51
|
Park S, Artan M, Han SH, Park HEH, Jung Y, Hwang AB, Shin WS, Kim KT, Lee SJV. VRK-1 extends life span by activation of AMPK via phosphorylation. SCIENCE ADVANCES 2020; 6:6/27/eaaw7824. [PMID: 32937443 PMCID: PMC7458447 DOI: 10.1126/sciadv.aaw7824] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/18/2020] [Indexed: 05/04/2023]
Abstract
Vaccinia virus-related kinase (VRK) is an evolutionarily conserved nuclear protein kinase. VRK-1, the single Caenorhabditis elegans VRK ortholog, functions in cell division and germline proliferation. However, the role of VRK-1 in postmitotic cells and adult life span remains unknown. Here, we show that VRK-1 increases organismal longevity by activating the cellular energy sensor, AMP-activated protein kinase (AMPK), via direct phosphorylation. We found that overexpression of vrk-1 in the soma of adult C. elegans increased life span and, conversely, inhibition of vrk-1 decreased life span. In addition, vrk-1 was required for longevity conferred by mutations that inhibit C. elegans mitochondrial respiration, which requires AMPK. VRK-1 directly phosphorylated and up-regulated AMPK in both C. elegans and cultured human cells. Thus, our data show that the somatic nuclear kinase, VRK-1, promotes longevity through AMPK activation, and this function appears to be conserved between C. elegans and humans.
Collapse
Affiliation(s)
- Sangsoon Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Murat Artan
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Seung Hyun Han
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Hae-Eun H Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Yoonji Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Ara B Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Won Sik Shin
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea.
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Seung-Jae V Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| |
Collapse
|
52
|
Composition of Caenorhabditis elegans extracellular vesicles suggests roles in metabolism, immunity, and aging. GeroScience 2020; 42:1133-1145. [PMID: 32578074 DOI: 10.1007/s11357-020-00204-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
The nematode Caenorhabditis elegans has been instrumental in the identification of evolutionarily conserved mechanisms of aging. C. elegans also has recently been found to have evolutionarily conserved extracellular vesicle (EV) signaling pathways. We have been developing tools that allow for the detailed study of EV biology in C. elegans. Here we apply our recently published method for high specificity purification of EVs from C. elegans to carry out target-independent proteomic and RNA analysis of nematode EVs. We identify diverse coding and non-coding RNA and protein cargo types commonly found in human EVs. The EV cargo spectrum is distinct from whole worms, suggesting that protein and RNA cargos are actively recruited to EVs. Gene ontology analysis revealed C. elegans EVs are enriched for extracellular-associated and signaling proteins, and network analysis indicates enrichment for metabolic, immune, and basement membrane associated proteins. Tissue enrichment and gene expression analysis suggests the secreted EV proteins are likely to be derived from intestine, muscle, and excretory tissue. An unbiased comparison of the EV proteins with a large database of C. elegans genome-wide microarray data showed significant overlap with gene sets that are associated with aging and immunity. Taken together our data suggest C. elegans could be a promising in vivo model for studying the genetics and physiology of EVs in a variety of contexts including aging, metabolism, and immune response.
Collapse
|
53
|
Kew C, Huang W, Fischer J, Ganesan R, Robinson N, Antebi A. Evolutionarily conserved regulation of immunity by the splicing factor RNP-6/PUF60. eLife 2020; 9:57591. [PMID: 32538777 PMCID: PMC7332298 DOI: 10.7554/elife.57591] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/14/2020] [Indexed: 12/25/2022] Open
Abstract
Splicing is a vital cellular process that modulates important aspects of animal physiology, yet roles in regulating innate immunity are relatively unexplored. From genetic screens in C. elegans, we identified splicing factor RNP-6/PUF60 whose activity suppresses immunity, but promotes longevity, suggesting a tradeoff between these processes. Bacterial pathogen exposure affects gene expression and splicing in a rnp-6 dependent manner, and rnp-6 gain and loss-of-function activities reveal an active role in immune regulation. Another longevity promoting splicing factor, SFA-1, similarly exerts an immuno-suppressive effect, working downstream or parallel to RNP-6. RNP-6 acts through TIR-1/PMK-1/MAPK signaling to modulate immunity. The mammalian homolog, PUF60, also displays anti-inflammatory properties, and its levels swiftly decrease after bacterial infection in mammalian cells, implying a role in the host response. Altogether our findings demonstrate an evolutionarily conserved modulation of immunity by specific components of the splicing machinery.
