51
|
Hjelmen CE, Blackmon H, Holmes VR, Burrus CG, Johnston JS. Genome Size Evolution Differs Between Drosophila Subgenera with Striking Differences in Male and Female Genome Size in Sophophora. G3 (BETHESDA, MD.) 2019; 9:3167-3179. [PMID: 31358560 PMCID: PMC6778784 DOI: 10.1534/g3.119.400560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/26/2019] [Indexed: 11/29/2022]
Abstract
Genome size varies across the tree of life, with no clear correlation to organismal complexity or coding sequence, but with differences in non-coding regions. Phylogenetic methods have recently been incorporated to further disentangle this enigma, yet most of these studies have focused on widely diverged species. Few have compared patterns of genome size change in closely related species with known structural differences in the genome. As a consequence, the relationship between genome size and differences in chromosome number or inter-sexual differences attributed to XY systems are largely unstudied. We hypothesize that structural differences associated with chromosome number and X-Y chromosome differentiation, should result in differing rates and patterns of genome size change. In this study, we utilize the subgenera within the Drosophila to ask if patterns and rates of genome size change differ between closely related species with differences in chromosome numbers and states of the XY system. Genome sizes for males and females of 152 species are used to answer these questions (with 92 newly added or updated estimates). While we find no relationship between chromosome number and genome size or chromosome number and inter-sexual differences in genome size, we find evidence for differing patterns of genome size change between the subgenera, and increasing rates of change throughout time. Estimated shifts in rates of change in sex differences in genome size occur more often in Sophophora and correspond to known neo-sex events.
Collapse
Affiliation(s)
- Carl E Hjelmen
- Department of Biology and
- Department of Entomology, Texas A&M University, College Station, TX 77843
| | - Heath Blackmon
- Department of Entomology, Texas A&M University, College Station, TX 77843
| | | | - Crystal G Burrus
- Department of Entomology, Texas A&M University, College Station, TX 77843
| | | |
Collapse
|
52
|
Tyagi A, Sandhya, Sharma P, Saxena S, Sharma R, Amitha Mithra SV, Solanke AU, Singh NK, Sharma TR, Gaikwad K. The genome size of clusterbean (Cyamopsis tetragonoloba) is significantly smaller compared to its wild relatives as estimated by flow cytometry. Gene 2019; 707:205-211. [PMID: 30898697 DOI: 10.1016/j.gene.2019.02.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/04/2019] [Accepted: 02/28/2019] [Indexed: 02/06/2023]
Abstract
Clusterbean (C. tetragonoloba) is an important, leguminous vegetable and industrial crop with vast genetic diversity but meager genetic, cytological and genomic information. In the present study, an optimized procedure of flow cytometry was used to estimate the genome size of three clusterbean species, represented by C. tetragonoloba (cv. RGC-936) and two wild relatives (C. serreta and C. senegalensis). For accurate estimation of genomic content, singlet G0/G1 populations of multiple tissues such as leaves, hypocotyl, and matured seeds were determined and used along with three different plant species viz. Pisum sativum (as primary), Oryza sativa, and Glycine max (secondary), as external and internal reference standards. Seed tissue of the test sample and G. max provided the best estimate of nuclear DNA content in comparison to other sample tissues and reference standards. The genome size of C. tetragonoloba was detemined at 580.9±0.02Mbp (1C), while that of C. serreta and C. senegalensis was estimated at 979.6±0.02Mbp (1C) and 943.4±0.03Mbp (1C), respectively. Thus, the wild relatives harbor, nearly double the genome content of the cultivated cluster bean. Findings of this study will enrich genomic database of the legume family and can serve as the starting point for clusterbean evolutionary and genomics studies.
Collapse
Affiliation(s)
- Anshika Tyagi
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Sandhya
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Priya Sharma
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Swati Saxena
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Ramavtar Sharma
- ICAR-Central Arid Zone Research Institute (CAZRI), Jodhpur, India
| | - S V Amitha Mithra
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | | | | | - Tilak Raj Sharma
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Kishor Gaikwad
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India.
| |
Collapse
|
53
|
Genome survey and SSR analysis of Apocynum venetum. Biosci Rep 2019; 39:BSR20190146. [PMID: 31189745 PMCID: PMC6591564 DOI: 10.1042/bsr20190146] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/22/2019] [Accepted: 06/11/2019] [Indexed: 12/02/2022] Open
Abstract
Apocynum venetum is an eco-economic plant that exhibits high stress resistance. In the present paper, we carried out a whole-genome survey of A. venetum in order to provide a foundation for its whole-genome sequencing. High-throughput sequencing technology (Illumina NovaSep) was first used to measure the genome size of A. venetum, and bioinformatics methods were employed for the evaluation of the genome size, heterozygosity ratio, repeated sequences, and GC content in order to provide a foundation for subsequent whole-genome sequencing. The sequencing analysis results indicated that the preliminary estimated genome size of A. venetum was 254.40 Mbp, and its heterozygosity ratio and percentage of repeated sequences were 0.63 and 40.87%, respectively, indicating that it has a complex genome. We used k-mer = 41 to carry out a preliminary assembly and obtained contig N50, which was 3841 bp with a total length of 223949699 bp. We carried out further assembly to obtain scaffold N50, which was 6196 bp with a total length of 227322054 bp. We performed simple sequence repeat (SSR) molecular marker prediction based on the A. venetum genome data and identified a total of 101918 SSRs. The differences between the different types of nucleotide repeats were large, with mononucleotide repeats being most numerous and hexanucleotide repeats being least numerous. We recommend the use of the ‘2+3’ (Illumina+PacBio) sequencing combination to supplement the Hi-C technique and resequencing technique in future whole-genome research in A. venetum.
Collapse
|
54
|
POURMOHAMMADI REZA, ABOUEI JAMSHID, ANPALAGAN ALAGAN. PROBABILISTIC MODELING AND ANALYSIS OF DNA FRAGMENTATION. J BIOL SYST 2019. [DOI: 10.1142/s0218339019500128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Deoxyribonucleic Acid (DNA) sequencing has become indispensable to the modern biological and medicine sciences. DNA fragmentation is a preliminary step in a dominant technique called shotgun sequencing that provides a time and cost effective strategy for the DNA sequencing. In this paper, we propose a probabilistic model for the random DNA fragmentation and derive an average number of fragments with the suitable length along with the probability of covering the entire DNA strand through the de novo assembly or the referenced-based mapping assembly. We formulate the coverage problem in terms of the probability of bond breaking between nucleotides and the number of DNA molecules participating in the fragmentation process, and provide insights into the optimal DNA fragmentation. We obtain the lower bound for the minimum number of suitable fragments required to reconstruct the DNA strand with the specified reliability. We evaluate the derived results with our DNA Fragmentation Tool which demonstrate, the validity of these results based on our model. Finally, we update our model with respect to the fragments’ size distribution of real data.
