51
|
Huillet M, Lasserre F, Gratacap MP, Engelmann B, Bruse J, Polizzi A, Fougeray T, Martin CMP, Rives C, Fougerat A, Naylies C, Lippi Y, Garcia G, Rousseau-Bacquie E, Canlet C, Debrauwer L, Rolle-Kampczyk U, von Bergen M, Payrastre B, Boutet-Robinet E, Gamet-Payrastre L, Guillou H, Loiseau N, Ellero-Simatos S. Pharmacological activation of constitutive androstane receptor induces female-specific modulation of hepatic metabolism. JHEP Rep 2024; 6:100930. [PMID: 38149074 PMCID: PMC10749885 DOI: 10.1016/j.jhepr.2023.100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 12/28/2023] Open
Abstract
Background & Aims The constitutive androstane receptor (CAR) is a nuclear receptor that binds diverse xenobiotics and whose activation leads to the modulation of the expression of target genes involved in xenobiotic detoxification and energy metabolism. Although CAR hepatic activity is considered to be higher in women than in men, its sex-dependent response to an acute pharmacological activation has seldom been investigated. Methods The hepatic transcriptome, plasma markers, and hepatic metabolome, were analysed in Car+/+ and Car-/- male and female mice treated either with the CAR-specific agonist 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) or with vehicle. Results Although 90% of TCPOBOP-sensitive genes were modulated in a sex-independent manner, the remaining 10% showed almost exclusive female liver specificity. These female-specific CAR-sensitive genes were mainly involved in xenobiotic metabolism, inflammation, and extracellular matrix organisation. CAR activation also induced higher hepatic oxidative stress and hepatocyte cytolysis in females than in males. Hepatic expression of flavin monooxygenase 3 (Fmo3) was almost abolished and was associated with a decrease in hepatic trimethylamine-N-oxide (TMAO) concentration in TCPOBOP-treated females. In line with a potential role in the control of TMAO homeostasis, CAR activation decreased platelet hyper-responsiveness in female mice supplemented with dietary choline. Conclusions More than 10% of CAR-sensitive genes are sex-specific and influence hepatic and systemic responses such as platelet aggregation. CAR activation may be an important mechanism of sexually-dimorphic drug-induced liver injury. Impact and implications CAR is activated by many drugs and pollutants. Its pharmacological activation had a stronger impact on hepatic gene expression and metabolism in females than in males, and had a specific impact on liver toxicity and trimethylamine metabolism. Sexual dimorphism should be considered when testing and/or prescribing xenobiotics known to activate CAR.
Collapse
Affiliation(s)
- Marine Huillet
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Frédéric Lasserre
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Marie-Pierre Gratacap
- INSERM, UMR-1297 and Université Toulouse III, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), CHU-Rangueil, Toulouse, France
| | - Beatrice Engelmann
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Justine Bruse
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Arnaud Polizzi
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Tiffany Fougeray
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Céline Marie Pauline Martin
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Clémence Rives
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Anne Fougerat
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Claire Naylies
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Yannick Lippi
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Géraldine Garcia
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Elodie Rousseau-Bacquie
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Cécile Canlet
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Laurent Debrauwer
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Bernard Payrastre
- INSERM, UMR-1297 and Université Toulouse III, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), CHU-Rangueil, Toulouse, France
- Laboratoire d’Hématologie, CHU de Toulouse, Toulouse, France
| | - Elisa Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Laurence Gamet-Payrastre
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Nicolas Loiseau
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| |
Collapse
|
52
|
She J, Sun L, Yu Y, Fan H, Li X, Zhang X, Zhuo X, Guo M, Liu J, Liu P, Tuerhongjiang G, Du B, Li H, Yu J, Yuan Z, Wu Y. A gut feeling of statin. Gut Microbes 2024; 16:2415487. [PMID: 39470680 PMCID: PMC11540068 DOI: 10.1080/19490976.2024.2415487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/21/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024] Open
Abstract
Statins, known as HMG-CoA reductase inhibitors, are widely utilized to reduce blood cholesterol levels and possess pleiotropic effects, including the influence on inflammation and macrophage proliferation. Despite their significant impact in diminishing the incidence of cardiovascular events and mortality, individual responses to statin therapy vary considerably. Understanding this variability is essential for optimizing treatment outcomes and minimizing adverse effects. The gut microbiota, a complex ecosystem of microorganisms within the gastrointestinal tract, plays a critical role in human health and disease. Emerging evidence has linked the gut microbiota to drug metabolism and response, with the potential to modulate the efficacy of statin therapy and its side effects. This review provides a comprehensive overview of the interaction between the gut microbiota and statins. It discusses how the gut microbiota can influence the therapeutic effects and side effects of statins and examines the mechanisms by which the gut microbiota affect statin response and cardiovascular diseases.
Collapse
Affiliation(s)
- Jianqing She
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
- Cardiometabolic Innovation Center, Ministry of Education, Xi’an, Shaanxi, China
| | - Lizhe Sun
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Yue Yu
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Heze Fan
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Xia Li
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Xinyu Zhang
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Xiaozhen Zhuo
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
- Cardiometabolic Innovation Center, Ministry of Education, Xi’an, Shaanxi, China
| | - Manyun Guo
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Junhui Liu
- Clinical Laboratory, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Peining Liu
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Gulinigaer Tuerhongjiang
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Bin Du
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Hongbing Li
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Jun Yu
- Department of Medicine and Therapeutics and Institute of Digestive Disease, The State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zuyi Yuan
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Yue Wu
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
- Cardiometabolic Innovation Center, Ministry of Education, Xi’an, Shaanxi, China
| |
Collapse
|
53
|
Bartsch M, Hahn A, Berkemeyer S. Bridging the Gap from Enterotypes to Personalized Dietary Recommendations: A Metabolomics Perspective on Microbiome Research. Metabolites 2023; 13:1182. [PMID: 38132864 PMCID: PMC10744656 DOI: 10.3390/metabo13121182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
Advances in high-throughput DNA sequencing have propelled research into the human microbiome and its link to metabolic health. We explore microbiome analysis methods, specifically emphasizing metabolomics, how dietary choices impact the production of microbial metabolites, providing an overview of studies examining the connection between enterotypes and diet, and thus, improvement of personalized dietary recommendations. Acetate, propionate, and butyrate constitute more than 95% of the collective pool of short-chain fatty acids. Conflicting data on acetate's effects may result from its dynamic signaling, which can vary depending on physiological conditions and metabolic phenotypes. Human studies suggest that propionate has overall anti-obesity effects due to its well-documented chemistry, cellular signaling mechanisms, and various clinical benefits. Butyrate, similar to propionate, has the ability to reduce obesity by stimulating the release of appetite-suppressing hormones and promoting the synthesis of leptin. Tryptophan affects systemic hormone secretion, with indole stimulating the release of GLP-1, which impacts insulin secretion, appetite suppression, and gastric emptying. Bile acids, synthesized from cholesterol in the liver and subsequently modified by gut bacteria, play an essential role in the digestion and absorption of dietary fats and fat-soluble vitamins, but they also interact directly with intestinal microbiota and their metabolites. One study using statistical methods identified primarily two groupings of enterotypes Bacteroides and Ruminococcus. The Prevotella-dominated enterotype, P-type, in humans correlates with vegetarians, high-fiber and carbohydrate-rich diets, and traditional diets. Conversely, individuals who consume diets rich in animal fats and proteins, typical in Western-style diets, often exhibit the Bacteroides-dominated, B-type, enterotype. The P-type showcases efficient hydrolytic enzymes for plant fiber degradation but has limited lipid and protein fermentation capacity. Conversely, the B-type features specialized enzymes tailored for the degradation of animal-derived carbohydrates and proteins, showcasing an enhanced saccharolytic and proteolytic potential. Generally, models excel at predictions but often struggle to fully elucidate why certain substances yield varied responses. These studies provide valuable insights into the potential for personalized dietary recommendations based on enterotypes.
