51
|
Verkhratsky A, Trebak M, Perocchi F, Khananshvili D, Sekler I. Crosslink between calcium and sodium signalling. Exp Physiol 2018; 103:157-169. [PMID: 29210126 PMCID: PMC6813793 DOI: 10.1113/ep086534] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/24/2017] [Indexed: 12/12/2022]
Abstract
NEW FINDINGS What is the topic of this review? This paper overviews the links between Ca2+ and Na+ signalling in various types of cells. What advances does it highlight? This paper highlights the general importance of ionic signalling and overviews the molecular mechanisms linking Na+ and Ca2+ dynamics. In particular, the narrative focuses on the molecular physiology of plasmalemmal and mitochondrial Na+ -Ca2+ exchangers and plasmalemmal transient receptor potential channels. Functional consequences of Ca2+ and Na+ signalling for co-ordination of neuronal activity with astroglial homeostatic pathways fundamental for synaptic transmission are discussed. ABSTRACT Transmembrane ionic gradients, which are an indispensable feature of life, are used for generation of cytosolic ionic signals that regulate a host of cellular functions. Intracellular signalling mediated by Ca2+ and Na+ is tightly linked through several molecular pathways that generate Ca2+ and Na+ fluxes and are in turn regulated by both ions. Transient receptor potential (TRP) channels bridge endoplasmic reticulum Ca2+ release with generation of Na+ and Ca2+ currents. The plasmalemmal Na+ -Ca2+ exchanger (NCX) flickers between forward and reverse mode to co-ordinate the influx and efflux of both ions with membrane polarization and cytosolic ion concentrations. The mitochondrial calcium uniporter channel (MCU) and mitochondrial Na+ -Ca2+ exchanger (NCLX) mediate Ca2+ entry into and release from this organelle and couple cytosolic Ca2+ and Na+ fluctuations with cellular energetics. Cellular Ca2+ and Na+ signalling controls numerous functional responses and, in the CNS, provides for fast regulation of astroglial homeostatic cascades that are crucial for maintenance of synaptic transmission.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Fabiana Perocchi
- Gene Center/Department of Biochemistry, Ludwig-Maximilians Universität München, Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
| | - Daniel Khananshvili
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Ramat-Aviv, Israel
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Science, Ben-Gurion University, Beer-Sheva, Israel
| |
Collapse
|
52
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
53
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 1068] [Impact Index Per Article: 152.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
54
|
Stoica A, Larsen BR, Assentoft M, Holm R, Holt LM, Vilhardt F, Vilsen B, Lykke-Hartmann K, Olsen ML, MacAulay N. The α2β2 isoform combination dominates the astrocytic Na + /K + -ATPase activity and is rendered nonfunctional by the α2.G301R familial hemiplegic migraine type 2-associated mutation. Glia 2017; 65:1777-1793. [PMID: 28787093 DOI: 10.1002/glia.23194] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 11/11/2022]
Abstract
Synaptic activity results in transient elevations in extracellular K+ , clearance of which is critical for sustained function of the nervous system. The K+ clearance is, in part, accomplished by the neighboring astrocytes by mechanisms involving the Na+ /K+ -ATPase. The Na+ /K+ -ATPase consists of an α and a β subunit, each with several isoforms present in the central nervous system, of which the α2β2 and α2β1 isoform combinations are kinetically geared for astrocytic K+ clearance. While transcript analysis data designate α2β2 as predominantly astrocytic, the relative quantitative protein distribution and isoform pairing remain unknown. As cultured astrocytes altered their isoform expression in vitro, we isolated a pure astrocytic fraction from rat brain by a novel immunomagnetic separation approach in order to determine the expression levels of α and β isoforms by immunoblotting. In order to compare the abundance of isoforms in astrocytic samples, semi-quantification was carried out with polyhistidine-tagged Na+ /K+ -ATPase subunit isoforms expressed in Xenopus laevis oocytes as standards to obtain an efficiency factor for each antibody. Proximity ligation assay illustrated that α2 paired efficiently with both β1 and β2 and the semi-quantification of the astrocytic fraction indicated that the astrocytic Na+ /K+ -ATPase is dominated by α2, paired with β1 or β2 (in a 1:9 ratio). We demonstrate that while the familial hemiplegic migraine-associated α2.G301R mutant was not functionally expressed at the plasma membrane in a heterologous expression system, α2+/G301R mice displayed normal protein levels of α2 and glutamate transporters and that the one functional allele suffices to manage the general K+ dynamics.
Collapse
Affiliation(s)
- Anca Stoica
- Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brian Roland Larsen
- Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Assentoft
- Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Holm
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Leanne Melissa Holt
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Frederik Vilhardt
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michelle Lynne Olsen
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia
| | - Nanna MacAulay
- Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
55
|
Unekawa M, Ikeda K, Tomita Y, Kawakami K, Suzuki N. Enhanced susceptibility to cortical spreading depression in two types of Na +,K +-ATPase α2 subunit-deficient mice as a model of familial hemiplegic migraine 2. Cephalalgia 2017; 38:1515-1524. [PMID: 29041816 DOI: 10.1177/0333102417738249] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Patients with familial hemiplegic migraine type 2 (FHM2) have a mutated ATP1A2 gene (encoding Na+,K+-ATPase α2 subunit) and show prolonged migraine aura. Cortical spreading depression (CSD), which involves mass depolarization of neurons and astrocytes that propagates slowly through the gray matter, is profoundly related to aura. Methods In two types of Atp1a2-defective heterozygous mice, Atp1a2tm1Kwk (C-KO) and Atp1a2tm2Kwk (N-KO), the sensitivity and responsiveness to CSD were examined under urethane anesthesia. Results In both cases, heterozygotes exhibited a low threshold for induction of CSD, faster propagation rate, slower recovery from DC deflection, and profound suppression of the electroencephalogram, compared to wild-type mice. A high dose of KCl elicited repeated CSDs for a longer period, with a tendency for a greater frequency of CSD occurrence in heterozygotes. The difference of every endpoint was slightly greater in N-KO than C-KO. Change of regional cerebral blood flow in response to CSD showed no significant difference. Conclusion Heterozygotes of Atp1a2-defective mice simulating FHM2 demonstrated high susceptibility to CSD rather than cortical vasoreactivity, and these effects may differ depending upon the knockout strategy for the gene disruption. These results suggest that patients with FHM2 may exhibit high susceptibility to CSD, resulting in migraine.
Collapse
Affiliation(s)
- Miyuki Unekawa
- 1 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Ikeda
- 2 Division of Biology, Hyogo College of Medicine, Nishinomiya, Japan.,3 Division of Biology, Center for Molecular Medicine, Jichi Medical School, Shimotsuke, Japan
| | - Yutaka Tomita
- 1 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Kiyoshi Kawakami
- 3 Division of Biology, Center for Molecular Medicine, Jichi Medical School, Shimotsuke, Japan
| | - Norihiro Suzuki
- 1 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
56
|
O'Donovan SM, Sullivan CR, McCullumsmith RE. The role of glutamate transporters in the pathophysiology of neuropsychiatric disorders. NPJ SCHIZOPHRENIA 2017; 3:32. [PMID: 28935880 PMCID: PMC5608761 DOI: 10.1038/s41537-017-0037-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/24/2017] [Accepted: 09/01/2017] [Indexed: 02/08/2023]
Abstract
Altered glutamate transporter expression is a common feature of many neuropsychiatric conditions, including schizophrenia. Excitatory amino acid transporters (EAATs) are responsible for the reuptake of glutamate, preventing non-physiological spillover from the synapse. Postmortem studies have revealed significant dysregulation of EAAT expression in various brain regions at the cellular and subcellular level. Recent animal studies have also demonstrated a role for glutamate spillover as a mechanism of disease. In this review, we describe current evidence for the role of glutamate transporters in regulating synaptic plasticity and transmission. In neuropsychiatric conditions, EAAT splice variant expression is altered. There are changes in the localization of the transporters and disruption of the metabolic and structural protein network that supports EAAT activity. This results in aberrant neuroplasticity and excitatory signaling, contributing to the symptoms associated with neuropsychiatric disease. Understanding the complex functions of glutamate transporters will clarify the relevance of their role in the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sinead M O'Donovan
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, 45221, USA.
