51
|
Michno W, Blennow K, Zetterberg H, Brinkmalm G. Refining the amyloid β peptide and oligomer fingerprint ambiguities in Alzheimer's disease: Mass spectrometric molecular characterization in brain, cerebrospinal fluid, blood, and plasma. J Neurochem 2021; 159:234-257. [PMID: 34245565 DOI: 10.1111/jnc.15466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 01/05/2023]
Abstract
Since its discovery, amyloid-β (Aβ) has been the principal target of investigation of in Alzheimer's disease (AD). Over the years however, no clear correlation was found between the Aβ plaque burden and location, and AD-associated neurodegeneration and cognitive decline. Instead, diagnostic potential of specific Aβ peptides and/or their ratio, was established. For instance, a selective reduction in the concentration of the aggregation-prone 42 amino acid-long Aβ peptide (Aβ42) in cerebrospinal fluid (CSF) was put forward as reflective of Aβ peptide aggregation in the brain. With time, Aβ oligomers-the proposed toxic Aβ intermediates-have emerged as potential drivers of synaptic dysfunction and neurodegeneration in the disease process. Oligomers are commonly agreed upon to come in different shapes and sizes, and are very poorly characterized when it comes to their composition and their "toxic" properties. The concept of structural polymorphism-a diversity in conformational organization of amyloid aggregates-that depends on the Aβ peptide backbone, makes the characterization of Aβ aggregates and their role in AD progression challenging. In this review, we revisit the history of Aβ discovery and initial characterization and highlight the crucial role mass spectrometry (MS) has played in this process. We critically review the common knowledge gaps in the molecular identity of the Aβ peptide, and how MS is aiding the characterization of higher order Aβ assemblies. Finally, we go on to present recent advances in MS approaches for characterization of Aβ as single peptides and oligomers, and convey our optimism, as to how MS holds a promise for paving the way for progress toward a more comprehensive understanding of Aβ in AD research.
Collapse
Affiliation(s)
- Wojciech Michno
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.,Department of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
52
|
New insights into the mechanisms of age-related protein-protein crosslinking in the human lens. Exp Eye Res 2021; 209:108679. [PMID: 34147508 DOI: 10.1016/j.exer.2021.108679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/31/2022]
Abstract
Although protein crosslinking is often linked with aging as well as some age-related diseases, very few molecular details are available on the nature of the amino acids involved, or mechanisms that are responsible for crosslinking. Recent research has shown that several amino acids are able to generate reactive intermediates that ultimately lead to covalent crosslinking through multiple non-enzymatic mechanisms. This information has been derived from proteomic investigations on aged human lenses and the mechanisms of crosslinking, in each case, have been elucidated using model peptides. Residues involved in spontaneous protein-protein crosslinking include aspartic acid, asparagine, cysteine, lysine, phosphoserine, phosphothreonine, glutamic acid and glutamine. It has become clear, therefore, that several amino acids can act as potential sites for crosslinking in the long-lived proteins that are present in aged individuals. Moreover, the lens has been an invaluable model tissue and source of crosslinked proteins from which to determine crosslinking mechanisms that may lead to crosslinking in other human tissues.
Collapse
|
53
|
Wiatrak B, Piasny J, Kuźniarski A, Gąsiorowski K. Interactions of Amyloid-β with Membrane Proteins. Int J Mol Sci 2021; 22:6075. [PMID: 34199915 PMCID: PMC8200087 DOI: 10.3390/ijms22116075] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
In developing and developed countries, an increasing elderly population is observed. This affects the growing percentage of people struggling with neurodegenerative diseases, including Alzheimer's disease. Nevertheless, the pathomechanism of this disease is still unknown. This contributes to problems with early diagnosis of the disease as well as with treatment. One of the most popular hypotheses of Alzheimer's disease is related to the pathological deposition of amyloid-β (Aβ) in the brain of ill people. In this paper, we discuss issues related to Aβ and its relationship in the development of Alzheimer's disease. The structure of Aβ and its interaction with the cell membrane are discussed. Not only do the extracellular plaques affect nerve cells, but other forms of this peptide as well.
Collapse
Affiliation(s)
- Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Janusz Piasny
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Amadeusz Kuźniarski
- Department of Prosthetic Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland;
| | - Kazimierz Gąsiorowski
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| |
Collapse
|
54
|
Gkanatsiou E, Sahlin C, Portelius E, Johannesson M, Söderberg L, Fälting J, Basun H, Möller C, Odergren T, Zetterberg H, Blennow K, Lannfelt L, Brinkmalm G. Characterization of monomeric and soluble aggregated Aβ in Down's syndrome and Alzheimer's disease brains. Neurosci Lett 2021; 754:135894. [PMID: 33848613 DOI: 10.1016/j.neulet.2021.135894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/08/2023]
Abstract
The major characteristics of Alzheimer's disease (AD) are amyloid plaques, consisting of aggregated beta amyloid (Aβ) peptides, together with tau pathology (tangles, neuropil treads and dystrophic neurites surrounding the plaques), in the brain. Down's syndrome (DS) individuals are at increased risk to develop AD-type pathology; most DS individuals have developed substantial pathology already at the age of 40. DS individuals have an extra copy of chromosome 21, harbouring the amyloid precursor protein gene (APP). Our aim was to investigate the Aβ peptide pattern in DS and AD brains to investigate differences in their amyloid deposition and aggregation, respectively. Cortical tissue from patients with DS (with amyloid pathology), sporadic AD and controls were homogenized and fractionated into TBS (water soluble) and formic acid (water insoluble) fractions. Immunoprecipitation (IP) was performed using a variety of antibodies targeting different Aβ species including oligomeric Aβ. Mass spectrometry was then used to evaluate the presence of Aβ species in the different patient groups. A large number of Aβ peptides were identified including Aβ1-X, 2-X, 3-X, 4-X, 5-X, 11-X, and Aβ peptides extended N terminally of the BACE1 cleavage site and ending at amino 15 in the Aβ sequence APP/Aβ(-X to 15), as well as peptides post-translationally modified by pyroglutamate formation. Most Aβ peptides had higher abundance in AD and DS compared to controls, except the APP/Aβ(-X to 15) peptides which were most abundant in DS followed by controls and AD. Furthermore, the abundancies of AβX-40 and AβX-34 were increased in DS compared with AD. Aβ1-40, Aβ1-42, and Aβ4-42 were identified as the main constitutes of protofibrils (IP'd using mAb158) and higher relative Aβ1-42 signals were obtained compared with samples IP'd with 6E10 + 4G8, indicating that the protofibrils/oligomers were enriched with peptides ending at amino acid 42. All Aβ peptides found in AD were also present in DS indicating similar pathways of Aβ peptide production, degradation and accumulation, except for APP/Aβ(-X to 15). Likewise, the Aβ peptides forming protofibrils/oligomers in both AD and DS were similar, implying the possibility that treatment with clinical benefit in sporadic AD might also be beneficial for subjects with DS.