Collapse
Affiliation(s)
- Madeline Bartsch
- NutritionLab, Faculty of Agricultural Sciences and Landscape Architecture, Osnabrueck University of Applied Sciences, Am Kruempel 31, 49090 Osnabrueck, Germany;
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, 30167 Hannover, Germany;
| | - Andreas Hahn
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, 30167 Hannover, Germany;
| | - Shoma Berkemeyer
- NutritionLab, Faculty of Agricultural Sciences and Landscape Architecture, Osnabrueck University of Applied Sciences, Am Kruempel 31, 49090 Osnabrueck, Germany;
| |
Collapse
|
54
|
Oktaviono YH, Lamara AD, Tri Saputra PB, Arnindita JN, Pasahari D, Saputra ME, Made Adnya Suasti N. The roles of trimethylamine-N-oxide in atherosclerosis and its potential therapeutic aspect: A literature review. BIOMOLECULES & BIOMEDICINE 2023; 23:936-948. [PMID: 37337893 PMCID: PMC10655873 DOI: 10.17305/bb.2023.8893] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/21/2023] [Accepted: 05/21/2023] [Indexed: 06/21/2023]
Abstract
Current research supports the evidence that the gut microbiome (GM), which consist of gut microbiota and their biologically active metabolites, is associated with atherosclerosis development. Trimethylamine-N-oxide (TMAO), a metabolite produced by the GM through trimethylamine (TMA) oxidation, significantly enhances the formation and vulnerability of atherosclerotic plaques. TMAO promotes inflammation and oxidative stress in endothelial cells, leading to vascular dysfunction and plaque formation. Dimethyl-1-butanol (DMB), iodomethylcholine (IMC) and fluoromethylcholine (FMC) have been recognized for their ability to reduce plasma TMAO by inhibiting trimethylamine lyase, a bacterial enzyme involved in the choline cleavage anaerobic process, thus reducing TMA formation. Conversely, indole-3-carbinol (I3C) and trigonelline inhibit TMA oxidation by inhibiting flavin-containing monooxygenase-3 (FMO3), resulting in reduced plasma TMAO. The combined use of inhibitors of choline trimethylamine lyase and flavin-containing monooxygenase-3 could provide novel therapeutic strategies for cardiovascular disease prevention by stabilizing existing atherosclerotic plaques. This review aims to present the current evidence of the roles of TMA/TMAO in atherosclerosis as well as its potential therapeutic prevention aspects.
Collapse
Affiliation(s)
- Yudi Her Oktaviono
- Department of Cardiology and Vascular Medicine, General Hospital Dr. Soetomo, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Ariikah Dyah Lamara
- Department of Cardiology and Vascular Medicine, General Hospital Dr. Soetomo, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Pandit Bagus Tri Saputra
- Department of Cardiology and Vascular Medicine, General Hospital Dr. Soetomo, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | | | - Diar Pasahari
- Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Mahendra Eko Saputra
- Department of Cardiology and Vascular Medicine, General Hospital Dr. Soetomo, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | | |
Collapse
|
55
|
Wang N, Zhang J, Yu Z, Yan X, Zhang L, Peng H, Chen C, Li R. Oropharyngeal administration of colostrum targeting gut microbiota and metabolites in very preterm infants: protocol for a multicenter randomized controlled trial. BMC Pediatr 2023; 23:508. [PMID: 37845612 PMCID: PMC10577906 DOI: 10.1186/s12887-023-04346-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Oropharyngeal administration of colostrum (OAC) has an immune-stimulating effect on oropharyngeal-associated lymphoid tissue, and can promote the maturation of the gastrointestinal tract. However, how OAC promotes intestinal maturation in preterm infants by altering gut microbiota remains unclear. We aim to assess changes in gut microbiota and metabolites after OAC in very preterm infants. METHODS A multicenter, double-blind, randomized controlled trial will be conducted in three large neonatal intensive care units in Shenzhen, China, with preterm infants with gestational age less than 32 weeks at birth and birth weight less than 1500 g. It is estimated that 320 preterm infants will be enrolled in this study within one year. The intervention group will receive oropharyngeal administration of 0.2 ml colostrum every 3 h, starting between the first 48 to 72 h and continued for 5 consecutive days. Following a similar administration scheme, the control group will receive oropharyngeal administration of sterile water. Stool samples will be collected at the first defecation, as well as on the 7th, 14th, 21st and 28th days after birth for analysis of effect of OAC on gut microbiota and metabolites through 16sRNA gene sequencing and liquid chromatography-mass spectrometry. DISCUSSION This proposal advocates for the promotion of OAC as a safe and relatively beneficial protocol in neonatal intensive care units, which may contribute to the establishment of a dominant intestinal flora. Findings of this study may help improve the health outcomes of preterm infants by establishment of targeted gut microbiota in future studies. TRIAL REGISTRATION NCT05481866 (registered July 30, 2022 on ClinicalTrials.gov).