Collapse
Affiliation(s)
- Chun Kew
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Wenming Huang
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Julia Fischer
- Department I of Internal Medicine, University of Cologne, Cologne, Germany.,Division of Infectious Diseases, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Raja Ganesan
- Cellular-Stress and Immune Response Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Nirmal Robinson
- Cellular-Stress and Immune Response Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
54
|
Burkhart KB, Sando SR, Corrionero A, Horvitz HR. H3.3 Nucleosome Assembly Mutants Display a Late-Onset Maternal Effect. Curr Biol 2020; 30:2343-2352.e3. [PMID: 32470364 DOI: 10.1016/j.cub.2020.04.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/31/2020] [Accepted: 04/20/2020] [Indexed: 01/03/2023]
Abstract
Maternally inherited RNA and proteins control much of embryonic development. The effect of such maternal information beyond embryonic development is largely unclear. Here, we report that maternal contribution of histone H3.3 assembly complexes can prevent the expression of late-onset anatomical, physiologic, and behavioral abnormalities of C. elegans. We show that mutants lacking hira-1, an evolutionarily conserved H3.3-deposition factor, have severe pleiotropic defects that manifest predominantly at adulthood. These late-onset defects can be maternally rescued, and maternally derived HIRA-1 protein can be detected in hira-1(-/-) progeny. Mitochondrial stress likely contributes to the late-onset defects, given that hira-1 mutants display mitochondrial stress, and the induction of mitochondrial stress results in at least some of the hira-1 late-onset abnormalities. A screen for mutants that mimic the hira-1 mutant phenotype identified PQN-80-a HIRA complex component, known as UBN1 in humans-and XNP-1-a second H3.3 chaperone, known as ATRX in humans. pqn-80 and xnp-1 abnormalities are also maternally rescued. Furthermore, mutants lacking histone H3.3 have a late-onset defect similar to a defect of hira-1, pqn-80, and xnp-1 mutants. These data demonstrate that H3.3 assembly complexes provide non-DNA-based heritable information that can markedly influence adult phenotype. We speculate that similar maternal effects might explain the missing heritability of late-onset human diseases, such as Alzheimer's disease, Parkinson's disease, and type 2 diabetes.
Collapse
Affiliation(s)
- Kirk B Burkhart
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Steven R Sando
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anna Corrionero
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - H Robert Horvitz
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
55
|
Otarigho B, Aballay A. Cholesterol Regulates Innate Immunity via Nuclear Hormone Receptor NHR-8. iScience 2020; 23:101068. [PMID: 32361270 PMCID: PMC7195545 DOI: 10.1016/j.isci.2020.101068] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/09/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
Cholesterol is an essential nutrient for the function of diverse biological processes and for steroid biosynthesis across metazoans. However, the role of cholesterol in immune function remains understudied. Using the nematode Caenorhabditis elegans, which depends on the external environment for cholesterol, we studied the relationship between cholesterol and innate immunity. We found that the transporter CHUP-1 is required for the effect of cholesterol in the development of innate immunity and that the cholesterol-mediated immune response requires the nuclear hormone receptor NHR-8. Cholesterol acts through NHR-8 to transcriptionally regulate immune genes that are controlled by conserved immune pathways, including a p38/PMK-1 MAPK pathway, a DAF-2/DAF-16 insulin pathway, and an Nrf/SKN-1 pathway. Our results indicate that cholesterol plays a key role in the activation of conserved microbicidal pathways that are essential for survival against bacterial infections.
Collapse
Affiliation(s)
- Benson Otarigho
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alejandro Aballay
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
56
|
Campos TL, Korhonen PK, Sternberg PW, Gasser RB, Young ND. Predicting gene essentiality in Caenorhabditis elegans by feature engineering and machine-learning. Comput Struct Biotechnol J 2020; 18:1093-1102. [PMID: 32489524 PMCID: PMC7251299 DOI: 10.1016/j.csbj.2020.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023] Open
Abstract
Defining genes that are essential for life has major implications for understanding critical biological processes and mechanisms. Although essential genes have been identified and characterised experimentally using functional genomic tools, it is challenging to predict with confidence such genes from molecular and phenomic data sets using computational methods. Using extensive data sets available for the model organism Caenorhabditis elegans, we constructed here a machine-learning (ML)-based workflow for the prediction of essential genes on a genome-wide scale. We identified strong predictors for such genes and showed that trained ML models consistently achieve highly-accurate classifications. Complementary analyses revealed an association between essential genes and chromosomal location. Our findings reveal that essential genes in C. elegans tend to be located in or near the centre of autosomal chromosomes; are positively correlated with low single nucleotide polymorphim (SNP) densities and epigenetic markers in promoter regions; are involved in protein and nucleotide processing; are transcribed in most cells; are enriched in reproductive tissues or are targets for small RNAs bound to the argonaut CSR-1. Based on these results, we hypothesise an interplay between epigenetic markers and small RNA pathways in the germline, with transcription-based memory; this hypothesis warrants testing. From a technical perspective, further work is needed to evaluate whether the present ML-based approach will be applicable to other metazoans (including Drosophila melanogaster) for which comprehensive data sets (i.e. genomic, transcriptomic, proteomic, variomic, epigenetic and phenomic) are available.
