrigo Alexandre Panepucci
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| |
Collapse
|
64
|
Pearson JM, Tan SF, Sharma A, Annageldiyev C, Fox TE, Abad JL, Fabrias G, Desai D, Amin S, Wang HG, Cabot MC, Claxton DF, Kester M, Feith DJ, Loughran TP. Ceramide Analogue SACLAC Modulates Sphingolipid Levels and MCL-1 Splicing to Induce Apoptosis in Acute Myeloid Leukemia. Mol Cancer Res 2019; 18:352-363. [PMID: 31744877 DOI: 10.1158/1541-7786.mcr-19-0619] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/30/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023]
Abstract
Acute myeloid leukemia (AML) is a disease characterized by uncontrolled proliferation of immature myeloid cells in the blood and bone marrow. The 5-year survival rate is approximately 25%, and recent therapeutic developments have yielded little survival benefit. Therefore, there is an urgent need to identify novel therapeutic targets. We previously demonstrated that acid ceramidase (ASAH1, referred to as AC) is upregulated in AML and high AC activity correlates with poor patient survival. Here, we characterized a novel AC inhibitor, SACLAC, that significantly reduced the viability of AML cells with an EC50 of approximately 3 μmol/L across 30 human AML cell lines. Treatment of AML cell lines with SACLAC effectively blocked AC activity and induced a decrease in sphingosine 1-phosphate and a 2.5-fold increase in total ceramide levels. Mechanistically, we showed that SACLAC treatment led to reduced levels of splicing factor SF3B1 and alternative MCL-1 mRNA splicing in multiple human AML cell lines. This increased proapoptotic MCL-1S levels and contributed to SACLAC-induced apoptosis in AML cells. The apoptotic effects of SACLAC were attenuated by SF3B1 or MCL-1 overexpression and by selective knockdown of MCL-1S. Furthermore, AC knockdown and exogenous C16-ceramide supplementation induced similar changes in SF3B1 level and MCL-1S/L ratio. Finally, we demonstrated that SACLAC treatment leads to a 37% to 75% reduction in leukemic burden in two human AML xenograft mouse models. IMPLICATIONS: These data further emphasize AC as a therapeutic target in AML and define SACLAC as a potent inhibitor to be further optimized for future clinical development.
Collapse
Affiliation(s)
- Jennifer M Pearson
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Su-Fern Tan
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, Virginia
| | - Arati Sharma
- Penn State Cancer Institute, Hershey, Pennsylvania.,Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | | | - Todd E Fox
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Jose Luis Abad
- Department of Biological Chemistry, Networking Biomedical Research Centre on Liver and Digestive Diseases (CIBER-EHD), Institute for Advanced Chemistry of Catalonia, Spanish National Research Council (IQAC-CSIC), Barcelona, Spain
| | - Gemma Fabrias
- Department of Biological Chemistry, Networking Biomedical Research Centre on Liver and Digestive Diseases (CIBER-EHD), Institute for Advanced Chemistry of Catalonia, Spanish National Research Council (IQAC-CSIC), Barcelona, Spain
| | - Dhimant Desai
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Shantu Amin
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Hong-Gang Wang
- Penn State Cancer Institute, Hershey, Pennsylvania.,Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania
| | - Myles C Cabot
- Department of Biochemistry and Molecular Biology, East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | | | - Mark Kester
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania.,University of Virginia Cancer Center, Charlottesville, Virginia
| | - David J Feith
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, Virginia.,University of Virginia Cancer Center, Charlottesville, Virginia
| | - Thomas P Loughran
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, Virginia. .,University of Virginia Cancer Center, Charlottesville, Virginia
| |
Collapse
|
65
|
Chiou JT, Shi YJ, Wang LJ, Huang CH, Lee YC, Chang LS. Naja atra Cardiotoxin 3 Elicits Autophagy and Apoptosis in U937 Human Leukemia Cells through the Ca 2+/PP2A/AMPK Axis. Toxins (Basel) 2019; 11:toxins11090527. [PMID: 31547294 PMCID: PMC6784133 DOI: 10.3390/toxins11090527] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/04/2019] [Accepted: 09/10/2019] [Indexed: 12/22/2022] Open
Abstract
Cardiotoxins (CTXs) are suggested to exert their cytotoxicity through cell membrane damage. Other studies show that penetration of CTXs into cells elicits mitochondrial fragmentation or lysosome disruption, leading to cell death. Considering the role of AMPK-activated protein kinase (AMPK) in mitochondrial biogenesis and lysosomal biogenesis, we aimed to investigate whether the AMPK-mediated pathway modulated Naja atra (Taiwan cobra) CTX3 cytotoxicity in U937 human leukemia cells. Our results showed that CTX3 induced autophagy and apoptosis in U937 cells, whereas autophagic inhibitors suppressed CTX3-induced apoptosis. CTX3 treatment elicited Ca2+-dependent degradation of the protein phosphatase 2A (PP2A) catalytic subunit (PP2Acα) and phosphorylation of AMPKα. Overexpression of PP2Acα mitigated the CTX3-induced AMPKα phosphorylation. CTX3-induced autophagy was via AMPK-mediated suppression of the Akt/mTOR pathway. Removal of Ca2+ or suppression of AMPKα phosphorylation inhibited the CTX3-induced cell death. CTX3 was unable to induce autophagy and apoptosis in U937 cells expressing constitutively active Akt. Met-modified CTX3 retained its membrane-perturbing activity, however, it did not induce AMPK activation and death of U937 cells. These results conclusively indicate that CTX3 induces autophagy and apoptosis in U937 cells via the Ca2+/PP2A/AMPK axis, and suggest that the membrane-perturbing activity of CTX3 is not crucial for the cell death signaling pathway induction.
Collapse
Affiliation(s)
- Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| | - Yi-Jun Shi
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| | - Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| | - Chia-Hui Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
66
|
Milani M, Beckett AJ, Al-Zebeeby A, Luo X, Prior IA, Cohen GM, Varadarajan S. DRP-1 functions independently of mitochondrial structural perturbations to facilitate BH3 mimetic-mediated apoptosis. Cell Death Discov 2019; 5:117. [PMID: 31341643 PMCID: PMC6637195 DOI: 10.1038/s41420-019-0199-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/17/2019] [Accepted: 06/23/2019] [Indexed: 12/23/2022] Open
Abstract
Maintenance of mitochondrial integrity is critical for normal cellular homoeostasis. Most cells respond to stress stimuli and undergo apoptosis by perturbing mitochondrial structure and function to release proteins, such as cytochrome c, which are essential for the execution of the intrinsic apoptotic cascade. Cancer cells evade these events by overexpressing the anti-apoptotic BCL-2 family of proteins on mitochondrial membranes. Inhibitors of the anti-apoptotic BCL-2 family proteins, also known as BH3 mimetics, antagonise the pro-survival functions of these proteins and result in rapid apoptosis. Although the precise mechanism by which BH3 mimetics induce apoptosis has been well characterised, not much is known in terms of the structural changes that occur in mitochondria during apoptosis. Using a panel of highly selective BH3 mimetics and a wide range of cell lines, we demonstrate that BH3 mimetics induce extensive mitochondrial fission, accompanied by swelling of the mitochondrial matrix and rupture of the outer mitochondrial membrane. These changes occur in a BAX/ BAK-dependent manner. Although a major mitochondrial fission GTPase, DRP-1, has been implicated in mitochondrial apoptosis, our data demonstrate that DRP-1 might function independently/downstream of BH3 mimetic-mediated mitochondrial fission to facilitate the release of cytochrome c and apoptosis. Moreover, downregulation of DRP-1 prevented cytochrome c release and apoptosis even when OPA1, a protein mediating mitochondrial fusion, was silenced. Although BH3 mimetic-mediated displacement of BAK and other BH3-only proteins from BCL-XL and MCL-1 was unaffected by DRP-1 downregulation, it prevented BAK activation significantly, thus placing DRP-1 as one of the most critical players, along with BAX and BAK, that governs BH3 mimetic-mediated cytochrome c release and apoptosis.