Collapse
Affiliation(s)
- REZA POURMOHAMMADI
- WINEL Research Laboratory, Department of Electrical Engineering, Yazd University, Yazd, Iran
| | - JAMSHID ABOUEI
- WINEL Research Laboratory, Department of Electrical Engineering, Yazd University, Yazd, Iran
| | - ALAGAN ANPALAGAN
- Department of Electrical, Computer and Biomedical Engineering, Ryerson University, Toronto, Canada
| |
Collapse
|
55
|
Barrett CF, McKain MR, Sinn BT, Ge XJ, Zhang Y, Antonelli A, Bacon CD. Ancient Polyploidy and Genome Evolution in Palms. Genome Biol Evol 2019; 11:1501-1511. [PMID: 31028709 PMCID: PMC6535811 DOI: 10.1093/gbe/evz092] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2019] [Indexed: 12/23/2022] Open
Abstract
Mechanisms of genome evolution are fundamental to our understanding of adaptation and the generation and maintenance of biodiversity, yet genome dynamics are still poorly characterized in many clades. Strong correlations between variation in genomic attributes and species diversity across the plant tree of life suggest that polyploidy or other mechanisms of genome size change confer selective advantages due to the introduction of genomic novelty. Palms (order Arecales, family Arecaceae) are diverse, widespread, and dominant in tropical ecosystems, yet little is known about genome evolution in this ecologically and economically important clade. Here, we take a phylogenetic comparative approach to investigate palm genome dynamics using genomic and transcriptomic data in combination with a recent, densely sampled, phylogenetic tree. We find conclusive evidence of a paleopolyploid event shared by the ancestor of palms but not with the sister clade, Dasypogonales. We find evidence of incremental chromosome number change in the palms as opposed to one of recurrent polyploidy. We find strong phylogenetic signal in chromosome number, but no signal in genome size, and further no correlation between the two when correcting for phylogenetic relationships. Palms thus add to a growing number of diverse, ecologically successful clades with evidence of whole-genome duplication, sister to a species-poor clade with no evidence of such an event. Disentangling the causes of genome size variation in palms moves us closer to understanding the genomic conditions facilitating adaptive radiation and ecological dominance in an evolutionarily successful, emblematic tropical clade.
Collapse
Affiliation(s)
| | | | | | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
| | - Yuqu Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Royal Botanical Gardens Kew, Richmond, United Kingdom
| | - Christine D Bacon
- Department of Biological and Environmental Sciences, University of Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
| |
Collapse
|
56
|
Kersey PJ. Plant genome sequences: past, present, future. CURRENT OPINION IN PLANT BIOLOGY 2019; 48:1-8. [PMID: 30579050 DOI: 10.1016/j.pbi.2018.11.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 05/19/2023]
Abstract
The green plants (Viridiplantae) are an essential kingdom of life, responsible via photosynthesis for the majority of global primary production, and directly utilized by humankind for nutrition, animal feed, fuel, clothing, medicine and other purposes. There are an estimated 391 000 species of land plants, in addition to 8000 species of green algae. Their genomes are unusually diverse compared to those of other kingdoms, ranging in size from ∼10 Mb to over 100 Gb. Knowledge of plant genomes initially lagged behind those of other kingdoms but has greatly increased with the development of new technologies for DNA sequencing; bioinformatic analysis, rather than data production, is increasingly the bottleneck to further knowledge. Recent proposals are now contemplating the sequencing, assembly and annotation of the genomes of all of the world's plant species; meanwhile, low coverage sequencing to measure diversity across collections and wild populations has already become commonplace for many species, especially those utilized as crops.
Collapse
|
57
|
Paajanen P, Kettleborough G, López-Girona E, Giolai M, Heavens D, Baker D, Lister A, Cugliandolo F, Wilde G, Hein I, Macaulay I, Bryan GJ, Clark MD. A critical comparison of technologies for a plant genome sequencing project. Gigascience 2019; 8:giy163. [PMID: 30624602 PMCID: PMC6423373 DOI: 10.1093/gigascience/giy163] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/26/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND A high-quality genome sequence of any model organism is an essential starting point for genetic and other studies. Older clone-based methods are slow and expensive, whereas faster, cheaper short-read-only assemblies can be incomplete and highly fragmented, which minimizes their usefulness. The last few years have seen the introduction of many new technologies for genome assembly. These new technologies and associated new algorithms are typically benchmarked on microbial genomes or, if they scale appropriately, on larger (e.g., human) genomes. However, plant genomes can be much more repetitive and larger than the human genome, and plant biochemistry often makes obtaining high-quality DNA that is free from contaminants difficult. Reflecting their challenging nature, we observe that plant genome assembly statistics are typically poorer than for vertebrates. RESULTS Here, we compare Illumina short read, Pacific Biosciences long read, 10x Genomics linked reads, Dovetail Hi-C, and BioNano Genomics optical maps, singly and combined, in producing high-quality long-range genome assemblies of the potato species Solanum verrucosum. We benchmark the assemblies for completeness and accuracy, as well as DNA compute requirements and sequencing costs. CONCLUSIONS The field of genome sequencing and assembly is reaching maturity, and the differences we observe between assemblies are surprisingly small. We expect that our results will be helpful to other genome projects, and that these datasets will be used in benchmarking by assembly algorithm developers.
Collapse
Affiliation(s)
- Pirita Paajanen
- Technology Development, Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - George Kettleborough
- Technology Development, Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Elena López-Girona
- Cell and Molcular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North 4442, New Zealand
| | - Michael Giolai
- Technology Development, Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Darren Heavens
- Technology Development, Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - David Baker
- Technology Development, Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Ashleigh Lister
- Technology Development, Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Fiorella Cugliandolo
- Technology Development, Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Gail Wilde
- Cell and Molcular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Ingo Hein
- Cell and Molcular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Iain Macaulay
- Technology Development, Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Glenn J Bryan
- Cell and Molcular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Matthew D Clark
- Technology Development, Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
- Department of Life Sciences, Natural History Museum, Cromwell Road, London WC2 5BD, UK
| |
Collapse
|
58
|
Nevill PG, Howell KA, Cross AT, Williams AV, Zhong X, Tonti-Filippini J, Boykin LM, Dixon KW, Small I. Plastome-Wide Rearrangements and Gene Losses in Carnivorous Droseraceae. Genome Biol Evol 2019; 11:472-485. [PMID: 30629170 PMCID: PMC6380313 DOI: 10.1093/gbe/evz005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2019] [Indexed: 12/22/2022] Open
Abstract
The plastid genomes of four related carnivorous plants (Drosera regia, Drosera erythrorhiza, Aldrovanda vesiculosa, and Dionaea muscipula) were sequenced to examine changes potentially induced by the transition to carnivory. The plastid genomes of the Droseraceae show multiple rearrangements, gene losses, and large expansions or contractions of the inverted repeat. All the ndh genes are lost or nonfunctional, as well as in some of the species, clpP1, ycf1, ycf2 and some tRNA genes. Uniquely, among land plants, the trnK gene has no intron. Carnivory in the Droseraceae coincides with changes in plastid gene content similar to those induced by parasitism and mycoheterotrophy, suggesting parallel changes in chloroplast function due to the similar switch from autotrophy to (mixo-) heterotrophy. A molecular phylogeny of the taxa based on all shared plastid genes indicates that the "snap-traps" of Aldrovanda and Dionaea have a common origin.
Collapse
Affiliation(s)
- Paul G Nevill
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
- Kings Park and Botanic Garden, Kings Park, Western Australia, Australia
| | - Katharine A Howell
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- The University of Notre Dame, Fremantle, Western Australia, Australia
| | - Adam T Cross
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
- Kings Park and Botanic Garden, Kings Park, Western Australia, Australia
| | - Anna V Williams
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Xiao Zhong
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Julian Tonti-Filippini
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Laura M Boykin
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Kingsley W Dixon
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
59
|
Vitales D, Fernández P, Garnatje T, Garcia S. Progress in the study of genome size evolution in Asteraceae: analysis of the last update. Database (Oxford) 2019; 2019:baz098. [PMID: 31608375 PMCID: PMC6790504 DOI: 10.1093/database/baz098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/31/2019] [Accepted: 07/01/2019] [Indexed: 11/14/2022]
Abstract
The Genome Size in Asteraceae Database (GSAD, http://www.asteraceaegenomesize.com) has been recently updated, with data from papers published or in press until July 2018. This constitutes the third release of GSAD, currently containing 4350 data entries for 1496 species, which represent a growth of 22.52% in the number of species with available genome size data compared with the previous release, and a growth of 57.72% in terms of entries. Approximately 6% of Asteraceae species are covered in terms of known genome sizes. The number of source papers included in this release (198) means a 48.87% increase with respect to release 2.0. The significant data increase was exploited to study the genome size evolution in the family from a phylogenetic perspective. Our results suggest that the role of chromosome number in genome size diversity within Asteraceae is basically associated to polyploidy, while dysploidy would only cause minor variation in the DNA amount along the family. Among diploid taxa, we found that the evolution of genome size shows a strong phylogenetic signal. However, this trait does not seem to evolve evenly across the phylogeny, but there could be significant scale and clade-dependent patterns. Our analyses indicate that the phylogenetic signal is stronger at low taxonomic levels, with certain tribes standing out as hotspots of autocorrelation between genome size and phylogeny. Finally, we also observe meaningful associations among nuclear DNA content on Asteraceae species and other phenotypical and ecological traits (i.e. plant habit and invasion ability). Overall, this study emphasizes the need to continue generating and analysing genome size data in order to puzzle out the evolution of this parameter and its many biological correlates.
