51
|
Galzitskaya OV, Grishin SY, Glyakina AV, Dovidchenko NV, Konstantinova AV, Kravchenko SV, Surin AK. The Strategies of Development of New Non-Toxic Inhibitors of Amyloid Formation. Int J Mol Sci 2023; 24:3781. [PMID: 36835194 PMCID: PMC9964835 DOI: 10.3390/ijms24043781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
In recent years, due to the aging of the population and the development of diagnostic medicine, the number of identified diseases associated with the accumulation of amyloid proteins has increased. Some of these proteins are known to cause a number of degenerative diseases in humans, such as amyloid-beta (Aβ) in Alzheimer's disease (AD), α-synuclein in Parkinson's disease (PD), and insulin and its analogues in insulin-derived amyloidosis. In this regard, it is important to develop strategies for the search and development of effective inhibitors of amyloid formation. Many studies have been carried out aimed at elucidating the mechanisms of amyloid aggregation of proteins and peptides. This review focuses on three amyloidogenic peptides and proteins-Aβ, α-synuclein, and insulin-for which we will consider amyloid fibril formation mechanisms and analyze existing and prospective strategies for the development of effective and non-toxic inhibitors of amyloid formation. The development of non-toxic inhibitors of amyloid will allow them to be used more effectively for the treatment of diseases associated with amyloid.
Collapse
Affiliation(s)
- Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Sergei Y. Grishin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| | - Anna V. Glyakina
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Institute of Mathematical Problems of Biology RAS, The Branch of Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Nikita V. Dovidchenko
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Anastasiia V. Konstantinova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Faculty of Biotechnology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sergey V. Kravchenko
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| | - Alexey K. Surin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| |
Collapse
|
52
|
Housmans JAJ, Wu G, Schymkowitz J, Rousseau F. A guide to studying protein aggregation. FEBS J 2023; 290:554-583. [PMID: 34862849 DOI: 10.1111/febs.16312] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/18/2021] [Accepted: 12/03/2021] [Indexed: 02/04/2023]
Abstract
Disrupted protein folding or decreased protein stability can lead to the accumulation of (partially) un- or misfolded proteins, which ultimately cause the formation of protein aggregates. Much of the interest in protein aggregation is associated with its involvement in a wide range of human diseases and the challenges it poses for large-scale biopharmaceutical manufacturing and formulation of therapeutic proteins and peptides. On the other hand, protein aggregates can also be functional, as observed in nature, which triggered its use in the development of biomaterials or therapeutics as well as for the improvement of food characteristics. Thus, unmasking the various steps involved in protein aggregation is critical to obtain a better understanding of the underlying mechanism of amyloid formation. This knowledge will allow a more tailored development of diagnostic methods and treatments for amyloid-associated diseases, as well as applications in the fields of new (bio)materials, food technology and therapeutics. However, the complex and dynamic nature of the aggregation process makes the study of protein aggregation challenging. To provide guidance on how to analyse protein aggregation, in this review we summarize the most commonly investigated aspects of protein aggregation with some popular corresponding methods.
Collapse
Affiliation(s)
- Joëlle A J Housmans
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Guiqin Wu
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
53
|
Garmay Y, Rubel A, Egorov V. Peptide from NSP7 is able to form amyloid-like fibrils: Artifact or challenge to drug design? BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140884. [PMID: 36462605 PMCID: PMC9711895 DOI: 10.1016/j.bbapap.2022.140884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
•We found potential amyloidogenic fragment in NSP7 SARS-CoV2 protein in silico •NSP7 (52–62) fragment is able to form amyloid-like fibrils •The possibility of using such a peptide as the basis for an antiviral drug is discussed
Collapse
Affiliation(s)
- Yuri Garmay
- Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Center, Kurchatov Institute, 1 mkr. Orlova roshcha, Gatchina 188300, Russia
| | - Aleksandr Rubel
- Saint Petersburg State University, 7/9 Universitetskaya Emb., St Petersburg 199034, Russia
| | - Vladimir Egorov
- Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Center, Kurchatov Institute, 1 mkr. Orlova roshcha, Gatchina 188300, Russia; Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia; Institute of Experimental Medicine, 12 Ulitsa Akademika Pavlova, St. Petersburg 197376, Russia.
| |
Collapse
|
54
|
Farokhi-Fard A, Bayat E, Beig Parikhani A, Komijani S, Aghamirza Moghim Aliabadi H, Sardari S, Gharib B, Barkhordari F, Azadmanesh K, Karimipoor M, Bakhshandeh H, Davami F. Bacterial production and biophysical characterization of a hard-to-fold scFv against myeloid leukemia cell surface marker, IL-1RAP. Mol Biol Rep 2023; 50:1191-1202. [PMID: 36435922 DOI: 10.1007/s11033-022-07972-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Interleukin-1 receptor accessory protein (IL-1RAP) is one of the most promising therapeutic targets proposed for myeloid leukemia. Antibodies (Abs) specific to IL-1RAP could be valuable tools for targeted therapy of this lethal malignancy. This study is about the preparation of a difficult-to-produce single-chain variable fragment (scFv) construct against the membrane-bound isoform of human IL-1RAP using Escherichia coli (E. coli). METHODS Different approaches were examined for refolding and characterization of the scFv. Binding activities of antibody fragments were comparatively evaluated using cell-based enzyme-linked immunosorbent assay (ELISA). Homogeneity and secondary structure of selected scFv preparation were analyzed using analytical size exclusion chromatography (SEC) and circular dichroism (CD) spectroscopy, respectively. The activity of the selected preparation was evaluated after long-term storage, repeated freeze-thaw cycles, or following incubation with normal and leukemic serum. RESULTS Strategies for soluble expression of the scFv failed. Even with the help of Trx, ≥ 98% of proteins were expressed as inclusion bodies (IBs). Among three different refolding methods, the highest recovery rate was obtained from the dilution method (11.2%). Trx-tag substantially enhanced the expression level (18%, considering the molecular weight (MW) differences), recovery rate (˃1.6-fold), and binding activity (˃2.6-fold increase in absorbance450nm). The produced scFv exhibited expected secondary structure as well as acceptable bio-functionality, homogeneity, and stability. CONCLUSION We were able to produce 21 mg/L culture functional and stable anti-IL-1RAP scFv via recovering IBs by pulse dilution procedure. The produced scFv as a useful targeting agent could be used in scheming new therapeutics or diagnostics for myeloid malignancies.
Collapse
Affiliation(s)
- Aref Farokhi-Fard
- Medical Biotechnology Department, Biotechnology research center, Pasteur Institute of Iran (IPI), No. 69, Pasteur Ave, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Bayat
- Medical Biotechnology Department, Biotechnology research center, Pasteur Institute of Iran (IPI), No. 69, Pasteur Ave, Tehran, Iran
| | - Arezoo Beig Parikhani
- Medical Biotechnology Department, Biotechnology research center, Pasteur Institute of Iran (IPI), No. 69, Pasteur Ave, Tehran, Iran
| | - Samira Komijani
- Medical Biotechnology Department, Biotechnology research center, Pasteur Institute of Iran (IPI), No. 69, Pasteur Ave, Tehran, Iran
| | - Hooman Aghamirza Moghim Aliabadi
- Protein Chemistry Laboratory, Medical Biotechnology Department, Biotechnology research center, Pasteur Institute of Iran, Tehran, Iran
- Advance Chemical Studies Laboratory, Faculty of Chemistry, K.N. Toosi University, Tehran, Iran
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Farzaneh Barkhordari
- Medical Biotechnology Department, Biotechnology research center, Pasteur Institute of Iran (IPI), No. 69, Pasteur Ave, Tehran, Iran
| | | | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Haleh Bakhshandeh
- Department of Nanobiotechnology, New Technology Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Davami
- Medical Biotechnology Department, Biotechnology research center, Pasteur Institute of Iran (IPI), No. 69, Pasteur Ave, Tehran, Iran.
| |
Collapse
|
55
|
Solid state synthesis of bispyridyl-ferrocene conjugates with unusual site selective 1,4-Michael addition, as potential inhibitor and electrochemical probe for fibrillation in amyloidogenic protein. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
56
|
Koja Y, Joshima Y, Yoritaka Y, Arakawa T, Go H, Hakamata N, Kaseda H, Hattori T, Takeda S. Formation of subcellular compartments by condensation-prone protein OsJAZ2 in Oryza sativa and Nicotiana benthamiana leaf cells. PLANT CELL REPORTS 2023; 42:269-286. [PMID: 36449075 DOI: 10.1007/s00299-022-02955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
OsJAZ2 protein has a propensity to form condensates, possibly by multivalent interactions, and can be used to construct artificial compartments in plant cells. Eukaryotic cells contain various membraneless organelles, which are compartments consisting of proteinaceous condensates formed by phase separation. Such compartments are attractive for bioengineering and synthetic biology, because they can modify cellular function by the enrichment of molecules of interest and providing an orthogonal reaction system. This study reports that Oryza sativa JAZ2 protein (OsJAZ2) is an atypical jasmonate signalling regulator that can form large condensates in both the nucleus and cytosol of O. sativa cells. TIFY and Jas domains and low-complexity regions contribute to JAZ2 condensation, possibly by multivalent interaction. Fluorescence recovery after photobleaching (FRAP) analysis suggests that JAZ2 condensates form mostly gel-like or solid compartments, but can also be in a liquid-like state. Deletion of the N-terminal region or the TIFY domain of JAZ2 causes an increase in the mobile fraction of JAZ2 condensates, moderately. Moreover, JAZ2 can also form liquid-like condensates when expressed in Nicotiana benthamiana cells. The recombinant JAZ2 fused to the green fluorescent protein (GFP) forms condensate in vitro, suggesting that the intermolecular interaction of JAZ2 molecules is a driving force for condensation. These results suggest the potential use of JAZ2 condensates to construct artificial membraneless organelles in plant cells.
Collapse
Affiliation(s)
- Yoshito Koja
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Yu Joshima
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Yusuke Yoritaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Takuya Arakawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Haruka Go
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Nagisa Hakamata
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Hinako Kaseda
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Tsukaho Hattori
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Shin Takeda
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| |
Collapse
|
57
|
Pintado-Grima C, Santos J, Iglesias V, Manglano-Artuñedo Z, Pallarès I, Ventura S. Exploring cryptic amyloidogenic regions in prion-like proteins from plants. FRONTIERS IN PLANT SCIENCE 2023; 13:1060410. [PMID: 36726678 PMCID: PMC9885169 DOI: 10.3389/fpls.2022.1060410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Prion-like domains (PrLDs) are intrinsically disordered regions (IDRs) of low sequence complexity with a similar composition to yeast prion domains. PrLDs-containing proteins have been involved in different organisms' regulatory processes. Regions of moderate amyloid propensity within IDRs have been shown to assemble autonomously into amyloid fibrils. These sequences tend to be rich in polar amino acids and often escape from the detection of classical bioinformatics screenings that look for highly aggregation-prone hydrophobic sequence stretches. We defined them as cryptic amyloidogenic regions (CARs) and recently developed an integrated database that collects thousands of predicted CARs in IDRs. CARs seem to be evolutionary conserved among disordered regions because of their potential to stablish functional contacts with other biomolecules. Here we have focused on identifying and characterizing CARs in prion-like proteins (pCARs) from plants, a lineage that has been poorly studied in comparison with other prionomes. We confirmed the intrinsic amyloid potential for a selected pCAR from Arabidopsis thaliana and explored functional enrichments and compositional bias of pCARs in plant prion-like proteins.