Collapse
Affiliation(s)
- Na Wang
- Department of Neonatology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Jiangsu, China
| | - Jia Zhang
- Department of Neonatology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Jiangsu, China
| | - Zhangbin Yu
- Department of Neonatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.
| | - Xudong Yan
- Department of Neonatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Lian Zhang
- Department of Neonatology, Bao'an Maternal and Child Health Hospital, Shenzhen, Guangdong, China
| | - Haibo Peng
- Department of Neonatology, Bao'an Maternal and Child Health Hospital, Shenzhen, Guangdong, China
| | - Cheng Chen
- Department of Neonatology, Longgang Maternal and Child Health Hospital, Shenzhen, Guangdong, China
| | - Rui Li
- Department of Neonatology, Longgang Maternal and Child Health Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
56
|
Almanza-Aguilera E, Cano A, Gil-Lespinard M, Burguera N, Zamora-Ros R, Agudo A, Farràs M. Mediterranean diet and olive oil, microbiota, and obesity-related cancers. From mechanisms to prevention. Semin Cancer Biol 2023; 95:103-119. [PMID: 37543179 DOI: 10.1016/j.semcancer.2023.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/02/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Olive oil (OO) is the main source of added fat in the Mediterranean diet (MD). It is a mix of bioactive compounds, including monounsaturated fatty acids, phytosterols, simple phenols, secoiridoids, flavonoids, and terpenoids. There is a growing body of evidence that MD and OO improve obesity-related factors. In addition, obesity has been associated with an increased risk for several cancers: endometrial, oesophageal adenocarcinoma, renal, pancreatic, hepatocellular, gastric cardia, meningioma, multiple myeloma, colorectal, postmenopausal breast, ovarian, gallbladder, and thyroid cancer. However, the epidemiological evidence linking MD and OO with these obesity-related cancers, and their potential mechanisms of action, especially those involving the gut microbiota, are not clearly described or understood. The goals of this review are 1) to update the current epidemiological knowledge on the associations between MD and OO consumption and obesity-related cancers, 2) to identify the gut microbiota mechanisms involved in obesity-related cancers, and 3) to report the effects of MD and OO on these mechanisms.
Collapse
Affiliation(s)
- Enrique Almanza-Aguilera
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Ainara Cano
- Food Research, AZTI, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160, Derio, Spain
| | - Mercedes Gil-Lespinard
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Nerea Burguera
- Food Research, AZTI, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160, Derio, Spain
| | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain; Department of Nutrition, Food Sciences, and Gastronomy, Food Innovation Network (XIA), Institute for Research on Nutrition and Food Safety (INSA), Faculty of Pharmacy and Food Sciences University of Barcelona, Barcelona, Spain.
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Marta Farràs
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
57
|
Andersen CJ, Huang L, Zhai F, Esposito CP, Greco JM, Zhang R, Woodruff R, Sloan A, Van Dyke AR. Consumption of Different Egg-Based Diets Alters Clinical Metabolic and Hematological Parameters in Young, Healthy Men and Women. Nutrients 2023; 15:3747. [PMID: 37686779 PMCID: PMC10490185 DOI: 10.3390/nu15173747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Eggs-particularly egg yolks-are a rich source of bioactive nutrients and dietary compounds that influence metabolic health, lipid metabolism, immune function, and hematopoiesis. We investigated the effects of consuming an egg-free diet, three egg whites per day, and three whole eggs per day for 4 weeks on comprehensive clinical metabolic, immune, and hematologic profiles in young, healthy adults (18-35 y, BMI < 30 kg/m2 or <30% body fat for men and <40% body fat for women, n = 26) in a 16-week randomized, crossover intervention trial. We observed that average daily macro- and micronutrient intake significantly differed across egg diet periods, including greater intake of choline during the whole egg diet period, which corresponded to increased serum choline and betaine without altering trimethylamine N-oxide. Egg white and whole egg intake increased serum isoleucine while whole egg intake reduced serum glycine-markers of increased and decreased risk of insulin resistance, respectively-without altering other markers of glucose sensitivity or inflammation. Whole egg intake increased a subset of large HDL particles (H6P, 10.8 nm) and decreased the total cholesterol:HDL-cholesterol ratio and % monocytes in female participants using combined oral contraceptive (COC) medication (n = 11) as compared to female non-users (n = 10). Whole egg intake further increased blood hematocrit whereas egg white and whole egg intake reduced blood platelet counts. Changes in clinical immune cell counts between egg white and whole egg diet periods were negatively correlated with several HDL parameters yet positively correlated with measures of triglyceride-rich lipoproteins and insulin sensitivity. Overall, the intake of whole eggs led to greater overall improvements in micronutrient diet quality, choline status, and HDL and hematologic profiles while minimally-yet potentially less adversely-affecting markers of insulin resistance as compared to egg whites.
Collapse
Affiliation(s)
- Catherine J. Andersen
- Department of Biology, Fairfield University, Fairfield, CT 06824, USA; (J.M.G.); (A.S.)
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (L.H.); (F.Z.); (R.Z.); (R.W.)
| | - Lindsey Huang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (L.H.); (F.Z.); (R.Z.); (R.W.)
| | - Fangyi Zhai
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (L.H.); (F.Z.); (R.Z.); (R.W.)
| | - Christa Palancia Esposito
- Marion Peckham Egan School of Nursing and Health Studies, Fairfield University, Fairfield, CT 06824, USA;
| | - Julia M. Greco
- Department of Biology, Fairfield University, Fairfield, CT 06824, USA; (J.M.G.); (A.S.)
| | - Ruijie Zhang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (L.H.); (F.Z.); (R.Z.); (R.W.)
| | - Rachael Woodruff
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (L.H.); (F.Z.); (R.Z.); (R.W.)
| | - Allison Sloan
- Department of Biology, Fairfield University, Fairfield, CT 06824, USA; (J.M.G.); (A.S.)
| | - Aaron R. Van Dyke
- Department of Chemistry and Biochemistry, Fairfield University, Fairfield, CT 06824, USA;
| |
Collapse
|
58
|
Chen A, Zhang J, Zhang Y. Gut microbiota in heart failure and related interventions. IMETA 2023; 2:e125. [PMID: 38867928 PMCID: PMC10989798 DOI: 10.1002/imt2.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/28/2023] [Accepted: 06/04/2023] [Indexed: 06/14/2024]
Abstract
Heart failure (HF) is a sophisticated syndrome with structural or functional impairment of ventricular filling or ejection of blood, either causing symptoms and signs or being asymptomatic. HF is a major global health issue affecting about 64.3 million people worldwide. The gut microbiota refers to the complex ecosystem of microorganisms, mainly bacteria, in the gut. Studies have revealed that the gut microbiota is associated with many diseases ranging from neurodegenerative diseases to inflammatory bowel disease and cardiovascular diseases. The gut hypothesis of HF suggests that low cardiac output and systemic circulation congestion would cause insufficient intestinal perfusion, leading to ischemia and intestinal barrier dysfunction. The resulting bacterial translocation would contribute to inflammation. Recent studies have refined the hypothesis that changes of metabolites in the gut microbiota have a close relationship with HF. Thus, the gut microbiota has emerged as a potential therapeutic target for HF due to both its critical role in regulating host physiology and metabolism and its pivotal role in the development of HF. This review article aims to provide an overview of the current understanding of the gut microbiota's involvement in HF, including the introduction of the gut hypothesis of HF, its association with HF progression, the potential mechanisms involved mediated by the gut microbiota metabolites, and the impact of various interventions on the gut microbiota, including dietary interventions, probiotic therapy, fecal microbiota transplantation, antibiotics, and so on. While the gut hypothesis of HF is refined with up-to-date knowledge and the gut microbiota presents a promising target for HF therapy, further research is still needed to further understand the underlying mechanisms between gut microbiota and HF, the efficacy of these interventions, and contribute to the health of HF patients.