Collapse
Affiliation(s)
- Eleni Gkanatsiou
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - Charlotte Sahlin
- BioArctic AB, Stockholm, Sweden; Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Erik Portelius
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | | | | | | | | | | | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Lars Lannfelt
- BioArctic AB, Stockholm, Sweden; Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
55
|
Banchelli M, Cascella R, D’Andrea C, La Penna G, Li MS, Machetti F, Matteini P, Pizzanelli S. Probing the Structure of Toxic Amyloid-β Oligomers with Electron Spin Resonance and Molecular Modeling. ACS Chem Neurosci 2021; 12:1150-1161. [PMID: 33724783 PMCID: PMC9284516 DOI: 10.1021/acschemneuro.0c00714] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Structural models of the toxic species involved in the development of Alzheimer's disease are of utmost importance to understand the molecular mechanism and to describe early biomarkers of the disease. Among toxic species, soluble oligomers of amyloid-β (Aβ) peptides are particularly important, because they are responsible for spreading cell damages over brain regions, thus rapidly impairing brain functions. In this work we obtain structural information on a carefully prepared Aβ(1-42) sample, representing a toxic state for cell cultures, by combining electron spin resonance spectroscopy and computational models. We exploited the binding of Cu2+ to Aβ(1-42) and used copper as a probe for estimating Cu-Cu distances in the oligomers by applying double electron-electron resonance (DEER) pulse sequence. The DEER trace of this sample displays a unique feature that fits well with structural models of oligomers formed by Cu-cross-linked peptide dimers. Because Cu is bound to the Aβ(1-42) N-terminus, for the first time structural constraints that are missing in reported studies are provided at physiological conditions for the Aβ N-termini. These constraints suggest the Aβ(1-42) dimer as the building block of soluble oligomers, thus changing the scenario for any kinetic model of Aβ(1-42) aggregation.
Collapse
Affiliation(s)
- Martina Banchelli
- National Research Council of Italy, Institute of Applied Physics “Nello Carrara”, Sesto Fiorentino, I-50019 FI, Italy
| | - Roberta Cascella
- University of Florence, Department of Experimental and Clinical Biomedical Sciences, I-50134 Firenze, Italy
| | - Cristiano D’Andrea
- National Research Council of Italy, Institute of Applied Physics “Nello Carrara”, Sesto Fiorentino, I-50019 FI, Italy
| | - Giovanni La Penna
- National Research Council of Italy (CNR), Institute of Chemistry of Organometallic Compounds (ICCOM), Sesto Fiorentino, I-50019 FI, Italy
- National Institute for Nuclear Physics (INFN),
Section of Roma-Tor Vergata, I-00133 Roma, Italy
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
- Institute for Computational Science and Technology, 6 Quarter, Linh Trung Ward, Thu
Duc District, 700000 Ho Chi Minh City, Vietnam
| | - Fabrizio Machetti
- National Research Council of Italy (CNR), Institute of Chemistry of Organometallic Compounds (ICCOM), Sesto Fiorentino, I-50019 FI, Italy
- University of Florence, Department of Chemistry “Ugo Schiff”, Sesto Fiorentino, I-50019 FI, Italy
| | - Paolo Matteini
- National Research Council of Italy, Institute of Applied Physics “Nello Carrara”, Sesto Fiorentino, I-50019 FI, Italy
| | - Silvia Pizzanelli
- National Research Council of Italy (CNR), Institute of Chemistry of Organometallic Compounds (ICCOM), I-56124 Pisa, Italy
| |
Collapse
|
56
|
Welcome MO, Mastorakis NE. The taste of neuroinflammation: Molecular mechanisms linking taste sensing to neuroinflammatory responses. Pharmacol Res 2021; 167:105557. [PMID: 33737243 DOI: 10.1016/j.phrs.2021.105557] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
Evidence indicates a critical role of neuroinflammatory response as an underlying pathophysiological process in several central nervous system disorders, including neurodegenerative diseases. However, the molecular mechanisms that trigger neuroinflammatory processes are not fully known. The discovery of bitter taste receptors in regions other than the oral cavity substantially increased research interests on their functional roles in extra-oral tissues. It is now widely accepted that bitter taste receptors, for instance, in the respiratory, intestinal, reproductive and urinary tracts, are crucial not only for sensing poisonous substances, but also, act as immune sentinels, mobilizing defense mechanisms against pathogenic aggression. The relatively recent discovery of bitter taste receptors in the brain has intensified research investigation on the functional implication of cerebral bitter taste receptor expression. Very recent data suggest that responses of bitter taste receptors to neurotoxins and microbial molecules, under normal condition, are necessary to prevent neuroinflammatory reactions. Furthermore, emerging data have revealed that downregulation of key components of the taste receptor signaling cascade leads to increased oxidative stress and inflammasome signaling in neurons that ultimately culminate in neuroinflammation. Nevertheless, the mechanisms that link taste receptor mediated surveillance of the extracellular milieu to neuroinflammatory responses are not completely understood. This review integrates new data on the molecular mechanisms that link bitter taste receptor sensing to neuroinflammatory responses. The role of bitter taste receptor-mediated sensing of toxigenic substances in brain disorders is also discussed. The therapeutic significance of targeting these receptors for potential treatment of neurodegenerative diseases is also highlighted.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria.
| | | |
Collapse
|
57
|
Zoltowska KM, Chávez-Gutiérrez L. Exploring the origins of nucleation. eLife 2021; 10:67269. [PMID: 33688830 PMCID: PMC7946419 DOI: 10.7554/elife.67269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 11/24/2022] Open
Abstract
An approach called deep mutational scanning is improving our understanding of amyloid beta aggregation.