Collapse
Affiliation(s)
- Carlos Pintado-Grima
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaime Santos
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Valentín Iglesias
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Barcelona Institute for Global Health, Barcelona Centre for International Health Research (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Zoe Manglano-Artuñedo
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Irantzu Pallarès
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Salvador Ventura
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
58
|
Moeez S, Khalid S, Shaeen S, Khalid M, Zia A, Gul A, Niazi R, Khalid Z. Clinically significant findings of high-risk mutations in human SLC29A4 gene associated with diabetes mellitus type 2 in Pakistani population. J Biomol Struct Dyn 2022; 40:12660-12673. [PMID: 34551672 DOI: 10.1080/07391102.2021.1975561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study conducted an in-depth analysis combining computational and experimental verifications of the deleterious missense mutations associated with the SLC29A4 protein. The functional annotation of the non-synonymous single nucleotide polymorphism (nsSNPs), followed by structure-function analysis, revealed 13 single nucleotide polymorphisms (SNP) as the most damaging. Among these, six mutants P429T/S, L144S, M108V, N86H, and V79E, were predicted as structurally and functionally damaging by protein stability analysis. Also, these variants are located at evolutionary conserved regions, either buried, contributing to the structural damage, or exposed, causing functional changes in the protein. These mutants were further taken for molecular docking studies. When verified via experimental analysis, the SNPs M108V (rs149798710), N86H (rs151039853), and V79E (rs17854505) showed an association with type 2 diabetes mellitus (T2DM). Minor allele frequency for rs149798710 (A > G) was 0.23 in controls, 0.29 in metformin responders, 0.37 in metformin non-responder, for rs151039853 (A > C) was 0.21 in controls, 0.28 in metformin responders, 0.36 in metformin non-responder and for rs17854505 (T > A) was 0.20 in controls, 0.25 in metformin responders, 0.37 in metformin non-responder. Hence, this study concludes that SLC29A4 M108V (rs149798710), N86H (rs151039853), and V79E (rs17854505) polymorphisms were associated with the increased risk of T2DM as well as with the increased risk towards the failure of metformin therapeutic response in T2DM patients of Pakistan. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sadaf Moeez
- Department of Bioinformatics & Biotechnology, International Islamic University (IIUI), Islamabad, Pakistan
| | - Sumbul Khalid
- Department of Bioinformatics & Biotechnology, International Islamic University (IIUI), Islamabad, Pakistan
| | - Sania Shaeen
- Department of Bioinformatics & Biotechnology, International Islamic University (IIUI), Islamabad, Pakistan
| | - Madiha Khalid
- PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Asima Zia
- Department of Biosciences, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Asma Gul
- Department of Bioinformatics & Biotechnology, International Islamic University (IIUI), Islamabad, Pakistan
| | - Rauf Niazi
- Department of Medicine, Pakistan Institute of Medical Sciences, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Zoya Khalid
- Computational Biology research lab, Department of computer science, National University of Computer and Emerging Sciences, NUCES-FAST, Islamabad, Pakistan
| |
Collapse
|
59
|
Characterisation of a novel crustin isoform from mud crab, Scylla serrata (Forsskål, 1775) and its functional analysis in silico. In Silico Pharmacol 2022; 11:2. [PMID: 36582926 PMCID: PMC9795441 DOI: 10.1007/s40203-022-00138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/18/2022] [Indexed: 12/29/2022] Open
Abstract
A 336-base pair (bp) sized mRNA sequence encoding 111 amino acid size crustin isoform (MC-crustin) was obtained from the gill sample of the green mud crab, Scylla serrata. MC-crustin possessed an N-terminal signal peptide region comprising of 21 amino acid residues, followed by a 90 amino acid mature peptide region having a molecular weight of 10.164 kDa, charge + 4.25 and theoretical pI of 8.27. Sequence alignment and phylogenetic tree analyses revealed the peptide to be a Type I crustin, with four conserved cysteine residues forming the cysteine rich region, followed by WAP domain. MC-crustin was cationic with cysteine/proline rich structure and was predicted with antimicrobial, anti-inflammatory, anti-angiogenic and anti-hypertensive property making it a potential molecule for possible therapeutic applications.
Collapse
|
60
|
Glyakina AV, Galzitskaya OV. Structural and functional analysis of actin point mutations leading to nemaline myopathy to elucidate their role in actin function. Biophys Rev 2022; 14:1527-1538. [PMID: 36659996 PMCID: PMC9842827 DOI: 10.1007/s12551-022-01027-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
In this work, we analyzed 78 mutations in the actin protein that cause the disease nemaline myopathy. We analyzed how these mutations are distributed in important regions of the actin molecule (folding nucleus, core of the filament, amyloidogenic regions, disordered regions, regions involved in interaction with other proteins). It was found that 54 mutations (43 residues) fall into the folding nucleus (Ф ≥ 0.5), 11 mutations (10 residues) into the filament core, 14 mutations into the amyloidogenic regions (11 residues), 14 mutations (9 residues) in the unstructured regions, and 24 mutations (22 residues) in regions involved in interaction with other proteins. It was also found that the occurrence of single mutations G44V, V45F, T68I, P72R, K338I and S350L leads to the appearance of new amyloidogenic regions that are not present in native actin. The largest number of mutations (54 out of 78) occurs in the folding nucleus; these mutations are important for folding and therefore can affect the protein folding rate. We have shown that almost all of the considered mutations are associated with the structural characteristics of the actin molecule, and some of the residues we have considered have several important characteristics.
Collapse
Affiliation(s)
- Anna V. Glyakina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia ,Institute of Mathematical Problems of Biology RAS, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Pushchino, Russia
| | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia ,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
61
|
Anker S, Hinderhofer K, Baur J, Haupt C, Röcken C, Beimler J, Zeier M, Weiler M, Wühl E, Kimmich C, Schönland S, Hegenbart U. Lysozyme amyloidosis-a report on a large German cohort and the characterisation of a novel amyloidogenic lysozyme gene variant. Amyloid 2022; 29:245-254. [PMID: 35533055 DOI: 10.1080/13506129.2022.2072198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lysozyme-derived (ALys) amyloidosis is a rare type of hereditary amyloidosis. Nine amyloidogenic variants and ∼30 affected families have been described worldwide. The most common manifestations are renal dysfunction, gastrointestinal tract symptoms, and sicca syndrome. We report on the clinical course of ten patients from six families representing one of the largest cohorts published so far. Seven patients carried the W64R variant showing the whole spectrum of ALys-associated symptoms. Two patients-a mother-son pair-carried a novel lysozyme variant, which was associated with nephropathy and peripheral polyneuropathy. In accordance with previous findings, the phenotype resembled within these families but did not correlate with the genotype. To gain insights into the effect of the variants at the molecular level, we analysed the structure of lysozyme and performed comparative computational predictions on aggregation propensity and conformational stability. Our study supports that decreased conformational stability is a key factor for lysozyme variants to be prone to aggregation. In summary, ALys amyloidosis is a very rare, but still heterogeneous disease that can manifest at an early age. Our newly identified lysozyme variant is associated with nephropathy and peripheral polyneuropathy. Further research is needed to understand its pathogenesis and to enable the development of new treatments.
Collapse
Affiliation(s)
- Sophie Anker
- Department of Internal Medicine V (Haematology, Oncology and Rheumatology), University Hospital Heidelberg, Heidelberg, Germany.,Department of Internal Medicine I (Endocrinology and Clinical Chemistry), University Hospital Heidelberg, Heidelberg, Germany.,Amyloidosis Center, University Hospital Heidelberg, Heidelberg, Germany
| | - Katrin Hinderhofer
- Amyloidosis Center, University Hospital Heidelberg, Heidelberg, Germany.,Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Julian Baur
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Christian Haupt
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Christoph Röcken
- Department of Pathology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Jörg Beimler
- Amyloidosis Center, University Hospital Heidelberg, Heidelberg, Germany.,Department of Nephrology, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Zeier
- Amyloidosis Center, University Hospital Heidelberg, Heidelberg, Germany.,Department of Nephrology, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Weiler
- Amyloidosis Center, University Hospital Heidelberg, Heidelberg, Germany.,Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Elke Wühl
- Amyloidosis Center, University Hospital Heidelberg, Heidelberg, Germany.,Department of Paediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Christoph Kimmich
- Amyloidosis Center, University Hospital Heidelberg, Heidelberg, Germany.,Department of Internal Medicine (Oncology and Hematology), University Clinic Oldenburg, Oldenburg, Germany
| | - Stefan Schönland
- Department of Internal Medicine V (Haematology, Oncology and Rheumatology), University Hospital Heidelberg, Heidelberg, Germany.,Amyloidosis Center, University Hospital Heidelberg, Heidelberg, Germany
| | - Ute Hegenbart
- Department of Internal Medicine V (Haematology, Oncology and Rheumatology), University Hospital Heidelberg, Heidelberg, Germany.,Amyloidosis Center, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
62
|
Xiao X, Robang AS, Sarma S, Le JV, Helmicki ME, Lambert MJ, Guerrero-Ferreira R, Arboleda-Echavarria J, Paravastu AK, Hall CK. Sequence patterns and signatures: Computational and experimental discovery of amyloid-forming peptides. PNAS NEXUS 2022; 1:pgac263. [PMID: 36712347 PMCID: PMC9802472 DOI: 10.1093/pnasnexus/pgac263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Screening amino acid sequence space via experiments to discover peptides that self-assemble into amyloid fibrils is challenging. We have developed a computational peptide assembly design (PepAD) algorithm that enables the discovery of amyloid-forming peptides. Discontinuous molecular dynamics (DMD) simulation with the PRIME20 force field combined with the FoldAmyloid tool is used to examine the fibrilization kinetics of PepAD-generated peptides. PepAD screening of ∼10,000 7-mer peptides resulted in twelve top-scoring peptides with two distinct hydration properties. Our studies revealed that eight of the twelve in silico discovered peptides spontaneously form amyloid fibrils in the DMD simulations and that all eight have at least five residues that the FoldAmyloid tool classifies as being aggregation-prone. Based on these observations, we re-examined the PepAD-generated peptides in the sequence pool returned by PepAD and extracted five sequence patterns as well as associated sequence signatures for the 7-mer amyloid-forming peptides. Experimental results from Fourier transform infrared spectroscopy (FTIR), thioflavin T (ThT) fluorescence, circular dichroism (CD), and transmission electron microscopy (TEM) indicate that all the peptides predicted to assemble in silico assemble into antiparallel β-sheet nanofibers in a concentration-dependent manner. This is the first attempt to use a computational approach to search for amyloid-forming peptides based on customized settings. Our efforts facilitate the identification of β-sheet-based self-assembling peptides, and contribute insights towards answering a fundamental scientific question: "What does it take, sequence-wise, for a peptide to self-assemble?".