Collapse
Affiliation(s)
- Mateus Milani
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, Ashton Street, Liverpool, L69 3GE UK
| | - Alison J. Beckett
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, Ashton Street, Liverpool, L69 3GE UK
| | - Aoula Al-Zebeeby
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, Ashton Street, Liverpool, L69 3GE UK
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Ian A. Prior
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, Ashton Street, Liverpool, L69 3GE UK
| | - Gerald M. Cohen
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, Ashton Street, Liverpool, L69 3GE UK
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, Ashton Street, Liverpool, L69 3GE UK
| | - Shankar Varadarajan
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, Ashton Street, Liverpool, L69 3GE UK
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, Ashton Street, Liverpool, L69 3GE UK
| |
Collapse
|
67
|
Senichkin VV, Streletskaia AY, Zhivotovsky B, Kopeina GS. Molecular Comprehension of Mcl-1: From Gene Structure to Cancer Therapy. Trends Cell Biol 2019; 29:549-562. [DOI: 10.1016/j.tcb.2019.03.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 01/19/2023]
|
68
|
Marchi S, Vitto VAM, Danese A, Wieckowski MR, Giorgi C, Pinton P. Mitochondrial calcium uniporter complex modulation in cancerogenesis. Cell Cycle 2019; 18:1068-1083. [PMID: 31032692 DOI: 10.1080/15384101.2019.1612698] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aberrations in mitochondrial Ca2+ homeostasis have been associated with different pathological conditions, including neurological defects, cardiovascular diseases, and, in the last years, cancer. With the recent molecular identification of the mitochondrial calcium uniporter (MCU) complex, the channel that allows Ca2+ accumulation into the mitochondrial matrix, alterations in the expression levels or functioning in one or more MCU complex members have been linked to different cancers and cancer-related phenotypes. In this review, we will analyze the role of the uniporter and mitochondrial Ca2+ derangements in modulating cancer cell sensitivity to death, invasiveness, and migratory capacity, as well as cancer progression in vivo. We will also discuss some critical points and contradictory results to highlight the consequence of MCU complex modulation in tumor development.
Collapse
Affiliation(s)
- Saverio Marchi
- a Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology , Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara , Ferrara , Italy.,b Department of Clinical and Molecular Sciences, Polytechnical University of Marche , Ancona , Italy
| | - Veronica Angela Maria Vitto
- a Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology , Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara , Ferrara , Italy
| | - Alberto Danese
- a Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology , Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara , Ferrara , Italy
| | | | - Carlotta Giorgi
- a Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology , Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara , Ferrara , Italy
| | - Paolo Pinton
- a Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology , Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara , Ferrara , Italy.,d Maria Cecilia Hospital, GVM Care & Research, 48033 , Cotignola , Ravenna , Italy
| |
Collapse
|
69
|
Bok regulates mitochondrial fusion and morphology. Cell Death Differ 2019; 26:2682-2694. [PMID: 30976095 DOI: 10.1038/s41418-019-0327-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/05/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
Bok (Bcl-2-related ovarian killer) is a member of the Bcl-2 protein family that governs the intrinsic apoptosis pathway, but the cellular role that Bok plays is controversial. Remarkably, endogenous Bok is constitutively bound to inositol 1,4,5-trisphosphate receptors (IP3Rs) and is stabilized by this interaction. Here we report that despite the strong association with IP3Rs, deletion of Bok expression by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease)-mediated gene editing does not alter calcium mobilization via IP3Rs or calcium influx into the mitochondria. Rather, Bok deletion significantly reduces mitochondrial fusion rate, resulting in mitochondrial fragmentation. This phenotype is reversed by exogenous wild-type Bok and by an IP3R binding-deficient Bok mutant, and may result from a decrease in mitochondrial motility. Bok deletion also enhances mitochondrial spare respiratory capacity and membrane potential. Finally, Bok does not play a major role in apoptotic signaling, since Bok deletion does not alter responsiveness to various apoptotic stimuli. Overall, despite binding to IP3Rs, Bok does not alter IP3R-mediated Ca2+ signaling, but is required to maintain normal mitochondrial fusion, morphology, and bioenergetics.
Collapse
|
70
|
Bai Y, Wang S, Wu F, Xie X, Wang Y, Yang Y. The Changes of Mitochondria in Substantia Nigra and Anterior Cerebral Cortex of Hepatic Encephalopathy Induced by Thioacetamide. Anat Rec (Hoboken) 2019; 302:1169-1177. [PMID: 30290401 PMCID: PMC6899860 DOI: 10.1002/ar.23932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/22/2018] [Accepted: 02/03/2018] [Indexed: 01/10/2023]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome resulting from chronic or acute liver failure. Under the condition of HE, various factors such as reactive oxygen species, inflammatory factors, ammonia poisoning and amino acids alteration lead to changes of mitochondria. Selective depletion of damaged mitochondrion is essential for maintaining the morphology and function of mitochondria and cells. In this study, molecular biology analysis was used to analyze the mitochondrial morphology in the substantia nigra (SN) and anterior cerebral cortex (ACC) of the HE mice. The results revealed that the drp1, mfn1 and mfn2 increased in mRNA level of SN, which indicated the changes of mitochondrial morphology in HE mice. The drp1 and mfn2 genes were up‐regulated, then, the Opa1 exhibited no significant change in the ACC of HE mice. Further study demonstrated that the mitochondrial autophagy related genes, pink1 and parkin, increased in SN, while the parkin reduced in ACC of HE mice. In addition, uncoupling protein (ucp2) increased in mRNA level of SN and ACC, and the ucp4 had no change or reduced in SN and ACC, respectively. These findings suggested that the mitochondrial dynamics is different in the SN and ACC of HE mice. Therefore, our results indicated that mitochondrial dynamics provided a potential treatment strategy for HE through the fission, fusion and autophagy of genes. Anat Rec, 302:1169–1177, 2019. © 2018 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- Yunhu Bai
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China.,Department of general surgery, People's Liberation Army's 153rd hospital, Zhengzhou, China
| | - Shengming Wang
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| | - Feifei Wu
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| | - Xiangjun Xie
- Department of Preventive Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yayun Wang
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| | - Yanling Yang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
71
|
BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis 2019; 10:177. [PMID: 30792387 PMCID: PMC6384907 DOI: 10.1038/s41419-019-1407-6] [Citation(s) in RCA: 456] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/17/2018] [Accepted: 01/29/2019] [Indexed: 12/17/2022]
Abstract
The BCl-2 family has long been identified for its role in apoptosis. Following the initial discovery of BCL-2 in the context of B-cell lymphoma in the 1980s, a number of homologous proteins have since been identified. The members of the Bcl-2 family are designated as such due to their BCL-2 homology (BH) domains and involvement in apoptosis regulation. The BH domains facilitate the family members’ interactions with each other and can indicate pro- or anti-apoptotic function. Traditionally, these proteins are categorised into one of the three subfamilies; anti-apoptotic, BH3-only (pro-apoptotic), and pore-forming or ‘executioner’ (pro-apoptotic) proteins. Each of the BH3-only or anti-apoptotic proteins has a distinct pattern of activation, localisation and response to cell death or survival stimuli. All of these can vary across cell or stress types, or developmental stage, and this can cause the delineation of the roles of BCL-2 family members. Added to this complexity is the presence of relatively uncharacterised isoforms of many of the BCL-2 family members. There is a gap in our knowledge regarding the function of BCL-2 family isoforms. BH domain status is not always predictive or indicative of protein function, and several other important sequences, which can contribute to apoptotic activity have been identified. While therapeutic strategies targeting the BCL-2 family are constantly under development, it is imperative that we understand the molecules, which we are attempting to target. This review, discusses our current knowledge of anti-apoptotic BCL-2 family isoforms. With significant improvements in the potential for splicing therapies, it is important that we begin to understand the distinctions of the BCL-2 family, not limited to just the mechanisms of apoptosis control, but in their roles outside of apoptosis.
Collapse
|
72
|
Caulerpa taxifolia inhibits cell proliferation and induces oxidative stress in breast cancer cells. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0163-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
73
|
Yu SB, Pekkurnaz G. Mechanisms Orchestrating Mitochondrial Dynamics for Energy Homeostasis. J Mol Biol 2018; 430:3922-3941. [PMID: 30089235 PMCID: PMC6186503 DOI: 10.1016/j.jmb.2018.07.027] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022]
Abstract
To maintain homeostasis, every cell must constantly monitor its energy level and appropriately adjust energy, in the form of ATP, production rates based on metabolic demand. Continuous fulfillment of this energy demand depends on the ability of cells to sense, metabolize, and convert nutrients into chemical energy. Mitochondria are the main energy conversion sites for many cell types. Cellular metabolic states dictate the mitochondrial size, shape, function, and positioning. Mitochondrial shape varies from singular discrete organelles to interconnected reticular networks within cells. The morphological adaptations of mitochondria to metabolic cues are facilitated by the dynamic events categorized as transport, fusion, fission, and quality control. By changing their dynamics and strategic positioning within the cytoplasm, mitochondria carry out critical functions and also participate actively in inter-organelle cross-talk, assisting metabolite transfer, degradation, and biogenesis. Mitochondrial dynamics has become an active area of research because of its particular importance in cancer, metabolic diseases, and neurological disorders. In this review, we will highlight the molecular pathways involved in the regulation of mitochondrial dynamics and their roles in maintaining energy homeostasis.