Collapse
Affiliation(s)
- Daniel Vitales
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del migdia s/n, 08038 Barcelona, Catalonia, Spain
| | - Pol Fernández
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del migdia s/n, 08038 Barcelona, Catalonia, Spain
- Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, 08038 Barcelona, Catalonia, Spain
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del migdia s/n, 08038 Barcelona, Catalonia, Spain
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del migdia s/n, 08038 Barcelona, Catalonia, Spain
| |
Collapse
|
60
|
Wallace JG, Rodgers-Melnick E, Buckler ES. On the Road to Breeding 4.0: Unraveling the Good, the Bad, and the Boring of Crop Quantitative Genomics. Annu Rev Genet 2018; 52:421-444. [DOI: 10.1146/annurev-genet-120116-024846] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding the quantitative genetics of crops has been and will continue to be central to maintaining and improving global food security. We outline four stages that plant breeding either has already achieved or will probably soon achieve. Top-of-the-line breeding programs are currently in Breeding 3.0, where inexpensive, genome-wide data coupled with powerful algorithms allow us to start breeding on predicted instead of measured phenotypes. We focus on three major questions that must be answered to move from current Breeding 3.0 practices to Breeding 4.0: ( a) How do we adapt crops to better fit agricultural environments? ( b) What is the nature of the diversity upon which breeding can act? ( c) How do we deal with deleterious variants? Answering these questions and then translating them to actual gains for farmers will be a significant part of achieving global food security in the twenty-first century.
Collapse
Affiliation(s)
- Jason G. Wallace
- Department of Crop and Soil Sciences, The University of Georgia, Athens, Georgia 30602, USA
| | | | - Edward S. Buckler
- United States Department of Agriculture, Agricultural Research Service, Ithaca, New York 14853, USA
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
61
|
Ren L, Huang W, Cannon EKS, Bertioli DJ, Cannon SB. A Mechanism for Genome Size Reduction Following Genomic Rearrangements. Front Genet 2018; 9:454. [PMID: 30356760 PMCID: PMC6189423 DOI: 10.3389/fgene.2018.00454] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
The factors behind genome size evolution have been of great interest, considering that eukaryotic genomes vary in size by more than three orders of magnitude. Using a model of two wild peanut relatives, Arachis duranensis and Arachis ipaensis, in which one genome experienced large rearrangements, we find that the main determinant in genome size reduction is a set of inversions that occurred in A. duranensis, and subsequent net sequence removal in the inverted regions. We observe a general pattern in which sequence is lost more rapidly at newly distal (telomeric) regions than it is gained at newly proximal (pericentromeric) regions - resulting in net sequence loss in the inverted regions. The major driver of this process is recombination, determined by the chromosomal location. Any type of genomic rearrangement that exposes proximal regions to higher recombination rates can cause genome size reduction by this mechanism. In comparisons between A. duranensis and A. ipaensis, we find that the inversions all occurred in A. duranensis. Sequence loss in those regions was primarily due to removal of transposable elements. Illegitimate recombination is likely the major mechanism responsible for the sequence removal, rather than unequal intrastrand recombination. We also measure the relative rate of genome size reduction in these two Arachis diploids. We also test our model in other plant species and find that it applies in all cases examined, suggesting our model is widely applicable.
Collapse
Affiliation(s)
- Longhui Ren
- Interdepartmental Genetics Graduate Program, Iowa State University, Ames, IA, United States
| | - Wei Huang
- Interdepartmental Genetics Graduate Program, Iowa State University, Ames, IA, United States.,Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Ethalinda K S Cannon
- Interdepartmental Genetics Graduate Program, Iowa State University, Ames, IA, United States.,Department of Computer Science, Iowa State University, Ames, IA, United States
| | - David J Bertioli
- Institute of Biological Sciences, University of Brasiìlia, Brasiìlia, Brazil.,Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Steven B Cannon
- Corn Insects and Crop Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Ames, IA, United States
| |
Collapse
|
62
|
Pellicer J, Hidalgo O, Dodsworth S, Leitch IJ. Genome Size Diversity and Its Impact on the Evolution of Land Plants. Genes (Basel) 2018; 9:E88. [PMID: 29443885 PMCID: PMC5852584 DOI: 10.3390/genes9020088] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 01/09/2023] Open
Abstract
Genome size is a biodiversity trait that shows staggering diversity across eukaryotes, varying over 64,000-fold. Of all major taxonomic groups, land plants stand out due to their staggering genome size diversity, ranging ca. 2400-fold. As our understanding of the implications and significance of this remarkable genome size diversity in land plants grows, it is becoming increasingly evident that this trait plays not only an important role in shaping the evolution of plant genomes, but also in influencing plant community assemblages at the ecosystem level. Recent advances and improvements in novel sequencing technologies, as well as analytical tools, make it possible to gain critical insights into the genomic and epigenetic mechanisms underpinning genome size changes. In this review we provide an overview of our current understanding of genome size diversity across the different land plant groups, its implications on the biology of the genome and what future directions need to be addressed to fill key knowledge gaps.
Collapse
Affiliation(s)
- Jaume Pellicer
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew TW9 3DS, UK.
| | - Oriane Hidalgo
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew TW9 3DS, UK.
| | - Steven Dodsworth
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew TW9 3DS, UK.
| | - Ilia J Leitch
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew TW9 3DS, UK.
| |
Collapse
|
63
|
Silva SR, Michael TP, Meer EJ, Pinheiro DG, Varani AM, Miranda VFO. Comparative genomic analysis of Genlisea (corkscrew plants-Lentibulariaceae) chloroplast genomes reveals an increasing loss of the ndh genes. PLoS One 2018; 13:e0190321. [PMID: 29293597 PMCID: PMC5749785 DOI: 10.1371/journal.pone.0190321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/12/2017] [Indexed: 11/18/2022] Open
Abstract
In the carnivorous plant family Lentibulariaceae, all three genome compartments (nuclear, chloroplast, and mitochondria) have some of the highest rates of nucleotide substitutions across angiosperms. While the genera Genlisea and Utricularia have the smallest known flowering plant nuclear genomes, the chloroplast genomes (cpDNA) are mostly structurally conserved except for deletion and/or pseudogenization of the NAD(P)H-dehydrogenase complex (ndh) genes known to be involved in stress conditions of low light or CO2 concentrations. In order to determine how the cpDNA are changing, and to better understand the evolutionary history within the Genlisea genus, we sequenced, assembled and analyzed complete cpDNA from six species (G. aurea, G. filiformis, G. pygmaea, G. repens, G. tuberosa and G. violacea) together with the publicly available G. margaretae cpDNA. In general, the cpDNA structure among the analyzed Genlisea species is highly similar. However, we found that the plastidial ndh genes underwent a progressive process of degradation similar to the other terrestrial Lentibulariaceae cpDNA analyzed to date, but in contrast to the aquatic species. Contrary to current thinking that the terrestrial environment is a more stressful environment and thus requiring the ndh genes, we provide evidence that in the Lentibulariaceae the terrestrial forms have progressive loss while the aquatic forms have the eleven plastidial ndh genes intact. Therefore, the Lentibulariaceae system provides an important opportunity to understand the evolutionary forces that govern the transition to an aquatic environment and may provide insight into how plants manage water stress at a genome scale.