| | - Courtney R Sullivan
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | | |
Collapse
|
57
|
Ellman DG, Isaksen TJ, Lund MC, Dursun S, Wirenfeldt M, Jørgensen LH, Lykke-Hartmann K, Lambertsen KL. The loss-of-function disease-mutation G301R in the Na +/K +-ATPase α 2 isoform decreases lesion volume and improves functional outcome after acute spinal cord injury in mice. BMC Neurosci 2017; 18:66. [PMID: 28886701 PMCID: PMC5590116 DOI: 10.1186/s12868-017-0385-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022] Open
Abstract
Background The Na+/K+-ATPases are transmembrane ion pumps important for maintenance of ion gradients across the plasma membrane that serve to support multiple cellular functions, such as membrane potentials, regulation of cellular volume and pH, and co-transport of signaling transmitters in all animal cells. The α2Na+/K+-ATPase subunit isoform is predominantly expressed in astrocytes, which us the sharp Na+-gradient maintained by the sodium pump necessary for astroglial metabolism. Prolonged ischemia induces an elevation of [Na+]i, decreased ATP levels and intracellular pH owing to anaerobic metabolism and lactate accumulation. During ischemia, Na+/K+-ATPase-related functions will naturally increase the energy demand of the Na+/K+-ATPase ion pump. However, the role of the α2Na+/K+-ATPase in contusion injury to the spinal cord remains unknown. We used mice heterozygous mice for the loss-of-function disease-mutation G301R in the Atp1a2 gene (α2+/G301R) to study the effect of reduced α2Na+/K+-ATPase expression in a moderate contusion spinal cord injury (SCI) model. Results We found that α2+/G301R mice display significantly improved functional recovery and decreased lesion volume compared to littermate controls (α2+/+) 7 days after SCI. The protein level of the α1 isoform was significantly increased, in contrast to the α3 isoform that significantly decreased 3 days after SCI in both α2+/G301R and α2+/+ mice. The level of the α2 isoform was significantly decreased in α2+/G301R mice both under naïve conditions and 3 days after SCI compared to α2+/+ mice. We found no differences in astroglial aquaporin 4 levels and no changes in the expression of chemokines (CCL2, CCL5 and CXCL1) and cytokines (TNF, IL-6, IL-1β, IL-10 and IL-5) between genotypes, just as no apparent differences were observed in location and activation of CD45 and F4/80 positive microglia and infiltrating leukocytes. Conclusion Our proof of concept study demonstrates that reduced expression of the α2 isoform in the spinal cord is protective following SCI. Importantly, the BMS and lesion volume were assessed at 7 days after SCI, and longer time points after SCI were not evaluated. However, the α2 isoform is a potential possible target of therapeutic strategies for the treatment of SCI.
Collapse
Affiliation(s)
- Ditte Gry Ellman
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000, Odense C, Denmark
| | - Toke Jost Isaksen
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, 8000, Aarhus C, Denmark
| | - Minna Christiansen Lund
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000, Odense C, Denmark
| | - Safinaz Dursun
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000, Odense C, Denmark
| | - Martin Wirenfeldt
- Department of Pathology, University of Southern Denmark/Odense University Hospital, Odense, 5000, Odense C, Denmark.,Department of Clinical Research, University of Southern Denmark/Odense University Hospital, Odense, 5000, Odense C, Denmark
| | - Louise Helskov Jørgensen
- Department of Pathology, University of Southern Denmark/Odense University Hospital, Odense, 5000, Odense C, Denmark.,Department of Clinical Research, University of Southern Denmark/Odense University Hospital, Odense, 5000, Odense C, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark. .,Department of Clinical Medicine, Aarhus University, 8000, Aarhus C, Denmark. .,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, 8000, Aarhus C, Denmark. .,Department of Clinical Genetics, Aarhus University Hospital, 8000, Aarhus C, Denmark.
| | - Kate Lykke Lambertsen
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000, Odense C, Denmark. .,Department of Neurology, Odense University Hospital, 5000, Odense C, Denmark. .,BRIDGE, Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5000, Odense C, Denmark.
| |
Collapse
|
58
|
Abstract
The sodium and potassium gradients across the plasma membrane are used by animal cells for numerous processes, and the range of demands requires that the responsible ion pump, the Na,K-ATPase, can be fine-tuned to the different cellular needs. Therefore, several isoforms are expressed of each of the three subunits that make a Na,K-ATPase, the alpha, beta and FXYD subunits. This review summarizes the various roles and expression patterns of the Na,K-ATPase subunit isoforms and maps the sequence variations to compare the differences structurally. Mutations in the Na,K-ATPase genes encoding alpha subunit isoforms have severe physiological consequences, causing very distinct, often neurological diseases. The differences in the pathophysiological effects of mutations further underline how the kinetic parameters, regulation and proteomic interactions of the Na,K-ATPase isoforms are optimized for the individual cellular needs.
Collapse
Affiliation(s)
- Michael V Clausen
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhus, Denmark
| | - Florian Hilbers
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhus, Denmark
| | - Hanne Poulsen
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhus, Denmark
| |
Collapse
|
59
|
Kardos J, Héja L, Jemnitz K, Kovács R, Palkovits M. The nature of early astroglial protection-Fast activation and signaling. Prog Neurobiol 2017; 153:86-99. [PMID: 28342942 DOI: 10.1016/j.pneurobio.2017.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/22/2016] [Accepted: 03/05/2017] [Indexed: 12/14/2022]
Abstract
Our present review is focusing on the uniqueness of balanced astroglial signaling. The balance of excitatory and inhibitory signaling within the CNS is mainly determined by sharp synaptic transients of excitatory glutamate (Glu) and inhibitory γ-aminobutyrate (GABA) acting on the sub-second timescale. Astroglia is involved in excitatory chemical transmission by taking up i) Glu through neurotransmitter-sodium transporters, ii) K+ released due to presynaptic action potential generation, and iii) water keeping osmotic pressure. Glu uptake-coupled Na+ influx may either ignite long-range astroglial Ca2+ transients or locally counteract over-excitation via astroglial GABA release and increased tonic inhibition. Imbalance of excitatory and inhibitory drives is associated with a number of disease conditions, including prevalent traumatic and ischaemic injuries or the emergence of epilepsy. Therefore, when addressing the potential of early therapeutic intervention, astroglial signaling functions combating progress of Glu excitotoxicity is of critical importance. We suggest, that excitotoxicity is linked primarily to over-excitation induced by the impairment of astroglial Glu uptake and/or GABA release. Within this framework, we discuss the acute alterations of Glu-cycling and metabolism and conjecture the therapeutic promise of regulation. We also confer the role played by key carrier proteins and enzymes as well as their interplay at the molecular, cellular, and organ levels. Moreover, based on our former studies, we offer potential prospect on the emerging theme of astroglial succinate sensing in course of Glu excitotoxicity.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary.
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary
| | - Katalin Jemnitz
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary
| | - Richárd Kovács
- Institute of Neurophysiology, Charité - Universitätsmedizin, Berlin, Germany
| | - Miklós Palkovits
- Human Brain Tissue Bank and Laboratory, Semmelweis University, Budapest, Hungary
| |
Collapse
|
60
|
Sutherland HG, Griffiths LR. Genetics of Migraine: Insights into the Molecular Basis of Migraine Disorders. Headache 2017; 57:537-569. [PMID: 28271496 DOI: 10.1111/head.13053] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/09/2017] [Indexed: 12/20/2022]
Abstract
Migraine is a complex, debilitating neurovascular disorder, typically characterized by recurring, incapacitating attacks of severe headache often accompanied by nausea and neurological disturbances. It has a strong genetic basis demonstrated by rare migraine disorders caused by mutations in single genes (monogenic), as well as familial clustering of common migraine which is associated with polymorphisms in many genes (polygenic). Hemiplegic migraine is a dominantly inherited, severe form of migraine with associated motor weakness. Family studies have found that mutations in three different ion channels genes, CACNA1A, ATP1A2, and SCN1A can be causal. Functional studies of these mutations has shown that they can result in defective regulation of glutamatergic neurotransmission and the excitatory/inhibitory balance in the brain, which lowers the threshold for cortical spreading depression, a wave of cortical depolarization thought to be involved in headache initiation mechanisms. Other putative genes for monogenic migraine include KCKN18, PRRT2, and CSNK1D, which can also be involved with other disorders. There are a number of primarily vascular disorders caused by mutations in single genes, which are often accompanied by migraine symptoms. Mutations in NOTCH3 causes cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a hereditary cerebrovascular disease that leads to ischemic strokes and dementia, but in which migraine is often present, sometimes long before the onset of other symptoms. Mutations in the TREX1 and COL4A1 also cause vascular disorders, but often feature migraine. With respect to common polygenic migraine, genome-wide association studies have now identified single nucleotide polymorphisms at 38 loci significantly associated with migraine risk. Functions assigned to the genes in proximity to these loci suggest that both neuronal and vascular pathways also contribute to the pathophysiology of common migraine. Further studies are required to fully understand these findings and translate them into treatment options for migraine patients.