Collapse
Affiliation(s)
- Seungyoon B Yu
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, United States
| | - Gulcin Pekkurnaz
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, United States.
| |
Collapse
|
74
|
Hacken ET, Valentin R, Regis FFD, Sun J, Yin S, Werner L, Deng J, Gruber M, Wong J, Zheng M, Gill AL, Seiler M, Smith P, Thomas M, Buonamici S, Ghia EM, Kim E, Rassenti LZ, Burger JA, Kipps TJ, Meyerson ML, Bachireddy P, Wang L, Reed R, Neuberg D, Carrasco RD, Brooks AN, Letai A, Davids MS, Wu CJ. Splicing modulation sensitizes chronic lymphocytic leukemia cells to venetoclax by remodeling mitochondrial apoptotic dependencies. JCI Insight 2018; 3:121438. [PMID: 30282833 PMCID: PMC6237462 DOI: 10.1172/jci.insight.121438] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/29/2018] [Indexed: 12/30/2022] Open
Abstract
The identification of targetable vulnerabilities in the context of therapeutic resistance is a key challenge in cancer treatment. We detected pervasive aberrant splicing as a characteristic feature of chronic lymphocytic leukemia (CLL), irrespective of splicing factor mutation status, which was associated with sensitivity to the spliceosome modulator, E7107. Splicing modulation affected CLL survival pathways, including members of the B cell lymphoma-2 (BCL2) family of proteins, remodeling antiapoptotic dependencies of human and murine CLL cells. E7107 treatment decreased myeloid cell leukemia-1 (MCL1) dependence and increased BCL2 dependence, sensitizing primary human CLL cells and venetoclax-resistant CLL-like cells from an Eμ-TCL1-based adoptive transfer murine model to treatment with the BCL2 inhibitor venetoclax. Our data provide preclinical rationale to support the combination of venetoclax with splicing modulators to reprogram apoptotic dependencies in CLL for treating venetoclax-resistant CLL cases.
Collapse
Affiliation(s)
- Elisa ten Hacken
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Rebecca Valentin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Fara Faye D. Regis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jing Sun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Shanye Yin
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lillian Werner
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jing Deng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Michaela Gruber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jessica Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Mei Zheng
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Amy L. Gill
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Peter Smith
- H3 Biomedicine Inc., Cambridge, Massachusetts, USA
| | | | | | - Emanuela M. Ghia
- Moores Cancer Center, University of California, San Diego, La Jolla, California, USA
| | - Ekaterina Kim
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Laura Z. Rassenti
- Moores Cancer Center, University of California, San Diego, La Jolla, California, USA
| | - Jan A. Burger
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Thomas J. Kipps
- Moores Cancer Center, University of California, San Diego, La Jolla, California, USA
| | - Matthew L. Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA
| | - Pavan Bachireddy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Lili Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Robin Reed
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Donna Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ruben D. Carrasco
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Angela N. Brooks
- Department of Biomolecular Engineering, University of California, Santa Cruz, California, USA
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Matthew S. Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA.,Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
75
|
Mandible exosomal ssc-mir-133b regulates tooth development in miniature swine via endogenous apoptosis. Bone Res 2018; 6:28. [PMID: 30210900 PMCID: PMC6131536 DOI: 10.1038/s41413-018-0028-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/16/2018] [Accepted: 07/06/2018] [Indexed: 12/19/2022] Open
Abstract
Signal transduction between different organs is crucial in the normal development of the human body. As an important medium for signal communication, exosomes can transfer important information, such as microRNAs (miRNAs), from donors to receptors. MiRNAs are known to fine-tune a variety of biological processes, including maxillofacial development; however, the underlying mechanism remains largely unknown. In the present study, transient apoptosis was found to be due to the expression of a miniature swine maxillofacial-specific miRNA, ssc-mir-133b. Upregulation of ssc-mir-133b resulted in robust apoptosis in primary dental mesenchymal cells in the maxillofacial region. Cell leukemia myeloid 1 (Mcl-1) was verified as the functional target, which triggered further downstream activation of endogenous mitochondria-related apoptotic processes during tooth development. More importantly, mandible exosomes were responsible for the initial apoptosis signal. An animal study demonstrated that ectopic expression of ssc-mir-133b resulted in failed tooth formation after 12 weeks of subcutaneous transplantation in nude mice. The tooth germ developed abnormally without the indispensable exosomal signals from the mandible. The delivery of the small regulatory molecule microRNA-133b via extracellular vesicles released from the lower jaw is required for tooth formation in pigs and mice. Several microRNAs have been implicated in tooth development, but their precise roles are poorly understood. Songlin Wang at Capital Medical University, China, and colleagues found that microRNA-133b causes temporary cell death at sites of molar development by reducing the levels of the pro-survival protein myeloid cell leukemia-1. Moreover, they showed that microRNA-133b is delivered from the lower jaw in exosomes and that interrupting this signal prevents tooth development. These findings highlight the importance of cross-talk between jaw and tooth tissue for normal development and reveal a possible mechanism for the prevention and treatment of abnormal tooth formation.
Collapse
|
76
|
BH3 mimetics induce apoptosis independent of DRP-1 in melanoma. Cell Death Dis 2018; 9:907. [PMID: 30185782 PMCID: PMC6125485 DOI: 10.1038/s41419-018-0932-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/11/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022]
Abstract
Despite the recent advancement in treating melanoma, options are still limited for patients without BRAF mutations or in relapse from current treatments. BH3 mimetics against members of the BCL-2 family have gained excitement with the recent success in hematological malignancies. However, single drug BH3 mimetic therapy in melanoma has limited effectiveness due to escape by the anti-apoptotic protein MCL-1 and/or survival of melanoma-initiating cells (MICs). We tested the efficacy of the BH3 mimetic combination of A-1210477 (an MCL-1 inhibitor) and ABT-263 (a BCL-2/BCL-XL/BCL-W inhibitor) in killing melanoma, especially MICs. We also sought to better define Dynamin-Related Protein 1 (DRP-1)'s role in melanoma; DRP-1 is known to interact with members of the BCL-2 family and is a possible therapeutic target for melanoma treatment. We used multiple assays (cell viability, apoptosis, bright field, immunoblot, and sphere formation), as well as the CRISPR/Cas9 genome-editing techniques. For clinical relevance, we employed patient samples of different mutation status, including some relapsed from current treatments such as anti-PD-1 immunotherapy. We found the BH3 mimetic combination kill both the MICs and non-MICs (bulk of melanoma) in all cell lines and patient samples irrespective of the mutation status or relapsed state (p < 0.05). Unexpectedly, the major pro-apoptotic proteins, NOXA and BIM, are not necessary for the combination-induced cell death. Furthermore, the combination impedes the activation of DRP-1, and inhibition of DRP-1 further enhances apoptosis (p < 0.05). DRP-1 effects in melanoma differ from those seen in other cancer cells. These results provide new insights into BCL-2 family's regulation of the apoptotic pathway in melanoma, and suggest that inhibiting the major anti-apoptotic proteins is sufficient to induce cell death even without involvement from major pro-apoptotic proteins. Importantly, our study also indicates that DRP-1 inhibition is a promising adjuvant for BH3 mimetics in melanoma treatment.
Collapse
|
77
|
Morciano G, Marchi S, Morganti C, Sbano L, Bittremieux M, Kerkhofs M, Corricelli M, Danese A, Karkucinska-Wieckowska A, Wieckowski MR, Bultynck G, Giorgi C, Pinton P. Role of Mitochondria-Associated ER Membranes in Calcium Regulation in Cancer-Specific Settings. Neoplasia 2018; 20:510-523. [PMID: 29626751 PMCID: PMC5916088 DOI: 10.1016/j.neo.2018.03.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/25/2018] [Accepted: 03/01/2018] [Indexed: 12/31/2022] Open
Abstract
Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are highly specialized subcellular compartments that are shaped by ER subdomains juxtaposed to mitochondria but are biochemically distinct from pure ER and pure mitochondria. MAMs are enriched in enzymes involved in lipid synthesis and transport, channels for calcium transfer, and proteins with oncogenic/oncosuppressive functions that modulate cell signaling pathways involved in physiological and pathophysiological processes. The term "cancer" denotes a group of disorders that result from uncontrolled cell growth driven by a mixture of genetic and environmental components. Alterations in MAMs are thought to account for the onset as well as the progression and metastasis of cancer and have been a focus of investigation in recent years. In this review, we present the current state of the art regarding MAM-resident proteins and their relevance, alterations, and deregulating functions in different types of cancer from a cell biology and clinical perspective.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy; Cecilia Hospital, GVM Care & Research, E.S.: Health Science Foundation, Cotignola, Italy
| | - Saverio Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy
| | - Claudia Morganti
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy
| | - Luigi Sbano
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy
| | - Mart Bittremieux
- KU Leuven, Lab. Molecular and Cellular Signaling, Dept. Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000 Leuven, Belgium
| | - Martijn Kerkhofs
- KU Leuven, Lab. Molecular and Cellular Signaling, Dept. Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000 Leuven, Belgium
| | - Mariangela Corricelli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy
| | - Alberto Danese
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy
| | | | - Mariusz R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Geert Bultynck
- KU Leuven, Lab. Molecular and Cellular Signaling, Dept. Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000 Leuven, Belgium
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy.