Collapse
Key Words
- CDS, coding sequence
- CRISPR, Clustered Regularly Interspaced Short Palindromic Repeats
- Caenorhabditis elegans
- ES, Essentiality Score
- EST, expressed sequence tag
- Essential genes
- Essentiality predictions
- GBM, Gradient Boosting Method
- GFF, general feature format
- GLM, Generalised Linear Model
- GO, gene ontology
- ML, machine-learning
- Machine-learning
- NN, Artificial Neural Network
- PPI, protein-protein interaction
- PR-AUC, Area Under the Precision-Recall Curve
- RF, Random Forest
- RNAi, RNA interference
- ROC-AUC, Area Under the Receiver Operating Characteristic Curve
- SNP, single nucleotide polymorphism
- SPLS, Sparse Partial Least Squares
- SVM, Support-Vector Machine
- TEA, Tissue Enrichment Analysis tool (WormBase)
- TSS, transcription start site
- VCF, variant call file
Collapse
Affiliation(s)
- Tulio L Campos
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.,Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (IAM-Fiocruz), Recife, Pernambuco, Brazil
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
57
|
Schiffer JA, Servello FA, Heath WR, Amrit FRG, Stumbur SV, Eder M, Martin OMF, Johnsen SB, Stanley JA, Tam H, Brennan SJ, McGowan NG, Vogelaar AL, Xu Y, Serkin WT, Ghazi A, Stroustrup N, Apfeld J. Caenorhabditis elegans processes sensory information to choose between freeloading and self-defense strategies. eLife 2020; 9:e56186. [PMID: 32367802 PMCID: PMC7213980 DOI: 10.7554/elife.56186] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022] Open
Abstract
Hydrogen peroxide is the preeminent chemical weapon that organisms use for combat. Individual cells rely on conserved defenses to prevent and repair peroxide-induced damage, but whether similar defenses might be coordinated across cells in animals remains poorly understood. Here, we identify a neuronal circuit in the nematode Caenorhabditis elegans that processes information perceived by two sensory neurons to control the induction of hydrogen peroxide defenses in the organism. We found that catalases produced by Escherichia coli, the nematode's food source, can deplete hydrogen peroxide from the local environment and thereby protect the nematodes. In the presence of E. coli, the nematode's neurons signal via TGFβ-insulin/IGF1 relay to target tissues to repress expression of catalases and other hydrogen peroxide defenses. This adaptive strategy is the first example of a multicellular organism modulating its defenses when it expects to freeload from the protection provided by molecularly orthologous defenses from another species.
Collapse
Affiliation(s)
| | | | - William R Heath
- Biology Department, Northeastern UniversityBostonUnited States
| | | | | | - Matthias Eder
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Olivier MF Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Sean B Johnsen
- Biology Department, Northeastern UniversityBostonUnited States
| | | | - Hannah Tam
- Biology Department, Northeastern UniversityBostonUnited States
| | - Sarah J Brennan
- Biology Department, Northeastern UniversityBostonUnited States
| | | | | | - Yuyan Xu
- Biology Department, Northeastern UniversityBostonUnited States
| | | | - Arjumand Ghazi
- Department of Pediatrics, University of Pittsburgh School of MedicinePittsburghUnited States
- Departments of Developmental Biology and Cell Biology and Physiology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Nicholas Stroustrup
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Javier Apfeld
- Biology Department, Northeastern UniversityBostonUnited States
| |
Collapse
|
58
|
Burton NO, Riccio C, Dallaire A, Price J, Jenkins B, Koulman A, Miska EA. Cysteine synthases CYSL-1 and CYSL-2 mediate C. elegans heritable adaptation to P. vranovensis infection. Nat Commun 2020; 11:1741. [PMID: 32269224 PMCID: PMC7142082 DOI: 10.1038/s41467-020-15555-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/19/2020] [Indexed: 11/09/2022] Open
Abstract
Parental exposure to pathogens can prime offspring immunity in diverse organisms. The mechanisms by which this heritable priming occurs are largely unknown. Here we report that the soil bacteria Pseudomonas vranovensis is a natural pathogen of the nematode Caenorhabditis elegans and that parental exposure of animals to P. vranovensis promotes offspring resistance to infection. Furthermore, we demonstrate a multigenerational enhancement of progeny survival when three consecutive generations of animals are exposed to P. vranovensis. By investigating the mechanisms by which animals heritably adapt to P. vranovensis infection, we found that parental infection by P. vranovensis results in increased expression of the cysteine synthases cysl-1 and cysl-2 and the regulator of hypoxia inducible factor rhy-1 in progeny, and that these three genes are required for adaptation to P. vranovensis. These observations establish a CYSL-1, CYSL-2, and RHY-1 dependent mechanism by which animals heritably adapt to infection.
Collapse
Affiliation(s)
- Nicholas O Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK.