Collapse
Affiliation(s)
- Saura R. Silva
- Universidade Estadual Paulista (Unesp), Botucatu, Instituto de Biociências, São Paulo, Brazil
| | - Todd P. Michael
- J. Craig Venter Institute, La Jolla, CA, United States of America
| | - Elliott J. Meer
- 10X Genomics, Pleasanton, California, United States of America
| | - Daniel G. Pinheiro
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Departamento de Tecnologia, São Paulo, Brazil
| | - Alessandro M. Varani
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Departamento de Tecnologia, São Paulo, Brazil
| | - Vitor F. O. Miranda
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Departamento de Biologia Aplicada à Agropecuária, São Paulo, Brazil
| |
Collapse
|
64
|
Silva SR, Gibson R, Adamec L, Domínguez Y, Miranda VF. Molecular phylogeny of bladderworts: A wide approach of Utricularia (Lentibulariaceae) species relationships based on six plastidial and nuclear DNA sequences. Mol Phylogenet Evol 2018; 118:244-264. [DOI: 10.1016/j.ympev.2017.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 02/07/2023]
|
65
|
Aranguren-Díaz YC, Varani AM, Michael TP, Miranda VFO. Development of microsatellite markers for the carnivorous plant Genlisea aurea (Lentibulariaceae) using genomics data of NGS. Mol Biol Rep 2017; 45:57-61. [PMID: 29275442 DOI: 10.1007/s11033-017-4140-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
Abstract
Genlisea aurea A.St.-Hil. is a carnivorous plant endemic species to Brazil in the Lentibulariaceae family. Very few studies have addressed the genetic structure and conservation status of G. aurea and the Lentibulariaceae. Microsatellites markers are advantageous tools that can be employed to predict the vulnerability of Lentibulariaceae species. Therefore, the development of molecular markers focusing the population analyses of Genlisea for future genetic studies and conservation actions are essential. Thus, we developed simple sequence repeats (SSRs) based on in silico analyses of G. aurea draft genome assembly. We characterized 40 individuals from several populations and identified 12 loci that were polymorphic, with heterozygosity between 0.123 and 0.650. We demonstrated that the G. aurea SSR markers work cross-species in Genlisea filiformis, G. repens, G. tuberosa and G. violacea. These markers will be important for future population, phylogeographic and conservation studies in G. aurea and other Genlisea species.
Collapse
Affiliation(s)
- Yani C Aranguren-Díaz
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Departamento de Biologia Aplicada à Agropecuária, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, São Paulo, 14884-900, Brazil.,Universidad Simón Bolívar, Barranquilla, Colombia
| | - Alessandro M Varani
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Departamento de Tecnologia, São Paulo, Brazil
| | - Todd P Michael
- J. Craig Venter Institute, 4120 Capricorn Ln., La Jolla, CA, 92037, USA
| | - Vitor F O Miranda
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Departamento de Biologia Aplicada à Agropecuária, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, São Paulo, 14884-900, Brazil.
| |
Collapse
|
66
|
Giarola V, Hou Q, Bartels D. Angiosperm Plant Desiccation Tolerance: Hints from Transcriptomics and Genome Sequencing. TRENDS IN PLANT SCIENCE 2017; 22:705-717. [PMID: 28622918 DOI: 10.1016/j.tplants.2017.05.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/12/2017] [Accepted: 05/18/2017] [Indexed: 05/21/2023]
Abstract
Desiccation tolerance (DT) in angiosperms is present in the small group of resurrection plants and in seeds. DT requires the presence of protective proteins, specific carbohydrates, restructuring of membrane lipids, and regulatory mechanisms directing a dedicated gene expression program. Many components are common to resurrection plants and seeds; however, some are specific for resurrection plants. Understanding how each component contributes to DT is challenging. Recent transcriptome analyses and genome sequencing indicate that increased expression is essential of genes encoding protective components, recently evolved, species-specific genes and non-protein-coding RNAs. Modification and reshuffling of existing cis-regulatory promoter elements seems to play a role in the rewiring of regulatory networks required for increased expression of DT-related genes in resurrection species.
Collapse
Affiliation(s)
- Valentino Giarola
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Quancan Hou
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany; Present address: Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany.
| |
Collapse
|
67
|
Xiao-Ming Z, Junrui W, Li F, Sha L, Hongbo P, Lan Q, Jing L, Yan S, Weihua Q, Lifang Z, Yunlian C, Qingwen Y. Inferring the evolutionary mechanism of the chloroplast genome size by comparing whole-chloroplast genome sequences in seed plants. Sci Rep 2017; 7:1555. [PMID: 28484234 PMCID: PMC5431534 DOI: 10.1038/s41598-017-01518-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/29/2017] [Indexed: 01/08/2023] Open
Abstract
The chloroplast genome originated from photosynthetic organisms and has retained the core genes that mainly encode components of photosynthesis. However, the causes of variations in chloroplast genome size in seed plants have only been thoroughly analyzed within small subsets of spermatophytes. In this study, we conducted the first comparative analysis on a large scale to examine the relationship between sequence characteristics and genome size in 272 seed plants based on cross-species and phylogenetic signal analysis. Our results showed that inverted repeat regions, large or small single copies, intergenic regions, and gene number can be attributed to the variations in chloroplast genome size among closely related species. However, chloroplast gene length underwent evolution affecting chloroplast genome size in seed plants irrespective of whether phylogenetic information was incorporated. Among chloroplast genes, atpA, accD and ycf1 account for 13% of the variation in genome size, and the average Ka/Ks values of homologous pairs of the three genes are larger than 1. The relationship between chloroplast genome size and gene length might be affected by selection during the evolution of spermatophytes. The variation in chloroplast genome size may influence energy generation and ecological strategy in seed plants.
Collapse
Affiliation(s)
- Zheng Xiao-Ming
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wang Junrui
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Feng Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liu Sha
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Pang Hongbo
- College of Chemistry and Life Science, Shenyang Normal University, Shenyang, 110034, China
| | - Qi Lan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sun Yan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiao Weihua
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhang Lifang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Cheng Yunlian
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yang Qingwen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
68
|
Veleba A, Šmarda P, Zedek F, Horová L, Šmerda J, Bureš P. Evolution of genome size and genomic GC content in carnivorous holokinetics (Droseraceae). ANNALS OF BOTANY 2017; 119:409-416. [PMID: 28025291 PMCID: PMC5314647 DOI: 10.1093/aob/mcw229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/06/2016] [Accepted: 09/26/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS Studies in the carnivorous family Lentibulariaceae in the last years resulted in the discovery of the smallest plant genomes and an unusual pattern of genomic GC content evolution. However, scarcity of genomic data in other carnivorous clades still prevents a generalization of the observed patterns. Here the aim was to fill this gap by mapping genome evolution in the second largest carnivorous family, Droseraceae, where this evolution may be affected by chromosomal holokinetism in Drosera METHODS: The genome size and genomic GC content of 71 Droseraceae species were measured by flow cytometry. A dated phylogeny was constructed, and the evolution of both genomic parameters and their relationship to species climatic niches were tested using phylogeny-based statistics. KEY RESULTS The 2C genome size of Droseraceae varied between 488 and 10 927 Mbp, and the GC content ranged between 37·1 and 44·7 %. The genome sizes and genomic GC content of carnivorous and holocentric species did not differ from those of their non-carnivorous and monocentric relatives. The genomic GC content positively correlated with genome size and annual temperature fluctuations. The genome size and chromosome numbers were inversely correlated in the Australian clade of Drosera CONCLUSIONS: Our results indicate that neither carnivory (nutrient scarcity) nor the holokinetism have a prominent effect on size and DNA base composition of Droseraceae genomes. However, the holokinetic drive seems to affect karyotype evolution in one of the major clades of Drosera Our survey confirmed that the evolution of GC content is tightly connected with the evolution of genome size and also with environmental conditions.