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy; Cecilia Hospital, GVM Care & Research, E.S.: Health Science Foundation, Cotignola, Italy; CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy.
| |
Collapse
|
78
|
Wang T, Yang Z, Zhang Y, Zhang X, Wang L, Zhang S, Jia L. Caspase cleavage of Mcl-1 impairs its anti-apoptotic activity and proteasomal degradation in non-small lung cancer cells. Apoptosis 2018; 23:54-64. [PMID: 29256070 DOI: 10.1007/s10495-017-1436-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Global cleavage of cellular proteins by activated caspases is a hallmark of apoptosis, which causes biochemical collapse of the cell. Recent studies suggest that, rather than completely destroying a protein, caspase cleavage can confer novel characteristics or functions. In this respect, the post-caspase role of Bcl-2 family proteins remains uncharacterized. Here, we showed that Mcl-1, a pro-survival member of the Bcl-2 family, was cleaved by caspase-3 in non-small cell lung cancer (NSCLC) cells undergoing chemotherapeutic agent-triggered apoptosis. Caspase cleavage partially impaired the anti-apoptotic activity of Mcl-1 by reducing its mitochondrial localization and impeding its association with the permeability transition pore-forming protein Bak. However, the stability of cleaved Mcl-1 was markedly enhanced because it was more refractory to ubiquitination-dependent proteasomal degradation, thereby improving cell viability to a greater extent than full-length Mcl-1 when transiently expressed in NSCLC cells. These findings shed new light on the role of Mcl-1 in apoptosis and suggest potential novel targets for optimizing the tumoricidal capacity of chemotherapy.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhiwei Yang
- Department of Applied Physics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yimeng Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiang Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Lei Wang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Shengli Zhang
- Department of Applied Physics, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Lintao Jia
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
79
|
Young AI, Timpson P, Gallego-Ortega D, Ormandy CJ, Oakes SR. Myeloid cell leukemia 1 (MCL-1), an unexpected modulator of protein kinase signaling during invasion. Cell Adh Migr 2017; 12:513-523. [PMID: 29166822 PMCID: PMC6363037 DOI: 10.1080/19336918.2017.1393591] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Myeloid cell leukemia-1 (MCL-1), closely related to B-cell lymphoma 2 (BCL-2), has a well-established role in cell survival and has emerged as an important target for cancer therapeutics. We have demonstrated that inhibiting MCL-1 is efficacious in suppressing tumour progression in pre-clinical models of breast cancer and revealed that in addition to its role in cell survival, MCL-1 modulated cellular invasion. Utilizing a MCL-1-specific genetic antagonist, we found two possible mechanisms; firstly MCL-1 directly binds to and alters the phosphorylation of the cytoskeletal remodeling protein, Cofilin, a protein important for cytoskeletal remodeling during invasion, and secondly MCL-1 modulates the levels SRC family kinases (SFKs) and their targets. These data provide evidence that MCL-1 activities are not limited to endpoints of extracellular and intracellular signaling culminating in cell survival as previously thought, but can directly modulate the output of SRC family kinases signaling during cellular invasion. Here we review the pleotropic roles of MCL-1 and discuss the implications of this newly discovered effect on protein kinase signaling for the development of cancer therapeutics.
Collapse
Affiliation(s)
- Adelaide Ij Young
- a Cancer Research Division , Garvan Institute of Medical Research and the Kinghorn Cancer Centre , 384 Victoria Street, Darlinghurst , NSW , Australia
| | - Paul Timpson
- a Cancer Research Division , Garvan Institute of Medical Research and the Kinghorn Cancer Centre , 384 Victoria Street, Darlinghurst , NSW , Australia.,b St. Vincent's Clinical School, UNSW Medicine , Victoria Street, Darlinghurst , NSW , Australia
| | - David Gallego-Ortega
- a Cancer Research Division , Garvan Institute of Medical Research and the Kinghorn Cancer Centre , 384 Victoria Street, Darlinghurst , NSW , Australia.,b St. Vincent's Clinical School, UNSW Medicine , Victoria Street, Darlinghurst , NSW , Australia
| | - Christopher J Ormandy
- a Cancer Research Division , Garvan Institute of Medical Research and the Kinghorn Cancer Centre , 384 Victoria Street, Darlinghurst , NSW , Australia.,b St. Vincent's Clinical School, UNSW Medicine , Victoria Street, Darlinghurst , NSW , Australia
| | - Samantha R Oakes
- a Cancer Research Division , Garvan Institute of Medical Research and the Kinghorn Cancer Centre , 384 Victoria Street, Darlinghurst , NSW , Australia.,b St. Vincent's Clinical School, UNSW Medicine , Victoria Street, Darlinghurst , NSW , Australia
| |
Collapse
|
80
|
Rocha S, Freitas A, Guimaraes SC, Vitorino R, Aroso M, Gomez-Lazaro M. Biological Implications of Differential Expression of Mitochondrial-Shaping Proteins in Parkinson's Disease. Antioxidants (Basel) 2017; 7:E1. [PMID: 29267236 PMCID: PMC5789311 DOI: 10.3390/antiox7010001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/17/2022] Open
Abstract
It has long been accepted that mitochondrial function and morphology is affected in Parkinson's disease, and that mitochondrial function can be directly related to its morphology. So far, mitochondrial morphological alterations studies, in the context of this neurodegenerative disease, have been performed through microscopic methodologies. The goal of the present work is to address if the modifications in the mitochondrial-shaping proteins occurring in this disorder have implications in other cellular pathways, which might constitute important pathways for the disease progression. To do so, we conducted a novel approach through a thorough exploration of the available proteomics-based studies in the context of Parkinson's disease. The analysis provided insight into the altered biological pathways affected by changes in the expression of mitochondrial-shaping proteins via different bioinformatic tools. Unexpectedly, we observed that the mitochondrial-shaping proteins altered in the context of Parkinson's disease are, in the vast majority, related to the organization of the mitochondrial cristae. Conversely, in the studies that have resorted to microscopy-based techniques, the most widely reported alteration in the context of this disorder is mitochondria fragmentation. Cristae membrane organization is pivotal for mitochondrial ATP production, and changes in their morphology have a direct impact on the organization and function of the oxidative phosphorylation (OXPHOS) complexes. To understand which biological processes are affected by the alteration of these proteins we analyzed the binding partners of the mitochondrial-shaping proteins that were found altered in Parkinson's disease. We showed that the binding partners fall into seven different cellular components, which include mitochondria, proteasome, and endoplasmic reticulum (ER), amongst others. It is noteworthy that, by evaluating the biological process in which these modified proteins are involved, we showed that they are related to the production and metabolism of ATP, immune response, cytoskeleton alteration, and oxidative stress, amongst others. In summary, with our bioinformatics approach using the data on the modified proteins in Parkinson's disease patients, we were able to relate the alteration of mitochondrial-shaping proteins to modifications of crucial cellular pathways affected in this disease.