| | - Cristian Riccio
- Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Alexandra Dallaire
- Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Jonathan Price
- Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Benjamin Jenkins
- Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Albert Koulman
- Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Eric A Miska
- Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| |
Collapse
|
59
|
Jeong DE, Lee Y, Ham S, Lee D, Kwon S, Park HEH, Hwang SY, Yoo JY, Roh TY, Lee SJV. Inhibition of the oligosaccharyl transferase in Caenorhabditis elegans that compromises ER proteostasis suppresses p38-dependent protection against pathogenic bacteria. PLoS Genet 2020; 16:e1008617. [PMID: 32130226 PMCID: PMC7055741 DOI: 10.1371/journal.pgen.1008617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
The oligosaccharyl transferase (OST) protein complex mediates the N-linked glycosylation of substrate proteins in the endoplasmic reticulum (ER), which regulates stability, activity, and localization of its substrates. Although many OST substrate proteins have been identified, the physiological role of the OST complex remains incompletely understood. Here we show that the OST complex in C. elegans is crucial for ER protein homeostasis and defense against infection with pathogenic bacteria Pseudomonas aeruginosa (PA14), via immune-regulatory PMK-1/p38 MAP kinase. We found that genetic inhibition of the OST complex impaired protein processing in the ER, which in turn up-regulated ER unfolded protein response (UPRER). We identified vitellogenin VIT-6 as an OST-dependent glycosylated protein, critical for maintaining survival on PA14. We also showed that the OST complex was required for up-regulation of PMK-1 signaling upon infection with PA14. Our study demonstrates that an evolutionarily conserved OST complex, crucial for ER homeostasis, regulates host defense mechanisms against pathogenic bacteria. N-linked glycosylation is essential for the function of various proteins, but its effects on physiology at an organism level remain poorly understood. Using the roundworm Caenorhabditis elegans, we show that the oligosaccharyl transferase (OST) complex, which mediates the N-glycosylation of substrate proteins in the ER, reduces susceptibility to pathogenic bacteria, Pseudomonas aeruginosa. We find that OST enhances defense against P. aeruginosa via maintenance of ER unfolded protein response (UPRER) and up-regulation of cytosolic p38 MAP kinase signaling. Our findings propose an intriguing model for the organellar crosstalk between the ER and the cytosol in host defense mechanisms. Because the OST complex components are highly conserved among eukaryotes, our study on the regulation of cellular signaling and C. elegans physiology by the OST complex will provide an insight into the function of its mammalian counterpart.
Collapse
Affiliation(s)
- Dae-Eun Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Yujin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, South Korea
| | - Seokjin Ham
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, South Korea
| | - Dongyeop Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Sujeong Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, South Korea
| | - Hae-Eun H. Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, South Korea
| | - Sun-Young Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Joo-Yeon Yoo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Tae-Young Roh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Seung-Jae V. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, South Korea
- * E-mail:
| |
Collapse
|
60
|
Viau C, Haçariz O, Karimian F, Xia J. Comprehensive phenotyping and transcriptome profiling to study nanotoxicity in C. elegans. PeerJ 2020; 8:e8684. [PMID: 32149031 PMCID: PMC7049462 DOI: 10.7717/peerj.8684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Engineered nanoparticles are used at an increasing rate in both industry and medicine without fully understanding their impact on health and environment. The nematode Caenorhabditis elegans is a suitable model to study the toxic effects of nanoparticles as it is amenable to comprehensive phenotyping, such as locomotion, growth, neurotoxicity and reproduction. In this study, we systematically evaluated the effects of silver (Ag) and five metal oxide nanoparticles: SiO2, CeO2, CuO, Al2O3 and TiO2. The results showed that Ag and SiO2 exposures had the most toxic effects on locomotion velocity, growth and reproduction, whereas CeO2, Al2O3 and CuO exposures were mostly neurotoxic. We further performed RNAseq to compare the gene expression profiles underlying Ag and SiO2toxicities. Gene set enrichment analyses revealed that exposures to Ag and SiO2consistently downregulated several biological processes (regulations in locomotion, reproductive process and cell growth) and pathways (neuroactive ligand-receptor interaction, wnt and MAPK signaling, etc.), with opposite effects on genes involved in innate immunity. Our results contribute to mechanistic insights into toxicity of Ag and SiO2 nanoparticles and demonstrated that C. elegans as a valuable model for nanotoxicity assessment.
Collapse
Affiliation(s)
- Charles Viau
- Institute of Parasitology, McGill University, Montreal, Canada
| | - Orçun Haçariz
- Institute of Parasitology, McGill University, Montreal, Canada
| | - Farial Karimian
- Institute of Parasitology, McGill University, Montreal, Canada
| | - Jianguo Xia
- Institute of Parasitology, McGill University, Montreal, Canada.,Department of Animal Science, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
61
|
Yang W, Petersen C, Pees B, Zimmermann J, Waschina S, Dirksen P, Rosenstiel P, Tholey A, Leippe M, Dierking K, Kaleta C, Schulenburg H. The Inducible Response of the Nematode Caenorhabditis elegans to Members of Its Natural Microbiota Across Development and Adult Life. Front Microbiol 2019; 10:1793. [PMID: 31440221 PMCID: PMC6693516 DOI: 10.3389/fmicb.2019.01793] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
The biology of all organisms is influenced by the associated community of microorganisms. In spite of its importance, it is usually not well understood how exactly this microbiota affects host functions and what are the underlying molecular processes. To rectify this knowledge gap, we took advantage of the nematode Caenorhabditis elegans as a tractable, experimental model system and assessed the inducible transcriptome response after colonization with members of its native microbiota. For this study, we focused on two isolates of the genus Ochrobactrum. These bacteria are known to be abundant in the nematode’s microbiota and are capable of colonizing and persisting in the nematode gut, even under stressful conditions. The transcriptome response was assessed across development and three time points of adult life, using general and C. elegans-specific enrichment analyses to identify affected functions. Our assessment revealed an influence of the microbiota members on the nematode’s dietary response, development, fertility, immunity, and energy metabolism. This response is mainly regulated by a GATA transcription factor, most likely ELT-2, as indicated by the enrichment of (i) the GATA motif in the promoter regions of inducible genes and (ii) of ELT-2 targets among the differentially expressed genes. We compared our transcriptome results with a corresponding previously characterized proteome data set, highlighting a significant overlap in the differentially expressed genes, the affected functions, and ELT-2 target genes. Our analysis further identified a core set of 86 genes that consistently responded to the microbiota members across development and adult life, including several C-type lectin-like genes and genes known to be involved in energy metabolism or fertility. We additionally assessed the consequences of induced gene expression with the help of metabolic network model analysis, using a previously established metabolic network for C. elegans. This analysis complemented the enrichment analyses by revealing an influence of the Ochrobactrum isolates on C. elegans energy metabolism and furthermore metabolism of specific amino acids, fatty acids, and also folate biosynthesis. Our findings highlight the multifaceted impact of naturally colonizing microbiota isolates on C. elegans life history and thereby provide a framework for further analysis of microbiota-mediated host functions.