Collapse
Affiliation(s)
| | - Lucía Chávez-Gutiérrez
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium
| |
Collapse
|
58
|
Mukherjee S, Perez KA, Lago LC, Klatt S, McLean CA, Birchall IE, Barnham KJ, Masters CL, Roberts BR. Quantification of N-terminal amyloid-β isoforms reveals isomers are the most abundant form of the amyloid-β peptide in sporadic Alzheimer's disease. Brain Commun 2021; 3:fcab028. [PMID: 33928245 PMCID: PMC8062259 DOI: 10.1093/braincomms/fcab028] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 12/30/2022] Open
Abstract
Plaques that characterize Alzheimer's disease accumulate over 20 years as a result of decreased clearance of amyloid-β peptides. Such long-lived peptides are subjected to multiple post-translational modifications, in particular isomerization. Using liquid chromatography ion mobility separations mass spectrometry, we characterized the most common isomerized amyloid-β peptides present in the temporal cortex of sporadic Alzheimer's disease brains. Quantitative assessment of amyloid-β N-terminus revealed that > 80% of aspartates (Asp-1 and Asp-7) in the N-terminus was isomerized, making isomerization the most dominant post-translational modification of amyloid-β in Alzheimer's disease brain. Total amyloid-β1-15 was ∼85% isomerized at Asp-1 and/or Asp-7 residues, with only 15% unmodified amyloid-β1-15 left in Alzheimer's disease. While amyloid-β4-15 the next most abundant N-terminus found in Alzheimer's disease brain, was only ∼50% isomerized at Asp-7 in Alzheimer's disease. Further investigations into different biochemically defined amyloid-β-pools indicated a distinct pattern of accumulation of extensively isomerized amyloid-β in the insoluble fibrillar plaque and membrane-associated pools, while the extent of isomerization was lower in peripheral membrane/vesicular and soluble pools. This pattern correlated with the accumulation of aggregation-prone amyloid-β42 in Alzheimer's disease brains. Isomerization significantly alters the structure of the amyloid-β peptide, which not only has implications for its degradation, but also for oligomer assembly, and the binding of therapeutic antibodies that directly target the N-terminus, where these modifications are located.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Keyla A Perez
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Larissa C Lago
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Stephan Klatt
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Catriona A McLean
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Anatomical Pathology, Alfred Hospital, Prahran, VIC 3004, Australia
| | - Ian E Birchall
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kevin J Barnham
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Colin L Masters
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Blaine R Roberts
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
59
|
Kulenkampff K, Wolf Perez AM, Sormanni P, Habchi J, Vendruscolo M. Quantifying misfolded protein oligomers as drug targets and biomarkers in Alzheimer and Parkinson diseases. Nat Rev Chem 2021; 5:277-294. [PMID: 37117282 DOI: 10.1038/s41570-021-00254-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
Protein misfolding and aggregation are characteristic of a wide range of neurodegenerative disorders, including Alzheimer and Parkinson diseases. A hallmark of these diseases is the aggregation of otherwise soluble and functional proteins into amyloid aggregates. Although for many decades such amyloid deposits have been thought to be responsible for disease progression, it is now increasingly recognized that the misfolded protein oligomers formed during aggregation are, instead, the main agents causing pathological processes. These oligomers are transient and heterogeneous, which makes it difficult to detect and quantify them, generating confusion about their exact role in disease. The lack of suitable methods to address these challenges has hampered efforts to investigate the molecular mechanisms of oligomer toxicity and to develop oligomer-based diagnostic and therapeutic tools to combat protein misfolding diseases. In this Review, we describe methods to quantify misfolded protein oligomers, with particular emphasis on diagnostic applications as disease biomarkers and on therapeutic applications as target biomarkers. The development of these methods is ongoing, and we discuss the challenges that remain to be addressed to establish measurement tools capable of overcoming existing limitations and to meet present needs.
Collapse
|
60
|
Spontaneous protein–protein crosslinking at glutamine and glutamic acid residues in long-lived proteins. Biochem J 2021; 478:327-339. [DOI: 10.1042/bcj20200798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 11/17/2022]
Abstract
Long-lived proteins (LLPs) are susceptible to the accumulation of both enzymatic and spontaneous post-translational modifications (PTMs). A prominent PTM observed in LLPs is covalent protein–protein crosslinking. In this study, we examined aged human lenses and found several proteins to be crosslinked at Glu and Gln residues. This new covalent bond involves the amino group of Lys or an α-amino group. A number of these crosslinks were found in intermediate filament proteins. Such crosslinks could be reproduced experimentally by incubation of Glu- or Gln-containing peptides and their formation was consistent with an amino group attacking a glutarimide intermediate. These findings show that both Gln and Glu residues can act as sites for spontaneous covalent crosslinking in LLPs and they provide a mechanistic explanation for an otherwise puzzling observation, that a major fraction of Aβ in the human brain is crosslinked via Glu 22 and the N-terminal amino group.
Collapse
|
61
|
Cataldi R, Chia S, Pisani K, Ruggeri FS, Xu CK, Šneideris T, Perni M, Sarwat S, Joshi P, Kumita JR, Linse S, Habchi J, Knowles TPJ, Mannini B, Dobson CM, Vendruscolo M. A dopamine metabolite stabilizes neurotoxic amyloid-β oligomers. Commun Biol 2021; 4:19. [PMID: 33398040 PMCID: PMC7782527 DOI: 10.1038/s42003-020-01490-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022] Open
Abstract
Aberrant soluble oligomers formed by the amyloid-β peptide (Aβ) are major pathogenic agents in the onset and progression of Alzheimer's disease. A variety of biomolecules can influence the formation of these oligomers in the brain, although their mechanisms of action are still largely unknown. Here, we studied the effects on Aβ aggregation of DOPAL, a reactive catecholaldehyde intermediate of dopamine metabolism. We found that DOPAL is able to stabilize Aβ oligomeric species, including dimers and trimers, that exert toxic effects on human neuroblastoma cells, in particular increasing cytosolic calcium levels and promoting the generation of reactive oxygen species. These results reveal an interplay between Aβ aggregation and key biochemical processes regulating cellular homeostasis in the brain.