Collapse
Affiliation(s)
- Adam Veleba
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, CZ 61137, Czech Republic
| | - Petr Šmarda
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, CZ 61137, Czech Republic
| | - František Zedek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, CZ 61137, Czech Republic
| | - Lucie Horová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, CZ 61137, Czech Republic
| | - Jakub Šmerda
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, CZ 61137, Czech Republic
| | - Petr Bureš
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, CZ 61137, Czech Republic
| |
Collapse
|
69
|
Silva SR, Diaz YCA, Penha HA, Pinheiro DG, Fernandes CC, Miranda VFO, Michael TP, Varani AM. The Chloroplast Genome of Utricularia reniformis Sheds Light on the Evolution of the ndh Gene Complex of Terrestrial Carnivorous Plants from the Lentibulariaceae Family. PLoS One 2016; 11:e0165176. [PMID: 27764252 PMCID: PMC5072713 DOI: 10.1371/journal.pone.0165176] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/08/2016] [Indexed: 02/06/2023] Open
Abstract
Lentibulariaceae is the richest family of carnivorous plants spanning three genera including Pinguicula, Genlisea, and Utricularia. Utricularia is globally distributed, and, unlike Pinguicula and Genlisea, has both aquatic and terrestrial forms. In this study we present the analysis of the chloroplast (cp) genome of the terrestrial Utricularia reniformis. U. reniformis has a standard cp genome of 139,725bp, encoding a gene repertoire similar to essentially all photosynthetic organisms. However, an exclusive combination of losses and pseudogenization of the plastid NAD(P)H-dehydrogenase (ndh) gene complex were observed. Comparisons among aquatic and terrestrial forms of Pinguicula, Genlisea, and Utricularia indicate that, whereas the aquatic forms retained functional copies of the eleven ndh genes, these have been lost or truncated in terrestrial forms, suggesting that the ndh function may be dispensable in terrestrial Lentibulariaceae. Phylogenetic scenarios of the ndh gene loss and recovery among Pinguicula, Genlisea, and Utricularia to the ancestral Lentibulariaceae cladeare proposed. Interestingly, RNAseq analysis evidenced that U. reniformis cp genes are transcribed, including the truncated ndh genes, suggesting that these are not completely inactivated. In addition, potential novel RNA-editing sites were identified in at least six U. reniformis cp genes, while none were identified in the truncated ndh genes. Moreover, phylogenomic analyses support that Lentibulariaceae is monophyletic, belonging to the higher core Lamiales clade, corroborating the hypothesis that the first Utricularia lineage emerged in terrestrial habitats and then evolved to epiphytic and aquatic forms. Furthermore, several truncated cp genes were found interspersed with U. reniformis mitochondrial and nuclear genome scaffolds, indicating that as observed in other smaller plant genomes, such as Arabidopsis thaliana, and the related and carnivorous Genlisea nigrocaulis and G. hispidula, the endosymbiotic gene transfer may also shape the U. reniformis genome in a similar fashion. Overall the comparative analysis of the U. reniformis cp genome provides new insight into the ndh genes and cp genome evolution of carnivorous plants from Lentibulariaceae family.
Collapse
Affiliation(s)
- Saura R. Silva
- Instituto de Biociências, UNESP - Univ Estadual Paulista, Câmpus Botucatu, São Paulo, Brazil
| | - Yani C. A. Diaz
- Departamento de Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Câmpus Jaboticabal, São Paulo, Brazil
| | - Helen Alves Penha
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Câmpus Jaboticabal, São Paulo, Brazil
| | - Daniel G. Pinheiro
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Câmpus Jaboticabal, São Paulo, Brazil
| | - Camila C. Fernandes
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Câmpus Jaboticabal, São Paulo, Brazil
| | - Vitor F. O. Miranda
- Departamento de Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Câmpus Jaboticabal, São Paulo, Brazil
| | - Todd P. Michael
- Ibis Bioscience, Computational Genomics, Carlsbad, California, United States of America
| | - Alessandro M. Varani
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Câmpus Jaboticabal, São Paulo, Brazil
| |
Collapse
|
70
|
Wang G, Yang Y. The effects of fresh and rapid desiccated tissue on estimates of Ophiopogoneae genome size. PLANT DIVERSITY 2016; 38:190-193. [PMID: 30159464 PMCID: PMC6112213 DOI: 10.1016/j.pld.2016.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 05/18/2023]
Abstract
Fresh plant material is usually used for genome size estimation by flow cytometry (FCM). Lack of fresh material is cited as one of the main reasons for the dearth of studies on plants from remote locations. Genome sizes in fresh versus desiccated tissue of 16 Ophiopogoneae species and five model plant species were estimated. Our results indicated that desiccated tissue was suitable for genome size estimation; this method enables broader geographic sampling of plants when fresh tissue collection is not feasible. To be useful, after dessication the Ophiopogoneae sample should be green without brown or yellow markings; it should be stored in deep freezer at -80 °C, and the storage time should be no more than 6 months.
Collapse
Affiliation(s)
- Guangyan Wang
- School of Life Sciences, The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing Normal University, Anqing, Anhui, 246133, China
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Yongping Yang
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| |
Collapse
|
71
|
Baniaga AE, Arrigo N, Barker MS. The Small Nuclear Genomes of Selaginella Are Associated with a Low Rate of Genome Size Evolution. Genome Biol Evol 2016; 8:1516-25. [PMID: 27189987 PMCID: PMC4898805 DOI: 10.1093/gbe/evw091] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2016] [Indexed: 02/07/2023] Open
Abstract
The haploid nuclear genome size (1C DNA) of vascular land plants varies over several orders of magnitude. Much of this observed diversity in genome size is due to the proliferation and deletion of transposable elements. To date, all vascular land plant lineages with extremely small nuclear genomes represent recently derived states, having ancestors with much larger genome sizes. The Selaginellaceae represent an ancient lineage with extremely small genomes. It is unclear how small nuclear genomes evolved in Selaginella We compared the rates of nuclear genome size evolution in Selaginella and major vascular plant clades in a comparative phylogenetic framework. For the analyses, we collected 29 new flow cytometry estimates of haploid genome size in Selaginella to augment publicly available data. Selaginella possess some of the smallest known haploid nuclear genome sizes, as well as the lowest rate of genome size evolution observed across all vascular land plants included in our analyses. Additionally, our analyses provide strong support for a history of haploid nuclear genome size stasis in Selaginella Our results indicate that Selaginella, similar to other early diverging lineages of vascular land plants, has relatively low rates of genome size evolution. Further, our analyses highlight that a rapid transition to a small genome size is only one route to an extremely small genome.
Collapse
Affiliation(s)
| | - Nils Arrigo
- Department of Ecology & Evolutionary Biology, University of Arizona Department of Ecology & Evolution, University of Lausanne, Switzerland
| | - Michael S Barker
- Department of Ecology & Evolutionary Biology, University of Arizona
| |
Collapse
|
72
|
Guignard MS, Nichols RA, Knell RJ, Macdonald A, Romila C, Trimmer M, Leitch IJ, Leitch AR. Genome size and ploidy influence angiosperm species' biomass under nitrogen and phosphorus limitation. THE NEW PHYTOLOGIST 2016; 210:1195-206. [PMID: 26875784 PMCID: PMC4991274 DOI: 10.1111/nph.13881] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/21/2015] [Indexed: 05/18/2023]
Abstract
Angiosperm genome sizes (GS) range c. 2400-fold, and as nucleic acids are amongst the most phosphorus- (P) and nitrogen (N)-demanding cellular biomolecules, we test the hypothesis that a key influence on plant biomass and species composition is the interaction between N and P availability and plant GS. We analysed the impact of different nutrient regimes on above-ground biomass of angiosperm species with different GS, ploidy level and Grime's C-S-R (competitive, stress-tolerant, ruderal) plant strategies growing at the Park Grass Experiment (Rothamsted, UK), established in 1856. The biomass-weighted mean GS of species growing on plots with the addition of both N and P fertilizer were significantly higher than that of plants growing on control plots and plots with either N or P. The plants on these N + P plots are dominated by polyploids with large GS and a competitive plant strategy. The results are consistent with our hypothesis that large genomes are costly to build and maintain under N and P limitation. Hence GS and ploidy are significant traits affecting biomass growth under different nutrient regimes, influencing plant community composition and ecosystem dynamics. We propose that GS is a critical factor needed in models that bridge the knowledge gap between biodiversity and ecosystem functioning.