Collapse
Affiliation(s)
| | | | | | - Justin V Le
- Department of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Michael E Helmicki
- Department of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Matthew J Lambert
- Department of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ricardo Guerrero-Ferreira
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Johana Arboleda-Echavarria
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
63
|
Martinez-Rivas G, Bender S, Sirac C. Understanding AL amyloidosis with a little help from in vivo models. Front Immunol 2022; 13:1008449. [PMID: 36458006 PMCID: PMC9707859 DOI: 10.3389/fimmu.2022.1008449] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/27/2022] [Indexed: 08/01/2023] Open
Abstract
Monoclonal immunoglobulin (Ig) light chain amyloidosis (AL) is a rare but severe disease that may occur when a B or plasma cell clone secretes an excess of free Ig light chains (LCs). Some of these LCs tend to aggregate into organized fibrils with a β-sheet structure, the so-called amyloid fibrils, and deposit into the extracellular compartment of organs, such as the heart or kidneys, causing their dysfunction. Recent findings have confirmed that the core of the amyloid fibrils is constituted by the variable (V) domain of the LCs, but the mechanisms underlying the unfolding and aggregation of this fragment and its deposition are still unclear. Moreover, in addition to the mechanical constraints exerted by the massive accumulation of amyloid fibrils in organs, the direct toxicity of these variable domain LCs, full-length light chains, or primary amyloid precursors (oligomers) seems to play a role in the pathogenesis of the disease. Many in vitro studies have focused on these topics, but the variability of this disease, in which each LC presents unique properties, and the extent and complexity of affected organs make its study in vivo very difficult. Accordingly, several groups have focused on the development of animal models for years, with some encouraging but mostly disappointing results. In this review, we discuss the experimental models that have been used to better understand the unknowns of this pathology with an emphasis on in vivo approaches. We also focus on why reliable AL amyloidosis animal models remain so difficult to obtain and what this tells us about the pathophysiology of the disease.
Collapse
|
64
|
Aksenova AY, Likhachev IV, Grishin SY, Galzitskaya OV. The Increased Amyloidogenicity of Spike RBD and pH-Dependent Binding to ACE2 May Contribute to the Transmissibility and Pathogenic Properties of SARS-CoV-2 Omicron as Suggested by In Silico Study. Int J Mol Sci 2022; 23:13502. [PMID: 36362302 PMCID: PMC9655063 DOI: 10.3390/ijms232113502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
SARS-CoV-2 is a rapidly evolving pathogen that has caused a global pandemic characterized by several consecutive waves. Based on epidemiological and NGS data, many different variants of SARS-CoV-2 were described and characterized since the original variant emerged in Wuhan in 2019. Notably, SARS-CoV-2 variants differ in transmissibility and pathogenicity in the human population, although the molecular basis for this difference is still debatable. A significant role is attributed to amino acid changes in the binding surface of the Spike protein to the ACE2 receptor, which may facilitate virus entry into the cell or contribute to immune evasion. We modeled in silico the interaction between Spike RBDs of Wuhan-Hu-1, Delta, and Omicron BA.1 variants and ACE2 at different pHs (pH 5 and pH 7) and showed that the strength of this interaction was higher for the Omicron BA.1 RBD compared to Wuhan-Hu-1 or Delta RBDs and that the effect was more profound at pH 5. This finding is strikingly related to the increased ability of Omicron variants to spread in the population. We also noted that during its spread in the population, SARS-CoV-2 evolved to a more charged, basic composition. We hypothesize that the more basic surface of the Omicron variant may facilitate its spread in the upper respiratory tract but not in the lower respiratory tract, where pH estimates are different. We calculated the amyloidogenic properties of Spike RBDs in different SARS-CoV-2 variants and found eight amyloidogenic regions in the Spike RBDs for each of the variants predicted by the FoldAmyloid program. Although all eight regions were almost identical in the Wuhan to Gamma variants, two of them were significantly longer in both Omicron variants, making the Omicron RBD more amyloidogenic. We discuss how the increased predicted amyloidogenicity of the Omicron variants RBDs may be important for protein stability, influence its interaction with ACE2 and contribute to immune evasion.
Collapse
Affiliation(s)
- Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Ilya V. Likhachev
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Institute of Mathematical Problems of Biology RAS, The Branch of Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Sergei Y. Grishin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
65
|
Bahraminejad E, Paliwal D, Sunde M, Holt C, Carver JA, Thorn DC. Amyloid fibril formation by α S1- and β-casein implies that fibril formation is a general property of casein proteins. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140854. [PMID: 36087849 DOI: 10.1016/j.bbapap.2022.140854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Caseins are a diverse family of intrinsically disordered proteins present in the milks of all mammals. A property common to two cow paralogues, αS2- and κ-casein, is their propensity in vitro to form amyloid fibrils, the highly ordered protein aggregates associated with many age-related, including neurological, diseases. In this study, we explored whether amyloid fibril-forming propensity is a general feature of casein proteins by examining the other cow caseins (αS1 and β) as well as β-caseins from camel and goat. Small-angle X-ray scattering measurements indicated that cow αS1- and β-casein formed large spherical aggregates at neutral pH and 20°C. Upon incubation at 65°C, αS1- and β-casein underwent conversion to amyloid fibrils over the course of ten days, as shown by thioflavin T binding, transmission electron microscopy, and X-ray fibre diffraction. At the lower temperature of 37°C where fibril formation was more limited, camel β-casein exhibited a greater fibril-forming propensity than its cow or goat orthologues. Limited proteolysis of cow and camel β-casein fibrils and analysis by mass spectrometry indicated a common amyloidogenic sequence in the proline, glutamine-rich, C-terminal region of β-casein. These findings highlight the persistence of amyloidogenic sequences within caseins, which likely contribute to their functional, heterotypic self-assembly; in all mammalian milks, at least two caseins coalesce to form casein micelles, implying that caseins diversified partly to avoid dysfunctional amyloid fibril formation.
Collapse
Affiliation(s)
- Elmira Bahraminejad
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Devashi Paliwal
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Margaret Sunde
- School of Medical Sciences, Faculty of Medicine and Health, and Sydney Nano, The University of Sydney, Sydney, NSW 2006, Australia
| | - Carl Holt
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - David C Thorn
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia.
| |
Collapse
|
66
|
Kachkin DV, Volkov KV, Sopova JV, Bobylev AG, Fedotov SA, Inge-Vechtomov SG, Galzitskaya OV, Chernoff YO, Rubel AA, Aksenova AY. Human RAD51 Protein Forms Amyloid-like Aggregates In Vitro. Int J Mol Sci 2022; 23:ijms231911657. [PMID: 36232958 PMCID: PMC9570251 DOI: 10.3390/ijms231911657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 12/30/2022] Open
Abstract
RAD51 is a central protein of homologous recombination and DNA repair processes that maintains genome stability and ensures the accurate repair of double-stranded breaks (DSBs). In this work, we assessed amyloid properties of RAD51 in vitro and in the bacterial curli-dependent amyloid generator (C-DAG) system. Resistance to ionic detergents, staining with amyloid-specific dyes, polarized microscopy, transmission electron microscopy (TEM), X-ray diffraction and other methods were used to evaluate the properties and structure of RAD51 aggregates. The purified human RAD51 protein formed detergent-resistant aggregates in vitro that had an unbranched cross-β fibrillar structure, which is typical for amyloids, and were stained with amyloid-specific dyes. Congo-red-stained RAD51 aggregates demonstrated birefringence under polarized light. RAD51 fibrils produced sharp circular X-ray reflections at 4.7 Å and 10 Å, demonstrating that they had a cross-β structure. Cytoplasmic aggregates of RAD51 were observed in cell cultures overexpressing RAD51. We demonstrated that a key protein that maintains genome stability, RAD51, has amyloid properties in vitro and in the C-DAG system and discussed the possible biological relevance of this observation.
Collapse
Affiliation(s)
- Daniel V. Kachkin
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill V. Volkov
- Research Resource Center “Molecular and Cell Technologies”, Research Park, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Julia V. Sopova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Center of Transgenesis and Genome Editing, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Alexander G. Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., 142290 Moscow, Russia
| | - Sergei A. Fedotov
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Sergei G. Inge-Vechtomov
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Oxana V. Galzitskaya
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., 142290 Moscow, Russia
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Yury O. Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-2000, USA
| | - Aleksandr A. Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence: (A.A.R.); (A.Y.A.)
| | - Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence: (A.A.R.); (A.Y.A.)
| |
Collapse
|
67
|
Qing R, Hao S, Smorodina E, Jin D, Zalevsky A, Zhang S. Protein Design: From the Aspect of Water Solubility and Stability. Chem Rev 2022; 122:14085-14179. [PMID: 35921495 PMCID: PMC9523718 DOI: 10.1021/acs.chemrev.1c00757] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Water solubility and structural stability are key merits for proteins defined by the primary sequence and 3D-conformation. Their manipulation represents important aspects of the protein design field that relies on the accurate placement of amino acids and molecular interactions, guided by underlying physiochemical principles. Emulated designer proteins with well-defined properties both fuel the knowledge-base for more precise computational design models and are used in various biomedical and nanotechnological applications. The continuous developments in protein science, increasing computing power, new algorithms, and characterization techniques provide sophisticated toolkits for solubility design beyond guess work. In this review, we summarize recent advances in the protein design field with respect to water solubility and structural stability. After introducing fundamental design rules, we discuss the transmembrane protein solubilization and de novo transmembrane protein design. Traditional strategies to enhance protein solubility and structural stability are introduced. The designs of stable protein complexes and high-order assemblies are covered. Computational methodologies behind these endeavors, including structure prediction programs, machine learning algorithms, and specialty software dedicated to the evaluation of protein solubility and aggregation, are discussed. The findings and opportunities for Cryo-EM are presented. This review provides an overview of significant progress and prospects in accurate protein design for solubility and stability.