Collapse
Affiliation(s)
- Rodrigo Cataldi
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Sean Chia
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Katarina Pisani
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Francesco S Ruggeri
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Catherine K Xu
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Tomas Šneideris
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania
| | - Michele Perni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Sunehera Sarwat
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Priyanka Joshi
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Janet R Kumita
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden
| | - Johnny Habchi
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Benedetta Mannini
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| |
Collapse
|
62
|
Liu YH, Wang J, Li QX, Fowler CJ, Zeng F, Deng J, Xu ZQ, Zhou HD, Doecke JD, Villemagne VL, Lim YY, Masters CL, Wang YJ. Association of naturally occurring antibodies to β-amyloid with cognitive decline and cerebral amyloidosis in Alzheimer's disease. SCIENCE ADVANCES 2021; 7:7/1/eabb0457. [PMID: 33523832 PMCID: PMC7775771 DOI: 10.1126/sciadv.abb0457] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 11/05/2020] [Indexed: 05/03/2023]
Abstract
The pathological relevance of naturally occurring antibodies to β-amyloid (NAbs-Aβ) in Alzheimer's disease (AD) remains unclear. We aimed to investigate their levels and associations with Aβ burden and cognitive decline in AD in a cross-sectional cohort from China and a longitudinal cohort from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study. NAbs-Aβ levels in plasma and cerebrospinal fluid (CSF) were tested according to their epitopes. Levels of NAbs targeting the amino terminus of Aβ increased, and those targeting the mid-domain of Aβ decreased in both CSF and plasma in AD patients. Higher plasma levels of NAbs targeting the amino terminus of Aβ and lower plasma levels of NAbs targeting the mid-domain of Aβ were associated with higher brain amyloidosis at baseline and faster cognitive decline during follow-up. Our findings suggest a dynamic response of the adaptive immune system in the progression of AD and are relevant to current passive immunotherapeutic strategies.
Collapse
Affiliation(s)
- Yu-Hui Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Jun Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Qiao-Xin Li
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Christopher J Fowler
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Fan Zeng
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Juan Deng
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Zhi-Qiang Xu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Hua-Dong Zhou
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - James D Doecke
- The Australian E-Health Research Centre, CSIRO, Herston, Queensland, Australia
| | - Victor L Villemagne
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, Australia
| | - Yen Ying Lim
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia.
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
63
|
Gu L, Guo Z. Alzheimer's Aβ42 and Aβ40 form mixed oligomers with direct molecular interactions. Biochem Biophys Res Commun 2020; 534:292-296. [PMID: 33272573 DOI: 10.1016/j.bbrc.2020.11.092] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/25/2020] [Indexed: 12/27/2022]
Abstract
Formation of Aβ oligomers and fibrils plays a central role in the pathogenesis of Alzheimer's disease. There are two major forms of Aβ in the brain: Aβ42 and Aβ40. Aβ42 is the major component of the amyloid plaques, but the overall abundance of Aβ40 is several times that of Aβ42. In vitro experiments show that Aβ42 and Aβ40 affect each other's aggregation. In mouse models of Alzheimer's disease, overexpression of Aβ40 has been shown to reduce the plaque pathology, suggesting that Aβ42 and Aβ40 also interact in vivo. Here we address the question of whether Aβ42 and Aβ40 interact with each other in the formation of oligomers using electron paramagnetic resonance (EPR) spectroscopy. When the Aβ42 oligomers were formed using only spin-labeled Aβ42, the dipolar interaction between spin labels that are within 20 Å range broadened the EPR spectrum and reduced its amplitude. Oligomers formed with a mixture of spin-labeled Aβ42 and wild-type Aβ42 gave an EPR spectrum with higher amplitude due to weakened spin-spin interactions, suggesting molecular mixing of labeled and wild-type Aβ42. When spin-labeled Aβ42 and wild-type Aβ40 were mixed to form oligomers, the resulting EPR spectrum also showed reduced amplitude, suggesting that wild-type Aβ40 can also form oligomers with spin-labeled Aβ42. Therefore, our results suggest that Aβ42 and Aβ40 form mixed oligomers with direct molecular interactions. Our results point to the importance of investigating Aβ42-Aβ40 interactions in the brain for a complete understanding of Alzheimer's pathogenesis and therapeutic interventions.
Collapse
Affiliation(s)
- Lei Gu
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Zhefeng Guo
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
64
|
Kreiser RP, Wright AK, Block NR, Hollows JE, Nguyen LT, LeForte K, Mannini B, Vendruscolo M, Limbocker R. Therapeutic Strategies to Reduce the Toxicity of Misfolded Protein Oligomers. Int J Mol Sci 2020; 21:ijms21228651. [PMID: 33212787 PMCID: PMC7696907 DOI: 10.3390/ijms21228651] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
The aberrant aggregation of proteins is implicated in the onset and pathogenesis of a wide range of neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases. Mounting evidence indicates that misfolded protein oligomers produced as intermediates in the aggregation process are potent neurotoxic agents in these diseases. Because of the transient and heterogeneous nature of these elusive aggregates, however, it has proven challenging to develop therapeutics that can effectively target them. Here, we review approaches aimed at reducing oligomer toxicity, including (1) modulating the oligomer populations (e.g., by altering the kinetics of aggregation by inhibiting, enhancing, or redirecting the process), (2) modulating the oligomer properties (e.g., through the size–hydrophobicity–toxicity relationship), (3) modulating the oligomer interactions (e.g., by protecting cell membranes by displacing oligomers), and (4) reducing oligomer toxicity by potentiating the protein homeostasis system. We analyze examples of these complementary approaches, which may lead to the development of compounds capable of preventing or treating neurodegenerative disorders associated with protein aggregation.
Collapse
Affiliation(s)
- Ryan P. Kreiser
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Aidan K. Wright
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Natalie R. Block
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Jared E. Hollows
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Lam T. Nguyen
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Kathleen LeForte
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Benedetta Mannini
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK;
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK;
- Correspondence: (M.V.); (R.L.)