Collapse
Affiliation(s)
- An‐Tian Chen
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular DiseasesBeijingChina
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, Fuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular DiseasesBeijingChina
| | - Jian Zhang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, Fuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular DiseasesBeijingChina
- Key Laboratory of Clinical Research for Cardiovascular MedicationsNational Health CommitteeBeijingChina
| | - Yuhui Zhang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, Fuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular DiseasesBeijingChina
| |
Collapse
|
59
|
Aziz F, Tripolt NJ, Pferschy PN, Kolesnik E, Mangge H, Curcic P, Hermann M, Meinitzer A, von Lewinski D, Sourij H. Alterations in trimethylamine-N-oxide in response to Empagliflozin therapy: a secondary analysis of the EMMY trial. Cardiovasc Diabetol 2023; 22:184. [PMID: 37475009 PMCID: PMC10357596 DOI: 10.1186/s12933-023-01920-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
INTRODUCTION The relationship between sodium glucose co-transporter 2 inhibitors (SGLT2i) and trimethylamine N-oxide (TMAO) following acute myocardial infarction (AMI) is not yet explored. METHODS In this secondary analysis of the EMMY trial (ClinicalTrials.gov registration: NCT03087773), changes in serum TMAO levels were investigated in response to 26-week Empagliflozin treatment following an AMI compared to the standard post-MI treatment. Additionally, the association of TMAO changes with clinical risk factors and cardiorenal biomarkers was assessed. RESULTS The mean age of patients (N = 367) was 57 ± 9 years, 82% were males, and 14% had type 2 diabetes. In the Empagliflozin group, the median TMAO value was 2.62 µmol/L (IQR: 1.81) at baseline, 3.74 µmol/L (2.81) at 6 weeks, and 4.20 µmol/L (3.14) at 26 weeks. In the placebo group, the median TMAO value was 2.90 µmol/L (2.17) at baseline, 3.23 µmol/L (1.90) at 6 weeks, and 3.35 µmol/L (2.50) at 26 weeks. The serum TMAO levels increased significantly from baseline to week 6 (coefficient: 0.233; 95% confidence interval 0.149-0.317, p < 0.001) and week 26 (0.320, 0.236-0.405, p < 0.001). The average increase in TMAO levels over time (pinteraction = 0.007) was significantly higher in the Empagliflozin compared to the Placebo group. Age was positively associated with TMAO, whereas eGFR and LVEF were negatively associated with TMAO. CONCLUSIONS Our results are contrary to existing experimental studies that showed the positive impact of SGLT2i on TMAO precursors and cardiovascular events. Therefore, we recommend further research investigating the impact of SGLT2i therapy on acute and long-term changes in TMAO in cardiovascular cohorts.
Collapse
Affiliation(s)
- Faisal Aziz
- Interdisciplinary Metabolic Medicine Trials Unit, Graz, Austria
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Norbert J Tripolt
- Interdisciplinary Metabolic Medicine Trials Unit, Graz, Austria
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Peter N Pferschy
- Interdisciplinary Metabolic Medicine Trials Unit, Graz, Austria
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Ewald Kolesnik
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Harald Mangge
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Pero Curcic
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Markus Hermann
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Andreas Meinitzer
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | | | - Harald Sourij
- Interdisciplinary Metabolic Medicine Trials Unit, Graz, Austria.
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
60
|
Chung ST, Krenek A, Magge SN. Childhood Obesity and Cardiovascular Disease Risk. Curr Atheroscler Rep 2023:10.1007/s11883-023-01111-4. [PMID: 37256483 DOI: 10.1007/s11883-023-01111-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/01/2023]
Abstract
PURPOSE OF REVIEW The global epidemic of youth-onset obesity is tightly linked to the rising burden of cardiometabolic disease across the lifespan. While the link between childhood obesity and cardiovascular disease is established, this contemporary review summarizes recent and novel advances in this field that elucidate the mechanisms and impact of this public health issue. RECENT FINDINGS The review highlights the emerging data supporting the relationship between childhood adverse events, social determinants of health, and systemic and institutional systems as etiological factors. We also provide updates on new screening and treatment approaches including updated nutrition and dietary guidelines and benchmarks for pediatric obesity screening, novel pharmacological agents for pediatric obesity and type 2 diabetes such as glucagon-like 1 peptide receptor agonists, and we discuss the long-term safety and efficacy data on surgical management of pediatric obesity. The global burden of pediatric obesity continues to rise and is associated with accelerated and early vascular aging especially in youth with obesity and type 2 diabetes. Socio-ecological determinants of risk mediate and moderate the relationship of childhood obesity with cardiometabolic disease. Recognizing the importance of neighborhood level influences as etiological factors in the development of cardiovascular disease is critical for designing effective policies and interventions. Novel surgical and pharmacological interventions are effective pediatric weight-loss interventions, but future research is needed to assess whether these agents, within a socio-ecological framework, will be associated with abatement of the pediatric obesity epidemic and related increased cardiovascular disease risk.
Collapse
Affiliation(s)
- Stephanie T Chung
- Section on Pediatric Diabetes and Metabolism, National Institute of Diabetes & Digestive & Kidney Disease, NIH Bethesda, Bethesda, MD, USA
| | - Andrea Krenek
- Section on Pediatric Diabetes and Metabolism, National Institute of Diabetes & Digestive & Kidney Disease, NIH Bethesda, Bethesda, MD, USA
| | - Sheela N Magge
- Division of Pediatric Endocrinology and Diabetes, Johns Hopkins University School of Medicine, 200 N. Wolfe Street, Rubenstein Bldg, Rm 3114, Baltimore, MD, 21287, USA.