Collapse
Affiliation(s)
- Wentao Yang
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Carola Petersen
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.,Research Group Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Barbara Pees
- Research Group Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Johannes Zimmermann
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Silvio Waschina
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Philipp Dirksen
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Philip Rosenstiel
- Institute for Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Andreas Tholey
- Research Group Proteomics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Matthias Leippe
- Research Group Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Katja Dierking
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Hinrich Schulenburg
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.,Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
62
|
Posner R, Toker IA, Antonova O, Star E, Anava S, Azmon E, Hendricks M, Bracha S, Gingold H, Rechavi O. Neuronal Small RNAs Control Behavior Transgenerationally. Cell 2019; 177:1814-1826.e15. [PMID: 31178120 PMCID: PMC6579485 DOI: 10.1016/j.cell.2019.04.029] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/18/2019] [Accepted: 04/13/2019] [Indexed: 12/21/2022]
Abstract
It is unknown whether the activity of the nervous system can be inherited. In Caenorhabditis elegans nematodes, parental responses can transmit heritable small RNAs that regulate gene expression transgenerationally. In this study, we show that a neuronal process can impact the next generations. Neurons-specific synthesis of RDE-4-dependent small RNAs regulates germline amplified endogenous small interfering RNAs (siRNAs) and germline gene expression for multiple generations. Further, the production of small RNAs in neurons controls the chemotaxis behavior of the progeny for at least three generations via the germline Argonaute HRDE-1. Among the targets of these small RNAs, we identified the conserved gene saeg-2, which is transgenerationally downregulated in the germline. Silencing of saeg-2 following neuronal small RNA biogenesis is required for chemotaxis under stress. Thus, we propose a small-RNA-based mechanism for communication of neuronal processes transgenerationally. C. elegans neuronal small RNAs are characterized by RNA sequencing RDE-4-dependent neuronal endogenous small RNAs communicate with the germline Germline HRDE-1 mediates transgenerational regulation by neuronal small RNAs Neuronal small RNAs regulate germline genes to control behavior transgenerationally
Collapse
Affiliation(s)
- Rachel Posner
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Itai Antoine Toker
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Olga Antonova
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ekaterina Star
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sarit Anava
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eran Azmon
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Michael Hendricks
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Shahar Bracha
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Hila Gingold
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
63
|
Tarkhov AE, Alla R, Ayyadevara S, Pyatnitskiy M, Menshikov LI, Shmookler Reis RJ, Fedichev PO. A universal transcriptomic signature of age reveals the temporal scaling of Caenorhabditis elegans aging trajectories. Sci Rep 2019; 9:7368. [PMID: 31089188 PMCID: PMC6517414 DOI: 10.1038/s41598-019-43075-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 04/15/2019] [Indexed: 12/13/2022] Open
Abstract
We collected 60 age-dependent transcriptomes for C. elegans strains including four exceptionally long-lived mutants (mean adult lifespan extended 2.2- to 9.4-fold) and three examples of lifespan-increasing RNAi treatments. Principal Component Analysis (PCA) reveals aging as a transcriptomic drift along a single direction, consistent across the vastly diverse biological conditions and coinciding with the first principal component, a hallmark of the criticality of the underlying gene regulatory network. We therefore expected that the organism's aging state could be characterized by a single number closely related to vitality deficit or biological age. The "aging trajectory", i.e. the dependence of the biological age on chronological age, is then a universal stochastic function modulated by the network stiffness; a macroscopic parameter reflecting the network topology and associated with the rate of aging. To corroborate this view, we used publicly available datasets to define a transcriptomic biomarker of age and observed that the rescaling of age by lifespan simultaneously brings together aging trajectories of transcription and survival curves. In accordance with the theoretical prediction, the limiting mortality value at the plateau agrees closely with the mortality rate doubling exponent estimated at the cross-over age near the average lifespan. Finally, we used the transcriptomic signature of age to identify possible life-extending drug compounds and successfully tested a handful of the top-ranking molecules in C. elegans survival assays and achieved up to a +30% extension of mean lifespan.
Collapse
Affiliation(s)
- Andrei E Tarkhov
- Gero LLC, Nizhny Susalny per. 5/4, Moscow, 105064, Russia.