Collapse
Affiliation(s)
- Heidi G Sutherland
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, QUT, Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, QUT, Musk Ave, Kelvin Grove, QLD, 4059, Australia
| |
Collapse
|
61
|
Rose CR, Ziemens D, Untiet V, Fahlke C. Molecular and cellular physiology of sodium-dependent glutamate transporters. Brain Res Bull 2016; 136:3-16. [PMID: 28040508 DOI: 10.1016/j.brainresbull.2016.12.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 02/04/2023]
Abstract
Glutamate is the major excitatory transmitter in the vertebrate brain. After its release from presynaptic nerve terminals, it is rapidly taken up by high-affinity sodium-dependent plasma membrane transporters. While both neurons and glial cells express these excitatory amino acid transporters (EAATs), the majority of glutamate uptake is accomplished by astrocytes, which convert synaptically-released glutamate to glutamine or feed it into their own metabolism. Glutamate uptake by astrocytes not only shapes synaptic transmission by regulating the availability of glutamate to postsynaptic neuronal receptors, but also protects neurons from hyper-excitability and subsequent excitotoxic damage. In the present review, we provide an overview of the molecular and cellular characteristics of sodium-dependent glutamate transporters and their associated anion permeation pathways, with a focus on astrocytic glutamate transport. We summarize their functional properties and roles within tripartite synapses under physiological and pathophysiological conditions, exemplifying the intricate interactions and interrelationships between neurons and glial cells in the brain.
Collapse
Affiliation(s)
- Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany.
| | - Daniel Ziemens
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Verena Untiet
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, Germany
| | - Christoph Fahlke
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, Germany
| |
Collapse
|
62
|
Hertz L, Chen Y. Importance of astrocytes for potassium ion (K+) homeostasis in brain and glial effects of K+ and its transporters on learning. Neurosci Biobehav Rev 2016; 71:484-505. [DOI: 10.1016/j.neubiorev.2016.09.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/12/2016] [Accepted: 09/23/2016] [Indexed: 10/20/2022]
|
63
|
Atp1a2 contributes modestly to alcohol-related behaviors. Alcohol 2016; 56:29-37. [PMID: 27814792 DOI: 10.1016/j.alcohol.2016.09.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 09/06/2016] [Accepted: 09/12/2016] [Indexed: 01/02/2023]
Abstract
Atp1a2 has been previously studied for anxiety, learning and motor function disorders, and fear. Since Atp1a2 has been shown to be involved in anxiety and this behavior is a known risk factor for developing alcoholism, we have been investigating Atp1a2 for its potential role in responses to alcohol. This study utilized Atp1a2 knockout mice; Atp1a2 heterozygous mice, with half the amount of protein compared to wild-type mice, were used because Atp1a2 homozygous null mice die shortly after birth. The alcohol-related behavioral experiments performed were loss of righting reflex (LORR), acute alcohol withdrawal measured by handling-induced convulsions (HIC), drinking in the dark (DID), open-field activity (OFA), and elevated plus-maze (EPM). LORR was a 2-day test that measures acute alcohol sensitivity, and rapid and acute functional tolerance (AFT). HIC was a 3-day test to measure alcohol withdrawal, DID was a 4-day test which measures voluntary alcohol consumption, and OFA and EPM measured anxiety with alcohol exposure. The effect of genotype on alcohol metabolism was also examined. There was a genotype effect on rate of alcohol metabolism, but only in males. There was no effect on alcohol withdrawal severity. The Atp1a2 heterozygous mice consumed more alcohol than wild-type mice in the DID test, although only in males. In addition, only males were observed to show rapid tolerance in the LORR test while only female heterozygous mice showed a pretreatment effect on AFT. Alcohol exposure had a greater anxiolytic effect in the heterozygous mice compared to wild-type mice, although, again, there were sex effects with only males showing the effect in OFA and only females in the EPM. Although the behavioral results were mixed, there does appear to be a connection between anxiety and alcohol. Overall, the results suggest that Atp1a2 does contribute to alcohol-related behaviors, although the effect is modest with a clear dependence on sex.
Collapse
|
64
|
O'Connell R, Mori Y. Effects of Glia in a Triphasic Continuum Model of Cortical Spreading Depression. Bull Math Biol 2016; 78:1943-1967. [PMID: 27730322 DOI: 10.1007/s11538-016-0206-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 09/15/2016] [Indexed: 12/01/2022]
Abstract
Cortical spreading depression (SD) is a spreading disruption in brain ionic homeostasis during which neurons experience complete and prolonged depolarizations. SD is generally believed to be the physiological substrate of migraine aura and is associated with many other brain pathologies. Here, we perform simulations with a model of SD treating brain tissue as a triphasic continuum of neurons, glia and the extracellular space. A thermodynamically consistent incorporation of the major biophysical effects, including ionic electrodiffusion and osmotic water flow, allows for the computation of important physiological variables including the extracellular voltage (DC) shift. A systematic parameter study reveals that glia can act as both a disperser and buffer of potassium in SD propagation. Furthermore, we show that the timing of the DC shift with respect to extracellular [Formula: see text] rise is highly dependent on glial parameters, a result with implications for the identification of the propagating mechanism of SD.
Collapse
Affiliation(s)
- Rosemary O'Connell
- School of Mathematics, University of Minnesota, 206 Church St. SE, Minneapolis, MN, 55455, USA
| | - Yoichiro Mori
- School of Mathematics, University of Minnesota, 206 Church St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
65
|
Adermark L, Bowers MS. Disentangling the Role of Astrocytes in Alcohol Use Disorder. Alcohol Clin Exp Res 2016; 40:1802-16. [PMID: 27476876 PMCID: PMC5407469 DOI: 10.1111/acer.13168] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/02/2016] [Indexed: 01/29/2023]
Abstract
Several laboratories recently identified that astrocytes are critical regulators of addiction machinery. It is now known that astrocyte pathology is a common feature of ethanol (EtOH) exposure in both humans and animal models, as even brief EtOH exposure is sufficient to elicit long-lasting perturbations in astrocyte gene expression, activity, and proliferation. Astrocytes were also recently shown to modulate the motivational properties of EtOH and other strongly reinforcing stimuli. Given the role of astrocytes in regulating glutamate homeostasis, a crucial component of alcohol use disorder (AUD), astrocytes might be an important target for the development of next-generation alcoholism treatments. This review will outline some of the more prominent features displayed by astrocytes, how these properties are influenced by acute and long-term EtOH exposure, and future directions that may help to disentangle astrocytic from neuronal functions in the etiology of AUD.
Collapse
Affiliation(s)
- Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Box 410, SE-405 30 Gothenburg, Sweden
| | - M. Scott Bowers
- Department of Psychiatry, Virginia Commonwealth University, PO Box 980126, Richmond, VA 23298, USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980126, Richmond, VA 23298, USA
- Faulk Center for Molecular Therapeutics, Northwestern University; Aptinyx,, Evanston, Il 60201, USA
| |
Collapse
|
66
|
Capuani C, Melone M, Tottene A, Bragina L, Crivellaro G, Santello M, Casari G, Conti F, Pietrobon D. Defective glutamate and K+ clearance by cortical astrocytes in familial hemiplegic migraine type 2. EMBO Mol Med 2016; 8:967-86. [PMID: 27354390 PMCID: PMC4967947 DOI: 10.15252/emmm.201505944] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Migraine is a common disabling brain disorder. A subtype of migraine with aura (familial hemiplegic migraine type 2: FHM2) is caused by loss‐of‐function mutations in α2 Na+,K+ATPase (α2NKA), an isoform almost exclusively expressed in astrocytes in adult brain. Cortical spreading depression (CSD), the phenomenon that underlies migraine aura and activates migraine headache mechanisms, is facilitated in heterozygous FHM2‐knockin mice with reduced expression of α2NKA. The mechanisms underlying an increased susceptibility to CSD in FHM2 are unknown. Here, we show reduced rates of glutamate and K+ clearance by cortical astrocytes during neuronal activity and reduced density of GLT‐1a glutamate transporters in cortical perisynaptic astrocytic processes in heterozygous FHM2‐knockin mice, demonstrating key physiological roles of α2NKA and supporting tight coupling with GLT‐1a. Using ceftriaxone treatment of FHM2 mutants and partial inhibition of glutamate transporters in wild‐type mice, we obtain evidence that defective glutamate clearance can account for most of the facilitation of CSD initiation in FHM2‐knockin mice, pointing to excessive glutamatergic transmission as a key mechanism underlying the vulnerability to CSD ignition in migraine.