Collapse
Affiliation(s)
- Maïté S. Guignard
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
- Jodrell LaboratoryRoyal Botanic Gardens, KewRichmondSurreyTW9 3DSUK
| | - Richard A. Nichols
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Robert J. Knell
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Andy Macdonald
- Department of Sustainable Soils and Grassland SystemsRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Catalina‐Andreea Romila
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Mark Trimmer
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Ilia J. Leitch
- Jodrell LaboratoryRoyal Botanic Gardens, KewRichmondSurreyTW9 3DSUK
| | - Andrew R. Leitch
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| |
Collapse
|
73
|
Tran TD, Šimková H, Schmidt R, Doležel J, Schubert I, Fuchs J. Chromosome identification for the carnivorous plant Genlisea margaretae. Chromosoma 2016; 126:389-397. [PMID: 27153834 DOI: 10.1007/s00412-016-0599-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/20/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
Abstract
Genlisea margaretae, subgenus Genlisea, section Recurvatae (184 Mbp/1C), belongs to a plant genus with a 25-fold genome size difference and an extreme genome plasticity. Its 19 chromosome pairs could be distinguished individually by an approach combining optimized probe pooling and consecutive rounds of multicolor fluorescence in situ hybridization (mcFISH) with bacterial artificial chromosomes (BACs) selected for repeat-free inserts. Fifty-one BACs were assigned to 18 chromosome pairs. They provide a tool for future assignment of genomic sequence contigs to distinct chromosomes as well as for identification of homeologous chromosome regions in other species of the carnivorous Lentibulariaceae family, and potentially of chromosome rearrangements, in cases where more than one BAC per chromosome pair was identified.
Collapse
Affiliation(s)
- Trung D Tran
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany.,Plant Resource Center, Vietnam Academy of Agricultural Science, Ankhanh, Hoaiduc, Hanoi, Vietnam
| | - Hana Šimková
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, CZ-78371, Olomouc, Czech Republic
| | - Renate Schmidt
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany
| | - Jaroslav Doležel
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, CZ-78371, Olomouc, Czech Republic
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany.,Central European Institute of Technology and Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany.
| |
Collapse
|
74
|
Bemm F, Becker D, Larisch C, Kreuzer I, Escalante-Perez M, Schulze WX, Ankenbrand M, Van de Weyer AL, Krol E, Al-Rasheid KA, Mithöfer A, Weber AP, Schultz J, Hedrich R. Venus flytrap carnivorous lifestyle builds on herbivore defense strategies. Genome Res 2016; 26:812-25. [PMID: 27197216 PMCID: PMC4889972 DOI: 10.1101/gr.202200.115] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/07/2016] [Indexed: 11/24/2022]
Abstract
Although the concept of botanical carnivory has been known since Darwin's time, the molecular mechanisms that allow animal feeding remain unknown, primarily due to a complete lack of genomic information. Here, we show that the transcriptomic landscape of the Dionaea trap is dramatically shifted toward signal transduction and nutrient transport upon insect feeding, with touch hormone signaling and protein secretion prevailing. At the same time, a massive induction of general defense responses is accompanied by the repression of cell death-related genes/processes. We hypothesize that the carnivory syndrome of Dionaea evolved by exaptation of ancient defense pathways, replacing cell death with nutrient acquisition.
Collapse
Affiliation(s)
- Felix Bemm
- Center for Computational and Theoretical Biology, Campus Hubland Nord; Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97218 Würzburg, Germany
| | - Dirk Becker
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Christina Larisch
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Ines Kreuzer
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Maria Escalante-Perez
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Markus Ankenbrand
- Center for Computational and Theoretical Biology, Campus Hubland Nord; Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97218 Würzburg, Germany; Department of Animal Ecology and Tropical Biology, Biocenter, Am Hubland, 97074 Würzburg, Germany
| | - Anna-Lena Van de Weyer
- Center for Computational and Theoretical Biology, Campus Hubland Nord; Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97218 Würzburg, Germany
| | - Elzbieta Krol
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Khaled A Al-Rasheid
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany; Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Axel Mithöfer
- Bioorganic Chemistry Department, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Andreas P Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Jörg Schultz
- Center for Computational and Theoretical Biology, Campus Hubland Nord; Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97218 Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| |
Collapse
|
75
|
Britt AB, Kuppu S. Cenh3: An Emerging Player in Haploid Induction Technology. FRONTIERS IN PLANT SCIENCE 2016; 7:357. [PMID: 27148276 PMCID: PMC4828581 DOI: 10.3389/fpls.2016.00357] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/07/2016] [Indexed: 05/18/2023]
Abstract
True-breeding lines are required for the development and production of crop varieties. In a classical breeding approach these lines are obtained through inbreeding, and often 7-9 generations of inbreeding is performed to achieve the desired level of homozygosity, over a period of several years. In contrast, the chromosomes of haploids can be doubled to produce true-breeding lines in a single generation. Over the last century, scientists have developed a variety of techniques to induce haploids and doubled haploids, though these techniques apply only to particular crop varieties. Ravi and Chan (2010) discovered that haploids could be obtained in Arabidopsis through the manipulation of the centromere-specific histone 3 variant, CENH3. Their approach, which involved extensive modifications to a transgenic CENH3, held promise of being translated to crop species, and has been successfully employed in maize (see Kelliher et al., 2016). Refinements of this technology have since been developed which indicate that non-transgenic modifications to CENH3 will also induce haploids. The complementation of a cenh3 null by CENH3 from closely related plant species can result in plants that are fertile but haploid-inducing on crossing by CENH3 wt plants- suggesting that introgression of alien CENH3 may produce non-transgenic haploid inducers. Similarly, a remarkably wide variety of point mutations in CENH3, inducible by chemical agents, have recently been shown to result in haploid induction on crossing by wild-type CENH3 plants. These CENH3-variant plants grow normally, are fully fertile on self-pollination, and may be present in existing mutagenized collections.
Collapse
|
76
|
Tran TD, Cao HX, Jovtchev G, Neumann P, Novák P, Fojtová M, Vu GTH, Macas J, Fajkus J, Schubert I, Fuchs J. Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:1087-99. [PMID: 26485466 DOI: 10.1111/tpj.13058] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 10/07/2015] [Accepted: 10/15/2015] [Indexed: 05/25/2023]
Abstract
Linear chromosomes of eukaryotic organisms invariably possess centromeres and telomeres to ensure proper chromosome segregation during nuclear divisions and to protect the chromosome ends from deterioration and fusion, respectively. While centromeric sequences may differ between species, with arrays of tandemly repeated sequences and retrotransposons being the most abundant sequence types in plant centromeres, telomeric sequences are usually highly conserved among plants and other organisms. The genome size of the carnivorous genus Genlisea (Lentibulariaceae) is highly variable. Here we study evolutionary sequence plasticity of these chromosomal domains at an intrageneric level. We show that Genlisea nigrocaulis (1C = 86 Mbp; 2n = 40) and G. hispidula (1C = 1550 Mbp; 2n = 40) differ as to their DNA composition at centromeres and telomeres. G. nigrocaulis and its close relative G. pygmaea revealed mainly 161 bp tandem repeats, while G. hispidula and its close relative G. subglabra displayed a combination of four retroelements at centromeric positions. G. nigrocaulis and G. pygmaea chromosome ends are characterized by the Arabidopsis-type telomeric repeats (TTTAGGG); G. hispidula and G. subglabra instead revealed two intermingled sequence variants (TTCAGG and TTTCAGG). These differences in centromeric and, surprisingly, also in telomeric DNA sequences, uncovered between groups with on average a > 9-fold genome size difference, emphasize the fast genome evolution within this genus. Such intrageneric evolutionary alteration of telomeric repeats with cytosine in the guanine-rich strand, not yet known for plants, might impact the epigenetic telomere chromatin modification.