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia.
| | - Ramani Alla
- Central Arkansas Veterans Healthcare System, Research Service, Little Rock, Arkansas, USA
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Srinivas Ayyadevara
- Central Arkansas Veterans Healthcare System, Research Service, Little Rock, Arkansas, USA
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mikhail Pyatnitskiy
- Gero LLC, Nizhny Susalny per. 5/4, Moscow, 105064, Russia
- Institute of Biomedical Chemistry, 119121, Moscow, Russia
| | - Leonid I Menshikov
- Gero LLC, Nizhny Susalny per. 5/4, Moscow, 105064, Russia
- National Research Center "Kurchatov Institute", 1, Akademika Kurchatova pl., Moscow, 123182, Russia
| | - Robert J Shmookler Reis
- Central Arkansas Veterans Healthcare System, Research Service, Little Rock, Arkansas, USA
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Bioinformatics Program, University of Arkansas for Medical Sciences, and University of Arkansas at Little Rock, Little Rock, Arkansas, USA
| | - Peter O Fedichev
- Gero LLC, Nizhny Susalny per. 5/4, Moscow, 105064, Russia.
- Moscow Institute of Physics and Technology, 141700, Institutskii per. 9, Dolgoprudny, Moscow Region, Russia.
| |
Collapse
|
64
|
Fletcher M, Tillman EJ, Butty VL, Levine SS, Kim DH. Global transcriptional regulation of innate immunity by ATF-7 in C. elegans. PLoS Genet 2019; 15:e1007830. [PMID: 30789901 PMCID: PMC6400416 DOI: 10.1371/journal.pgen.1007830] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/05/2019] [Accepted: 01/23/2019] [Indexed: 12/29/2022] Open
Abstract
The nematode Caenorhabditis elegans has emerged as a genetically tractable animal host in which to study evolutionarily conserved mechanisms of innate immune signaling. We previously showed that the PMK-1 p38 mitogen-activated protein kinase (MAPK) pathway regulates innate immunity of C. elegans through phosphorylation of the CREB/ATF bZIP transcription factor, ATF-7. Here, we have undertaken a genomic analysis of the transcriptional response of C. elegans to infection by Pseudomonas aeruginosa, combining genome-wide expression analysis by RNA-seq with ATF-7 chromatin immunoprecipitation followed by sequencing (ChIP-Seq). We observe that PMK-1-ATF-7 activity regulates a majority of all genes induced by pathogen infection, and observe ATF-7 occupancy in regulatory regions of pathogen-induced genes in a PMK-1-dependent manner. Moreover, functional analysis of a subset of these ATF-7-regulated pathogen-induced target genes supports a direct role for this transcriptional response in host defense. The genome-wide regulation through PMK-1- ATF-7 signaling reveals a striking level of control over the innate immune response to infection through a single transcriptional regulator.
Collapse
Affiliation(s)
- Marissa Fletcher
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Erik J. Tillman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Vincent L. Butty
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Stuart S. Levine
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Dennis H. Kim
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
65
|
Bezler A, Braukmann F, West SM, Duplan A, Conconi R, Schütz F, Gönczy P, Piano F, Gunsalus K, Miska EA, Keller L. Tissue- and sex-specific small RNAomes reveal sex differences in response to the environment. PLoS Genet 2019; 15:e1007905. [PMID: 30735500 PMCID: PMC6383947 DOI: 10.1371/journal.pgen.1007905] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/21/2019] [Accepted: 12/17/2018] [Indexed: 11/19/2022] Open
Abstract
RNA interference (RNAi) related pathways are essential for germline development and fertility in metazoa and can contribute to inter- and trans-generational inheritance. In the nematode Caenorhabditis elegans, environmental double-stranded RNA provided by feeding can lead to heritable changes in phenotype and gene expression. Notably, transmission efficiency differs between the male and female germline, yet the underlying mechanisms remain elusive. Here we use high-throughput sequencing of dissected gonads to quantify sex-specific endogenous piRNAs, miRNAs and siRNAs in the C. elegans germline and the somatic gonad. We identify genes with exceptionally high levels of secondary 22G RNAs that are associated with low mRNA expression, a signature compatible with silencing. We further demonstrate that contrary to the hermaphrodite germline, the male germline, but not male soma, is resistant to environmental RNAi triggers provided by feeding, in line with previous work. This sex-difference in silencing efficacy is associated with lower levels of gonadal RNAi amplification products. Moreover, this tissue- and sex-specific RNAi resistance is regulated by the germline, since mutant males with a feminized germline are RNAi sensitive. This study provides important sex- and tissue-specific expression data of miRNA, piRNA and siRNA as well as mechanistic insights into sex-differences of gene regulation in response to environmental cues.