Collapse
Affiliation(s)
- Rui Qing
- State
Key Laboratory of Microbial Metabolism, School of Life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shilei Hao
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Eva Smorodina
- Department
of Immunology, University of Oslo and Oslo
University Hospital, Oslo 0424, Norway
| | - David Jin
- Avalon GloboCare
Corp., Freehold, New Jersey 07728, United States
| | - Arthur Zalevsky
- Laboratory
of Bioinformatics Approaches in Combinatorial Chemistry and Biology, Shemyakin−Ovchinnikov Institute of Bioorganic
Chemistry RAS, Moscow 117997, Russia
| | - Shuguang Zhang
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
68
|
NOS1AP Interacts with α-Synuclein and Aggregates in Yeast and Mammalian Cells. Int J Mol Sci 2022; 23:ijms23169102. [PMID: 36012368 PMCID: PMC9409085 DOI: 10.3390/ijms23169102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
The NOS1AP gene encodes a cytosolic protein that binds to the signaling cascade component neuronal nitric oxide synthase (nNOS). It is associated with many different disorders, such as schizophrenia, post-traumatic stress disorder, autism, cardiovascular disorders, and breast cancer. The NOS1AP (also known as CAPON) protein mediates signaling within a complex which includes the NMDA receptor, PSD-95, and nNOS. This adapter protein is involved in neuronal nitric oxide (NO) synthesis regulation via its association with nNOS (NOS1). Our bioinformatics analysis revealed NOS1AP as an aggregation-prone protein, interacting with α-synuclein. Further investigation showed that NOS1AP forms detergent-resistant non-amyloid aggregates when overproduced. Overexpression of NOS1AP was found in rat models for nervous system injury as well as in schizophrenia patients. Thus, we can assume for the first time that the molecular mechanisms underlying these disorders include misfolding and aggregation of NOS1AP. We show that NOS1AP interacts with α-synuclein, allowing us to suggest that this protein may be implicated in the development of synucleinopathies and that its aggregation may explain the relationship between Parkinson’s disease and schizophrenia.
Collapse
|
69
|
Pintado-Grima C, Bárcenas O, Manglano-Artuñedo Z, Vilaça R, Macedo-Ribeiro S, Pallarès I, Santos J, Ventura S. CARs-DB: A Database of Cryptic Amyloidogenic Regions in Intrinsically Disordered Proteins. Front Mol Biosci 2022; 9:882160. [PMID: 35898309 PMCID: PMC9309178 DOI: 10.3389/fmolb.2022.882160] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/15/2022] [Indexed: 12/20/2022] Open
Abstract
Proteome-wide analyses suggest that most globular proteins contain at least one amyloidogenic region, whereas these aggregation-prone segments are thought to be underrepresented in intrinsically disordered proteins (IDPs). In recent work, we reported that intrinsically disordered regions (IDRs) indeed sustain a significant amyloid load in the form of cryptic amyloidogenic regions (CARs). CARs are widespread in IDRs, but they are necessarily exposed to solvent, and thus they should be more polar and have a milder aggregation potential than conventional amyloid regions protected inside globular proteins. CARs are connected with IDPs function and, in particular, with the establishment of protein-protein interactions through their IDRs. However, their presence also appears associated with pathologies like cancer or Alzheimer’s disease. Given the relevance of CARs for both IDPs function and malfunction, we developed CARs-DB, a database containing precomputed predictions for all CARs present in the IDPs deposited in the DisProt database. This web tool allows for the fast and comprehensive exploration of previously unnoticed amyloidogenic regions embedded within IDRs sequences and might turn helpful in identifying disordered interacting regions. It contains >8,900 unique CARs identified in a total of 1711 IDRs. CARs-DB is freely available for users and can be accessed at http://carsdb.ppmclab.com. To validate CARs-DB, we demonstrate that two previously undescribed CARs selected from the database display full amyloidogenic potential. Overall, CARs-DB allows easy access to a previously unexplored amyloid sequence space.
Collapse
Affiliation(s)
- Carlos Pintado-Grima
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Oriol Bárcenas
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Zoe Manglano-Artuñedo
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rita Vilaça
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, Porto, Portugal
| | - Irantzu Pallarès
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaime Santos
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
70
|
Bajic VP, Salhi A, Lakota K, Radovanovic A, Razali R, Zivkovic L, Spremo-Potparevic B, Uludag M, Tifratene F, Motwalli O, Marchand B, Bajic VB, Gojobori T, Isenovic ER, Essack M. DES-Amyloidoses “Amyloidoses through the looking-glass”: A knowledgebase developed for exploring and linking information related to human amyloid-related diseases. PLoS One 2022; 17:e0271737. [PMID: 35877764 PMCID: PMC9312389 DOI: 10.1371/journal.pone.0271737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
More than 30 types of amyloids are linked to close to 50 diseases in humans, the most prominent being Alzheimer’s disease (AD). AD is brain-related local amyloidosis, while another amyloidosis, such as AA amyloidosis, tends to be more systemic. Therefore, we need to know more about the biological entities’ influencing these amyloidosis processes. However, there is currently no support system developed specifically to handle this extraordinarily complex and demanding task. To acquire a systematic view of amyloidosis and how this may be relevant to the brain and other organs, we needed a means to explore "amyloid network systems" that may underly processes that leads to an amyloid-related disease. In this regard, we developed the DES-Amyloidoses knowledgebase (KB) to obtain fast and relevant information regarding the biological network related to amyloid proteins/peptides and amyloid-related diseases. This KB contains information obtained through text and data mining of available scientific literature and other public repositories. The information compiled into the DES-Amyloidoses system based on 19 topic-specific dictionaries resulted in 796,409 associations between terms from these dictionaries. Users can explore this information through various options, including enriched concepts, enriched pairs, and semantic similarity. We show the usefulness of the KB using an example focused on inflammasome-amyloid associations. To our knowledge, this is the only KB dedicated to human amyloid-related diseases derived primarily through literature text mining and complemented by data mining that provides a novel way of exploring information relevant to amyloidoses.
Collapse
Affiliation(s)
- Vladan P. Bajic
- Institute of Nuclear Sciences “VINCA", Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Republic of Serbia
- * E-mail: (ME); (VPB)
| | - Adil Salhi
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Katja Lakota
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Radovanovic
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Rozaimi Razali
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Lada Zivkovic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | | | - Mahmut Uludag
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Faroug Tifratene
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Olaa Motwalli
- Saudi Electronic University (SEU), College of Computing and Informatics, Madinah, Kingdom of Saudi Arabia
| | | | - Vladimir B. Bajic
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Esma R. Isenovic
- Institute of Nuclear Sciences “VINCA", Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Republic of Serbia
| | - Magbubah Essack
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- * E-mail: (ME); (VPB)
| |
Collapse
|
71
|
Gadhave K, Kapuganti SK, Mishra PM, Giri R. p53 TAD2 Domain (38-61) Forms Amyloid-like Aggregates in Isolation. ACS Chem Neurosci 2022; 13:2281-2287. [PMID: 35856925 DOI: 10.1021/acschemneuro.1c00860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A strong association between protein aggregation and human diseases (such as Alzheimer's, Parkinson's, and Huntington's disease) is well demonstrated. Misfolding and aggregation of p53, a central transcriptional mediator, has been revealed by various experimental evidence in different types of cancers. Aggregation studies focusing on different p53 domains, mostly, the central core domain and its mutants under the influence of various environmental conditions, and the p53 transactivation domain (TAD) (1-63) have been reported. However, the specific subdomains responsible for p53 aggregation are not known. p53 TADs interact with diverse cellular factors to modulate the function of p53 and elicit appropriate cellular responses under different stress conditions. In this study, the aggregation of the p53 TAD2 domain (38-61) has been studied in isolation. The aggregates were generated in vitro under acidic pH conditions after in silico scoring for amyloidogenic tendency and characterized using dye-based assays (ThT and bis-ANS fluorescence), CD spectroscopy, and microscopy (scanning electron microscoy, transmission electron microscopy, and atomic force microscopy). It was observed that p53 TAD2 forms characteristic β-sheet-rich amyloid-like fibrils. Via a reductionist approach, this study highlights the nature of p53 TAD2 domain (38-61) aggregation.
Collapse
Affiliation(s)
- Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005, India
| | - Shivani K Kapuganti
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005, India
| | - Pushpendra Mani Mishra
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005, India
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005, India
| |
Collapse
|
72
|
Jiang S, Fuentes-Lemus E, Davies MJ. Oxidant-mediated modification and cross-linking of beta-2-microglobulin. Free Radic Biol Med 2022; 187:59-71. [PMID: 35609861 DOI: 10.1016/j.freeradbiomed.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022]
Abstract
Beta-2-microglobulin (B2M) is synthesized by all nucleated cells and forms part of the major histocompatibility complex (MHC) class-1 present on cell surfaces, which presents peptide fragments to cytotoxic CD8+ T-lymphocytes, or by association with CD1, antigenic lipids to natural killer T-cells. Knockout of B2M results in loss of these functions and severe combined immunodeficiency. Plasma levels of this protein are low in healthy serum, but are elevated up to 50-fold in some pathologies including chronic kidney disease and multiple myeloma, where it has both diagnostic and prognostic value. High levels of the protein are associated with amyloid formation, with such deposits containing significant levels of modified or truncated protein. In the current study we examine the chemical and structural changes induced of B2M generated by both inflammatory oxidants (HOCl and ONOOH), and photo-oxidation (1O2) which is linked with immunosuppression. Oxidation results in oligomer formation, with this occurring most readily with HOCl and 1O2, and a loss of native protein conformation. LC-MS analysis provided evidence for nitrated (from ONOOH), chlorinated (from HOCl) and oxidized residues (all oxidants) with damage detected at Tyr, Trp, and Met residues, together with cleavage of the disulfide (cystine) bond. An intermolecular di-tyrosine crosslink is also formed between Tyr10 and Tyr63. The pattern of these modifications is oxidant specific, with ONOOH inducing a greater range of modifications than HOCl. Comparison of the sites of modification with regions identified as amyloidogenic indicate significant co-localization, consistent with the hypothesis that oxidation may contribute, and predispose B2M, to amyloid formation.
Collapse
Affiliation(s)
- Shuwen Jiang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
73
|
Galzitskaya OV, Kurpe SR, Panfilov AV, Glyakina AV, Grishin SY, Kochetov AP, Deryusheva EI, Machulin AV, Kravchenko SV, Domnin PA, Surin AK, Azev VN, Ermolaeva SA. Amyloidogenic Peptides: New Class of Antimicrobial Peptides with the Novel Mechanism of Activity. Int J Mol Sci 2022; 23:5463. [PMID: 35628272 PMCID: PMC9140876 DOI: 10.3390/ijms23105463] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 12/13/2022] Open
Abstract
Antibiotic-resistant bacteria are recognized as one of the leading causes of death in the world. We proposed and successfully tested peptides with a new mechanism of antimicrobial action "protein silencing" based on directed co-aggregation. The amyloidogenic antimicrobial peptide (AAMP) interacts with the target protein of model or pathogenic bacteria and forms aggregates, thereby knocking out the protein from its working condition. In this review, we consider antimicrobial effects of the designed peptides on two model organisms, E. coli and T. thermophilus, and two pathogenic organisms, P. aeruginosa and S. aureus. We compare the amino acid composition of proteomes and especially S1 ribosomal proteins. Since this protein is inherent only in bacterial cells, it is a good target for studying the process of co-aggregation. This review presents a bioinformatics analysis of these proteins. We sum up all the peptides predicted as amyloidogenic by several programs and synthesized by us. For the four organisms we studied, we show how amyloidogenicity correlates with antibacterial properties. Let us especially dwell on peptides that have demonstrated themselves as AMPs for two pathogenic organisms that cause dangerous hospital infections, and in which the minimal inhibitory concentration (MIC) turned out to be comparable to the MIC of gentamicin sulfate. All this makes our study encouraging for the further development of AAMP. The hybrid peptides may thus provide a starting point for the antibacterial application of amyloidogenic peptides.