Collapse
Affiliation(s)
- Sara Rocha
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Ana Freitas
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
- FMUP-Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal.
| | - Sofia C Guimaraes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Rui Vitorino
- iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Universidade do Porto, 4200-319 Porto, Portugal.
| | - Miguel Aroso
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Maria Gomez-Lazaro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
81
|
Ebrahim AS, Kandouz M, Emara N, Sugalski AB, Lipovich L, Al-Katib AM. Unintended target effect of anti-BCL-2 DNAi. Cancer Manag Res 2017; 9:427-432. [PMID: 28989285 PMCID: PMC5624602 DOI: 10.2147/cmar.s139105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Previous research suggested that a novel compound PNT2258 inhibits B-cell lymphoma 2 (BCL-2) transcription by DNA interference (DNAi) and demonstrated its activity in preclinical xenograft models and in a pilot Phase II clinical trial in non-Hodgkin's lymphoma (NHL). While the drug downregulates BCL-2 at the promoter, mRNA, and protein levels, there is a significant homology (13-16 bases) between PNT100 and a number of promoters of genes involved in cell cycle regulation and survival. In this study, we identify cyclin-dependent kinase-4 (CDK4) as an unintended target gene of PNT2258 and examine its relevance to NHL. METHODS We performed a Basic Local Alignment Search Tool (BLAST) homology search using PNT100 DNAi sequences. Also, we conducted CDK4 promoter assay in K562 cells and studied the protein expression of CDK4 in Wayne State University (WSU)-follicular small cleaved cell lymphoma (FSCCL), WSU-diffuse large cell lymphoma, and WSU-Waldenström's macroglobulinemia (WM) lymphoma cells. RESULTS BLAST homology search showed that PNT100 completely binds to BCL-2 gene as expected. However, there was 100% homology in a stretch of 14 bases (8-21) between PNT100 and CDK4. PNT2258 strongly inhibited CDK4 promoter activity in K562 cells. Moreover, CDK4 protein expression was significantly downregulated by PNT2258 in WSU-FSCCL and WSU-WM cell lines. DISCUSSION DNAi may work not only through knocking down the intended gene but also by knocking down other genes. PNT2258 affects CDK4 expression and promoter activity. Results of the present study suggest a broader mechanism of action for DNAi targeting both intended (BCL-2) and unintended (CDK4) genes.
Collapse
Affiliation(s)
| | | | | | - Amara B Sugalski
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Leonard Lipovich
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | | |
Collapse
|
82
|
Szymański J, Janikiewicz J, Michalska B, Patalas-Krawczyk P, Perrone M, Ziółkowski W, Duszyński J, Pinton P, Dobrzyń A, Więckowski MR. Interaction of Mitochondria with the Endoplasmic Reticulum and Plasma Membrane in Calcium Homeostasis, Lipid Trafficking and Mitochondrial Structure. Int J Mol Sci 2017; 18:ijms18071576. [PMID: 28726733 PMCID: PMC5536064 DOI: 10.3390/ijms18071576] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 12/12/2022] Open
Abstract
Studying organelles in isolation has been proven to be indispensable for deciphering the underlying mechanisms of molecular cell biology. However, observing organelles in intact cells with the use of microscopic techniques reveals a new set of different junctions and contact sites between them that contribute to the control and regulation of various cellular processes, such as calcium and lipid exchange or structural reorganization of the mitochondrial network. In recent years, many studies focused their attention on the structure and function of contacts between mitochondria and other organelles. From these studies, findings emerged showing that these contacts are involved in various processes, such as lipid synthesis and trafficking, modulation of mitochondrial morphology, endoplasmic reticulum (ER) stress, apoptosis, autophagy, inflammation and Ca2+ handling. In this review, we focused on the physical interactions of mitochondria with the endoplasmic reticulum and plasma membrane and summarized present knowledge regarding the role of mitochondria-associated membranes in calcium homeostasis and lipid metabolism.
Collapse
Affiliation(s)
- Jędrzej Szymański
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| | - Justyna Janikiewicz
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| | - Bernadeta Michalska
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| | - Paulina Patalas-Krawczyk
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| | - Mariasole Perrone
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.
| | - Wiesław Ziółkowski
- Department of Bioenergetics and Nutrition, Gdańsk University of Physical Education and Sport, 80-336 Gdańsk, Poland.
| | - Jerzy Duszyński
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.
| | - Agnieszka Dobrzyń
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| | - Mariusz R Więckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| |
Collapse
|
83
|
Chen WL, Hsieh CL, Chen JH, Huang CS, Chen WT, Kuo YC, Chen CY, Hsu FT. Amentoflavone enhances sorafenib-induced apoptosis through extrinsic and intrinsic pathways in sorafenib-resistant hepatocellular carcinoma SK-Hep1 cells in vitro. Oncol Lett 2017; 14:3229-3234. [PMID: 28927070 DOI: 10.3892/ol.2017.6540] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/25/2017] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to evaluate the effects of amentoflavone on sorafenib-induced apoptosis in sorafenib-resistant hepatocellular carcinoma (HCC) cells. The sorafenib-resistant SK-Hep1 (SK-Hep1R) cell line was established for the present study. Initially, the differences in sorafenib-induced cytotoxicity and apoptosis between wild-type SK-Hep1 and SK-Hep1R cells were verified using the MTT assay and flow cytometry. The effects of amentoflavone on sorafenib-induced cytotoxicity and apoptosis were then investigated using MTT, flow cytometry, DNA gel electrophoresis and western blot analysis. The results demonstrated that cell viability of SK-Hep1R cells was increased compared with that of SK-Hep1 cells following treatment with different concentrations of sorafenib for 24 h. Apoptosis of SK-Hep1R cells was lower than that of SK-Hep1 cells following treatment with 20 µM sorafenib for 24 h. Amentoflavone alone did not inhibit cell viability but significantly triggered sorafenib-induced cytotoxicity and apoptosis in SK-Hep1R cells. Amentoflavone not only reversed sorafenib-induced anti-apoptotic protein levels but also enhanced sorafenib-induced pro-apoptotic protein expression in SK-Hep1R cells. In conclusion, amentoflavone may be used as a sorafenib sensitizer to enhance sorafenib-induced cytotoxicity and trigger sorafenib-induced apoptosis through extrinsic and intrinsic pathways in SK-Hep1R cells.
Collapse
Affiliation(s)
- Wei-Lung Chen
- Department of Emergency Medicine, Cathay General Hospital, Taipei 106, Taiwan, R.O.C.,School of Medicine, Fu-Jen Catholic University, Taipei 242, Taiwan, R.O.C
| | - Chia-Ling Hsieh
- The Ph.D. Program for Translational Medicine College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Jiann-Hwa Chen
- Department of Emergency Medicine, Cathay General Hospital, Taipei 106, Taiwan, R.O.C.,School of Medicine, Fu-Jen Catholic University, Taipei 242, Taiwan, R.O.C
| | - Chih-Sheng Huang
- Division of Colon and Rectal Surgery, Department of Surgery, National Yang-Ming University Hospital, Yilan 260, Taiwan, R.O.C.,Department of Surgery, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Wei-Ting Chen
- Department of Psychiatry, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan, R.O.C
| | - Yu-Cheng Kuo
- Radiation Oncology, Show Chwan Memorial Hospital, Changhua 500, Taiwan, R.O.C
| | - Cheng-Yu Chen
- Department of Medical Imaging, Taipei Medical University Hospital, Taipei 110, Taiwan, R.O.C.,Translational Imaging Research Center, School of Medicine, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Fei-Ting Hsu
- Department of Medical Imaging, Taipei Medical University Hospital, Taipei 110, Taiwan, R.O.C.,Translational Imaging Research Center, School of Medicine, Taipei Medical University, Taipei 110, Taiwan, R.O.C.,Department of Radiology, School of Medicine, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| |
Collapse
|
84
|
Pendin D, Filadi R, Pizzo P. The Concerted Action of Mitochondrial Dynamics and Positioning: New Characters in Cancer Onset and Progression. Front Oncol 2017; 7:102. [PMID: 28589083 PMCID: PMC5439081 DOI: 10.3389/fonc.2017.00102] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/02/2017] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are dynamic organelles whose morphology and activity are extremely variable, depending on the metabolic state of the cell. In particular, their shape and movements within the cell are finely regulated by an increasing number of proteins, which take part in the process of mitochondrial fission/fusion and connect the organelles to the cytoskeleton. As to their activities, mitochondria are considered to be at the crossroad between cell life and death since, on the one hand, they are essential in ATP production and in multiple metabolic pathways but, on the other, they are involved in the intrinsic apoptotic cascade, triggered by different stress conditions. Importantly, the process of mitochondrial Ca2+ uptake, as well as the morphology and the dynamics of these organelles, is known to deeply impact on both pro-survival and pro-death mitochondrial activities. Recently, increasing evidence has accrued on a central role of deregulated mitochondrial functionalities in the onset and progression of different pathologies, ranging from neurodegenerative diseases to cancer. In this contribution, we will present the latest findings connecting alterations in the machineries that control mitochondrial dynamics and localization to specific cancer hallmarks, highlighting the importance of mitochondria for the viability of cancer cells and discussing their role as promising targets for the development of novel anticancer therapies.