Collapse
Affiliation(s)
- Alexandra Bezler
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Fabian Braukmann
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Sean M. West
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
| | - Arthur Duplan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Raffaella Conconi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Frédéric Schütz
- Bioinformatics Core Facility; SIB Swiss Institute of Bioinformatics and Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Fabio Piano
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kristin Gunsalus
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Eric A. Miska
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
66
|
Geisler F, Coch RA, Richardson C, Goldberg M, Denecke B, Bossinger O, Leube RE. The intestinal intermediate filament network responds to and protects against microbial insults and toxins. Development 2019; 146:dev.169482. [PMID: 30630824 DOI: 10.1242/dev.169482] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022]
Abstract
The enrichment of intermediate filaments in the apical cytoplasm of intestinal cells is evolutionarily conserved, forming a sheath that is anchored to apical junctions and positioned below the microvillar brush border, which suggests a protective intracellular barrier function. To test this, we used Caenorhabditis elegans, the intestinal cells of which are endowed with a particularly dense intermediate filament-rich layer that is referred to as the endotube. We found alterations in endotube structure and intermediate filament expression upon infection with nematicidal B. thuringiensis or treatment with its major pore-forming toxin crystal protein Cry5B. Endotube impairment due to defined genetic mutations of intermediate filaments and their regulators results in increased Cry5B sensitivity as evidenced by elevated larval arrest, prolonged time of larval development and reduced survival. Phenotype severity reflects the extent of endotube alterations and correlates with reduced rescue upon toxin removal. The results provide in vivo evidence for a major protective role of a properly configured intermediate filament network as an intracellular barrier in intestinal cells. This notion is further supported by increased sensitivity of endotube mutants to oxidative and osmotic stress.
Collapse
Affiliation(s)
- Florian Geisler
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Richard A Coch
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Christine Richardson
- School of Biological and Biomedical Sciences, Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Martin Goldberg
- School of Biological and Biomedical Sciences, Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Bernd Denecke
- Genomics Facility, IZKF Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Olaf Bossinger
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
67
|
Functional Annotation of Caenorhabditis elegans Genes by Analysis of Gene Co-Expression Networks. Biomolecules 2018; 8:biom8030070. [PMID: 30081521 PMCID: PMC6163173 DOI: 10.3390/biom8030070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022] Open
Abstract
Caenorhabditis elegans (C. elegans) is a well-characterized metazoan, whose transcriptome has been profiled in different tissues, development stages, or other conditions. Large-scale transcriptomes can be reused for gene function annotation through systematic analysis of gene co-expression relationships. We collected 2101 microarray data from National Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO), and identified 48 modules of co-expressed genes that correspond to tissues, development stages, and other experimental conditions. These modules provide an overview of the transcriptional organizations that may work under different conditions. By analyzing higher-order module networks, we found that nucleus and plasma membrane modules are more connected than other intracellular modules. Module-based gene function annotation may help to extend the candidate cuticle gene list. A comparison with other published data validates the credibility of our result. Our findings provide a new source for future gene discovery in C. elegans.
Collapse
|
68
|
Osman GA, Fasseas MK, Koneru SL, Essmann CL, Kyrou K, Srinivasan MA, Zhang G, Sarkies P, Félix MA, Barkoulas M. Natural Infection of C. elegans by an Oomycete Reveals a New Pathogen-Specific Immune Response. Curr Biol 2018; 28:640-648.e5. [DOI: 10.1016/j.cub.2018.01.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/21/2017] [Accepted: 01/10/2018] [Indexed: 12/13/2022]
|
69
|
Dineen A, Osborne Nishimura E, Goszczynski B, Rothman JH, McGhee JD. Quantitating transcription factor redundancy: The relative roles of the ELT-2 and ELT-7 GATA factors in the C. elegans endoderm. Dev Biol 2018; 435:150-161. [PMID: 29360433 DOI: 10.1016/j.ydbio.2017.12.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/25/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
Abstract
The two GATA transcription factors ELT-2 and ELT-7 function in the differentiation of the C. elegans intestine. ELT-2 loss causes lethality. ELT-7 loss causes no obvious phenotype but enhances the elt-2(-) intestinal phenotype. Thus, ELT-2 and ELT-7 appear partially redundant, with ELT-2 being more influential. To investigate the different regulatory roles of ELT-2 and ELT-7, we compared the transcriptional profiles of pure populations of wild-type, elt-2(-), elt-7(-), and elt-7(-); elt-2(-) double mutant L1-stage larvae. Consistent with the mutant phenotypes, loss of ELT-2 had a>25 fold greater influence on the number of significantly altered transcripts compared to the loss of ELT-7; nonetheless, the levels of numerous transcripts changed upon loss of ELT-7 in the elt-2(-) background. The quantitative responses of individual genes revealed a more complicated behaviour than simple redundancy/partial redundancy. In particular, genes expressed only in the intestine showed three distinguishable classes of response in the different mutant backgrounds. One class of genes responded as if ELT-2 is the major transcriptional activator and ELT-7 provides variable compensatory input. For a second class, transcript levels increased upon loss of ELT-2 but decreased upon further loss of ELT-7, suggesting that ELT-7 actually overcompensates for the loss of ELT-2. For a third class, transcript levels also increased upon loss of ELT-2 but remained elevated upon further loss of ELT-7, suggesting overcompensation by some other intestinal transcription factor(s). In spite of its minor loss-of-function phenotype and its limited sequence similarity to ELT-2, ELT-7 expressed under control of the elt-2 promoter is able to rescue elt-2(-) lethality. Indeed, appropriately expressed ELT-7, like appropriately expressed ELT-2, is able to replace all other core GATA factors in the C. elegans endodermal pathway. Overall, this study focuses attention on the quantitative intricacies behind apparent redundancy or partial redundancy of two related transcription factors.