| |
Collapse
|
61
|
Dukes HE, Tinker KA, Ottesen EA. Disentangling hindgut metabolism in the American cockroach through single-cell genomics and metatranscriptomics. Front Microbiol 2023; 14:1156809. [PMID: 37323917 PMCID: PMC10266427 DOI: 10.3389/fmicb.2023.1156809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023] Open
Abstract
Omnivorous cockroaches host a complex hindgut microbiota comprised of insect-specific lineages related to those found in mammalian omnivores. Many of these organisms have few cultured representatives, thereby limiting our ability to infer the functional capabilities of these microbes. Here we present a unique reference set of 96 high-quality single cell-amplified genomes (SAGs) from bacterial and archaeal cockroach gut symbionts. We additionally generated cockroach hindgut metagenomic and metatranscriptomic sequence libraries and mapped them to our SAGs. By combining these datasets, we are able to perform an in-depth phylogenetic and functional analysis to evaluate the abundance and activities of the taxa in vivo. Recovered lineages include key genera within Bacteroidota, including polysaccharide-degrading taxa from the genera Bacteroides, Dysgonomonas, and Parabacteroides, as well as a group of unclassified insect-associated Bacteroidales. We also recovered a phylogenetically diverse set of Firmicutes exhibiting a wide range of metabolic capabilities, including-but not limited to-polysaccharide and polypeptide degradation. Other functional groups exhibiting high relative activity in the metatranscriptomic dataset include multiple putative sulfate reducers belonging to families in the Desulfobacterota phylum and two groups of methanogenic archaea. Together, this work provides a valuable reference set with new insights into the functional specializations of insect gut symbionts and frames future studies of cockroach hindgut metabolism.
Collapse
Affiliation(s)
- Helen E. Dukes
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Kara A. Tinker
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, United States
| | | |
Collapse
|
62
|
Wang M, Li XS, Wang Z, de Oliveira Otto MC, Lemaitre RN, Fretts A, Sotoodehnia N, Budoff M, Nemet I, DiDonato JA, Tang WHW, Psaty BM, Siscovick DS, Hazen SL, Mozaffarian D. Trimethylamine N-oxide is associated with long-term mortality risk: the multi-ethnic study of atherosclerosis. Eur Heart J 2023; 44:1608-1618. [PMID: 36883587 PMCID: PMC10411925 DOI: 10.1093/eurheartj/ehad089] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/06/2023] [Accepted: 02/03/2023] [Indexed: 03/09/2023] Open
Abstract
AIMS Little is known about associations of trimethylamine N-oxide (TMAO), a novel gut microbiota-generated metabolite of dietary phosphatidylcholine and carnitine, and its changes over time with all-cause and cause-specific mortality in the general population or in different race/ethnicity groups. The study aimed to investigate associations of serially measured plasma TMAO levels and changes in TMAO over time with all-cause and cause-specific mortality in a multi-ethnic community-based cohort. METHODS AND RESULTS The study included 6,785 adults from the Multi-Ethnic Study of Atherosclerosis. TMAO was measured at baseline and year 5 using mass spectrometry. Primary outcomes were adjudicated all-cause mortality and cardiovascular disease (CVD) mortality. Secondary outcomes were deaths due to kidney failure, cancer, or dementia obtained from death certificates. Cox proportional hazards models with time-varying TMAO and covariates assessed the associations with adjustment for sociodemographics, lifestyles, diet, metabolic factors, and comorbidities. During a median follow-up of 16.9 years, 1704 participants died and 411 from CVD. Higher TMAO levels associated with higher risk of all-cause mortality [hazard ratio (HR): 1.12, 95% confidence interval (CI): 1.08-1.17], CVD mortality (HR: 1.09, 95% CI: 1.00-1.09), and death due to kidney failure (HR: 1.44, 95% CI: 1.25-1.66) per inter-quintile range, but not deaths due to cancer or dementia. Annualized changes in TMAO levels associated with higher risk of all-cause mortality (HR: 1.10, 95% CI: 1.05-1.14) and death due to kidney failure (HR: 1.54, 95% CI: 1.26-1.89) but not other deaths. CONCLUSION Plasma TMAO levels were positively associated with mortality, especially deaths due to cardiovascular and renal disease, in a multi-ethnic US cohort.
Collapse
Affiliation(s)
- Meng Wang
- Friedman School of Nutrition Science and Policy, Tufts University, 150 Harrison Ave, Boston, MA 02111, USA
| | - Xinmin S Li
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Marcia C de Oliveira Otto
- Division of Epidemiology, Human Genetics and Environmental Sciences, The University of Texas Health Science Center at Houston (UTHealth) School of Public Health, 1200 Pressler Street, Houston, TX 77030, USA
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA 98101, USA
| | - Amanda Fretts
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA 98101, USA
- Department of Epidemiology, University of Washington, 3980 15th Ave NE, Seattle, WA 98195, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA 98101, USA
| | - Matthew Budoff
- Department of Medicine, Lundquist Institute at Harbor-UCLA Medical Center, 124 West Carson Street, Torrance, CA 90502, USA
| | - Ina Nemet
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Joseph A DiDonato
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Wai Hong Wilson Tang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA 98101, USA
- Department of Epidemiology, University of Washington, 3980 15th Ave NE, Seattle, WA 98195, USA
- Department of Health Systems and Population Health, University of Washington, 3980 15th Ave NE, Seattle, WA 98195, USA
| | - David S Siscovick
- The New York Academy of Medicine, 1216 5th Ave, New York City, NY 10029, USA
| | - Stanley L Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Dariush Mozaffarian
- Friedman School of Nutrition Science and Policy, Tufts University, 150 Harrison Ave, Boston, MA 02111, USA
| |
Collapse
|
63
|
Keijer J, Escoté X, Galmés S, Palou-March A, Serra F, Aldubayan MA, Pigsborg K, Magkos F, Baker EJ, Calder PC, Góralska J, Razny U, Malczewska-Malec M, Suñol D, Galofré M, Rodríguez MA, Canela N, Malcic RG, Bosch M, Favari C, Mena P, Del Rio D, Caimari A, Gutierrez B, Del Bas JM. Omics biomarkers and an approach for their practical implementation to delineate health status for personalized nutrition strategies. Crit Rev Food Sci Nutr 2023; 64:8279-8307. [PMID: 37077157 DOI: 10.1080/10408398.2023.2198605] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Personalized nutrition (PN) has gained much attention as a tool for empowerment of consumers to promote changes in dietary behavior, optimizing health status and preventing diet related diseases. Generalized implementation of PN faces different obstacles, one of the most relevant being metabolic characterization of the individual. Although omics technologies allow for assessment the dynamics of metabolism with unprecedented detail, its translatability as affordable and simple PN protocols is still difficult due to the complexity of metabolic regulation and to different technical and economical constrains. In this work, we propose a conceptual framework that considers the dysregulation of a few overarching processes, namely Carbohydrate metabolism, lipid metabolism, inflammation, oxidative stress and microbiota-derived metabolites, as the basis of the onset of several non-communicable diseases. These processes can be assessed and characterized by specific sets of proteomic, metabolomic and genetic markers that minimize operational constrains and maximize the information obtained at the individual level. Current machine learning and data analysis methodologies allow the development of algorithms to integrate omics and genetic markers. Reduction of dimensionality of variables facilitates the implementation of omics and genetic information in digital tools. This framework is exemplified by presenting the EU-Funded project PREVENTOMICS as a use case.