Collapse
Affiliation(s)
- Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (A.V.P.); (A.V.G.); (S.Y.G.); (A.K.S.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Stanislav R. Kurpe
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (A.V.P.); (A.V.G.); (S.Y.G.); (A.K.S.)
| | - Alexander V. Panfilov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (A.V.P.); (A.V.G.); (S.Y.G.); (A.K.S.)
| | - Anna V. Glyakina
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (A.V.P.); (A.V.G.); (S.Y.G.); (A.K.S.)
- Institute of Mathematical Problems of Biology, Russian Academy of Sciences, 142290 Pushchino, Russia
- Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 125047 Moscow, Russia
| | - Sergei Y. Grishin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (A.V.P.); (A.V.G.); (S.Y.G.); (A.K.S.)
| | - Alexey P. Kochetov
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.P.K.); (V.N.A.)
| | - Evgeniya I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Science”, 142290 Pushchino, Russia;
| | - Sergey V. Kravchenko
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia;
| | - Pavel A. Domnin
- Gamaleya Research Centre of Epidemiology and Microbiology, 123098 Moscow, Russia; (P.A.D.); (S.A.E.)
- Biology Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexey K. Surin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (A.V.P.); (A.V.G.); (S.Y.G.); (A.K.S.)
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.P.K.); (V.N.A.)
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Viacheslav N. Azev
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.P.K.); (V.N.A.)
| | - Svetlana A. Ermolaeva
- Gamaleya Research Centre of Epidemiology and Microbiology, 123098 Moscow, Russia; (P.A.D.); (S.A.E.)
| |
Collapse
|
74
|
Malik S, De I, Singh M, Galanakis CM, Alamri AS, Yadav JK. Isolation and characterisation of milk-derived amyloid-like protein aggregates (MAPA) from cottage cheese. Food Chem 2022; 373:131486. [PMID: 34800818 DOI: 10.1016/j.foodchem.2021.131486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/15/2022]
Abstract
Cottage cheese, extensively consumed worldwide, contains coagulated milk protein (casein), produced through boiling and acidification of milk. Casein forms amyloid or amyloid-like structures at high temperatures and low pH. Due to the similarities in the preparation of casein amyloids and cottage cheese, we hypothesized the presence of amyloid or amyloid-like protein aggregates in cottage cheese. To examine this hypothesis, cottage cheese was prepared from cow (Bos indicus) milk and isolated amyloids through a water extraction method. The isolated protein aggregates displayed typical characteristics of amyloids, such as a bathochromic shift in the wavelength of maximum absorption (λmax) of Congo red (CR), high thioflavin T (ThT) binding, increased surface hydrophobicity, and high β-sheet structure. However, they did not show antibacterial activity and toxic properties against erythrocytes. Our study revealed that the heat-treatment and subsequent acidification during cottage cheese preparation lead to the formation of non-toxic amyloid-like aggregates.
Collapse
Affiliation(s)
- Shweta Malik
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8 Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Indranil De
- Institute of Nano Science and Technology, Mohali 160062, Punjab, India
| | - Manish Singh
- Institute of Nano Science and Technology, Mohali 160062, Punjab, India
| | - Charis M Galanakis
- Research & Innovation Department, Galanakis Laboratories, Chania, Greece; Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Saudi Arabia
| | - Jay Kant Yadav
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8 Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
75
|
Zou H, Zhan C. Using Multi‐Level Correlation Information to Identify Amyloidogenic Peptides. ChemistrySelect 2022. [DOI: 10.1002/slct.202104578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hongliang Zou
- School of Communications and Electronics Jiangxi Science and Technology Normal University Nanchang 330003 China
| | - Chun Zhan
- School of Communications and Electronics Jiangxi Science and Technology Normal University Nanchang 330003 China
| |
Collapse
|
76
|
Computational methods to predict protein aggregation. Curr Opin Struct Biol 2022; 73:102343. [PMID: 35240456 DOI: 10.1016/j.sbi.2022.102343] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 01/13/2023]
Abstract
In most cases, protein aggregation stems from the establishment of non-native intermolecular contacts. The formation of insoluble protein aggregates is associated with many human diseases and is a major bottleneck for the industrial production of protein-based therapeutics. Strikingly, fibrillar aggregates are naturally exploited for structural scaffolding or to generate molecular switches and can be artificially engineered to build up multi-functional nanomaterials. Thus, there is a high interest in rationalizing and forecasting protein aggregation. Here, we review the available computational toolbox to predict protein aggregation propensities, identify sequential or structural aggregation-prone regions, evaluate the impact of mutations on aggregation or recognize prion-like domains. We discuss the strengths and limitations of these algorithms and how they can evolve in the next future.
Collapse
|
77
|
Glyakina AV, Balabaev NK, Galzitskaya OV. Determination of the Most Stable Packing of Peptides from Ribosomal S1 Protein, Protein Bgl2p, and Aβ peptide in β-layers During Molecular Dynamics Simulations. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2340:221-233. [PMID: 35167077 DOI: 10.1007/978-1-0716-1546-1_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Our task was to determine the most stable packing of peptides in β-layers to construct an oligomer structure for fibril growth. The β-layers consisting of eight short peptides with the amino acid sequences IVRGVVVAID, VDSWNVLVAG (VESWNVLVAG), KLVFFAEDVG, and IIGLMVGGVV were built. These sequences correspond to the amyloidogenic regions of ribosomal S1 protein from E. coli, protein glucantransferase Bgl2p from the yeast cell wall, and Aβ peptide. First, the amyloidogenic regions were predicted theoretically, and then were confirmed experimentally. Four β-layers with different orientation of the peptides in the layers and the layers relative to each other were constructed. To determine the most stable packing of β-strands, the molecular dynamic (MD) simulations in explicit water were carried out. Two charge states (pH3 and pH5) for each β-layer were considered. The fraction of the secondary structure was a measure of stability for β-layers. β-Layers, in which β-strands are antiparallel relative to each other, were the most stable. Using this packing for β-strands, we constructed the oligomer structures and also checked their stability by using MD simulations.
Collapse
Affiliation(s)
- Anna V Glyakina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.,Institute of Mathematical Problems of Biology RAS, Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, Russia
| | - Nikolai K Balabaev
- Institute of Mathematical Problems of Biology RAS, Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, Russia
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia. .,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| |
Collapse
|
78
|
Bioinformatics Methods in Predicting Amyloid Propensity of Peptides and Proteins. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2340:1-15. [PMID: 35167067 DOI: 10.1007/978-1-0716-1546-1_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several computational methods have been developed to predict amyloid propensity of a protein or peptide. These bioinformatics tools are time- and cost-saving alternatives to expensive and laborious experimental methods which are used to confirm self-aggregation of a protein. Computational approaches not only allow preselection of reliable candidates for amyloids but, most importantly, are capable of a thorough and informative analysis of a protein, indicating the sequence determinants of protein aggregation, identifying the potential causal mutations and likely mechanisms. Bioinformatics modeling applies several different approaches, which most typically include physicochemical or structure-based modeling, machine learning, or statistics based modeling. Bioinformatics methods typically use the amino acid sequence of a protein as an input, some also include additional information, for example, an available structure. This chapter describes the methods currently used to computationally predict amyloid propensity of a protein or peptide. Since the accuracy of bioinformatics methods may be highly dependent on reference data used to develop and evaluate the predictors, we also briefly present the main databases of amyloids used by the authors of bioinformatics tools.
Collapse
|
79
|
Ryabova N, Fakhranurova L, Balobanov V, Marchenkov V, Glukhov A, Ilyina N, Kochetov A, Suvorina M, Surin A, Katina N. Carbonic anhydrase amyloid fibrils composed of laterally associated protofilaments show reduced cytotoxicity. Biochem Biophys Res Commun 2022; 593:46-51. [DOI: 10.1016/j.bbrc.2022.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 11/26/2022]
|
80
|
Schiffer CJ, Schaudinn C, Ehrmann MA, Vogel RF. SxsA, a novel surface protein mediating cell aggregation and adhesive biofilm formation of Staphylococcus xylosus. Mol Microbiol 2022; 117:986-1001. [PMID: 35072960 DOI: 10.1111/mmi.14884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 11/28/2022]
Abstract
Biofilm formation of staphylococci has been an emerging field of research for many years. However, the underlying molecular mechanisms are still not fully understood, and vary widely between species and strains. The aim of this study was to identify new effectors impacting biofilm formation of two Staphylococcus (S.) xylosus strains. We identified a novel surface protein conferring cell aggregation, adherence to abiotic surfaces and biofilm formation. The S. xylosus surface protein A (SxsA) is a large protein occurring in variable sizes. It lacks sequence similarity to other staphylococcal surface proteins but shows similar structural domain organization and functional features. Upon deletion of sxsA, adherence of S. xylosus strain TMW 2.1523 to abiotic surfaces was completely abolished, and significantly reduced in TMW 2.1023. Macro- and microscopic aggregation assays further showed that TMW 2.1523 sxsA mutants exhibit reduced cell aggregation compared to the wildtype. Comparative genomic analysis revealed that sxsA is part of the core genome of S. xylosus, S. paraxylosus and S. nepalensis and additionally encoded in a small group of S. cohnii and S. saprophyticus strains. This study provides insights into protein-mediated biofilm formation of S. xylosus and identifies a new cell wall-associated protein influencing cell aggregation and biofilm formation.
Collapse
Affiliation(s)
- Carolin J Schiffer
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany.,Lehrstuhl für Mikrobiologie, Technische Universität München, Freising, Germany
| | - Christoph Schaudinn
- Advanced Light and Electron Microscopy, Robert Koch Institute, Berlin, Germany
| | - Matthias A Ehrmann
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany.,Lehrstuhl für Mikrobiologie, Technische Universität München, Freising, Germany
| | - Rudi F Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| |
Collapse
|
81
|
Assessment of Therapeutic Antibody Developability by Combinations of In Vitro and In Silico Methods. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2313:57-113. [PMID: 34478132 DOI: 10.1007/978-1-0716-1450-1_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although antibodies have become the fastest-growing class of therapeutics on the market, it is still challenging to develop them for therapeutic applications, which often require these molecules to withstand stresses that are not present in vivo. We define developability as the likelihood of an antibody candidate with suitable functionality to be developed into a manufacturable, stable, safe, and effective drug that can be formulated to high concentrations while retaining a long shelf life. The implementation of reliable developability assessments from the early stages of antibody discovery enables flagging and deselection of potentially problematic candidates, while focussing available resources on the development of the most promising ones. Currently, however, thorough developability assessment requires multiple in vitro assays, which makes it labor intensive and time consuming to implement at early stages. Furthermore, accurate in vitro analysis at the early stage is compromised by the high number of potential candidates that are often prepared at low quantities and purity. Recent improvements in the performance of computational predictors of developability potential are beginning to change this scenario. Many computational methods only require the knowledge of the amino acid sequences and can be used to identify possible developability issues or to rank available candidates according to a range of biophysical properties. Here, we describe how the implementation of in silico tools into antibody discovery pipelines is increasingly offering time- and cost-effective alternatives to in vitro experimental screening, thus streamlining the drug development process. We discuss in particular the biophysical and biochemical properties that underpin developability potential and their trade-offs, review various in vitro assays to measure such properties or parameters that are predictive of developability, and give an overview of the growing number of in silico tools available to predict properties important for antibody development, including the CamSol method developed in our laboratory.