Collapse
Affiliation(s)
- Diana Pendin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Neuroscience Institute, National Research Council (CNR), Padova, Italy
| |
Collapse
|
85
|
Marchi S, Patergnani S, Missiroli S, Morciano G, Rimessi A, Wieckowski MR, Giorgi C, Pinton P. Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium 2017; 69:62-72. [PMID: 28515000 DOI: 10.1016/j.ceca.2017.05.003] [Citation(s) in RCA: 468] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 12/12/2022]
Abstract
The endoplasmic reticulum (ER) and mitochondria cannot be considered as static structures, as they intimately communicate, forming very dynamic platforms termed mitochondria-associated membranes (MAMs). In particular, the ER transmits proper Ca2+ signals to mitochondria, which decode them into specific inputs to regulate essential functions, including metabolism, energy production and apoptosis. Here, we will describe the different molecular players involved in the transfer of Ca2+ ions from the ER lumen to the mitochondrial matrix and how modifications in both ER-mitochondria contact sites and Ca2+ signaling can alter the cell death execution program.
Collapse
Affiliation(s)
- Saverio Marchi
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Sonia Missiroli
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Giampaolo Morciano
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Alessandro Rimessi
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | | | - Carlotta Giorgi
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
86
|
Vervliet T, Clerix E, Seitaj B, Ivanova H, Monaco G, Bultynck G. Modulation of Ca 2+ Signaling by Anti-apoptotic B-Cell Lymphoma 2 Proteins at the Endoplasmic Reticulum-Mitochondrial Interface. Front Oncol 2017; 7:75. [PMID: 28516063 PMCID: PMC5413508 DOI: 10.3389/fonc.2017.00075] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/07/2017] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are important regulators of cell death and cell survival. Mitochondrial Ca2+ levels are critically involved in both of these processes. On the one hand, excessive mitochondrial Ca2+ leads to Ca2+-induced mitochondrial outer membrane permeabilization and thus apoptosis. On the other hand, mitochondria need Ca2+ in order to efficiently fuel the tricarboxylic acid cycle and maintain adequate mitochondrial bioenergetics. For obtaining this Ca2+, the mitochondria are largely dependent on close contact sites with the endoplasmic reticulum (ER), the so-called mitochondria-associated ER membranes. There, the inositol 1,4,5-trisphosphate receptors are responsible for the Ca2+ release from the ER. It comes as no surprise that this Ca2+ release from the ER and the subsequent Ca2+ uptake at the mitochondria are finely regulated. Cancer cells often modulate ER-Ca2+ transfer to the mitochondria in order to promote cell survival and to inhibit cell death. Important regulators of these Ca2+ signals and the onset of cancer are the B-cell lymphoma 2 (Bcl-2) family of proteins. An increasing number of reports highlight the ability of these Bcl-2-protein family members to finely regulate Ca2+ transfer from ER to mitochondria both in healthy cells and in cancer. In this review, we focus on recent insights into the dynamic regulation of ER-mitochondrial Ca2+ fluxes by Bcl-2-family members and how this impacts cell survival, cell death and mitochondrial energy production.
Collapse
Affiliation(s)
- Tim Vervliet
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Eva Clerix
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Bruno Seitaj
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Hristina Ivanova
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Giovanni Monaco
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
87
|
Ivanova H, Kerkhofs M, La Rovere RM, Bultynck G. Endoplasmic Reticulum-Mitochondrial Ca 2+ Fluxes Underlying Cancer Cell Survival. Front Oncol 2017; 7:70. [PMID: 28516062 PMCID: PMC5413502 DOI: 10.3389/fonc.2017.00070] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/28/2017] [Indexed: 11/17/2022] Open
Abstract
Calcium ions (Ca2+) are crucial, ubiquitous, intracellular second messengers required for functional mitochondrial metabolism during uncontrolled proliferation of cancer cells. The mitochondria and the endoplasmic reticulum (ER) are connected via “mitochondria-associated ER membranes” (MAMs) where ER–mitochondria Ca2+ transfer occurs, impacting the mitochondrial biology related to several aspects of cellular survival, autophagy, metabolism, cell death sensitivity, and metastasis, all cancer hallmarks. Cancer cells appear addicted to these constitutive ER–mitochondrial Ca2+ fluxes for their survival, since they drive the tricarboxylic acid cycle and the production of mitochondrial substrates needed for nucleoside synthesis and proper cell cycle progression. In addition to this, the mitochondrial Ca2+ uniporter and mitochondrial Ca2+ have been linked to hypoxia-inducible factor 1α signaling, enabling metastasis and invasion processes, but they can also contribute to cellular senescence induced by oncogenes and replication. Finally, proper ER–mitochondrial Ca2+ transfer seems to be a key event in the cell death response of cancer cells exposed to chemotherapeutics. In this review, we discuss the emerging role of ER–mitochondrial Ca2+ fluxes underlying these cancer-related features.
Collapse
Affiliation(s)
- Hristina Ivanova
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut (LKI), KU Leuven, Leuven, Belgium
| | - Martijn Kerkhofs
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut (LKI), KU Leuven, Leuven, Belgium
| | - Rita M La Rovere
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut (LKI), KU Leuven, Leuven, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut (LKI), KU Leuven, Leuven, Belgium
| |
Collapse
|
88
|
Kollinerová S, Dostál Z, Modrianský M. MicroRNA hsa-miR-29b potentiates etoposide toxicity in HeLa cells via down-regulation of Mcl-1. Toxicol In Vitro 2017; 40:289-296. [DOI: 10.1016/j.tiv.2017.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 12/13/2022]
|
89
|
Ong SB, Kalkhoran SB, Hernández-Reséndiz S, Samangouei P, Ong SG, Hausenloy DJ. Mitochondrial-Shaping Proteins in Cardiac Health and Disease - the Long and the Short of It! Cardiovasc Drugs Ther 2017; 31:87-107. [PMID: 28190190 PMCID: PMC5346600 DOI: 10.1007/s10557-016-6710-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondrial health is critically dependent on the ability of mitochondria to undergo changes in mitochondrial morphology, a process which is regulated by mitochondrial shaping proteins. Mitochondria undergo fission to generate fragmented discrete organelles, a process which is mediated by the mitochondrial fission proteins (Drp1, hFIS1, Mff and MiD49/51), and is required for cell division, and to remove damaged mitochondria by mitophagy. Mitochondria undergo fusion to form elongated interconnected networks, a process which is orchestrated by the mitochondrial fusion proteins (Mfn1, Mfn2 and OPA1), and which enables the replenishment of damaged mitochondrial DNA. In the adult heart, mitochondria are relatively static, are constrained in their movement, and are characteristically arranged into 3 distinct subpopulations based on their locality and function (subsarcolemmal, myofibrillar, and perinuclear). Although the mitochondria are arranged differently, emerging data supports a role for the mitochondrial shaping proteins in cardiac health and disease. Interestingly, in the adult heart, it appears that the pleiotropic effects of the mitochondrial fusion proteins, Mfn2 (endoplasmic reticulum-tethering, mitophagy) and OPA1 (cristae remodeling, regulation of apoptosis, and energy production) may play more important roles than their pro-fusion effects. In this review article, we provide an overview of the mitochondrial fusion and fission proteins in the adult heart, and highlight their roles as novel therapeutic targets for treating cardiac disease.
Collapse
Affiliation(s)
- Sang-Bing Ong
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore, 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Siavash Beikoghli Kalkhoran
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK
| | - Sauri Hernández-Reséndiz
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore, 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Parisa Samangouei
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK
| | - Sang-Ging Ong
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Derek John Hausenloy
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore, 169857, Singapore. .,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore. .,The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK. .,The National Institute of Health Research, University College London Hospitals Biomedical Research Centre, London, UK.
| |
Collapse
|
90
|
D'Orsi B, Mateyka J, Prehn JHM. Control of mitochondrial physiology and cell death by the Bcl-2 family proteins Bax and Bok. Neurochem Int 2017; 109:162-170. [PMID: 28315370 DOI: 10.1016/j.neuint.2017.03.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 01/14/2023]
Abstract
Neuronal cell death is often triggered by events that involve intracellular increases in Ca2+. Under resting conditions, the intracellular Ca2+ concentration is tightly controlled by a number of extrusion and sequestering mechanisms involving the plasma membrane, mitochondria, and ER. These mechanisms act to prevent a disruption of neuronal ion homeostasis. As these processes require ATP, excessive Ca2+ overloading may cause energy depletion, mitochondrial dysfunction, and may eventually lead to Ca2+-dependent cell death. Excessive Ca2+ entry though glutamate receptors (excitotoxicity) has been implicated in several neurologic and chronic neurodegenerative diseases, including ischemic stroke, epilepsy, and Alzheimer's disease. Recent evidence has revealed that excitotoxic cell death is regulated by the B-cell lymphoma-2 (Bcl-2) family of proteins. Bcl-2 proteins, comprising of both pro-apoptotic and anti-apoptotic members, have been shown to not only mediate the intrinsic apoptosis pathway by controlling mitochondrial outer membrane (MOM) integrity, but to also control neuronal Ca2+ homeostasis and energetics. In this review, the role of Bcl-2 family proteins in the regulation of apoptosis, their expression in the central nervous system and how they control Ca2+-dependent neuronal injury are summarized. We review the current knowledge on Bcl-2 family proteins in the regulation of mitochondrial function and bioenergetics, including the fusion and fission machinery, and their role in Ca2+ homeostasis regulation at the mitochondria and ER. Specifically, we discuss how the 'pro-apoptotic' Bcl-2 family proteins, Bax and Bok, physiologically expressed in the nervous system, regulate such 'non-apoptotic/daytime' functions.