Collapse
Affiliation(s)
- Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Xavier Escoté
- EURECAT, Centre Tecnològic de Catalunya, Nutrition and Health, Reus, Spain
| | - Sebastià Galmés
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Andreu Palou-March
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Mona Adnan Aldubayan
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Nutrition, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Kristina Pigsborg
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Faidon Magkos
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Ella J Baker
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Joanna Góralska
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - Urszula Razny
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | | | - David Suñol
- Digital Health, Eurecat, Centre Tecnològic de Catalunya, Barcelona, Spain
| | - Mar Galofré
- Digital Health, Eurecat, Centre Tecnològic de Catalunya, Barcelona, Spain
| | - Miguel A Rodríguez
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Reus, Spain
| | - Núria Canela
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Reus, Spain
| | - Radu G Malcic
- Health and Biomedicine, LEITAT Technological Centre, Barcelona, Spain
| | - Montserrat Bosch
- Applied Microbiology and Biotechnologies, LEITAT Technological Centre, Terrassa, Spain
| | - Claudia Favari
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology area, Reus, Spain
| | | | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology area, Reus, Spain
| |
Collapse
|
64
|
Wang X, Eguchi A, Fujita Y, Wan X, Chang L, Yang Y, Shan J, Qu Y, Ma L, Shirayama Y, Mori C, Yang J, Hashimoto K. Abnormal compositions of gut microbiota and metabolites are associated with susceptibility versus resilience in rats to inescapable electric stress. J Affect Disord 2023; 331:369-379. [PMID: 36972851 DOI: 10.1016/j.jad.2023.03.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/30/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Increasing evidence suggests the role of gut microbiota in resilience versus vulnerability after stress. However, the role of gut microbiota and microbiome-derived metabolites in resilience versus susceptibility in rodents exposed to stress remains unclear. METHODS Adult male rats were exposed to inescapable electric stress under the learned helplessness (LH) paradigm. The composition of gut microbiota and metabolites in the brain and blood from control (no stress) rats, LH resilient rats, and LH susceptible rats were examined. RESULTS At the genus level, the relative abundances of Asaccharobacter, Eisenbergiella, and Klebsiella in LH susceptible rats were significantly higher than that of LH resilient rats. At the species level, the relative abundances of several microbiome were significantly altered between LH susceptible rats and LH resilient rats. Furthermore, there were several metabolites in the brain and blood altered between LH susceptible rats and LH resilient rats. A network analysis showed correlations between the abundance of several microbiome and metabolites in the brain (or blood). LIMITATIONS Detailed roles of microbiome and metabolites are unclear. CONCLUSIONS These findings suggest that abnormal compositions of the gut microbiota and metabolites might contribute to susceptibility versus resilience in rats subjected to inescapable electric foot shock.
Collapse
Affiliation(s)
- Xingming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Xiayun Wan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Yong Yang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Jiajing Shan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Li Ma
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Yukihiko Shirayama
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Psychiatry, Teikyo University Chiba Medical Center, Ichihara 299-0111, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Jianjun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
65
|
Rodrigues A, Gonçalves A, Morais J, Araujo R, Falcão-Pires I. Diet-Induced Microbiome's Impact on Heart Failure: A Double-Edged Sword. Nutrients 2023; 15:1223. [PMID: 36904222 PMCID: PMC10004801 DOI: 10.3390/nu15051223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Heart failure (HF) is a debilitating disease with a significant clinical and economic impact worldwide. Multiple factors seem to increase the risk of developing HF, such as hypertension, obesity and diabetes. Since chronic inflammation plays a significant role in HF pathophysiology and gut dysbiosis is associated with low-grade chronic inflammation, the risk of cardiovascular diseases is likely modulated by the gut microbiome (GM). Considerable progress has been made in HF management. However, there is a need to find new strategies to reduce mortality and increase the quality of life, mainly of HFpEF patients, since its prevalence continues to rise. Recent studies validate that lifestyle changes, such as diet modulation, represent a potential therapeutic approach to improve several cardiometabolic diseases, although their effects on the GM and its indirect cardiac impact still warrant further research. Hence, in this paper, we aim to clarify the link between HF and the human microbiome.
Collapse
Affiliation(s)
- Alexandre Rodrigues
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- i3S-Institute for Research & Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Alexandre Gonçalves
- Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Juliana Morais
- Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Cintesis@RISE, Center for Health Technology and Services Research, 4200-450 Porto, Portugal
| | - Ricardo Araujo
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- i3S-Institute for Research & Innovation in Health, University of Porto, 4200-135 Porto, Portugal
| | - Inês Falcão-Pires
- Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
66
|
Videja M, Vilskersts R, Sevostjanovs E, Liepinsh E, Dambrova M. Data on cardiac and vascular functionality in ex vivo and in vivo models following acute administration of trimethylamine N-oxide. Data Brief 2023; 46:108890. [PMID: 36687149 PMCID: PMC9851877 DOI: 10.1016/j.dib.2023.108890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
This dataset describes in detail the outcomes of acute trimethylamine N-oxide (TMAO) administration on cardiac, vascular and mitochondrial functionality in ex vivo and in vivo models. The accumulation of TMAO in target tissues was assessed after performing heart perfusion or by incubating aortic tissue in a solution containing TMAO. To evaluate the impact of TMAO on mitochondrial function, the aortic rings and heart homogenates of Wistar rats were incubated in a solution containing [9,10-3H] palmitate (5 µCi/ml) or D-[U-14C] glucose (0.625 µCi/ml) in the presence or absence of TMAO with subsequent measurement of substrate oxidation and uptake. The effects of TMAO on the vascular reactivity of isolated conductance and resistance vessels were tested by measuring their response to acetylcholine and sodium nitroprusside. The impact of elevated TMAO levels on cardiac function and infarct size caused by ischemia-reperfusion injury was evaluated in Langendorff perfused heart model. Normal and forced heart functioning was analyzed by echocardiography in CD-1 mouse acute cardiac stress model induced by isoproterenol (10 µg/mouse) upon single and 7 repeated daily administrations of TMAO (120 mg/kg). The data presented in the manuscript provide valuable information on measurements performed under conditions of acutely elevated TMAO levels in experimental models of cardiac and vascular function and energy metabolism. Furthermore, the data have high reuse potential as they could be applied in the planning of future in vitro, ex vivo, and in vivo studies addressing the molecular mechanisms targeted by elevated levels of TMAO.