Collapse
|
82
|
Multiple Antimicrobial Effects of Hybrid Peptides Synthesized Based on the Sequence of Ribosomal S1 Protein from Staphylococcus aureus. Int J Mol Sci 2022; 23:ijms23010524. [PMID: 35008951 PMCID: PMC8745237 DOI: 10.3390/ijms23010524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/21/2021] [Accepted: 01/01/2022] [Indexed: 02/06/2023] Open
Abstract
The need to develop new antimicrobial peptides is due to the high resistance of pathogenic bacteria to traditional antibiotics now and in the future. The creation of synthetic peptide constructs is a common and successful approach to the development of new antimicrobial peptides. In this work, we use a simple, flexible, and scalable technique to create hybrid antimicrobial peptides containing amyloidogenic regions of the ribosomal S1 protein from Staphylococcus aureus. While the cell-penetrating peptide allows the peptide to enter the bacterial cell, the amyloidogenic site provides an antimicrobial effect by coaggregating with functional bacterial proteins. We have demonstrated the antimicrobial effects of the R23F, R23DI, and R23EI hybrid peptides against Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Pseudomonas aeruginosa, Escherichia coli, and Bacillus cereus. R23F, R23DI, and R23EI can be used as antimicrobial peptides against Gram-positive and Gram-negative bacteria resistant to traditional antibiotics.
Collapse
|
83
|
Vahedifar A, Wu J. Self-assembling peptides: Structure, function, in silico prediction and applications. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
84
|
Yuan Z, Qu Z, Duan B, Wang T, Xu J, Xia B. Is amyloid fibrillation related to 3D domain swapping for the C-terminal domain of SARS-CoV main protease? Int J Biol Macromol 2021; 197:68-76. [PMID: 34953805 PMCID: PMC8694786 DOI: 10.1016/j.ijbiomac.2021.12.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/02/2021] [Accepted: 12/12/2021] [Indexed: 12/02/2022]
Abstract
The C-terminal domain of SARS-CoV main protease (Mpro-C) can form 3D domain-swapped dimer by exchanging the α1-helices fully buried inside the protein hydrophobic core, under non-denaturing conditions. Here, we report that Mpro-C can also form amyloid fibrils under the 3D domain-swappable conditions in vitro, and the fibrils are not formed through runaway/propagated domain swapping. It is found that there are positive correlations between the rates of domain swapping dimerization and amyloid fibrillation at different temperatures, and for different mutants. However, some Mpro-C mutants incapable of 3D domain swapping can still form amyloid fibrils, indicating that 3D domain swapping is not essential for amyloid fibrillation. Furthermore, NMR H/D exchange data and molecular dynamics simulation results suggest that the protofibril core region tends to unpack at the early stage of 3D domain swapping, so that the amyloid fibrillation can proceed during the 3D domain swapping process. We propose that 3D domain swapping makes it possible for the unpacking of the amyloidogenic fragment of the protein and thus accelerates the amyloid fibrillation process kinetically, which explains the well-documented correlations between amyloid fibrillation and 3D domain swapping observed in many proteins.
Collapse
Affiliation(s)
- Zhiliang Yuan
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhi Qu
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bo Duan
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tianyi Wang
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiajun Xu
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Bin Xia
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
85
|
Bap-Independent Biofilm Formation in Staphylococcus xylosus. Microorganisms 2021; 9:microorganisms9122610. [PMID: 34946212 PMCID: PMC8708073 DOI: 10.3390/microorganisms9122610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
The biofilm associated protein (Bap) is recognised as the essential component for biofilm formation in Staphylococcus aureus V329 and has been predicted as important for other species as well. Although Bap orthologs are also present in most S. xylosus strains, their contribution to biofilm formation has not yet been demonstrated. In this study, different experimental approaches were used to elucidate the effect of Bap on biofilm formation in S. xylosus and the motif structure of two biofilm-forming S. xylosus strains TMW 2.1023 and TMW 2.1523 was compared to Bap of S. aureus V329. We found that despite an identical structural arrangement into four regions, Bap from S. xylosus differs in key factors to Bap of S. aureus, i.e., isoelectric point of aggregation prone Region B, protein homology and type of repeats. Disruption of bap had no effect on aggregation behavior of selected S. xylosus strains and biofilm formation was unaffected (TMW 2.1023) or at best slightly reduced under neutral conditions (TMW 2.1523). Further, we could not observe any typical characteristics of a S. aureus Bap-positive phenotype such as functional impairment by calcium addition and rough colony morphology on congo red agar (CRA). A dominating role of Bap in cell aggregation and biofilm formation as reported mainly for S. aureus V329 was not observed. In contrast, this work demonstrates that functions of S. aureus Bap cannot easily be extrapolated to S. xylosus Bap, which appears as non-essential for biofilm formation in this species. We therefore suggest that biofilm formation in S. xylosus follows different and multifactorial mechanisms.
Collapse
|
86
|
Karmakar S, Sankhla A, Katiyar V. Supramolecular organization of Cytochrome-C into quantum-dot decorated macromolecular network under pH and thermal stress. Int J Biol Macromol 2021; 193:1623-1634. [PMID: 34742836 DOI: 10.1016/j.ijbiomac.2021.10.225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/30/2021] [Accepted: 10/30/2021] [Indexed: 12/12/2022]
Abstract
The holo form of Cytochrome-C which is involved in the electron transfer chain of aerobic and anaerobic respiration remains structurally intact by its complex with heme. However, when a prolonged thermal and pH stress was applied, heme was found to abruptly dissociate from the holo protein, resulting in complete collapse of the three-dimensional functional structure. Interestingly, two distinct structures were formed as the consequence of the dissociation event: (i) A macromolecular amyloid-network formed by the collapsed protein fragments, generated by self-oxidation, and (ii) Fe-containing Quantum-Dots (FeQDs) with 2-3 nm diameter formed by heme reorganization. Further adding to intrigue, the FeQDs were re-adsorbed on the surface of the amyloid network leading to FeQD-decorated macromolecular amyloid matrix. The heme-interactant Met80, constituting the amyloidogenic region, initiates the amylogenic cascade, and gradual exposure of Trp59 synergistically emit intrinsic fluorescence alongside FeQDs. The development of the aforementioned events were probed through a multitude of biophysical, chemical and computational analyses like ThT/ANS/intrinsic fluorescence assays, CD-spectroscopy, FETEM/STEM/elemental mapping, Foldamyloid/Foldunfold/Isunstruct/H-protection/LIGplot analyses, etc. The FeQD-decorated amyloid-network was found to exhibit gel-like property, which supported the growth of BHK-21 fibroblast without cytotoxicity. Further studies on FeQD-decorated Cytochrome C amyloid network might open possibilities to design advanced biomaterial for diverse biological applications.
Collapse
Affiliation(s)
- Srijeeb Karmakar
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | - Arjun Sankhla
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | - Vimal Katiyar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
87
|
Randhawa S, Abidi SMS, Dar AI, Acharya A. The curious cases of nanoparticle induced amyloidosis during protein corona formation and anti-amyloidogenic nanomaterials: Paradox or prejudice? Int J Biol Macromol 2021; 193:1009-1020. [PMID: 34728302 DOI: 10.1016/j.ijbiomac.2021.10.195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022]
Abstract
Protein corona (PC) formation remains a major hurdle in the successful delivery of nanomedicines to the target sites. Interacting proteins have been reported to undergo structural changes on the nanoparticle (NP) surface which invariably impacts their biological activities. Such structural changes are the result of opening of more binding sites of proteins to adsorb on the NP surface. The process of conversion of α-helix proteins to their β-sheet enriched counterpart is termed as amyloidosis and in case of PC formation, NPs apparently play the crucial role of being the nucleation centres where this process takes place. Conversely, increasing numbers of artificial nano-chaperones are being used to treat the protein misfolding disorders. Anti-amyloidogenic nanomaterials (NM) have been gaining utmost importance in inhibiting Aβ42 (hallmark peptide for Alzheimer's disease) and Hen egg white lysozyme (HEWL, model protein for systemic amyloidosis) aggregation. Interestingly, in this process, NPs inhibit protein β-sheet enrichment. These two seemingly opposite roles of NPs, propelling confirmatory change onto the smorgasbord of adsorbed native proteins and the ability of NPs in inhibiting amyloidosis creates a paradox, which has not been discussed earlier. Here, we highlight the key points from both the facets of the NP behaviour with respect to their physicochemical properties and the nature of proteins they adsorb onto them to unravel the mystery. BRIEF: Protein corona formation remains a major hurdle in achieving the desired efficacy of nanomedicine. Proteins when interact with nanoparticle (NP) surface, undergo both structural and biological changes. Again, NPs are known to exhibit anti-amyloidogenic behaviour where these play the crucial role of preventing any change in their native structure. Such seemingly different roles of NPs need sincere inquisition.
Collapse
Affiliation(s)
- Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Syed M S Abidi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aqib Iqbal Dar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
88
|
Fuentes-Lemus E, Jiang S, Hägglund P, Davies MJ. High concentrations of casein proteins exacerbate radical chain reactions and increase the extent of oxidative damage. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
89
|
ReRF-Pred: predicting amyloidogenic regions of proteins based on their pseudo amino acid composition and tripeptide composition. BMC Bioinformatics 2021; 22:545. [PMID: 34753427 PMCID: PMC8579573 DOI: 10.1186/s12859-021-04446-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/13/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Amyloids are insoluble fibrillar aggregates that are highly associated with complex human diseases, such as Alzheimer's disease, Parkinson's disease, and type II diabetes. Recently, many studies reported that some specific regions of amino acid sequences may be responsible for the amyloidosis of proteins. It has become very important for elucidating the mechanism of amyloids that identifying the amyloidogenic regions. Accordingly, several computational methods have been put forward to discover amyloidogenic regions. The majority of these methods predicted amyloidogenic regions based on the physicochemical properties of amino acids. In fact, position, order, and correlation of amino acids may also influence the amyloidosis of proteins, which should be also considered in detecting amyloidogenic regions. RESULTS To address this problem, we proposed a novel machine-learning approach for predicting amyloidogenic regions, called ReRF-Pred. Firstly, the pseudo amino acid composition (PseAAC) was exploited to characterize physicochemical properties and correlation of amino acids. Secondly, tripeptides composition (TPC) was employed to represent the order and position of amino acids. To improve the distinguishability of TPC, all possible tripeptides were analyzed by the binomial distribution method, and only those which have significantly different distribution between positive and negative samples remained. Finally, all samples were characterized by PseAAC and TPC of their amino acid sequence, and a random forest-based amyloidogenic regions predictor was trained on these samples. It was proved by validation experiments that the feature set consisted of PseAAC and TPC is the most distinguishable one for detecting amyloidosis. Meanwhile, random forest is superior to other concerned classifiers on almost all metrics. To validate the effectiveness of our model, ReRF-Pred is compared with a series of gold-standard methods on two datasets: Pep-251 and Reg33. The results suggested our method has the best overall performance and makes significant improvements in discovering amyloidogenic regions. CONCLUSIONS The advantages of our method are mainly attributed to that PseAAC and TPC can describe the differences between amyloids and other proteins successfully. The ReRF-Pred server can be accessed at http://106.12.83.135:8080/ReRF-Pred/.