Collapse
Affiliation(s)
- Trung D Tran
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Hieu X Cao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Gabriele Jovtchev
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Pavel Neumann
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, Branišovská 31/1160, 37005, České Budějovice, Czech Republic
| | - Petr Novák
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, Branišovská 31/1160, 37005, České Budějovice, Czech Republic
| | - Miloslava Fojtová
- Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Giang T H Vu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Jiří Macas
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, Branišovská 31/1160, 37005, České Budějovice, Czech Republic
| | - Jiří Fajkus
- Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 61265, Brno, Czech Republic
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, D-06466, Stadt Seeland, Germany
- Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Joerg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| |
Collapse
|
77
|
Macas J, Novák P, Pellicer J, Čížková J, Koblížková A, Neumann P, Fuková I, Doležel J, Kelly LJ, Leitch IJ. In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae. PLoS One 2015; 10:e0143424. [PMID: 26606051 PMCID: PMC4659654 DOI: 10.1371/journal.pone.0143424] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/04/2015] [Indexed: 01/30/2023] Open
Abstract
The differential accumulation and elimination of repetitive DNA are key drivers of genome size variation in flowering plants, yet there have been few studies which have analysed how different types of repeats in related species contribute to genome size evolution within a phylogenetic context. This question is addressed here by conducting large-scale comparative analysis of repeats in 23 species from four genera of the monophyletic legume tribe Fabeae, representing a 7.6-fold variation in genome size. Phylogenetic analysis and genome size reconstruction revealed that this diversity arose from genome size expansions and contractions in different lineages during the evolution of Fabeae. Employing a combination of low-pass genome sequencing with novel bioinformatic approaches resulted in identification and quantification of repeats making up 55–83% of the investigated genomes. In turn, this enabled an analysis of how each major repeat type contributed to the genome size variation encountered. Differential accumulation of repetitive DNA was found to account for 85% of the genome size differences between the species, and most (57%) of this variation was found to be driven by a single lineage of Ty3/gypsy LTR-retrotransposons, the Ogre elements. Although the amounts of several other lineages of LTR-retrotransposons and the total amount of satellite DNA were also positively correlated with genome size, their contributions to genome size variation were much smaller (up to 6%). Repeat analysis within a phylogenetic framework also revealed profound differences in the extent of sequence conservation between different repeat types across Fabeae. In addition to these findings, the study has provided a proof of concept for the approach combining recent developments in sequencing and bioinformatics to perform comparative analyses of repetitive DNAs in a large number of non-model species without the need to assemble their genomes.
Collapse
Affiliation(s)
- Jiří Macas
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
- * E-mail:
| | - Petr Novák
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Jaume Pellicer
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| | - Jana Čížková
- Institute of Experimental Botany, Olomouc, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Andrea Koblížková
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Pavel Neumann
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Iva Fuková
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Olomouc, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Laura J. Kelly
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Ilia J. Leitch
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| |
Collapse
|
78
|
Poppinga S, Weisskopf C, Westermeier AS, Masselter T, Speck T. Fastest predators in the plant kingdom: functional morphology and biomechanics of suction traps found in the largest genus of carnivorous plants. AOB PLANTS 2015; 8:plv140. [PMID: 26602984 PMCID: PMC4717191 DOI: 10.1093/aobpla/plv140] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/07/2015] [Indexed: 05/18/2023]
Abstract
Understanding the physics of plant movements, which describe the interplay between plant architecture, movement speed and actuation principles, is essential for the comprehension of important processes like plant morphogenesis. Recent investigations especially on rapid plant movements at the interface of biology, physics and engineering sciences highlight how such fast motions can be achieved without the presence of muscles, nerves and technical hinge analogies. The suction traps (bladders) of carnivorous bladderworts (Utricularia spp., Lentibulariaceae, Lamiales) are considered as some of the most elaborate moving structures in the plant kingdom. A complex interplay of morphological and physiological adaptations allows the traps to pump water out of their body and to store elastic energy in the deformed bladder walls. Mechanical stimulation by prey entails opening of the otherwise watertight trapdoor, followed by trap wall relaxation, sucking in of water and prey, and consecutive trapdoor closure. Suction can also occur spontaneously in non-stimulated traps. We review the current state of knowledge about the suction trap mechanism with a focus on architectonically homogeneous traps of aquatic bladderwort species from section Utricularia (the so-called 'Utricularia vulgaris trap type'). The functional morphology and biomechanics of the traps are described in detail. We discuss open questions and propose promising aspects for future studies on these sophisticated ultra-fast trapping devices.
Collapse
Affiliation(s)
- Simon Poppinga
- Plant Biomechanics Group, University of Freiburg, Botanic Garden, Schänzlestrasse 1, 79104 Freiburg im Breisgau, Germany Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg im Breisgau, Germany
| | - Carmen Weisskopf
- Plant Biomechanics Group, University of Freiburg, Botanic Garden, Schänzlestrasse 1, 79104 Freiburg im Breisgau, Germany Present address: Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Wissenschaftspark Potsdam-Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Anna Sophia Westermeier
- Plant Biomechanics Group, University of Freiburg, Botanic Garden, Schänzlestrasse 1, 79104 Freiburg im Breisgau, Germany
| | - Tom Masselter
- Plant Biomechanics Group, University of Freiburg, Botanic Garden, Schänzlestrasse 1, 79104 Freiburg im Breisgau, Germany
| | - Thomas Speck
- Plant Biomechanics Group, University of Freiburg, Botanic Garden, Schänzlestrasse 1, 79104 Freiburg im Breisgau, Germany Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
79
|
Vu GTH, Schmutzer T, Bull F, Cao HX, Fuchs J, Tran TD, Jovtchev G, Pistrick K, Stein N, Pecinka A, Neumann P, Novak P, Macas J, Dear PH, Blattner FR, Scholz U, Schubert I. Comparative Genome Analysis Reveals Divergent Genome Size Evolution in a Carnivorous Plant Genus. THE PLANT GENOME 2015; 8:eplantgenome2015.04.0021. [PMID: 33228273 DOI: 10.3835/plantgenome2015.04.0021] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/19/2015] [Indexed: 06/11/2023]
Abstract
The C-value paradox remains incompletely resolved after >40 yr and is exemplified by 2,350-fold variation in genome sizes of flowering plants. The carnivorous Lentibulariaceae genus Genlisea, displaying a 25-fold range of genome sizes, is a promising subject to study mechanisms and consequences of evolutionary genome size variation. Applying genomic, phylogenetic, and cytogenetic approaches, we uncovered bidirectional genome size evolution within the genus Genlisea. The Genlisea nigrocaulis Steyerm. genome (86 Mbp) has probably shrunk by retroelement silencing and deletion-biased double-strand break (DSB) repair, from an ancestral size of 400 to 800 Mbp to become one of the smallest among flowering plants. The G. hispidula Stapf genome has expanded by whole-genome duplication (WGD) and retrotransposition to 1550 Mbp. Genlisea hispidula became allotetraploid after the split from the G. nigrocaulis clade ∼29 Ma. Genlisea pygmaea A. St.-Hil. (179 Mbp), a close relative of G. nigrocaulis, proved to be a recent (auto)tetraploid. Our analyses suggest a common ancestor of the genus Genlisea with an intermediate 1C value (400-800 Mbp) and subsequent rapid genome size evolution in opposite directions. Many abundant repeats of the larger genome are absent in the smaller, casting doubt on their functionality for the organism, while recurrent WGD seems to safeguard against the loss of essential elements in the face of genome shrinkage. We cannot identify any consistent differences in habitat or life strategy that correlate with genome size changes, raising the possibility that these changes may be selectively neutral.