Collapse
Affiliation(s)
- Melita Videja
- Latvian Institute of Organic Synthesis, Aizkraukles street 21, LV-1006, Riga, Latvia
- Faculty of Pharmacy, Riga Stradiņš University, Dzirciema street 16, LV-1007, Riga, Latvia
| | - Reinis Vilskersts
- Latvian Institute of Organic Synthesis, Aizkraukles street 21, LV-1006, Riga, Latvia
- Faculty of Pharmacy, Riga Stradiņš University, Dzirciema street 16, LV-1007, Riga, Latvia
| | - Eduards Sevostjanovs
- Latvian Institute of Organic Synthesis, Aizkraukles street 21, LV-1006, Riga, Latvia
| | - Edgars Liepinsh
- Latvian Institute of Organic Synthesis, Aizkraukles street 21, LV-1006, Riga, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Aizkraukles street 21, LV-1006, Riga, Latvia
- Faculty of Pharmacy, Riga Stradiņš University, Dzirciema street 16, LV-1007, Riga, Latvia
| |
Collapse
|
67
|
Li Z, Ke X, Zuo D, Wang Z, Fang F, Li B. New Insights into the Relationship between Gut Microbiota and Radiotherapy for Cancer. Nutrients 2022; 15:nu15010048. [PMID: 36615706 PMCID: PMC9824372 DOI: 10.3390/nu15010048] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Cancer is the second most common cause of death among humans in the world, and the threat that it presents to human health is becoming more and more serious. The mechanisms of cancer development have not yet been fully elucidated, and new therapies are changing with each passing day. Evidence from the literature has validated the finding that the composition and modification of gut microbiota play an important role in the development of many different types of cancer. The results also demonstrate that there is a bidirectional interaction between the gut microbiota and radiotherapy treatments for cancer. In a nutshell, the modifications of the gut microbiota caused by radiotherapy have an effect on tumor radiosensitivity and, as a result, affect the efficacy of radiotherapy and show a certain radiation toxicity, which leads to numerous side effects. What is of new research significance is that the "gut-organ axis" formed by the gut microbiota may be one of the most interesting potential mechanisms, although the relevant research is still very limited. In this review, we combine new insights into the relationship between the gut microbiota, cancer, and radiotherapy. Based on our current comprehensive understanding of this relationship, we give an overview of the new cancer treatments based on the gut microbiota.
Collapse
Affiliation(s)
- Zhipeng Li
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Xiyang Ke
- Key Laboratory of Carcinogenesis and Translational Research, Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Ministry of Education, Beijing 100142, China
| | - Dan Zuo
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Fang Fang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
- School of Public Health, Jilin University, Changchun 130021, China
- Correspondence: ; Tel.: +86-431-85619455
| | - Bo Li
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
- School of Public Health, Jilin University, Changchun 130021, China
| |
Collapse
|
68
|
Theofilis P, Vordoni A, Kalaitzidis RG. Trimethylamine N-Oxide Levels in Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Metabolites 2022; 12:metabo12121243. [PMID: 36557281 PMCID: PMC9784457 DOI: 10.3390/metabo12121243] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents an entity with an increasing prevalence which is characterized by significant hepatic and extrahepatic complications. Its pathophysiology is multifactorial, with gut dysbiosis being considered a major determinant. In this systematic review and meta-analysis, we tried to evaluate the association between the major gut microbial metabolite trimethylamine N-oxide (TMAO) and NAFLD. We performed a literature search for studies that determined circulating TMAO in patients with and without NAFLD. The database search identified 136 studies, and upon application of the exclusion criteria, 7 studies with 7583 individuals (NAFLD 2923, control 4660) were ultimately included in the meta-analysis. Compared to the control group, NAFLD patients had significantly higher circulating TMAO (SMD: 0.66, 95% CI -0.12 to 1.21, p = 0.02, I2: 94%). The results remained unaffected after the exclusion of one influential study. The subgroup analysis revealed significantly higher TMAO in individuals with histologically proven NAFLD and in studies measuring TMAO with high-performance liquid chromatography. No differences were observed according to the study design or study region. However, funnel plot asymmetry was observed, indicating publication bias. In conclusion, patients with NAFLD had increased levels of TMAO, a hazardous gut microbial metabolite, suggesting its important role in the gut-liver interaction.
Collapse
|
69
|
Bjørnestad EØ, Dhar I, Svingen GFT, Pedersen ER, Ørn S, Svenningsson MM, Tell GS, Ueland PM, Sulo G, Laaksonen R, Nygård O. Circulating trimethylamine N-oxide levels do not predict 10-year survival in patients with or without coronary heart disease. J Intern Med 2022; 292:915-924. [PMID: 35916742 PMCID: PMC9804190 DOI: 10.1111/joim.13550] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO) is an amine oxide generated by gut microbial metabolism. TMAO may contribute to atherothrombosis and systemic inflammation. However, the prognostic value of circulating TMAO for risk stratification is uncertain. METHODS We assessed prospective relationships of plasma TMAO with long-term risk of all-cause, cardiovascular (CV), and non-CV mortality in the Western Norway Coronary Angiography Cohort (WECAC; 4132 patients with suspected coronary artery disease) and the Hordaland Health Study (HUSK; 6393 community-based subjects). Risk associations were examined using Cox regression analyses. RESULTS Mean follow-up was 9.8 and 10.5 years in WECAC and HUSK, respectively. Following adjustments for established CV risk factors and indices of renal function in WECAC, the hazard ratios (HRs) (95% confidence intervals [CIs]) per one standard deviation increase in log-transformed plasma TMAO were 1.04 (0.97-1.12), 1.06 (0.95-1.18), and 1.03 (0.93-1.13) for all-cause, CV, and non-CV mortality, respectively. Essentially similar results were obtained in patients with angiographically significant coronary artery disease and patients with reduced left ventricular ejection fraction. Corresponding HRs (95% CIs) in the HUSK cohort were 1.03 (0.96-1.10), 1.01 (0.89-1.13), and 1.03 (0.95-1.12) for all-cause-, CV, and non-CV mortality, respectively. CONCLUSIONS Circulating TMAO did not predict long-term all-cause, CV, or non-CV mortality in patients with coronary heart disease or in community-based adults. This large study does not support a role of TMAO for patient risk stratification in primary or secondary prevention.