Collapse
|
90
|
Radamaker L, Karimi-Farsijani S, Andreotti G, Baur J, Neumann M, Schreiner S, Berghaus N, Motika R, Haupt C, Walther P, Schmidt V, Huhn S, Hegenbart U, Schönland SO, Wiese S, Read C, Schmidt M, Fändrich M. Role of mutations and post-translational modifications in systemic AL amyloidosis studied by cryo-EM. Nat Commun 2021; 12:6434. [PMID: 34741031 PMCID: PMC8571268 DOI: 10.1038/s41467-021-26553-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/01/2021] [Indexed: 12/29/2022] Open
Abstract
Systemic AL amyloidosis is a rare disease that is caused by the misfolding of immunoglobulin light chains (LCs). Potential drivers of amyloid formation in this disease are post-translational modifications (PTMs) and the mutational changes that are inserted into the LCs by somatic hypermutation. Here we present the cryo electron microscopy (cryo-EM) structure of an ex vivo λ1-AL amyloid fibril whose deposits disrupt the ordered cardiomyocyte structure in the heart. The fibril protein contains six mutational changes compared to the germ line and three PTMs (disulfide bond, N-glycosylation and pyroglutamylation). Our data imply that the disulfide bond, glycosylation and mutational changes contribute to determining the fibril protein fold and help to generate a fibril morphology that is able to withstand proteolytic degradation inside the body.
Collapse
Affiliation(s)
- Lynn Radamaker
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | | | - Giada Andreotti
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Julian Baur
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | | | - Sarah Schreiner
- Medical Department V, Section of Multiple Myeloma, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Natalie Berghaus
- Medical Department V, Section of Multiple Myeloma, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Raoul Motika
- Department of Asia-Africa-Studies, Middle Eastern History and Culture, University of Hamburg, 20148, Hamburg, Germany
| | - Christian Haupt
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, 89081, Ulm, Germany
| | - Volker Schmidt
- Institute of Stochastics, Ulm University, 89081, Ulm, Germany
| | - Stefanie Huhn
- Medical Department V, Section of Multiple Myeloma, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Ute Hegenbart
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Stefan O Schönland
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Clarissa Read
- Central Facility for Electron Microscopy, Ulm University, 89081, Ulm, Germany
- Institute of Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Matthias Schmidt
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany.
| |
Collapse
|
91
|
Yadav KK, Ojha M, Pariary R, Arakha M, Bhunia A, Jha S. Zinc oxide nanoparticle interface moderation with tyrosine and tryptophan reverses the pro-amyloidogenic property of the particle. Biochimie 2021; 193:64-77. [PMID: 34699915 DOI: 10.1016/j.biochi.2021.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/23/2021] [Accepted: 10/19/2021] [Indexed: 11/28/2022]
Abstract
Zinc oxide nanoparticle with negative surface potential (ZnONP) enhances bovine insulin fibrillation. Here, we are exploring ZnONP with positive surface potential (ZnONPUnc) and surface functionalized with tyrosine and tryptophan amino acids to observe the effects of surface potential and surface functional groups on the fibrillation. ZnONPUnc, despite of inversed surface potential, enhances the insulin fibrillation with increase in the interface concentration at physiological pH. Whereas, the interface moderation with the amino acids mitigates the surface-mediated insulin fibrillation propensity. Additionally, the study indicates that the change in interfacial functional groups at ZnONPUnc significantly reverses the interface-mediated destabilization of insulin conformation. The functional groups from the amino acids, like CO, N-H and aromatic functional groups, are anticipated to further stabilize the insulin conformation by forming hydrogen bond and van der Waals interactions with the key amyloidogenic sequences of insulin, A13-A20 from A-chain and B9-B20 from B-chain. Hence, the altered interaction profile, with change in interfacial functional groups, mitigates the interface-mediated insulin fibrillation and the ZnONPUnc-/fibril-mediated cytotoxicity.
Collapse
Affiliation(s)
- Kanti Kusum Yadav
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India; Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India
| | - Monalisha Ojha
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Ranit Pariary
- Department of Biophysics, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Manoranjan Arakha
- Centre for Biotechnology, Siksha 'O' Anusandhan, Bhubaneswar, Odisha, 751003, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Suman Jha
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
92
|
Meric G, Naik S, Hunter AK, Robinson AS, Roberts CJ. Challenges for design of aggregation-resistant variants of granulocyte colony-stimulating factor. Biophys Chem 2021; 277:106630. [PMID: 34119805 DOI: 10.1016/j.bpc.2021.106630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/14/2021] [Accepted: 05/31/2021] [Indexed: 01/15/2023]
Abstract
Non-native protein aggregation is a long-standing issue in pharmaceutical biotechnology. A rational design approach was used in order to identify variants of recombinant human granulocyte colony-stimulating factor (rhG-CSF) with lower aggregation propensity at solution conditions that are typical of commercial formulation. The approach used aggregation-prone-region (APR) predictors to select single amino acid substitutions that were predicted to decrease intrinsic aggregation propensity (IAP). The results of static light scattering temperature-ramps and chemical unfolding experiments demonstrated that none of the selected variants exhibited improved aggregation resistance, and the apparent conformational stability of each variant was lower than that of WT. Aggregation studies under partly denaturing conditions suggested that the IAP of at least one variant remained unaltered. Overall, this study highlights a general challenge in designing aggregation resistance for proteins, due to the need to accurately predict both APRs and conformational stability.
Collapse
Affiliation(s)
- Gulsum Meric
- Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States.
| | - Subhashchandra Naik
- Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States.
| | - Alan K Hunter
- Biopharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD 20878, United States.
| | - Anne S Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States.
| | - Christopher J Roberts
- Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
93
|
Is It Possible to Create Antimicrobial Peptides Based on the Amyloidogenic Sequence of Ribosomal S1 Protein of P. aeruginosa? Int J Mol Sci 2021; 22:ijms22189776. [PMID: 34575940 PMCID: PMC8469417 DOI: 10.3390/ijms22189776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
The development and testing of new antimicrobial peptides (AMPs) represent an important milestone toward the development of new antimicrobial drugs that can inhibit the growth of pathogens and multidrug-resistant microorganisms such as Pseudomonas aeruginosa, Gram-negative bacteria. Most AMPs achieve these goals through mechanisms that disrupt the normal permeability of the cell membrane, which ultimately leads to the death of the pathogenic cell. Here, we developed a unique combination of a membrane penetrating peptide and peptides prone to amyloidogenesis to create hybrid peptide: "cell penetrating peptide + linker + amyloidogenic peptide". We evaluated the antimicrobial effects of two peptides that were developed from sequences with different propensities for amyloid formation. Among the two hybrid peptides, one was found with antibacterial activity comparable to antibiotic gentamicin sulfate. Our peptides showed no toxicity to eukaryotic cells. In addition, we evaluated the effect on the antimicrobial properties of amino acid substitutions in the non-amyloidogenic region of peptides. We compared the results with data on the predicted secondary structure, hydrophobicity, and antimicrobial properties of the original and modified peptides. In conclusion, our study demonstrates the promise of hybrid peptides based on amyloidogenic regions of the ribosomal S1 protein for the development of new antimicrobial drugs against P. aeruginosa.
Collapse
|
94
|
Galzitskaya OV. Exploring Amyloidogenicity of Peptides From Ribosomal S1 Protein to Develop Novel AMPs. Front Mol Biosci 2021; 8:705069. [PMID: 34490350 PMCID: PMC8416663 DOI: 10.3389/fmolb.2021.705069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial peptides (AMPs) and similar compounds are potential candidates for combating antibiotic-resistant bacteria. The hypothesis of directed co-aggregation of the target protein and an amyloidogenic peptide acting as an antimicrobial peptide was successfully tested for peptides synthesized on the basis of ribosomal S1 protein in the bacterial culture of T. thermophilus. Co-aggregation of the target protein and amyloidogenic peptide was also tested for the pathogenic ribosomal S1 protein from P. aeruginosa. Almost all peptides that we selected as AMPs, prone to aggregation and formation of fibrils, based on the amino acid sequence of ribosomal S1 protein from E. coli, T. thermophilus, P. aeruginosa, formed amyloid fibrils. We have demonstrated that amyloidogenic peptides are not only toxic to their target cells, but also some of them have antimicrobial activity. Controlling the aggregation of vital bacterial proteins can become one of the new directions of research and form the basis for the search and development of targeted antibacterial drugs.
Collapse
Affiliation(s)
- Oxana V Galzitskaya
- Laboratory of Bioinformatics and Proteomics, Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.,Laboratory of the Structure and Function of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
95
|
Salladini E, Gondelaud F, Nilsson JF, Pesce G, Bignon C, Murrali MG, Fabre R, Pierattelli R, Kajava AV, Horvat B, Gerlier D, Mathieu C, Longhi S. Identification of a Region in the Common Amino-terminal Domain of Hendra Virus P, V, and W Proteins Responsible for Phase Transition and Amyloid Formation. Biomolecules 2021; 11:1324. [PMID: 34572537 PMCID: PMC8471210 DOI: 10.3390/biom11091324] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Henipaviruses are BSL-4 zoonotic pathogens responsible in humans for severe encephalitis. Their V protein is a key player in the evasion of the host innate immune response. We previously showed that the Henipavirus V proteins consist of a long intrinsically disordered N-terminal domain (NTD) and a β-enriched C-terminal domain (CTD). These terminals are critical for V binding to DDB1, which is a cellular protein that is a component of the ubiquitin ligase E3 complex, as well as binding to MDA5 and LGP2, which are two host sensors of viral RNA. Here, we serendipitously discovered that the Hendra virus V protein undergoes a liquid-to-hydrogel phase transition and identified the V region responsible for this phenomenon. This region, referred to as PNT3 and encompassing residues 200-310, was further investigated using a combination of biophysical and structural approaches. Congo red binding assays, together with negative-staining transmisison electron microscopy (TEM) studies, show that PNT3 forms amyloid-like fibrils. Fibrillation abilities are dramatically reduced in a rationally designed PNT3 variant in which a stretch of three contiguous tyrosines, falling within an amyloidogenic motif, were replaced by three alanines. Worthy to note, Congo red staining experiments provided hints that these amyloid-like fibrils form not only in vitro but also in cellula after transfection or infection. The present results set the stage for further investigations aimed at assessing the functional role of phase separation and fibrillation by the Henipavirus V proteins.