Collapse
Affiliation(s)
- Beatrice D'Orsi
- Department of Physiology & Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Julia Mateyka
- Department of Physiology & Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| |
Collapse
|
91
|
Zhang S, Liu Y, Wang Z, Liu J, Gu Z, Xu Q, Su L. PAR1‑mediated c‑Jun activation promotes heat stress‑induced early stage apoptosis of human umbilical vein endothelial cells. Mol Med Rep 2017; 15:2595-2603. [PMID: 28447716 PMCID: PMC5428901 DOI: 10.3892/mmr.2017.6303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/02/2017] [Indexed: 12/29/2022] Open
Abstract
Our previous study indicated that when human umbilical vein endothelial cells (HUVECs), which are involved in endothelial barrier function, are heat stressed, levels of protease-activated receptor 1 (PAR1) are increased significantly. In the present study, it was demonstrated that PAR1 serves a vital role in heat stress-induced HUVEC apoptosis. When the PAR1 inhibitor, SCH79797 (SCH), or a small interfering RNA (siRNA) targeting PAR1 were used to inhibit PAR1 signaling, a marked decrease in cell apoptosis, caspase-3 activity and the expression of the pro-apoptotic protein B-cell lymphoma 2 (Bcl-2) associated X (Bax), as well as increased expression of the anti-apoptotic Bcl-2 family member, myeloid cell leukemia 1 (Mcl-1), were observed. In addition, heat stress-induced apoptosis, caspase-3 activity and the expression of Bax were significantly increased following administration of the PAR1 agonist, TFLLR-NH2 or adenovirus overexpression of PAR1. This was accompanied by decreased protein expression levels of Mcl-1. Furthermore, it was identified that the DNA binding activity of the nuclear factor (NF)-κB p65 subunit increased and c-Jun activation was reduced as a result of inhibition of PAR1 signaling by SCH or siRNA-mediated PAR1 knockdown in heat stress-induced HUVECs. Additionally, our previous study reported that NF-κB p65 activation may have an anti-apoptosis effect on heat stressed HUVECs, whereas in the present study c-Jun activation had a pro-apoptosis effect on heat stressed HUVECs. Taken together, these results indicated that PAR1 signaling-mediated c-Jun activation promotes early apoptosis of HUVEC cells induced by heat stress.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Graduate School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yanan Liu
- Department of Intensive Care Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhenglian Wang
- Department of Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Jingxian Liu
- Department of Graduate School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhengtao Gu
- Department of Intensive Care Unit, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Qiulin Xu
- Department of Intensive Care Unit, General Hospital of Guangzhou Military Command, Key Laboratory of Tropical Zone Trauma Care and Tissue Repair of People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China
| | - Lei Su
- Department of Graduate School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
92
|
Menges S, Minakaki G, Schaefer PM, Meixner H, Prots I, Schlötzer-Schrehardt U, Friedland K, Winner B, Outeiro TF, Winklhofer KF, von Arnim CAF, Xiang W, Winkler J, Klucken J. Alpha-synuclein prevents the formation of spherical mitochondria and apoptosis under oxidative stress. Sci Rep 2017; 7:42942. [PMID: 28224980 PMCID: PMC5320486 DOI: 10.1038/srep42942] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/17/2017] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress (OS), mitochondrial dysfunction, and dysregulation of alpha-synuclein (aSyn) homeostasis are key pathogenic factors in Parkinson's disease. Nevertheless, the role of aSyn in mitochondrial physiology remains elusive. Thus, we addressed the impact of aSyn specifically on mitochondrial response to OS in neural cells. We characterize a distinct type of mitochondrial fragmentation, following H2O2 or 6-OHDA-induced OS, defined by spherically-shaped and hyperpolarized mitochondria, termed "mitospheres". Mitosphere formation mechanistically depended on the fission factor Drp1, and was paralleled by reduced mitochondrial fusion. Furthermore, mitospheres were linked to a decrease in mitochondrial activity, and preceded Caspase3 activation. Even though fragmentation of dysfunctional mitochondria is considered to be a prerequisite for mitochondrial degradation, mitospheres were not degraded via Parkin-mediated mitophagy. Importantly, we provide compelling evidence that aSyn prevents mitosphere formation and reduces apoptosis under OS. In contrast, aSyn did not protect against Rotenone, which led to a different, previously described donut-shaped mitochondrial morphology. Our findings reveal a dichotomic role of aSyn in mitochondrial biology, which is linked to distinct types of stress-induced mitochondrial fragmentation. Specifically, aSyn may be part of a cellular defense mechanism preserving neural mitochondrial homeostasis in the presence of increased OS levels, while not protecting against stressors directly affecting mitochondrial function.
Collapse
Affiliation(s)
- Stefanie Menges
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Georgia Minakaki
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | - Holger Meixner
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Iryna Prots
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, IZKF, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany.,Department of Stem Cell Biology, Institute of Human Genetics, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | - Kristina Friedland
- Molecular and Clinical Pharmacy, Department of Chemistry and Pharmacy, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Beate Winner
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, IZKF, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany.,Department of Stem Cell Biology, Institute of Human Genetics, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Tiago F Outeiro
- Department of Neurodegeneration and Restorative Research, University Medical Center Göttingen, 37073 Göttingen, Germany.,Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Konstanze F Winklhofer
- Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44801 Bochum, Germany
| | | | - Wei Xiang
- Institute of Biochemistry, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jochen Klucken
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
93
|
Morciano G, Pedriali G, Sbano L, Iannitti T, Giorgi C, Pinton P. Intersection of mitochondrial fission and fusion machinery with apoptotic pathways: Role of Mcl-1. Biol Cell 2017; 108:279-293. [PMID: 27234233 DOI: 10.1111/boc.201600019] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/24/2016] [Indexed: 01/10/2023]
Abstract
Mitochondria actively contribute to apoptotic cell death through mechanisms including the loss of integrity of the outer mitochondrial membrane, the release of intermembrane space proteins, such as cytochrome c, in the cytosol and the caspase cascade activation. This process is the result of careful cooperation not only among members of the Bcl-2 family but also dynamin-related proteins. These events are often accompanied by fission of the organelle, thus linking mitochondrial dynamics to apoptosis. Emerging evidences are suggesting a fine regulation of mitochondrial morphology by Bcl-2 family members and active participation of fission-fusion proteins in apoptosis. The debate whether in mitochondrial morphogenesis the role of Bcl-2 family members is functionally distinct from their role in apoptosis is still open and, above all, which morphological changes are associated with cell death sensitisation. This review will cover the findings on how the mitochondrial fission and fusion machinery may intersect apoptotic pathways focusing on recent advances on the key role played by Mcl-1.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Gaia Pedriali
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Luigi Sbano
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Tommaso Iannitti
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
94
|
Danese A, Patergnani S, Bonora M, Wieckowski MR, Previati M, Giorgi C, Pinton P. Calcium regulates cell death in cancer: Roles of the mitochondria and mitochondria-associated membranes (MAMs). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:615-627. [PMID: 28087257 DOI: 10.1016/j.bbabio.2017.01.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/30/2016] [Accepted: 01/08/2017] [Indexed: 02/08/2023]
Abstract
Until 1972, the term 'apoptosis' was used to differentiate the programmed cell death that naturally occurs in organismal development from the acute tissue death referred to as necrosis. Many studies on cell death and programmed cell death have been published and most are, at least to some degree, related to cancer. Some key proteins and molecular pathways implicated in cell death have been analyzed, whereas others are still being actively researched; therefore, an increasing number of cellular compartments and organelles are being implicated in cell death and cancer. Here, we discuss the mitochondria and subdomains of the endoplasmic reticulum (ER) that interact with mitochondria, the mitochondria-associated membranes (MAMs), which have been identified as critical hubs in the regulation of cell death and tumor growth. MAMs-dependent calcium (Ca2+) release from the ER allows selective Ca2+ uptake by the mitochondria. The perturbation of Ca2+ homeostasis in cancer cells is correlated with sustained cell proliferation and the inhibition of cell death through the modulation of Ca2+ signaling. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.