Collapse
Affiliation(s)
- Espen Ø Bjørnestad
- Department of Cardiology, Stavanger University Hospital, Stavanger, Norway
| | - Indu Dhar
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gard F T Svingen
- Department of Cardiology, Haukeland University Hospital, Bergen, Norway
| | - Eva R Pedersen
- Department of Cardiology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stein Ørn
- Department of Cardiology, Stavanger University Hospital, Stavanger, Norway
| | | | - Grethe S Tell
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Per M Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gerhard Sulo
- Centre for Disease Burden, Norwegian Institute of Public Health, Bergen, Norway
| | - Reijo Laaksonen
- Finnish Cardiovascular Research Center, University of Tampere, Tampere, Finland
| | - Ottar Nygård
- Department of Cardiology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
70
|
Theofilis P, Vordoni A, Kalaitzidis RG. Interplay between metabolic dysfunction-associated fatty liver disease and chronic kidney disease: Epidemiology, pathophysiologic mechanisms, and treatment considerations. World J Gastroenterol 2022; 28:5691-5706. [PMID: 36338895 PMCID: PMC9627426 DOI: 10.3748/wjg.v28.i39.5691] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/06/2022] [Accepted: 09/19/2022] [Indexed: 02/06/2023] Open
Abstract
The recently proposed nomenclature change from non-alcoholic fatty liver disease to metabolic dysfunction-associated fatty liver disease (MAFLD) has resulted in the reappraisal of epidemiological trends and associations with other chronic diseases. In this context, MAFLD appears to be tightly linked to incident chronic kidney disease (CKD). This association may be attributed to multiple shared risk factors including type 2 diabetes mellitus, arterial hypertension, obesity, dyslipidemia, and insulin resistance. Moreover, similarities in their molecular pathophysiologic mechanisms can be detected, since inflammation, oxidative stress, fibrosis, and gut dysbiosis are highly prevalent in these pathologic states. At the same time, lines of evidence suggest a genetic predisposition to MAFLD due to gene polymorphisms, such as the PNPLA3 rs738409 G allele polymorphism, which may also propagate renal dysfunction. Concerning their management, available treatment considerations for obesity (bariatric surgery) and novel antidiabetic agents (glucagon-like peptide 1 receptor agonists, sodium-glucose co-transporter 2 inhibitors) appear beneficial in preclinical and clinical studies of MAFLD and CKD modeling. Moreover, alternative approaches such as melatonin supplementation, farnesoid X receptor agonists, and gut microbiota modulation may represent attractive options in the future. With a look to the future, additional adequately sized studies are required, focusing on preventing renal complications in patients with MAFLD and the appropriate management of individuals with concomitant MAFLD and CKD.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- Center for Nephrology “G. Papadakis,” General Hospital of Nikaia-Piraeus “Agios Panteleimon,” Nikaia 18454, Greece
| | - Aikaterini Vordoni
- Center for Nephrology “G. Papadakis,” General Hospital of Nikaia-Piraeus “Agios Panteleimon,” Nikaia 18454, Greece
| | - Rigas G Kalaitzidis
- Center for Nephrology “G. Papadakis,” General Hospital of Nikaia-Piraeus “Agios Panteleimon,” Nikaia 18454, Greece
| |
Collapse
|
71
|
Zhang B, Jin Z, Zhai T, Ding Q, Yang H, Wang J, Zhang L, Zhao L. Global research trends on the links between the gut microbiota and diabetes between 2001 and 2021: A bibliometrics and visualized study. Front Microbiol 2022; 13:1011050. [PMID: 36246235 PMCID: PMC9557185 DOI: 10.3389/fmicb.2022.1011050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundOver the past 20 years, evidence has suggested that gut microbiota plays an important role in metabolic homeostasis. The relationship between gut microbiota and diabetes has become the focus of considerable scientific interest. With the sharp increase in publications in this area, it is imperative to analyze the relevant articles using bibliometrics methods.MethodsPublications on “the gut microbiota and diabetes” were retrieved and downloaded from the Web of Science Core Collection database. Microsoft Excel 2020, VOSviewer, CiteSpace 5.8.R3 and Co-Occurrence 9.94 software were used for data analysis and visualization. Country/academic institution, journal, author, subject category, keyword and reference were analyzed thoroughly. The cutting-edge directions in this field were also determined by analyzing keywords and key articles.ResultsA total of 2,342 documents were included in the analysis; the number of articles in this field has increased yearly, particularly after 2010. China and the University of Copenhagen are the country and research institution associated with the largest number of publications. Nutrients have published 191 articles in this field, ranking first among highly productive journals in the number of publications. The researcher Cani PD affiliated with the University of Leuven, Belgium, published the greatest number of articles in this field between 2001 and 2021 and was also ranked as the first co-cited author and the largest contributor of highly cited papers in this field. Endocrinology & Metabolism was the most common subject category. Three of the most frequently found keywords, besides terms related to “microbiota” and “diabetes,” were “obesity,” “probiotics,” and “inflammation.” Akkermansia muciniphila, Faecalibacterium prausnitzii, trimethylamine n-oxide and branched-chain amino acids are intestinal bacteria or metabolites that have attracted more attention in recent years. Natural products represented by Chinese herbal medicine and some protein receptors or signaling pathways such as aryl hydrocarbon receptor, farnesoid X receptor and AMP-activated protein kinase were frontiers in this field.ConclusionOver the past two decades, the rapid development of research on the gut microbiota has deepened the understanding of the physiology and pathology of diabetes, providing new insights into different approaches to treatment. In the future, further interdisciplinary innovation, clinical transformation, and application may receive more attention.
Collapse
Affiliation(s)
- Boxun Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Post-Doctoral Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zishan Jin
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Tiangang Zhai
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyou Ding
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Haoyu Yang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Wang
- General Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lili Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Lili Zhang,
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Linhua Zhao,
| |
Collapse
|
72
|
Matsumoto T, Taguchi N, Yoshioka M, Osada T, Taguchi K, Kobayashi T. [Relationship between gut microbiota-derived substances and vascular function: focus on indoxyl sulfate and trimethylamine-N-oxide]. Nihon Yakurigaku Zasshi 2022; 157:316-320. [PMID: 36047143 DOI: 10.1254/fpj.22029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Emerging evidences suggest that gut microbiota-derived substances play a pivotal role in the regulation of host homeostasis including vascular function. Actually, these substances and/or their metabolites can be presented in circulation and local tissue and their levels are often abnormal in the pathophysiological states. Therefore, to determine the role of them in physiological function is important in human health. On the other hand, vascular dysfunction is a key event in the initiation and progression of systematic complications of cardiovascular, kidney and metabolic diseases including hypertension, dyslipidemia, diabetes, and atherosclerosis. Although abnormalities in endothelial and vascular smooth muscle cells play an important role on vascular dysfunction, emerging evidences has suggested that gut microbiota-derived substances can directly or indirectly affect these cellular functions. The present review will focus on the relationship between vascular function and indoxyl sulfate or trimethylamine-N-oxide (TMAO).
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Natsume Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Madoka Yoshioka
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Tomoe Osada
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| |
Collapse
|