Collapse
Affiliation(s)
- Clizia Capuani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marcello Melone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy
| | - Angelita Tottene
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Luca Bragina
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy
| | | | - Mirko Santello
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
| | - Giorgio Casari
- Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Milano, Italy
| | - Fiorenzo Conti
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy Fondazione di Medicina Molecolare, Università Politecnica delle Marche, Ancona, Italy
| | - Daniela Pietrobon
- Department of Biomedical Sciences, University of Padova, Padova, Italy CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
67
|
Garcia-Keller C, Kupchik Y, Gipson CD, Brown RM, Spencer S, Bollati F, Esparza MA, Roberts-Wolfe D, Heinsbroek J, Bobadilla AC, Cancela LM, Kalivas PW. Glutamatergic mechanisms of comorbidity between acute stress and cocaine self-administration. Mol Psychiatry 2016; 21:1063-9. [PMID: 26821978 PMCID: PMC4823171 DOI: 10.1038/mp.2015.151] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 06/24/2015] [Accepted: 07/07/2015] [Indexed: 12/31/2022]
Abstract
There is substantial comorbidity between stress disorders and substance use disorders (SUDs), and acute stress augments the locomotor stimulant effect of cocaine in animal models. Here we endeavor to understand the neural underpinnings of comorbid stress disorders and drug use by determining whether the glutamatergic neuroadaptations that characterize cocaine self-administration are induced by acute stress. Rats were exposed to acute (2 h) immobilization stress, and 3 weeks later the nucleus accumbens core was examined for changes in glutamate transport, glutamate-mediated synaptic currents and dendritic spine morphology. We also determined whether acute stress potentiated the acquisition of cocaine self-administration. Acute stress produced an enduring reduction in glutamate transport and potentiated excitatory synapses on medium spiny neurons. Acute stress also augmented the acquisition of cocaine self-administration. Importantly, by restoring glutamate transport in the accumbens core with ceftriaxone the capacity of acute stress to augment the acquisition of cocaine self-administration was abolished. Similarly, ceftriaxone treatment prevented stress-induced potentiation of cocaine-induced locomotor activity. However, ceftriaxone did not reverse stress-induced synaptic potentiation, indicating that this effect of stress exposure did not underpin the increased acquisition of cocaine self-administration. Reversing acute stress-induced vulnerability to self-administer cocaine by normalizing glutamate transport poses a novel treatment possibility for reducing comorbid SUDs in stress disorders.
Collapse
Affiliation(s)
- Constanza Garcia-Keller
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA,IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Yonatan Kupchik
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel 9112102
| | - Cassandra D Gipson
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Robyn M Brown
- Florey Institute of Neuroscience & Mental Health, University of Melbourne, Parkville, Australia
| | - Sade Spencer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Flavia Bollati
- IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria A Esparza
- IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Doug Roberts-Wolfe
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Jasper Heinsbroek
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Ana-Clara Bobadilla
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Liliana M Cancela
- IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA,Corresponding Author. Peter Kalivas, Ph.D., , Phone: 843-876-2340, FAX: 843-792-4423
| |
Collapse
|
68
|
Boscia F, Begum G, Pignataro G, Sirabella R, Cuomo O, Casamassa A, Sun D, Annunziato L. Glial Na(+) -dependent ion transporters in pathophysiological conditions. Glia 2016; 64:1677-97. [PMID: 27458821 DOI: 10.1002/glia.23030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/22/2016] [Accepted: 06/29/2016] [Indexed: 12/12/2022]
Abstract
Sodium dynamics are essential for regulating functional processes in glial cells. Indeed, glial Na(+) signaling influences and regulates important glial activities, and plays a role in neuron-glia interaction under physiological conditions or in response to injury of the central nervous system (CNS). Emerging studies indicate that Na(+) pumps and Na(+) -dependent ion transporters in astrocytes, microglia, and oligodendrocytes regulate Na(+) homeostasis and play a fundamental role in modulating glial activities in neurological diseases. In this review, we first briefly introduced the emerging roles of each glial cell type in the pathophysiology of cerebral ischemia, Alzheimer's disease, epilepsy, Parkinson's disease, Amyotrophic Lateral Sclerosis, and myelin diseases. Then, we discussed the current knowledge on the main roles played by the different glial Na(+) -dependent ion transporters, including Na(+) /K(+) ATPase, Na(+) /Ca(2+) exchangers, Na(+) /H(+) exchangers, Na(+) -K(+) -Cl(-) cotransporters, and Na(+) - HCO3- cotransporter in the pathophysiology of the diverse CNS diseases. We highlighted their contributions in cell survival, synaptic pathology, gliotransmission, pH homeostasis, and their role in glial activation, migration, gliosis, inflammation, and tissue repair processes. Therefore, this review summarizes the foundation work for targeting Na(+) -dependent ion transporters in glia as a novel strategy to control important glial activities associated with Na(+) dynamics in different neurological disorders. GLIA 2016;64:1677-1697.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh Medical School
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Rossana Sirabella
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Antonella Casamassa
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh Medical School.,Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, Pennsylvania, 15213
| | - Lucio Annunziato
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| |
Collapse
|
69
|
Larsen BR, Holm R, Vilsen B, MacAulay N. Glutamate transporter activity promotes enhanced Na + /K + -ATPase-mediated extracellular K + management during neuronal activity. J Physiol 2016; 594:6627-6641. [PMID: 27231201 DOI: 10.1113/jp272531] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/23/2016] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Management of glutamate and K+ in brain extracellular space is of critical importance to neuronal function. The astrocytic α2β2 Na+ /K+ -ATPase isoform combination is activated by the K+ transients occurring during neuronal activity. In the present study, we report that glutamate transporter-mediated astrocytic Na+ transients stimulate the Na+ /K+ -ATPase and thus the clearance of extracellular K+ . Specifically, the astrocytic α2β1 Na+ /K+ -ATPase subunit combination displays an apparent Na+ affinity primed to react to physiological changes in intracellular Na+ . Accordingly, we demonstrate a distinct physiological role in K+ management for each of the two astrocytic Na+ /K+ -ATPase β-subunits. ABSTRACT Neuronal activity is associated with transient [K+ ]o increases. The excess K+ is cleared by surrounding astrocytes, partly by the Na+ /K+ -ATPase of which several subunit isoform combinations exist. The astrocytic Na+ /K+ -ATPase α2β2 isoform constellation responds directly to increased [K+ ]o but, in addition, Na+ /K+ -ATPase-mediated K+ clearance could be governed by astrocytic [Na+ ]i . During most neuronal activity, glutamate is released in the synaptic cleft and is re-absorbed by astrocytic Na+ -coupled glutamate transporters, thereby elevating [Na+ ]i . It thus remains unresolved whether the different Na+ /K+ -ATPase isoforms are controlled by [K+ ]o or [Na+ ]i during neuronal activity. Hippocampal slice recordings of stimulus-induced [K+ ]o transients with ion-sensitive microelectrodes revealed reduced Na+ /K+ -ATPase-mediated K+ management upon parallel inhibition of the glutamate transporter. The apparent intracellular Na+ affinity of isoform constellations involving the astrocytic β2 has remained elusive as a result of inherent expression of β1 in most cell systems, as well as technical challenges involved in measuring intracellular affinity in intact cells. We therefore expressed the different astrocytic isoform constellations in Xenopus oocytes and determined their apparent Na+ affinity in intact oocytes and isolated membranes. The Na+ /K+ -ATPase was not fully saturated at basal astrocytic [Na+ ]i , irrespective of isoform constellation, although the β1 subunit conferred lower apparent Na+ affinity to the α1 and α2 isoforms than the β2 isoform. In summary, enhanced astrocytic Na+ /K+ -ATPase-dependent K+ clearance was obtained with parallel glutamate transport activity. The astrocytic Na+ /K+ -ATPase isoform constellation α2β1 appeared to be specifically geared to respond to the [Na+ ]i transients associated with activity-induced glutamate transporter activity.