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
- Correspondence: (M.V.); (R.L.)
| |
Collapse
|
65
|
Pensalfini A, Kim S, Subbanna S, Bleiwas C, Goulbourne CN, Stavrides PH, Jiang Y, Lee JH, Darji S, Pawlik M, Huo C, Peddy J, Berg MJ, Smiley JF, Basavarajappa BS, Nixon RA. Endosomal Dysfunction Induced by Directly Overactivating Rab5 Recapitulates Prodromal and Neurodegenerative Features of Alzheimer's Disease. Cell Rep 2020; 33:108420. [PMID: 33238112 DOI: 10.1016/j.celrep.2020.108420] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/05/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Neuronal endosomal dysfunction, the earliest known pathobiology specific to Alzheimer's disease (AD), is mediated by the aberrant activation of Rab5 triggered by APP-β secretase cleaved C-terminal fragment (APP-βCTF). To distinguish pathophysiological consequences specific to overactivated Rab5 itself, we activate Rab5 independently from APP-βCTF in the PA-Rab5 mouse model. We report that Rab5 overactivation alone recapitulates diverse prodromal and degenerative features of AD. Modest neuron-specific transgenic Rab5 expression inducing hyperactivation of Rab5 comparable to that in AD brain reproduces AD-related Rab5-endosomal enlargement and mistrafficking, hippocampal synaptic plasticity deficits via accelerated AMPAR endocytosis and dendritic spine loss, and tau hyperphosphorylation via activated glycogen synthase kinase-3β. Importantly, Rab5-mediated endosomal dysfunction induces progressive cholinergic neurodegeneration and impairs hippocampal-dependent memory. Aberrant neuronal Rab5-endosome signaling, therefore, drives a pathogenic cascade distinct from β-amyloid-related neurotoxicity, which includes prodromal and neurodegenerative features of AD, and suggests Rab5 overactivation as a potential therapeutic target.
Collapse
Affiliation(s)
- Anna Pensalfini
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA
| | - Seonil Kim
- Colorado State University, Department of Biomedical Sciences, Fort Collins, CO 80523, USA; Cellular and Molecular Biology Training Program, New York University Langone Health, New York, NY 10003, USA
| | - Shivakumar Subbanna
- Department of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Cynthia Bleiwas
- Department of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Chris N Goulbourne
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Philip H Stavrides
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Ying Jiang
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA
| | - Ju-Hyun Lee
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA
| | - Sandipkumar Darji
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Monika Pawlik
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Chunfeng Huo
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - James Peddy
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Martin J Berg
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - John F Smiley
- Department of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Balapal S Basavarajappa
- Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA; Department of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA; Department of Cell Biology, New York University Langone Health, New York, NY 10003, USA; NYU Neuroscience Institute, New York, NY 10003, USA.
| |
Collapse
|
66
|
Kinetic fingerprints differentiate the mechanisms of action of anti-Aβ antibodies. Nat Struct Mol Biol 2020; 27:1125-1133. [PMID: 32989305 DOI: 10.1038/s41594-020-0505-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/13/2020] [Indexed: 12/28/2022]
Abstract
The amyloid cascade hypothesis, according to which the self-assembly of amyloid-β peptide (Aβ) is a causative process in Alzheimer's disease, has driven many therapeutic efforts for the past 20 years. Failures of clinical trials investigating Aβ-targeted therapies have been interpreted as evidence against this hypothesis, irrespective of the characteristics and mechanisms of action of the therapeutic agents, which are highly challenging to assess. Here, we combine kinetic analyses with quantitative binding measurements to address the mechanism of action of four clinical stage anti-Aβ antibodies, aducanumab, gantenerumab, bapineuzumab and solanezumab. We quantify the influence of these antibodies on the aggregation kinetics and on the production of oligomeric aggregates and link these effects to the affinity and stoichiometry of each antibody for monomeric and fibrillar forms of Aβ. Our results reveal that, uniquely among these four antibodies, aducanumab dramatically reduces the flux of Aβ oligomers.
Collapse
|
67
|
Walsh DM, Selkoe DJ. Amyloid β-protein and beyond: the path forward in Alzheimer's disease. Curr Opin Neurobiol 2020; 61:116-124. [PMID: 32197217 DOI: 10.1016/j.conb.2020.02.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Basic research on the biological mechanism of Alzheimer's disease has focused for decades on the age-related aggregation of the amyloid β-protein and its apparent downstream effects on microglia, astrocytes and neurons, including the posttranslational modification of the tau protein that seems necessary for symptom expression. Here, we discuss the highly challenging process of developing disease-modifying therapies and highlight several key areas of current research that are progressing in exciting directions. We conclude that further deep molecular analyses of the disease, including the mechanisms of β-amyloidosis, will enable more effective clinical trials and ultimately achieve the progress that our patients so deserve.
Collapse
Affiliation(s)
- Dominic M Walsh
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States; Alzheimer's Disease and Dementia Research Unit, Biogen Inc., 115 Broadway, Cambridge, MA 02142, United States.
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
68
|
Li S, Selkoe DJ. A mechanistic hypothesis for the impairment of synaptic plasticity by soluble Aβ oligomers from Alzheimer's brain. J Neurochem 2020; 154:583-597. [PMID: 32180217 PMCID: PMC7487043 DOI: 10.1111/jnc.15007] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/18/2022]
Abstract
It is increasingly accepted that early cognitive impairment in Alzheimer's disease results in considerable part from synaptic dysfunction caused by the accumulation of a range of oligomeric assemblies of amyloid β-protein (Aβ). Most studies have used synthetic Aβ peptides to explore the mechanisms of memory deficits in rodent models, but recent work suggests that Aβ assemblies isolated from human (AD) brain tissue are far more potent and disease-relevant. Although reductionist experiments show Aβ oligomers to impair synaptic plasticity and neuronal viability, the responsible mechanisms are only partly understood. Glutamatergic receptors, GABAergic receptors, nicotinic receptors, insulin receptors, the cellular prion protein, inflammatory mediators, and diverse signaling pathways have all been suggested. Studies using AD brain-derived soluble Aβ oligomers suggest that only certain bioactive forms (principally small, diffusible oligomers) can disrupt synaptic plasticity, including by binding to plasma membranes and changing excitatory-inhibitory balance, perturbing mGluR, PrP, and other neuronal surface proteins, down-regulating glutamate transporters, causing glutamate spillover, and activating extrasynaptic GluN2B-containing NMDA receptors. We synthesize these emerging data into a mechanistic hypothesis for synaptic failure in Alzheimer's disease that can be modified as new knowledge is added and specific therapeutics are developed.