Collapse
Affiliation(s)
- Giang T H Vu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
- Max Planck Institute for Plant Breeding Research (MPIPZ), Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Thomas Schmutzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Fabian Bull
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Hieu X Cao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Trung D Tran
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Gabriele Jovtchev
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
- Institute for Biodiversity and Ecosystem Research, 2 Yurii Gagarin Street, Sofia, 1113, Bulgaria
| | - Klaus Pistrick
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Ales Pecinka
- Max Planck Institute for Plant Breeding Research (MPIPZ), Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Pavel Neumann
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, 370 05, Cˇeske Budejovicé, Czech Republic
| | - Petr Novak
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, 370 05, Cˇeske Budejovicé, Czech Republic
| | - Jiri Macas
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, 370 05, Cˇeske Budejovicé, Czech Republic
| | - Paul H Dear
- MRC Lab. of Molecular Biology, Francis Crick Ave., Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Frank R Blattner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
- Faculty of Science and Central European Institute of Technology, Masaryk Univ., 61137, Brno, Czech Republic
| |
Collapse
|
80
|
Lukhtanov VA. The blue butterfly Polyommatus (Plebicula) atlanticus (Lepidoptera, Lycaenidae) holds the record of the highest number of chromosomes in the non-polyploid eukaryotic organisms. COMPARATIVE CYTOGENETICS 2015; 9:683-90. [PMID: 26753083 PMCID: PMC4698580 DOI: 10.3897/compcytogen.v9i4.5760] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/30/2014] [Indexed: 05/08/2023]
Abstract
The blue butterfly species Polyommatus (Plebicula) atlanticus (Elwes, 1906) (Lepidoptera, Lycaenidae) is known to have a very high haploid number of chromosomes (n= circa 223). However, this approximate count made by Hugo de Lesse 45 years ago was based on analysis of a single meiotic I metaphase plate, not confirmed by study of diploid chromosome set and not documented by microphotographs. Here I demonstrate that (1) Polyommatus atlanticus is a diploid (non-polyploid) species, (2) its meiotic I chromosome complement includes at least 224-226 countable chromosome bodies, and (3) all (or nearly all) chromosome elements in meiotic I karyotype are represented by bivalents. I also provide the first data on the diploid karyotype and estimate the diploid chromosome number as 2n=ca448-452. Thus, Polyommatus atlanticus is confirmed to possess the highest chromosome number among all the non-polyploid eukaryotic organisms.
Collapse
Affiliation(s)
- Vladimir A. Lukhtanov
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, 199034 St. Petersburg, Russia
- Department of Entomology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| |
Collapse
|
81
|
Tran TD, Cao HX, Jovtchev G, Novák P, Vu GTH, Macas J, Schubert I, Fuchs J. Chromatin organization and cytological features of carnivorous Genlisea species with large genome size differences. FRONTIERS IN PLANT SCIENCE 2015; 6:613. [PMID: 26347752 PMCID: PMC4542322 DOI: 10.3389/fpls.2015.00613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/24/2015] [Indexed: 05/07/2023]
Abstract
The monophyletic carnivorous genus Genlisea (Lentibulariaceae) is characterized by a bi-directional genome size evolution resulting in a 25-fold difference in nuclear DNA content. This is one of the largest ranges found within a genus so far and makes Genlisea an interesting subject to study mechanisms of genome and karyotype evolution. Genlisea nigrocaulis, with 86 Mbp one of the smallest plant genomes, and the 18-fold larger genome of G. hispidula (1,550 Mbp) possess identical chromosome numbers (2n = 40) but differ considerably in chromatin organization, nuclear and cell size. Interphase nuclei of G. nigrocaulis and of related species with small genomes, G. aurea (133 Mbp, 2n ≈ 104) and G. pygmaea (179 Mbp, 2n = 80), are hallmarked by intensely DAPI-stained chromocenters, carrying typical heterochromatin-associated methylation marks (5-methylcytosine, H3K9me2), while in G. hispidula and surprisingly also in the small genome of G. margaretae (184 Mbp, 2n = 38) the heterochromatin marks are more evenly distributed. Probes of tandem repetitive sequences together with rDNA allow the unequivocal discrimination of 13 out of 20 chromosome pairs of G. hispidula. One of the repetitive sequences labeled half of the chromosome set almost homogenously supporting an allopolyploid status of G. hispidula and its close relative G. subglabra (1,622 Mbp, 2n = 40). In G. nigrocaulis 11 chromosome pairs could be individualized using a combination of rDNA and unique genomic probes. The presented data provide a basis for future studies of karyotype evolution within the genus Genlisea.
Collapse
Affiliation(s)
- Trung D. Tran
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| | - Hieu X. Cao
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| | - Gabriele Jovtchev
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| | - Petr Novák
- Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of SciencesČeské Budějovice, Czech Republic
| | - Giang T. H. Vu
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| | - Jiří Macas
- Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of SciencesČeské Budějovice, Czech Republic
| | - Ingo Schubert
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
- Central European Institute of Technology and Faculty of Science, Masaryk UniversityBrno, Czech Republic
| | - Joerg Fuchs
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| |
Collapse
|
82
|
Wang J, Liu J, Kang M. Quantitative testing of the methodology for genome size estimation in plants using flow cytometry: a case study of the Primulina genus. FRONTIERS IN PLANT SCIENCE 2015; 6:354. [PMID: 26042140 PMCID: PMC4436564 DOI: 10.3389/fpls.2015.00354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/04/2015] [Indexed: 05/23/2023]
Abstract
Flow cytometry (FCM) is a commonly used method for estimating genome size in many organisms. The use of FCM in plants is influenced by endogenous fluorescence inhibitors and may cause an inaccurate estimation of genome size; thus, falsifying the relationship between genome size and phenotypic traits/ecological performance. Quantitative optimization of FCM methodology minimizes such errors, yet there are few studies detailing this methodology. We selected the genus Primulina, one of the most representative and diverse genera of the Old World Gesneriaceae, to evaluate the methodology effect on determining genome size. Our results showed that buffer choice significantly affected genome size estimation in six out of the eight species examined and altered the 2C-value (DNA content) by as much as 21.4%. The staining duration and propidium iodide (PI) concentration slightly affected the 2C-value. Our experiments showed better histogram quality when the samples were stained for 40 min at a PI concentration of 100 μg ml(-1). The quality of the estimates was not improved by 1-day incubation in the dark at 4°C or by centrifugation. Thus, our study determined an optimum protocol for genome size measurement in Primulina: LB01 buffer supplemented with 100 μg ml(-1) PI and stained for 40 min. This protocol also demonstrated a high universality in other Gesneriaceae genera. We report the genome size of nine Gesneriaceae species for the first time. The results showed substantial genome size variation both within and among the species, with the 2C-value ranging between 1.62 and 2.71 pg. Our study highlights the necessity of optimizing the FCM methodology prior to obtaining reliable genome size estimates in a given taxon.
Collapse
Affiliation(s)
| | | | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| |
Collapse
|
83
|
Michael TP, VanBuren R. Progress, challenges and the future of crop genomes. CURRENT OPINION IN PLANT BIOLOGY 2015; 24:71-81. [PMID: 25703261 DOI: 10.1016/j.pbi.2015.02.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 05/18/2023]
Abstract
The availability of plant reference genomes has ushered in a new era of crop genomics. More than 100 plant genomes have been sequenced since 2000, 63% of which are crop species. These genome sequences provide insight into architecture, evolution and novel aspects of crop genomes such as the retention of key agronomic traits after whole genome duplication events. Some crops have very large, polyploid, repeat-rich genomes, which require innovative strategies for sequencing, assembly and analysis. Even low quality reference genomes have the potential to improve crop germplasm through genome-wide molecular markers, which decrease expensive phenotyping and breeding cycles. The next stage of plant genomics will require draft genome refinement, building resources for crop wild relatives, resequencing broad diversity panels, and plant ENCODE projects to better understand the complexities of these highly diverse genomes.
Collapse
Affiliation(s)
| | - Robert VanBuren
- Donald Danforth Plant Science Center, St. Louis, MO, United States.
| |
Collapse
|