Collapse
Affiliation(s)
- Brian Roland Larsen
- Department Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Holm
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Nanna MacAulay
- Department Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
70
|
Friedrich T, Tavraz NN, Junghans C. ATP1A2 Mutations in Migraine: Seeing through the Facets of an Ion Pump onto the Neurobiology of Disease. Front Physiol 2016; 7:239. [PMID: 27445835 PMCID: PMC4914835 DOI: 10.3389/fphys.2016.00239] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/03/2016] [Indexed: 12/31/2022] Open
Abstract
Mutations in four genes have been identified in familial hemiplegic migraine (FHM), from which CACNA1A (FHM type 1) and SCN1A (FHM type 3) code for neuronal voltage-gated calcium or sodium channels, respectively, while ATP1A2 (FHM type 2) encodes the α2 isoform of the Na(+),K(+)-ATPase's catalytic subunit, thus classifying FHM primarily as an ion channel/ion transporter pathology. FHM type 4 is attributed to mutations in the PRRT2 gene, which encodes a proline-rich transmembrane protein of as yet unknown function. The Na(+),K(+)-ATPase maintains the physiological gradients for Na(+) and K(+) ions and is, therefore, critical for the activity of ion channels and transporters involved neuronal excitability, neurotransmitter uptake or Ca(2+) signaling. Strikingly diverse functional abnormalities have been identified for disease-linked ATP1A2 mutations which frequently lead to changes in the enzyme's voltage-dependent properties, kinetics, or apparent cation affinities, but some mutations are truly deleterious for enzyme function and thus cause full haploinsufficiency. Here, we summarize structural and functional data about the Na(+),K(+)-ATPase available to date and an overview is provided about the particular properties of the α2 isoform that explain its physiological relevance in electrically excitable tissues. In addition, current concepts about the neurobiology of migraine, the correlations between primary brain dysfunction and mechanisms of headache pain generation are described, together with insights gained recently from modeling approaches in computational neuroscience. Then, a survey is given about ATP1A2 mutations implicated in migraine cases as documented in the literature with focus on mutations that were described to completely destroy enzyme function, or lead to misfolded or mistargeted protein in particular model cell lines. We also discuss whether or not there are correlations between these most severe mutational effects and clinical phenotypes. Finally, perspectives for future research on the implications of Na(+),K(+)-ATPase mutations in human pathologies are presented.
Collapse
Affiliation(s)
- Thomas Friedrich
- Department of Physical Chemistry/Bioenergetics, Institute of Chemistry, Technical University of BerlinBerlin, Germany
| | | | | |
Collapse
|
71
|
Kinoshita PF, Leite JA, Orellana AMM, Vasconcelos AR, Quintas LEM, Kawamoto EM, Scavone C. The Influence of Na(+), K(+)-ATPase on Glutamate Signaling in Neurodegenerative Diseases and Senescence. Front Physiol 2016; 7:195. [PMID: 27313535 PMCID: PMC4890531 DOI: 10.3389/fphys.2016.00195] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/17/2016] [Indexed: 12/17/2022] Open
Abstract
Decreased Na(+), K(+)-ATPase (NKA) activity causes energy deficiency, which is commonly observed in neurodegenerative diseases. The NKA is constituted of three subunits: α, β, and γ, with four distinct isoforms of the catalytic α subunit (α1-4). Genetic mutations in the ATP1A2 gene and ATP1A3 gene, encoding the α2 and α3 subunit isoforms, respectively can cause distinct neurological disorders, concurrent to impaired NKA activity. Within the central nervous system (CNS), the α2 isoform is expressed mostly in glial cells and the α3 isoform is neuron-specific. Mutations in ATP1A2 gene can result in familial hemiplegic migraine (FHM2), while mutations in the ATP1A3 gene can cause Rapid-onset dystonia-Parkinsonism (RDP) and alternating hemiplegia of childhood (AHC), as well as the cerebellar ataxia, areflexia, pescavus, optic atrophy and sensorineural hearing loss (CAPOS) syndrome. Data indicates that the central glutamatergic system is affected by mutations in the α2 isoform, however further investigations are required to establish a connection to mutations in the α3 isoform, especially given the diagnostic confusion and overlap with glutamate transporter disease. The age-related decline in brain α2∕3 activity may arise from changes in the cyclic guanosine monophosphate (cGMP) and cGMP-dependent protein kinase (PKG) pathway. Glutamate, through nitric oxide synthase (NOS), cGMP and PKG, stimulates brain α2∕3 activity, with the glutamatergic N-methyl-D-aspartate (NMDA) receptor cascade able to drive an adaptive, neuroprotective response to inflammatory and challenging stimuli, including amyloid-β. Here we review the NKA, both as an ion pump as well as a receptor that interacts with NMDA, including the role of NKA subunits mutations. Failure of the NKA-associated adaptive response mechanisms may render neurons more susceptible to degeneration over the course of aging.
Collapse
Affiliation(s)
- Paula F. Kinoshita
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Jacqueline A. Leite
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Ana Maria M. Orellana
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Andrea R. Vasconcelos
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Luis E. M. Quintas
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Elisa M. Kawamoto
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| |
Collapse
|
72
|
McCullumsmith RE, O’Donovan SM, Drummond JB, Benesh FS, Simmons M, Roberts R, Lauriat T, Haroutunian V, Meador-Woodruff JH. Cell-specific abnormalities of glutamate transporters in schizophrenia: sick astrocytes and compensating relay neurons? Mol Psychiatry 2016; 21:823-30. [PMID: 26416546 PMCID: PMC7584379 DOI: 10.1038/mp.2015.148] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/07/2015] [Accepted: 08/17/2015] [Indexed: 12/31/2022]
Abstract
Excitatory amino-acid transporters (EAATs) bind and transport glutamate, limiting spillover from synapses due to their dense perisynaptic expression primarily on astroglia. Converging evidence suggests that abnormalities in the astroglial glutamate transporter localization and function may underlie a disease mechanism with pathological glutamate spillover as well as alterations in the kinetics of perisynaptic glutamate buffering and uptake contributing to dysfunction of thalamo-cortical circuits in schizophrenia. We explored this hypothesis by performing cell- and region-level studies of EAAT1 and EAAT2 expression in the mediodorsal nucleus of the thalamus in an elderly cohort of subjects with schizophrenia. We found decreased protein expression for the typically astroglial-localized glutamate transporters in the mediodorsal and ventral tier nuclei. We next used laser-capture microdissection and quantitative polymerase chain reaction to assess cell-level expression of the transporters and their splice variants. In the mediodorsal nucleus, we found lower expression of transporter transcripts in a population of cells enriched for astrocytes, and higher expression of transporter transcripts in a population of cells enriched for relay neurons. We confirmed expression of transporter protein in neurons in schizophrenia using dual-label immunofluorescence. Finally, the pattern of transporter mRNA and protein expression in rodents treated for 9 months with antipsychotic medication suggests that our findings are not due to the effects of antipsychotic treatment. We found a compensatory increase in transporter expression in neurons that might be secondary to a loss of transporter expression in astrocytes. These changes suggest a profound abnormality in astrocyte functions that support, nourish and maintain neuronal fidelity and synaptic activity.
Collapse
Affiliation(s)
- RE McCullumsmith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - SM O’Donovan
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - JB Drummond
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - FS Benesh
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - M Simmons
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - R Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - T Lauriat
- Department of Psychiatry, Steward St. Elizabeth’s Medical Center, Brighton, MA, USA
| | - V Haroutunian
- Departments of Psychiatry and Neuroscience, The Icahn School of Medicine at Mount Sinai, NY, USA
- James J. Peters VA Medical Center, Mental Illness Research Education and Clinical Center (MIRECC), Bronx, NY, USA
| | - JH Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| |
Collapse
|
73
|
Chen SP, Tolner EA, Eikermann-Haerter K. Animal models of monogenic migraine. Cephalalgia 2016; 36:704-21. [PMID: 27154999 DOI: 10.1177/0333102416645933] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 04/01/2016] [Indexed: 01/18/2023]
Abstract
Migraine is a highly prevalent and disabling neurological disorder with a strong genetic component. Rare monogenic forms of migraine, or syndromes in which migraine frequently occurs, help scientists to unravel pathogenetic mechanisms of migraine and its comorbidities. Transgenic mouse models for rare monogenic mutations causing familial hemiplegic migraine (FHM), cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), and familial advanced sleep-phase syndrome (FASPS), have been created. Here, we review the current state of research using these mutant mice. We also discuss how currently available experimental approaches, including epigenetic studies, biomolecular analysis and optogenetic technologies, can be used for characterization of migraine genes to further unravel the functional and molecular pathways involved in migraine.