Collapse
Affiliation(s)
- Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
69
|
Kreutzer AG, Samdin TD, Guaglianone G, Spencer RK, Nowick JS. X-ray Crystallography Reveals Parallel and Antiparallel β-Sheet Dimers of a β-Hairpin Derived from Aβ 16-36 that Assemble to Form Different Tetramers. ACS Chem Neurosci 2020; 11:2340-2347. [PMID: 32584538 DOI: 10.1021/acschemneuro.0c00290] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
High-resolution structures of oligomers formed by the β-amyloid peptide, Aβ, are important for understanding the molecular basis of Alzheimer's disease. Dimers of Aβ are linked to the pathogenesis and progression of Alzheimer's disease, and tetramers of Aβ are neurotoxic. This paper reports the X-ray crystallographic structures of dimers and tetramers, as well as an octamer, formed by a peptide derived from the central and C-terminal regions of Aβ. In the crystal lattice, the peptide assembles to form two different dimers-an antiparallel β-sheet dimer and a parallel β-sheet dimer-that each further self-assemble to form two different tetramers-a sandwich-like tetramer and a twisted β-sheet tetramer. The structures of these dimers and tetramers derived from Aβ serve as potential models for dimers and tetramers of full-length Aβ that form in vitro and in Alzheimer's disease-afflicted brains.
Collapse
|
70
|
Martins S, Müller-Schiffmann A, Erichsen L, Bohndorf M, Wruck W, Sleegers K, Van Broeckhoven C, Korth C, Adjaye J. IPSC-Derived Neuronal Cultures Carrying the Alzheimer's Disease Associated TREM2 R47H Variant Enables the Construction of an Aβ-Induced Gene Regulatory Network. Int J Mol Sci 2020; 21:ijms21124516. [PMID: 32630447 PMCID: PMC7350255 DOI: 10.3390/ijms21124516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Genes associated with immune response and inflammation have been identified as genetic risk factors for late-onset Alzheimer´s disease (LOAD). The rare R47H variant within triggering receptor expressed on myeloid cells 2 (TREM2) has been shown to increase the risk for developing Alzheimer’s disease (AD) 2–3-fold. Here, we report the generation and characterization of a model of late-onset Alzheimer’s disease (LOAD) using lymphoblast-derived induced pluripotent stem cells (iPSCs) from patients carrying the TREM2 R47H mutation, as well as from control individuals without dementia. All iPSCs efficiently differentiated into mature neuronal cultures, however AD neuronal cultures showed a distinct gene expression profile. Furthermore, manipulation of the iPSC-derived neuronal cultures with an Aβ-S8C dimer highlighted metabolic pathways, phagosome and immune response as the most perturbed pathways in AD neuronal cultures. Through the construction of an Aβ-induced gene regulatory network, we were able to identify an Aβ signature linked to protein processing in the endoplasmic reticulum (ER), which emphasized ER-stress, as a potential causal role in LOAD. Overall, this study has shown that our AD-iPSC based model can be used for in-depth studies to better understand the molecular mechanisms underlying the etiology of LOAD and provides new opportunities for screening of potential therapeutic targets.
Collapse
Affiliation(s)
- Soraia Martins
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (S.M.); (L.E.); (M.B.); (W.W.)
| | - Andreas Müller-Schiffmann
- Department of Neuropathology, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.M.-S.); (C.K.)
| | - Lars Erichsen
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (S.M.); (L.E.); (M.B.); (W.W.)
| | - Martina Bohndorf
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (S.M.); (L.E.); (M.B.); (W.W.)
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (S.M.); (L.E.); (M.B.); (W.W.)
| | - Kristel Sleegers
- Neurodegenerative Brain Diseases Group, VIB-Center for Molecular Neurology, University of Antwerp, 20610 Antwerp, Belgium; (K.S.); (C.V.B.)
- Department of Biomedical Sciences, University of Antwerp, 20610 Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB-Center for Molecular Neurology, University of Antwerp, 20610 Antwerp, Belgium; (K.S.); (C.V.B.)
- Department of Biomedical Sciences, University of Antwerp, 20610 Antwerp, Belgium
| | - Carsten Korth
- Department of Neuropathology, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.M.-S.); (C.K.)
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (S.M.); (L.E.); (M.B.); (W.W.)
- Correspondence:
| |
Collapse
|
71
|
Huang YR, Liu RT. The Toxicity and Polymorphism of β-Amyloid Oligomers. Int J Mol Sci 2020; 21:E4477. [PMID: 32599696 PMCID: PMC7352971 DOI: 10.3390/ijms21124477] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/26/2022] Open
Abstract
It is widely accepted that β-amyloid oligomers (Aβos) play a key role in the progression of Alzheimer's disease (AD) by inducing neuron damage and cognitive impairment, but Aβos are highly heterogeneous in their size, structure and cytotoxicity, making the corresponding studies tough to carry out. Nevertheless, a number of studies have recently made remarkable progress in the describing the characteristics and pathogenicity of Aβos. We here review the mechanisms by which Aβos exert their neuropathogenesis for AD progression, including receptor binding, cell membrane destruction, mitochondrial damage, Ca2+ homeostasis dysregulation and tau pathological induction. We also summarize the characteristics and pathogenicity such as the size, morphology and cytotoxicity of dimers, trimers, Aβ*56 and spherical oligomers, and suggest that Aβos may play a different role at different phases of AD pathogenesis, resulting in differential consequences on neuronal synaptotoxicity and survival. It is warranted to investigate the temporal sequence of Aβos in AD human brain and examine the relationship between different Aβos and cognitive impairment.