Collapse
Affiliation(s)
- Aidan Dineen
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Erin Osborne Nishimura
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Barbara Goszczynski
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Joel H Rothman
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, United States
| | - James D McGhee
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
70
|
Dierking K, Yang W, Schulenburg H. Antimicrobial effectors in the nematode Caenorhabditis elegans: an outgroup to the Arthropoda. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0299. [PMID: 27160601 DOI: 10.1098/rstb.2015.0299] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2016] [Indexed: 12/14/2022] Open
Abstract
Nematodes and arthropods likely form the taxon Ecdysozoa. Information on antimicrobial effectors from the model nematode Caenorhabditis elegans may thus shed light on the evolutionary origin of these defences in arthropods. This nematode species possesses an extensive armory of putative antimicrobial effector proteins, such as lysozymes, caenopores (or saposin-like proteins), defensin-like peptides, caenacins and neuropeptide-like proteins, in addition to the production of reactive oxygen species and autophagy. As C. elegans is a bacterivore that lives in microbe-rich environments, some of its effector peptides and proteins likely function in both digestion of bacterial food and pathogen elimination. In this review, we provide an overview of C. elegans immune effector proteins and mechanisms. We summarize the experimental evidence of their antimicrobial function and involvement in the response to pathogen infection. We further evaluate the microbe-induced expression of effector genes using WormExp, a recently established database for C. elegans gene expression analysis. We emphasize the need for further analysis at the protein level to demonstrate an antimicrobial activity of these molecules both in vitro and in vivoThis article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Katja Dierking
- Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel 24098, Germany
| | - Wentao Yang
- Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel 24098, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel 24098, Germany
| |
Collapse
|
71
|
Nakad R, Snoek LB, Yang W, Ellendt S, Schneider F, Mohr TG, Rösingh L, Masche AC, Rosenstiel PC, Dierking K, Kammenga JE, Schulenburg H. Contrasting invertebrate immune defense behaviors caused by a single gene, the Caenorhabditis elegans neuropeptide receptor gene npr-1. BMC Genomics 2016; 17:280. [PMID: 27066825 PMCID: PMC4827197 DOI: 10.1186/s12864-016-2603-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 03/25/2016] [Indexed: 01/22/2023] Open
Abstract
Background The invertebrate immune system comprises physiological mechanisms, physical barriers and also behavioral responses. It is generally related to the vertebrate innate immune system and widely believed to provide nonspecific defense against pathogens, whereby the response to different pathogen types is usually mediated by distinct signalling cascades. Recent work suggests that invertebrate immune defense can be more specific at least at the phenotypic level. The underlying genetic mechanisms are as yet poorly understood. Results We demonstrate in the model invertebrate Caenorhabditis elegans that a single gene, a homolog of the mammalian neuropeptide Y receptor gene, npr-1, mediates contrasting defense phenotypes towards two distinct pathogens, the Gram-positive Bacillus thuringiensis and the Gram-negative Pseudomonas aeruginosa. Our findings are based on combining quantitative trait loci (QTLs) analysis with functional genetic analysis and RNAseq-based transcriptomics. The QTL analysis focused on behavioral immune defense against B. thuringiensis, using recombinant inbred lines (RILs) and introgression lines (ILs). It revealed several defense QTLs, including one on chromosome X comprising the npr-1 gene. The wildtype N2 allele for the latter QTL was associated with reduced defense against B. thuringiensis and thus produced an opposite phenotype to that previously reported for the N2 npr-1 allele against P. aeruginosa. Analysis of npr-1 mutants confirmed these contrasting immune phenotypes for both avoidance behavior and nematode survival. Subsequent transcriptional profiling of C. elegans wildtype and npr-1 mutant suggested that npr-1 mediates defense against both pathogens through p38 MAPK signaling, insulin-like signaling, and C-type lectins. Importantly, increased defense towards P. aeruginosa seems to be additionally influenced through the induction of oxidative stress genes and activation of GATA transcription factors, while the repression of oxidative stress genes combined with activation of Ebox transcription factors appears to enhance susceptibility to B. thuringiensis. Conclusions Our findings highlight the role of a single gene, npr-1, in fine-tuning nematode immune defense, showing the ability of the invertebrate immune system to produce highly specialized and potentially opposing immune responses via single regulatory genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2603-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rania Nakad
- Department of Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, 24098, Kiel, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - L Basten Snoek
- Laboratory of Nematology, Wageningen University, Wageningen, 6708 PB, The Netherlands
| | - Wentao Yang
- Department of Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, 24098, Kiel, Germany
| | - Sunna Ellendt
- Department of Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, 24098, Kiel, Germany
| | - Franziska Schneider
- Department of Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, 24098, Kiel, Germany
| | - Timm G Mohr
- Department of Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, 24098, Kiel, Germany
| | - Lone Rösingh
- Department of Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, 24098, Kiel, Germany
| | - Anna C Masche
- Department of Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, 24098, Kiel, Germany
| | - Philip C Rosenstiel
- Institute for Clinical Molecular Biology, University of Kiel, 24098, Kiel, Germany
| | - Katja Dierking
- Department of Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, 24098, Kiel, Germany
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University, Wageningen, 6708 PB, The Netherlands
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, 24098, Kiel, Germany.
| |
Collapse
|