Collapse
Affiliation(s)
- Shih-Pin Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taiwan Faculty of Medicine, National Yang-Ming University School of Medicine, Taiwan Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, USA
| | - Else A Tolner
- Departments of Human Genetics and Neurology, Leiden University Medical Centre, the Netherlands
| | - Katharina Eikermann-Haerter
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, USA
| |
Collapse
|
74
|
Isaksen TJ, Lykke-Hartmann K. Insights into the Pathology of the α2-Na(+)/K(+)-ATPase in Neurological Disorders; Lessons from Animal Models. Front Physiol 2016; 7:161. [PMID: 27199775 PMCID: PMC4854887 DOI: 10.3389/fphys.2016.00161] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/15/2016] [Indexed: 12/12/2022] Open
Abstract
A functional Na+/K+-ATPase consists of a catalytic α subunit and a regulatory β subunit. Four α isoforms of the Na+/K+-ATPase are found in mammals, each with a unique expression pattern and catalytic activity. The α2 isoform, encoded by the ATP1A2 gene, is primarily found in the central nervous system (CNS) and in heart-, skeletal- and smooth muscle tissues. In the CNS, the α2 isoform is mainly expressed in glial cells. In particular, the α2 isoform is found in astrocytes, important for astrocytic K+ clearance and, consequently, the indirect uptake of neurotransmitters. Both processes are essential for proper brain activity, and autosomal dominantly mutations in the ATP1A2 gene cause the neurological disorder Familial hemiplegic migraine type 2 (FHM2). FHM2 is a severe subtype of migraine with aura including temporary numbness or weakness, and affecting only one side of the body. FHM2 patients often suffer from neurological comorbidities such as seizures, sensory disturbances, cognitive impairment, and psychiatric manifestations. The functional consequences of FHM2 disease mutations leads to a partial or complete loss of function of pump activity; however, a clear phenotype-genotype correlation has yet to be elucidated. Gene-modified mouse models targeting the Atp1a2 gene have proved instrumental in the understanding of the pathology of FHM2. Several Atp1a2 knockout (KO) mice targeting different exons have been reported. Homozygous Atp1a2 KO mice die shortly after birth due to respiratory malfunction resulting from abnormal Cl− homeostasis in brainstem neurons. Heterozygous KO mice are viable, but display altered behavior and neurological deficits such as altered spatial learning, decreased motor activity and enhanced fear/anxiety compared to wild type mice. FHM2 knock-in (KI) mouse models carrying the human in vivo disease mutations W887R and G301R have also been reported. Both models display altered cortical spreading depression (CSD) and point to deficits in the glutamatergic system as the main underlying mechanism of FHM2.
Collapse
Affiliation(s)
- Toke J Isaksen
- Department of Biomedicine, Aarhus UniversityAarhus, Denmark; Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Molecular Biology and Genetics, Aarhus UniversityAarhus, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus UniversityAarhus, Denmark; Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Molecular Biology and Genetics, Aarhus UniversityAarhus, Denmark; Aarhus Institute of Advanced Studies, Aarhus UniversityAarhus, Denmark
| |
Collapse
|
75
|
Larsen BR, Stoica A, MacAulay N. Managing Brain Extracellular K(+) during Neuronal Activity: The Physiological Role of the Na(+)/K(+)-ATPase Subunit Isoforms. Front Physiol 2016; 7:141. [PMID: 27148079 PMCID: PMC4841311 DOI: 10.3389/fphys.2016.00141] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/04/2016] [Indexed: 11/13/2022] Open
Abstract
During neuronal activity in the brain, extracellular K+ rises and is subsequently removed to prevent a widespread depolarization. One of the key players in regulating extracellular K+ is the Na+/K+-ATPase, although the relative involvement and physiological impact of the different subunit isoform compositions of the Na+/K+-ATPase remain unresolved. The various cell types in the brain serve a certain temporal contribution in the face of network activity; astrocytes respond directly to the immediate release of K+ from neurons, whereas the neurons themselves become the primary K+ absorbers as activity ends. The kinetic characteristics of the catalytic α subunit isoforms of the Na+/K+-ATPase are, partly, determined by the accessory β subunit with which they combine. The isoform combinations expressed by astrocytes and neurons, respectively, appear to be in line with the kinetic characteristics required to fulfill their distinct physiological roles in clearance of K+ from the extracellular space in the face of neuronal activity. Understanding the nature, impact and effects of the various Na+/K+-ATPase isoform combinations in K+ management in the central nervous system might reveal insights into pathological conditions such as epilepsy, migraine, and spreading depolarization following cerebral ischemia. In addition, particular neurological diseases occur as a result of mutations in the α2- (familial hemiplegic migraine type 2) and α3 isoforms (rapid-onset dystonia parkinsonism/alternating hemiplegia of childhood). This review addresses aspects of the Na+/K+-ATPase in the regulation of extracellular K+ in the central nervous system as well as the related pathophysiology. Understanding the physiological setting in non-pathological tissue would provide a better understanding of the pathological events occurring during disease.
Collapse
Affiliation(s)
- Brian Roland Larsen
- Department of Neuroscience and Pharmacology, University of Copenhagen Copenhagen, Denmark
| | - Anca Stoica
- Department of Neuroscience and Pharmacology, University of Copenhagen Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Neuroscience and Pharmacology, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
76
|
Astroglial glutamate transporters coordinate excitatory signaling and brain energetics. Neurochem Int 2016; 98:56-71. [PMID: 27013346 DOI: 10.1016/j.neuint.2016.03.014] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/22/2022]
Abstract
In the mammalian brain, a family of sodium-dependent transporters maintains low extracellular glutamate and shapes excitatory signaling. The bulk of this activity is mediated by the astroglial glutamate transporters GLT-1 and GLAST (also called EAAT2 and EAAT1). In this review, we will discuss evidence that these transporters co-localize with, form physical (co-immunoprecipitable) interactions with, and functionally couple to various 'energy-generating' systems, including the Na(+)/K(+)-ATPase, the Na(+)/Ca(2+) exchanger, glycogen metabolizing enzymes, glycolytic enzymes, and mitochondria/mitochondrial proteins. This functional coupling is bi-directional with many of these systems both being regulated by glutamate transport and providing the 'fuel' to support glutamate uptake. Given the importance of glutamate uptake to maintaining synaptic signaling and preventing excitotoxicity, it should not be surprising that some of these systems appear to 'redundantly' support the energetic costs of glutamate uptake. Although the glutamate-glutamine cycle contributes to recycling of neurotransmitter pools of glutamate, this is an over-simplification. The ramifications of co-compartmentalization of glutamate transporters with mitochondria for glutamate metabolism are discussed. Energy consumption in the brain accounts for ∼20% of the basal metabolic rate and relies almost exclusively on glucose for the production of ATP. However, the brain does not possess substantial reserves of glucose or other fuels. To ensure adequate energetic supply, increases in neuronal activity are matched by increases in cerebral blood flow via a process known as 'neurovascular coupling'. While the mechanisms for this coupling are not completely resolved, it is generally agreed that astrocytes, with processes that extend to synapses and endfeet that surround blood vessels, mediate at least some of the signal that causes vasodilation. Several studies have shown that either genetic deletion or pharmacologic inhibition of glutamate transport impairs neurovascular coupling. Together these studies strongly suggest that glutamate transport not only coordinates excitatory signaling, but also plays a pivotal role in regulating brain energetics.
Collapse
|
77
|
Rose CR, Verkhratsky A. Principles of sodium homeostasis and sodium signalling in astroglia. Glia 2016; 64:1611-27. [DOI: 10.1002/glia.22964] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/21/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Christine R. Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Alexei Verkhratsky
- Faculty of Life Sciences; the University of Manchester; Manchester United Kingdom
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Neurosciences; University of the Basque Country UPV/EHU and CIBERNED; Leioa Spain
- University of Nizhny Novgorod; Nizhny Novgorod Russia
| |
Collapse
|
78
|
Glutamate and ATP at the Interface Between Signaling and Metabolism in Astroglia: Examples from Pathology. Neurochem Res 2016; 42:19-34. [PMID: 26915104 DOI: 10.1007/s11064-016-1848-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 12/17/2022]
Abstract
Glutamate is the main excitatory transmitter in the brain, while ATP represents the most important energy currency in any living cell. Yet, these chemicals play an important role in both processes, enabling them with dual-acting functions in metabolic and intercellular signaling pathways. Glutamate can fuel ATP production, while ATP can act as a transmitter in intercellular signaling. We discuss the interface between glutamate and ATP in signaling and metabolism of astrocytes. Not only do glutamate and ATP cross each other's paths in physiology of the brain, but they also do so in its pathology. We present the fabric of this process in (patho)physiology through the discussion of synthesis and metabolism of ATP and glutamate in astrocytes as well as by providing a general description of astroglial receptors for these molecules along with the downstream signaling pathways that may be activated. It is astroglial receptors for these dual-acting molecules that could hold a key for medical intervention in pathological conditions. We focus on two examples disclosing the role of activation of astroglial ATP and glutamate receptors in pathology of two kinds of brain tissue, gray matter and white matter, respectively. Interventions at the interface of metabolism and signaling show promise for translational medicine.