Collapse
Affiliation(s)
- Ya-ru Huang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui-tian Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
| |
Collapse
|
72
|
Zott B, Simon MM, Hong W, Unger F, Chen-Engerer HJ, Frosch MP, Sakmann B, Walsh DM, Konnerth A. A vicious cycle of β amyloid-dependent neuronal hyperactivation. Science 2020; 365:559-565. [PMID: 31395777 DOI: 10.1126/science.aay0198] [Citation(s) in RCA: 434] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
Abstract
β-amyloid (Aβ)-dependent neuronal hyperactivity is believed to contribute to the circuit dysfunction that characterizes the early stages of Alzheimer's disease (AD). Although experimental evidence in support of this hypothesis continues to accrue, the underlying pathological mechanisms are not well understood. In this experiment, we used mouse models of Aβ-amyloidosis to show that hyperactivation is initiated by the suppression of glutamate reuptake. Hyperactivity occurred in neurons with preexisting baseline activity, whereas inactive neurons were generally resistant to Aβ-mediated hyperactivation. Aβ-containing AD brain extracts and purified Aβ dimers were able to sustain this vicious cycle. Our findings suggest a cellular mechanism of Aβ-dependent neuronal dysfunction that can be active before plaque formation.
Collapse
Affiliation(s)
- Benedikt Zott
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany.,Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| | - Manuel M Simon
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany.,Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| | - Wei Hong
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Felix Unger
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany.,Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| | - Hsing-Jung Chen-Engerer
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany.,Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| | - Matthew P Frosch
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bert Sakmann
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Arthur Konnerth
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany. .,Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| |
Collapse
|
73
|
Neuroinflammation in CNS diseases: Molecular mechanisms and the therapeutic potential of plant derived bioactive molecules. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100176] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
74
|
Li S, Hayden EY, Garcia VJ, Fuchs DT, Sheyn J, Daley DA, Rentsendorj A, Torbati T, Black KL, Rutishauser U, Teplow DB, Koronyo Y, Koronyo-Hamaoui M. Activated Bone Marrow-Derived Macrophages Eradicate Alzheimer's-Related Aβ 42 Oligomers and Protect Synapses. Front Immunol 2020; 11:49. [PMID: 32082319 PMCID: PMC7005081 DOI: 10.3389/fimmu.2020.00049] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Impaired synaptic integrity and function due to accumulation of amyloid β-protein (Aβ42) oligomers is thought to be a major contributor to cognitive decline in Alzheimer's disease (AD). However, the exact role of Aβ42 oligomers in synaptotoxicity and the ability of peripheral innate immune cells to rescue synapses remain poorly understood due to the metastable nature of oligomers. Here, we utilized photo-induced cross-linking to stabilize pure oligomers and study their effects vs. fibrils on synapses and protection by Aβ-phagocytic macrophages. We found that cortical neurons were more susceptible to Aβ42 oligomers than fibrils, triggering additional neuritic arborization retraction, functional alterations (hyperactivity and spike waveform), and loss of VGluT1- and PSD95-excitatory synapses. Co-culturing neurons with bone marrow-derived macrophages protected synapses against Aβ42 fibrils; moreover, immune activation with glatiramer acetate (GA) conferred further protection against oligomers. Mechanisms involved increased Aβ42 removal by macrophages, amplified by GA stimulation: fibrils were largely cleared through intracellular CD36/EEA1+-early endosomal proteolysis, while oligomers were primarily removed via extracellular/MMP-9 enzymatic degradation. In vivo studies in GA-immunized or CD115+-monocyte-grafted APPSWE/PS1ΔE9-transgenic mice followed by pre- and postsynaptic analyses of entorhinal cortex and hippocampal substructures corroborated our in vitro findings of macrophage-mediated synaptic preservation. Together, our data demonstrate that activated macrophages effectively clear Aβ42 oligomers and rescue VGluT1/PSD95 synapses, providing rationale for harnessing macrophages to treat AD.
Collapse
Affiliation(s)
- Songlin Li
- Institute of Neuroscience and Chemistry, Wenzhou University, Wenzhou, China
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Eric Y. Hayden
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer's Disease Research at UCLA, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Veronica J. Garcia
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Julia Sheyn
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - David A. Daley
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Altan Rentsendorj
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Tania Torbati
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Keith L. Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - David B. Teplow
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer's Disease Research at UCLA, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yosef Koronyo
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
75
|
Abstract
The Amyloid Precursor Protein (APP) is infamous for its proposed pivotal role in the pathogenesis of Alzheimer’s disease (AD). Much research on APP focusses on potential contributions to neurodegeneration, mostly based on mouse models with altered expression or mutated forms of APP. However, cumulative evidence from recent years indicates the indispensability of APP and its metabolites for normal brain physiology. APP contributes to the regulation of synaptic transmission, plasticity, and calcium homeostasis. It plays an important role during development and it exerts neuroprotective effects. Of particular importance is the soluble secreted fragment APPsα which mediates many of its physiological actions, often counteracting the effects of the small APP-derived peptide Aβ. Understanding the contribution of APP for normal functions of the nervous system is of high importance, both from a basic science perspective and also as a basis for generating new pathophysiological concepts and therapeutic approaches in AD. In this article, we review the physiological functions of APP and its metabolites, focusing on synaptic transmission, plasticity, calcium signaling, and neuronal network activity.
Collapse
Affiliation(s)
- Dimitri Hefter
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany.,RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Susann Ludewig
- Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration Group, Braunschweig, Germany.,Cellular Neurobiology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Martin Korte
- Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration Group, Braunschweig, Germany.,Cellular Neurobiology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany
| |
Collapse
|
76
|
Press-Sandler O, Miller Y. Distinct Primary Nucleation of Polymorphic Aβ Dimers Yields to Distinguished Fibrillation Pathways. ACS Chem Neurosci 2019; 10:4407-4413. [PMID: 31532176 DOI: 10.1021/acschemneuro.9b00437] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Polymorphic Aβ dimers are the smallest toxic species that play a role in the pathology of Alzheimer's disease. There is great interest in understanding the malfunctions that yield to these toxic species and in providing insights into the molecular mechanisms of the primary nucleation. Herein, we present a first work that demonstrates two distant edges states of Aβ dimers. The first is the so-called "random coil" state dimer that mimics the primary seeding/nucleation that is far from a fibrillation state. The second is the "fibril-like" state dimer that is structurally in close proximity to the fibril, a well-organized state into a fibril-like structure. We show for the first time that a conformational change of one monomer within the dimer impedes primary nucleation, while less fluctuations and relatively large number of interactions in nucleation domains induce the primary nucleation to produce toxic stable species. Overall, the current study exhibits a diversity of primary nucleation in each dimer state, suggesting distinct molecular mechanisms of fibril formation. The conformations of the early stage Aβ dimers that were achieved may provide crucial data for designing inhibitors to impede the primary nucleation.