Collapse
Affiliation(s)
- Edoardo Salladini
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (E.S.); (F.G.); (J.F.N.); (G.P.); (C.B.)
| | - Frank Gondelaud
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (E.S.); (F.G.); (J.F.N.); (G.P.); (C.B.)
| | - Juliet F. Nilsson
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (E.S.); (F.G.); (J.F.N.); (G.P.); (C.B.)
| | - Giulia Pesce
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (E.S.); (F.G.); (J.F.N.); (G.P.); (C.B.)
| | - Christophe Bignon
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (E.S.); (F.G.); (J.F.N.); (G.P.); (C.B.)
| | - Maria Grazia Murrali
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy; (M.G.M.); (R.P.)
| | - Roxane Fabre
- Centre d’Immunologie de Marseille-Luminy (CIML), CNRS, Institut National de la Santé et de la Recherche Médicale (INSERM), Aix Marseille University, CEDEX 9, 13288 Marseille, France;
| | - Roberta Pierattelli
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy; (M.G.M.); (R.P.)
| | - Andrey V. Kajava
- Centre de Recherche en Biologie Cellulaire de Montpellier, UMR 5237, CNRS, Université Montpellier, 34293 Montpellier, France;
| | - Branka Horvat
- Team Immunobiology of the Viral Infections, Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM, U1111, CNRS, UMR 5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France; (B.H.); (D.G.); (C.M.)
| | - Denis Gerlier
- Team Immunobiology of the Viral Infections, Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM, U1111, CNRS, UMR 5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France; (B.H.); (D.G.); (C.M.)
| | - Cyrille Mathieu
- Team Immunobiology of the Viral Infections, Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM, U1111, CNRS, UMR 5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France; (B.H.); (D.G.); (C.M.)
| | - Sonia Longhi
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (E.S.); (F.G.); (J.F.N.); (G.P.); (C.B.)
| |
Collapse
|
96
|
Xiao X, Wang Y, Seroski DT, Wong KM, Liu R, Paravastu AK, Hudalla GA, Hall CK. De novo design of peptides that coassemble into β sheet-based nanofibrils. SCIENCE ADVANCES 2021; 7:eabf7668. [PMID: 34516924 PMCID: PMC8442925 DOI: 10.1126/sciadv.abf7668] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Peptides’ hierarchical coassembly into nanostructures enables controllable fabrication of multicomponent biomaterials. In this work, we describe a computational and experimental approach to design pairs of charge-complementary peptides that selectively coassemble into β-sheet nanofibers when mixed together but remain unassembled when isolated separately. The key advance is a peptide coassembly design (PepCAD) algorithm that searches for pairs of coassembling peptides. Six peptide pairs are identified from a pool of ~106 candidates via the PepCAD algorithm and then subjected to DMD/PRIME20 simulations to examine their co-/self-association kinetics. The five pairs that spontaneously aggregate in kinetic simulations selectively coassemble in biophysical experiments, with four forming β-sheet nanofibers and one forming a stable nonfibrillar aggregate. Solid-state NMR, which is applied to characterize the coassembling pairs, suggests that the in silico peptides exhibit a higher degree of structural order than the previously reported CATCH(+/−) peptides.
Collapse
Affiliation(s)
- Xingqing Xiao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Yiming Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Dillon T. Seroski
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Kong M. Wong
- Department of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Renjie Liu
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Anant K. Paravastu
- Department of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gregory A. Hudalla
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Carol K. Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
- Corresponding author.
| |
Collapse
|
97
|
Abstract
A rapid-acting insulin lispro and long-acting insulin glargine are commonly used for the treatment of diabetes. Clinical cases have described the formation of injectable amyloidosis with these insulin analogues, but their amyloid core regions of fibrils were unknown. To reveal these regions, we have analysed the hydrolyzates of insulin fibrils and its analogues using high-performance liquid chromatography and mass spectrometry methods and found that insulin and its analogues have almost identical amyloid core regions that intersect with the predicted amyloidogenic regions. The obtained results can be used to create new insulin analogues with a low ability to form fibrils. Abbreviations a.a., amino acid residues; HPLC-MS, high-performance liquid chromatography/mass spectrometry; m/z, mass-to-charge ratio; TEM, transmission electron microscopy.
Collapse
Affiliation(s)
- Alexey K Surin
- Institute of Protein Research, Russian Academy of Sciences , Pushchino, Russian Federation.,State Research Center for Applied Microbiology and Biotechnology , Obolensk, Russian Federation.,The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences , Pushchino, Russian Federation
| | - Sergei Yu Grishin
- Institute of Protein Research, Russian Academy of Sciences , Pushchino, Russian Federation
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences , Pushchino, Russian Federation.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences , Pushchino, Russian Federation
| |
Collapse
|
98
|
Tuzlakoğlu Öztürk M, Güllülü Ö. Dimerization underlies the aggregation propensity of intrinsically disordered coiled-coil domain-containing 124. Proteins 2021; 90:218-228. [PMID: 34369007 DOI: 10.1002/prot.26210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/10/2022]
Abstract
Coiled-coil domain-containing 124 (CCDC124) is a recently discovered ribosome-binding protein conserved in eukaryotes. CCDC124 has regulatory functions on the mediation of reversible ribosomal hibernation and translational recovery by direct attachment to large subunit ribosomal protein uL5, 25S rRNA backbone, and tRNA-binding P/A-site major groove. Moreover, it independently mediates cell division and cellular stress response by facilitating cytokinetic abscission and disulfide stress-dependent transcriptional regulation, respectively. However, the structural characterization and intracellular physiological status of CCDC124 remain unknown. In this study, we employed advanced in silico protein modeling and characterization tools to generate a native-like tertiary structure of CCDC124 and examine the disorder, low sequence complexity, and aggregation propensities, as well as high-order dimeric/oligomeric states. Subsequently, dimerization of CCDC124 was investigated with co-immunoprecipitation (CO-IP) analysis, immunostaining, and a recent live-cell protein-protein interaction method, bimolecular fluorescence complementation (BiFC). Results revealed CCDC124 as a highly disordered protein consisting of low complexity regions at the N-terminus and an aggregation sequence (151-IAVLSV-156) located in the middle region. Molecular docking and post-docking binding free energy analyses highlighted a potential involvement of V153 residue on the generation of high-order dimeric/oligomeric structures. Co-IP, immunostaining, and BiFC analyses were used to further confirm the dimeric state of CCDC124 predominantly localized at the cytoplasm. In conclusion, our findings revealed in silico structural characterization and in vivo subcellular physiological state of CCDC124, suggesting low-complexity regions located at the N-terminus of disordered CCDC124 may regulate the formation of aggregates or high-order dimeric/oligomeric states.
Collapse
Affiliation(s)
| | - Ömer Güllülü
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Frankfurt am Main, Germany.,Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
99
|
Bystranowska D, Skorupska A, Sołtys K, Padjasek M, Krężel A, Żak A, Kaus-Drobek M, Taube M, Kozak M, Ożyhar A. Nucleobindin-2 consists of two structural components: The Zn 2+-sensitive N-terminal half, consisting of nesfatin-1 and -2, and the Ca 2+-sensitive C-terminal half, consisting of nesfatin-3. Comput Struct Biotechnol J 2021; 19:4300-4318. [PMID: 34429849 PMCID: PMC8361300 DOI: 10.1016/j.csbj.2021.07.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/01/2022] Open
Abstract
Nucleobindin-2 (Nucb2) is a protein that has been suggested to play roles in a variety of biological processes. Nucb2 contains two Ca2+/Mg2+-binding EF-hand domains separated by an acidic amino acid residue-rich region and a leucine zipper. All of these domains are located within the C-terminal half of the protein. At the N-terminal half, Nucb2 also possesses a putative Zn2+-binding motif. In our recent studies, we observed that Nucb2 underwent Ca2+-dependent compaction and formed a mosaic-like structure consisting of intertwined disordered and ordered regions at its C-terminal half. The aim of this study was to investigate the impact of two other potential ligands: Mg2+, which possesses chemical properties similar to those of Ca2+, and Zn2+, for which a putative binding motif was identified. In this study, we demonstrated that the binding of Mg2+ led to oligomerization state changes with no significant secondary or tertiary structural alterations of Nucb2. In contrast, Zn2+ binding had a more pronounced effect on the structure of Nucb2, leading to the local destabilization of its N-terminal half while also inducing changes within its C-terminal half. These structural rearrangements resulted in the oligomerization and/or aggregation of Nucb2 molecules. Taken together, the results of our previous and current research help to elucidate the structure of the Nucb2, which can be divided into two parts: the Zn2+-sensitive N-terminal half (consisting of nesfatin-1 and -2) and the Ca2+-sensitive C-terminal half (consisting of nesfatin-3). These results may also help to open a new discussion regarding the diverse roles that metal cations play in regulating the structure of Nucb2 and the various physiological functions of this protein.
Collapse
Affiliation(s)
- Dominika Bystranowska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Anna Skorupska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Katarzyna Sołtys
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Michał Padjasek
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Andrzej Żak
- Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Magdalena Kaus-Drobek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Michał Taube
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Czerwone Maki 98, 30-392 Kraków, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
100
|
The intrinsic amyloidogenic propensity of cofilin-1 is aggravated by Cys-80 oxidation: A possible link with neurodegenerative diseases. Biochem Biophys Res Commun 2021; 569:187-192. [PMID: 34256187 DOI: 10.1016/j.bbrc.2021.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/05/2021] [Indexed: 11/23/2022]
Abstract
Cofilin-1, an actin dynamizing protein, forms actin-cofilin rods, which is one of the major events that exacerbates the pathophysiology of amyloidogenic diseases. Cysteine oxidation in cofilin-1 under oxidative stress plays a crucial role in the formation of these rods. Others and we have reported that cofilin-1 possesses a self-oligomerization property in vitro and in vivo under physiological conditions. However, it remains elusive if cofilin-1 itself forms amyloid-like structures. We, therefore, hypothesized that cofilin-1 might form amyloid-like assemblies, with a potential to intensify the pathophysiology of amyloid-linked diseases. We used various in silico and in vitro techniques and examined the amyloid-forming propensity of cofilin-1. The study confirms that cofilin-1 possesses an intrinsic tendency of aggregation and forms amyloid-like structures in vitro. Further, we studied the effect of cysteine oxidation on the stability and structural features of cofilin-1. Our data show that oxidation at Cys-80 renders cofilin-1 unstable, leading to a partial loss of protein structure. The results substantiate our hypothesis and establish a strong possibility that cofilin-1 aggregation might play a role in cofilin-mediated pathology and the progression of several amyloid-linked diseases.
Collapse
|