Collapse
|
79
|
Bøttger P, Glerup S, Gesslein B, Illarionova NB, Isaksen TJ, Heuck A, Clausen BH, Füchtbauer EM, Gramsbergen JB, Gunnarson E, Aperia A, Lauritzen M, Lambertsen KL, Nissen P, Lykke-Hartmann K. Glutamate-system defects behind psychiatric manifestations in a familial hemiplegic migraine type 2 disease-mutation mouse model. Sci Rep 2016; 6:22047. [PMID: 26911348 PMCID: PMC4766516 DOI: 10.1038/srep22047] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/05/2016] [Indexed: 01/12/2023] Open
Abstract
Migraine is a complex brain disorder, and understanding the complexity of this prevalent disease could improve quality of life for millions of people. Familial Hemiplegic Migraine type 2 (FHM2) is a subtype of migraine with aura and co-morbidities like epilepsy/seizures, cognitive impairments and psychiatric manifestations, such as obsessive-compulsive disorder (OCD). FHM2 disease-mutations locate to the ATP1A2 gene encoding the astrocyte-located α2-isoform of the sodium-potassium pump (α2Na+/K+-ATPase). We show that knock-in mice heterozygous for the FHM2-associated G301R-mutation (α2+/G301R) phenocopy several FHM2-relevant disease traits e.g., by mimicking mood depression and OCD. In vitro studies showed impaired glutamate uptake in hippocampal mixed astrocyte-neuron cultures from α2G301R/G301R E17 embryonic mice, and moreover, induction of cortical spreading depression (CSD) resulted in reduced recovery in α2+/G301R male mice. Moreover, NMDA-type glutamate receptor antagonists or progestin-only treatment reverted specific α2+/G301R behavioral phenotypes. Our findings demonstrate that studies of an in vivo relevant FHM2 disease knock-in mouse model provide a link between the female sex hormone cycle and the glutamate system and a link to co-morbid psychiatric manifestations of FHM2.
Collapse
Affiliation(s)
- Pernille Bøttger
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark.,University of Southern Denmark, Institute of Molecular Medicine, Department of Neurobiology Research, DK-5000 Odense, Denmark
| | - Simon Glerup
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,The Lundbeck Foundation Research Centre MIND, Aarhus University, Department of Biomedicine, DK-8000 Aarhus C, Denmark
| | - Bodil Gesslein
- University of Copenhagen, Department of Neuroscience and Pharmacology and Center for Healthy Aging, DK-2200 Copenhagen N, Denmark
| | - Nina B Illarionova
- Karolinska Institutet, Department of Women's and Children's Health, SE-171 76 Stockholm, Sweden
| | - Toke J Isaksen
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark
| | - Anders Heuck
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark
| | - Bettina H Clausen
- University of Southern Denmark, Institute of Molecular Medicine, Department of Neurobiology Research, DK-5000 Odense, Denmark
| | | | - Jan B Gramsbergen
- University of Southern Denmark, Institute of Molecular Medicine, Department of Neurobiology Research, DK-5000 Odense, Denmark
| | - Eli Gunnarson
- Karolinska Institutet, Department of Women's and Children's Health, SE-171 76 Stockholm, Sweden
| | - Anita Aperia
- Karolinska Institutet, Department of Women's and Children's Health, SE-171 76 Stockholm, Sweden
| | - Martin Lauritzen
- University of Copenhagen, Department of Neuroscience and Pharmacology and Center for Healthy Aging, DK-2200 Copenhagen N, Denmark.,Glostrup Hospital, Department of Clinical Neurophysiology, DK-2600 Glostrup, Denmark
| | - Kate L Lambertsen
- University of Southern Denmark, Institute of Molecular Medicine, Department of Neurobiology Research, DK-5000 Odense, Denmark
| | - Poul Nissen
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark.,Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus, Denmark.,Danish Research Institute for Translational Neuroscience-DANDRITE, Nordic-EMBL Partnership of Molecular Medicine, Aarhus University, Department of Molecular Biology and Genetics and Department of Biomedicine, DK-8000 Aarhus C, Denmark
| | - Karin Lykke-Hartmann
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B DK-8000 Aarhus C, Denmark
| |
Collapse
|
80
|
|
81
|
Abousaab A, Warsi J, Elvira B, Lang F. Caveolin-1 Sensitivity of Excitatory Amino Acid Transporters EAAT1, EAAT2, EAAT3, and EAAT4. J Membr Biol 2015; 249:239-49. [PMID: 26690923 DOI: 10.1007/s00232-015-9863-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
Abstract
Excitatory amino acid transporters EAAT1 (SLC1A3), EAAT2 (SLC1A2), EAAT3 (SLC1A1), and EAAT4 (SLC1A6) serve to clear L-glutamate from the synaptic cleft and are thus important for the limitation of neuronal excitation. EAAT3 has previously been shown to form complexes with caveolin-1, a major component of caveolae, which participate in the regulation of transport proteins. The present study explored the impact of caveolin-1 on electrogenic transport by excitatory amino acid transporter isoforms EAAT1-4. To this end cRNA encoding EAAT1, EAAT2, EAAT3, or EAAT4 was injected into Xenopus oocytes without or with additional injection of cRNA encoding caveolin-1. The L-glutamate (2 mM)-induced inward current (I Glu) was taken as a measure of glutamate transport. As a result, I Glu was observed in EAAT1-, EAAT2-, EAAT3-, or EAAT4-expressing oocytes but not in water-injected oocytes, and was significantly decreased by coexpression of caveolin-1. Caveolin-1 decreased significantly the maximal transport rate. Treatment of EAATs-expressing oocytes with brefeldin A (5 µM) was followed by a decrease in conductance, which was similar in oocytes expressing EAAT together with caveolin-1 as in oocytes expressing EAAT1-4 alone. Thus, caveolin-1 apparently does not accelerate transporter protein retrieval from the cell membrane. In conclusion, caveolin-1 is a powerful negative regulator of the excitatory glutamate transporters EAAT1, EAAT2, EAAT3, and EAAT4.
Collapse
Affiliation(s)
- Abeer Abousaab
- Department of Physiology I, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | - Jamshed Warsi
- Department of Physiology I, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | - Bernat Elvira
- Department of Physiology I, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | - Florian Lang
- Department of Physiology I, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany.
| |
Collapse
|
82
|
Kirischuk S, Héja L, Kardos J, Billups B. Astrocyte sodium signaling and the regulation of neurotransmission. Glia 2015; 64:1655-66. [DOI: 10.1002/glia.22943] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/28/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Sergei Kirischuk
- University Medical Center of the Johannes Gutenberg University Mainz, Institute of Physiology; Mainz Germany
| | - László Héja
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences; Budapest Hungary
| | - Julianna Kardos
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences; Budapest Hungary
| | - Brian Billups
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University; Acton ACT Australia
| |
Collapse
|
83
|
Abstract
The term spreading depolarization (SD) refers to waves of abrupt, sustained mass depolarization in gray matter of the CNS. SD, which spreads from neuron to neuron in affected tissue, is characterized by a rapid near-breakdown of the neuronal transmembrane ion gradients. SD can be induced by hypoxic conditions--such as from ischemia--and facilitates neuronal death in energy-compromised tissue. SD has also been implicated in migraine aura, where SD is assumed to ascend in well-nourished tissue and is typically benign. In addition to these two ends of the "SD continuum," an SD wave can propagate from an energy-depleted tissue into surrounding, well-nourished tissue, as is often the case in stroke and brain trauma. This review presents the neurobiology of SD--its triggers and propagation mechanisms--as well as clinical manifestations of SD, including overlaps and differences between migraine aura and stroke, and recent developments in neuromonitoring aimed at better diagnosis and more targeted treatments.