Collapse
Affiliation(s)
- Alberto Danese
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Massimo Bonora
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | | | - Maurizio Previati
- Department of Morphology, Surgery and Experimental Medicine, Section of Human Anatomy and Histology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| | - Paolo Pinton
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
95
|
Missiroli S, Danese A, Iannitti T, Patergnani S, Perrone M, Previati M, Giorgi C, Pinton P. Endoplasmic reticulum-mitochondria Ca 2+ crosstalk in the control of the tumor cell fate. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:858-864. [PMID: 28064002 DOI: 10.1016/j.bbamcr.2016.12.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 12/28/2022]
Abstract
Mitochondria-associated membranes are juxtaposed between the endoplasmic reticulum and mitochondria and have been identified as a critical hub in the regulation of apoptosis and tumor growth. One key function of mitochondria-associated membranes is to provide asylum to a number of proteins with tumor suppressor and oncogenic properties. In this review, we discuss how Ca2+ flux manipulation represents the primary mechanism underlying the action of several oncogenes and tumor-suppressor genes and how these networks might be manipulated to provide novel therapies for cancer. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Sonia Missiroli
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Alberto Danese
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Tommaso Iannitti
- KWS BioTest, Marine View Office Park, Portishead, Somerset BS20 7AW, UK
| | - Simone Patergnani
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Mariasole Perrone
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Maurizio Previati
- Department of Morphology, Surgery and Experimental Medicine, Section of Human Anatomy and Histology, Laboratory for Technologies of Advanced Therapies(LTTA), University of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
96
|
Tsai JJ, Pan PJ, Hsu FT. Regorafenib induces extrinsic and intrinsic apoptosis through inhibition of ERK/NF-κB activation in hepatocellular carcinoma cells. Oncol Rep 2016; 37:1036-1044. [PMID: 28000898 DOI: 10.3892/or.2016.5328] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 07/20/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the role of NF-κB inactivation in regorafenib-induced apoptosis in human hepatocellular carcinoma SK-HEP-1 cells. SK-HEP-1 cells were treated with different concentrations of the NF-κB inhibitor 4-N-[2-(4-phenoxyphenyl)ethyl]quinazoline-4,6-diamine (QNZ) or regorafenib for different periods. The effects of QNZ and regorafenib on cell viability, expression of NF-κB-modulated anti-apoptotic proteins and apoptotic pathways were analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, western blotting, DNA gel electrophoresis, flow cytometry and NF-κB reporter gene assay. Inhibitors of various kinases including AKT, c-Jun N-terminal kinase (JNK), P38 and extracellular signal-regulated kinase (ERK) were used to evaluate the mechanism of regorafenib-induced NF-κB inactivation. The results demonstrated that both QNZ and regorafenib significantly inhibited the expression of anti-apoptotic proteins and triggered extrinsic and intrinsic apoptosis. We also demonstrated that regorafenib inhibited NF-κB activation through ERK dephosphorylation. Taken all together, our findings indicate that regorafenib triggers extrinsic and intrinsic apoptosis through suppression of ERK/NF-κB activation in SK-HEP-1 cells.
Collapse
Affiliation(s)
- Jai-Jen Tsai
- Division of Gastroenterology, Department of Medicine, National Yang-Ming University Hospital, Yilan 260, Taiwan, R.O.C
| | - Po-Jung Pan
- Cancer Medical Care Center, National Yang‑Ming University Hospital, Yilan 260, Taiwan, R.O.C
| | - Fei-Ting Hsu
- Department of Medical Imaging, Taipei Medical University Hospital, Taipei 110, Taiwan, R.O.C
| |
Collapse
|
97
|
Cherok E, Xu S, Li S, Das S, Meltzer WA, Zalzman M, Wang C, Karbowski M. Novel regulatory roles of Mff and Drp1 in E3 ubiquitin ligase MARCH5-dependent degradation of MiD49 and Mcl1 and control of mitochondrial dynamics. Mol Biol Cell 2016; 28:396-410. [PMID: 27932492 PMCID: PMC5341724 DOI: 10.1091/mbc.e16-04-0208] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 12/15/2022] Open
Abstract
In addition to their direct roles in mitochondrial fission, Mff and Drp1 act as regulatory factors and control mitochondrial fission and fusion through a Ub-dependent mechanism. The E3 Ub ligase MARCH5 is negatively controlled by Mff and Drp1. MARCH5, an OMM-associated E3 ubiquitin ligase, controls mitochondrial function. Despite its importance, the mechanism and factors controlling MARCH5 activity are largely unknown. Here we report that the MARCH5 C-terminal domain plays a critical role in degradation of MARCH5 substrates, likely by facilitating release of ubiquitinated proteins from the OMM. We also found that the mitochondrial fission proteins Drp1 and Mff negatively regulate MARCH5’s activity toward MiD49 and Mcl1. Knockouts of either Drp1 or Mff led to reduced expression, shorter half-lives, and increased ubiquitination of MiD49 and Mcl1. Effects of Mff and Drp1 depletion on degradation rates and ubiquitination of Mcl1 and MiD49 were eliminated in Drp1−/−/MARCH5−/− and Mff−/−/MARCH5−/− cells. Our data show that it is not mitochondrial morphology per se but rather Mff and Drp1 that directly control MARCH5. Consistently, we find that Mff is an integral component of the MARCH5/p97/Npl4 complex, which is also controlled by MARCH5’s C-terminal domain. Furthermore, not only mitochondrial fission but also fusion is regulated through Mff and Drp1 protein activities. Thus, in addition to their canonical roles in mitochondrial fission, Mff and Drp1 also act as regulatory factors that control mitochondrial fission and fusion.
Collapse
Affiliation(s)
- Edward Cherok
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Shan Xu
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Sunan Li
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Shweta Das
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - W Alex Meltzer
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Michal Zalzman
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Chunxin Wang
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Mariusz Karbowski
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
98
|
Bcl-2 protein family expression pattern determines synergistic pro-apoptotic effects of BH3 mimetics with hemisynthetic cardiac glycoside UNBS1450 in acute myeloid leukemia. Leukemia 2016; 31:755-759. [PMID: 27872497 PMCID: PMC5339427 DOI: 10.1038/leu.2016.341] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
99
|
Marchi S, Bonora M, Patergnani S, Giorgi C, Pinton P. Methods to Assess Mitochondrial Morphology in Mammalian Cells Mounting Autophagic or Mitophagic Responses. Methods Enzymol 2016; 588:171-186. [PMID: 28237100 DOI: 10.1016/bs.mie.2016.09.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
It is widely acknowledged that mitochondria are highly active structures that rapidly respond to cellular and environmental perturbations by changing their shape, number, and distribution. Mitochondrial remodeling is a key component of diverse biological processes, ranging from cell cycle progression to autophagy. In this chapter, we describe different methodologies for the morphological study of the mitochondrial network. Instructions are given for the preparation of samples for fluorescent microscopy, based on genetically encoded strategies or the employment of synthetic fluorescent dyes. We also propose detailed protocols to analyze mitochondrial morphometric parameters from both three-dimensional and bidimensional datasets. Finally, we describe a protocol for the visualization and quantification of mitochondrial structures through electron microscopy.
Collapse
Affiliation(s)
- S Marchi
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - M Bonora
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - S Patergnani
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - C Giorgi
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - P Pinton
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
100
|
Patergnani S, Fossati V, Bonora M, Giorgi C, Marchi S, Missiroli S, Rusielewicz T, Wieckowski MR, Pinton P. Mitochondria in Multiple Sclerosis: Molecular Mechanisms of Pathogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:49-103. [PMID: 28069137 DOI: 10.1016/bs.ircmb.2016.08.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria, the organelles that function as the powerhouse of the cell, have been increasingly linked to the pathogenesis of many neurological disorders, including multiple sclerosis (MS). MS is a chronic inflammatory demyelinating disease of the central nervous system (CNS) and a leading cause of neurological disability in young adults in the western world. Its etiology remains unknown, and while the inflammatory component of MS has been heavily investigated and targeted for therapeutic intervention, the failure of remyelination and the process of axonal degeneration are still poorly understood. Recent studies suggest a role of mitochondrial dysfunction in the neurodegenerative aspects of MS. This review is focused on mitochondrial functions under physiological conditions and the consequences of mitochondrial alterations in various CNS disorders. Moreover, we summarize recent findings linking mitochondrial dysfunction to MS and discuss novel therapeutic strategies targeting mitochondria-related pathways as well as emerging experimental approaches for modeling mitochondrial disease.
Collapse
Affiliation(s)
- S Patergnani
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - V Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - M Bonora
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - C Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - S Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - S Missiroli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - T Rusielewicz
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - M R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - P Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|