Collapse
Affiliation(s)
- Olga Press-Sandler
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| |
Collapse
|
77
|
Mukherjee S, Fang M, Kok WM, Kapp EA, Thombare VJ, Huguet R, Hutton CA, Reid GE, Roberts BR. Establishing Signature Fragments for Identification and Sequencing of Dityrosine Cross-Linked Peptides Using Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2019; 91:12129-12133. [DOI: 10.1021/acs.analchem.9b02986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Soumya Mukherjee
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Mengxuan Fang
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
| | - W. Mei Kok
- University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia
| | - Eugene A. Kapp
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Varsha J. Thombare
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
| | - Romain Huguet
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Craig A. Hutton
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
| | - Gavin E. Reid
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Blaine R. Roberts
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
78
|
Cracco L, Xiao X, Nemani SK, Lavrich J, Cali I, Ghetti B, Notari S, Surewicz WK, Gambetti P. Gerstmann-Sträussler-Scheinker disease revisited: accumulation of covalently-linked multimers of internal prion protein fragments. Acta Neuropathol Commun 2019; 7:85. [PMID: 31142381 PMCID: PMC6540574 DOI: 10.1186/s40478-019-0734-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/09/2019] [Indexed: 12/01/2022] Open
Abstract
Despite their phenotypic heterogeneity, most human prion diseases belong to two broadly defined groups: Creutzfeldt-Jakob disease (CJD) and Gerstmann-Sträussler-Scheinker disease (GSS). While the structural characteristics of the disease-related proteinase K-resistant prion protein (resPrPD) associated with the CJD group are fairly well established, many features of GSS-associated resPrPD are unclear. Electrophoretic profiles of resPrPD associated with GSS variants typically show 6-8 kDa bands corresponding to the internal PrP fragments as well as a variable number of higher molecular weight bands, the molecular nature of which has not been investigated. Here we have performed systematic studies of purified resPrPD species extracted from GSS cases with the A117V (GSSA117V) and F198S (GSSF198S) PrP gene mutations. The combined analysis based on epitope mapping, deglycosylation treatment and direct amino acid sequencing by mass spectrometry provided a conclusive evidence that high molecular weight resPrPD species seen in electrophoretic profiles represent covalently-linked multimers of the internal ~ 7 and ~ 8 kDa fragments. This finding reveals a mechanism of resPrPD aggregate formation that has not been previously established in prion diseases.
Collapse
Affiliation(s)
- Laura Cracco
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Xiangzhu Xiao
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Satish K Nemani
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Jody Lavrich
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Ignazio Cali
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Silvio Notari
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Witold K Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Pierluigi Gambetti
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
79
|
Bateman RJ, Mawuenyega KG, Wildburger NC. The structure of amyloid-β dimers in Alzheimer's disease brain: a step forward for oligomers. Brain 2019; 142:1168-1169. [PMID: 31032843 PMCID: PMC6487336 DOI: 10.1093/brain/awz082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Kwasi G Mawuenyega
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Norelle C Wildburger
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
80
|
Mengel D, Hong W, Corbett GT, Liu W, DeSousa A, Solforosi L, Fang C, Frosch MP, Collinge J, Harris DA, Walsh DM. PrP-grafted antibodies bind certain amyloid β-protein aggregates, but do not prevent toxicity. Brain Res 2019; 1710:125-135. [PMID: 30593771 PMCID: PMC6431553 DOI: 10.1016/j.brainres.2018.12.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/26/2018] [Accepted: 12/23/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND The prion protein (PrP) is known to bind certain soluble aggregates of the amyloid β-protein (Aβ), and two regions of PrP, one centered around residues 19-33, and the other around 87-112, are thought to be particularly important for this interaction. When either of these sequences are grafted into a human IgG the resulting antibodies react with disease-associated PrP conformers, whereas the parental b12 IgG does not. METHODS Human antibodies containing grafts of PrP 19-33 or 87-112 were prepared as before (Solforosi et al., 2007) and tested for their ability to recognize synthetic and Alzheimer's disease (AD) brain-derived Aβ. Since aqueous extracts of AD brain contain a complex mixture of active and inactive Aβ species, we also assessed whether PrP-grafted antibodies could protect against neuritotoxicity mediated by AD brain-derived Aβ. For these experiments, human iPSC-derived neurons were grown in 96-well plates at 5000 cells per well and on post-induction day 21, AD brain extracts were added +/- test antibodies. Neurons were imaged for 3 days using an IncuCyte live-cell imaging system, and neurite number and density quantified. RESULTS Grafted antibodies bound a significant portion of aggregated Aβ in aqueous AD extracts, but when these antibodies were co-incubated with neurons treated with brain extracts they did not reduce toxicity. By contrast, the PrP fragment N1 did protect against Aβ. CONCLUSIONS These results further demonstrate that not all Aβ oligomers are toxic and suggest that PrP derivatives may allow development of agents that differentially recognize toxic and innocuous Aβ aggregates.
Collapse
Affiliation(s)
- David Mengel
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wei Hong
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Grant T Corbett
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wen Liu
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra DeSousa
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Laura Solforosi
- Laboratory of Microbiology and Virology, University Vita-Salute San Raffaele, Milan, Italy
| | - Cheng Fang
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Matthew P Frosch
- Massachusetts General Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - John Collinge
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; MRC Prion Unit at UCL, UCL Institute of Prion Diseases and NHS National Prion Clinic, UCL Hospitals NHS Foundation Trust, London, United Kingdom
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|