Collapse
Affiliation(s)
- Jens P Dreier
- Department of Neurology, Charité University Medicine Berlin, 10117 Berlin, Germany; Department of Experimental Neurology, Charité University Medicine Berlin, 10117 Berlin, Germany; Center for Stroke Research, Charité University Medicine Berlin, 10117 Berlin, Germany.
| | - Clemens Reiffurth
- Department of Experimental Neurology, Charité University Medicine Berlin, 10117 Berlin, Germany; Center for Stroke Research, Charité University Medicine Berlin, 10117 Berlin, Germany
| |
Collapse
|
84
|
Abousaab A, Warsi J, Elvira B, Alesutan I, Hoseinzadeh Z, Lang F. Down-Regulation of Excitatory Amino Acid Transporters EAAT1 and EAAT2 by the Kinases SPAK and OSR1. J Membr Biol 2015; 248:1107-19. [PMID: 26233565 DOI: 10.1007/s00232-015-9826-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/24/2015] [Indexed: 11/27/2022]
Abstract
SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1) are cell volume-sensitive kinases regulated by WNK (with-no-K[Lys]) kinases. SPAK/OSR1 regulate several channels and carriers. SPAK/OSR1 sensitive functions include neuronal excitability. Orchestration of neuronal excitation involves the excitatory glutamate transporters EAAT1 and EAAT2. Sensitivity of those carriers to SPAK/OSR1 has never been shown. The present study thus explored whether SPAK and/or OSR1 contribute to the regulation of EAAT1 and/or EAAT2. To this end, cRNA encoding EAAT1 or EAAT2 was injected into Xenopus oocytes without or with additional injection of cRNA encoding wild-type SPAK or wild-type OSR1, constitutively active (T233E)SPAK, WNK insensitive (T233A)SPAK, catalytically inactive (D212A)SPAK, constitutively active (T185E)OSR1, WNK insensitive (T185A)OSR1 or catalytically inactive (D164A)OSR1. The glutamate (2 mM)-induced inward current (I Glu) was taken as a measure of glutamate transport. As a result, I Glu was observed in EAAT1- and in EAAT2-expressing oocytes but not in water-injected oocytes, and was significantly decreased by coexpression of SPAK and OSR1. As shown for EAAT2, SPAK, and OSR1 decreased significantly the maximal transport rate but significantly enhanced the affinity of the carrier. The effect of wild-type SPAK/OSR1 on EAAT1 and EAAT2 was mimicked by (T233E)SPAK and (T185E)OSR1, but not by (T233A)SPAK, (D212A)SPAK, (T185A)OSR1, or (D164A)OSR1. Coexpression of either SPAK or OSR1 decreased the EAAT2 protein abundance in the cell membrane of EAAT2-expressing oocytes. In conclusion, SPAK and OSR1 are powerful negative regulators of the excitatory glutamate transporters EAAT1 and EAAT2.
Collapse
Affiliation(s)
- Abeer Abousaab
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | - Jamshed Warsi
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | - Bernat Elvira
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | - Ioana Alesutan
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | - Zohreh Hoseinzadeh
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | - Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany.
| |
Collapse
|
85
|
Benjamin Kacerovsky J, Murai KK. Stargazing: Monitoring subcellular dynamics of brain astrocytes. Neuroscience 2015; 323:84-95. [PMID: 26162237 DOI: 10.1016/j.neuroscience.2015.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 06/28/2015] [Accepted: 07/01/2015] [Indexed: 01/21/2023]
Abstract
Astrocytes are major non-neuronal cell types in the central nervous system that regulate a variety of processes in the brain including synaptic transmission, neurometabolism, and cerebrovasculature tone. Recent discoveries have revealed that astrocytes perform very specialized and heterogeneous roles in brain homeostasis and function. Exactly how astrocytes fulfill such diverse roles in the brain remains to be fully understood and is an active area of research. In this review, we focus on the complex subcellular anatomical features of protoplasmic gray matter astrocytes in the mature, healthy brain that likely empower these cells with the ability to detect and respond to changes in neuronal and synaptic activity. In particular, we discuss how intricate processes on astrocytes allow these cells to communicate with neurons and their synapses and strategically deliver specific cellular organelles such as mitochondria and ribosomes to active compartments within the neuropil. Understanding the properties of these structural elements will lead to a better understanding of how astrocytes function in the healthy and diseased brain.
Collapse
Affiliation(s)
- J Benjamin Kacerovsky
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec H3G 1A4, Canada
| | - K K Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec H3G 1A4, Canada.
| |
Collapse
|
86
|
Šerý O, Sultana N, Kashem MA, Pow DV, Balcar VJ. GLAST But Not Least--Distribution, Function, Genetics and Epigenetics of L-Glutamate Transport in Brain--Focus on GLAST/EAAT1. Neurochem Res 2015; 40:2461-72. [PMID: 25972039 DOI: 10.1007/s11064-015-1605-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022]
Abstract
Synaptically released L-glutamate, the most important excitatory neurotransmitter in the CNS, is removed from extracellular space by fast and efficient transport mediated by several transporters; the most abundant ones are EAAT1/GLAST and EAAT2/GLT1. The review first summarizes their location, functions and basic characteristics. We then look at genetics and epigenetics of EAAT1/GLAST and EAAT2/GLT1 and perform in silico analyses of their promoter regions. There is one CpG island in SLC1A2 (EAAT2/GLT1) gene and none in SLC1A3 (EAAT1/GLAST) suggesting that DNA methylation is not the most important epigenetic mechanism regulating EAAT1/GLAST levels in brain. There are targets for specific miRNA in SLC1A2 (EAAT2/GLT1) gene. We also note that while defects in EAAT2/GLT1 have been associated with various pathological states including chronic neurodegenerative diseases, very little is known on possible contributions of defective or dysfunctional EAAT1/GLAST to any specific brain disease. Finally, we review evidence of EAAT1/GLAST involvement in mechanisms of brain response to alcoholism and present some preliminary data showing that ethanol, at concentrations which may be reached following heavy drinking, can have an effect on the distribution of EAAT1/GLAST in cultured astrocytes; the effect is blocked by baclofen, a GABA-B receptor agonist and a drug potentially useful in the treatment of alcoholism. We argue that more research effort should be focused on EAAT1/GLAST, particularly in relation to alcoholism and drug addiction.
Collapse
Affiliation(s)
- Omar Šerý
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic
| | - Nilufa Sultana
- Laboratory of Neurochemistry, Bosch Institute and Discipline of Anatomy and Histology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Mohammed Abul Kashem
- Laboratory of Neurochemistry, Bosch Institute and Discipline of Anatomy and Histology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - David V Pow
- School of Medical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
| | - Vladimir J Balcar
- Laboratory of Neurochemistry, Bosch Institute and Discipline of Anatomy and Histology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
87
|
Molecular and functional characterization of seven Na+/K+-ATPase β subunit paralogs in Senegalese sole (Solea senegalensis Kaup, 1858). Comp Biochem Physiol B Biochem Mol Biol 2015; 182:14-26. [DOI: 10.1016/j.cbpb.2014.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 11/24/2014] [Accepted: 11/29/2014] [Indexed: 11/22/2022]
|
88
|
Astrocyte sodium signaling and neuro-metabolic coupling in the brain. Neuroscience 2015; 323:121-34. [PMID: 25791228 DOI: 10.1016/j.neuroscience.2015.03.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 11/20/2022]
Abstract
At tripartite synapses, astrocytes undergo calcium signaling in response to release of neurotransmitters and this calcium signaling has been proposed to play a critical role in neuron-glia interaction. Recent work has now firmly established that, in addition, neuronal activity also evokes sodium transients in astrocytes, which can be local or global depending on the number of activated synapses and the duration of activity. Furthermore, astrocyte sodium signals can be transmitted to adjacent cells through gap junctions and following release of gliotransmitters. A main pathway for activity-related sodium influx into astrocytes is via high-affinity sodium-dependent glutamate transporters. Astrocyte sodium signals differ in many respects from the well-described glial calcium signals both in terms of their temporal as well as spatial distribution. There are no known buffering systems for sodium ions, nor is there store-mediated release of sodium. Sodium signals thus seem to represent rather direct and unbiased indicators of the site and strength of neuronal inputs. As such they have an immediate influence on the activity of sodium-dependent transporters which may even reverse in response to sodium signaling, as has been shown for GABA transporters for example. Furthermore, recovery from sodium transients through Na(+)/K(+)-ATPase requires a measurable amount of ATP, resulting in an activation of glial metabolism. In this review, we present basic principles of sodium regulation and the current state of knowledge concerning the occurrence and properties of activity-related sodium transients in astrocytes. We then discuss different aspects of the relationship between sodium changes in astrocytes and neuro-metabolic coupling, putting forward the idea that indeed sodium might serve as a new type of intracellular ion signal playing an important role in neuron-glia interaction and neuro-metabolic coupling in the healthy and diseased brain.
Collapse
|
89
|
Zhang LN, Sun YJ, Wang LX, Gao ZB. Glutamate Transporters/Na(+), K(+)-ATPase Involving in the Neuroprotective Effect as a Potential Regulatory Target of Glutamate Uptake. Mol Neurobiol 2015; 53:1124-1131. [PMID: 25586061 DOI: 10.1007/s12035-014-9071-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 12/29/2014] [Indexed: 02/05/2023]
Abstract
The glutamate (Glu) transporters GLAST and GLT-1, as the two most important transporters in brain tissue, transport Glu from the extracellular space into the cell protecting against Glu toxicity. Furthermore, GLAST and GLT-1 are sodium-dependent Glu transporters (GluTs) that rely on sodium and potassium gradients generated principally by Na(+), K(+)-ATPase to generate ion gradients that drive Glu uptake. There is an interaction between Na(+), K(+)-ATPase and GluTs to modulate Glu uptake, and Na(+), K(+)-ATPase α, β or γ subunit can be directly coupled to GluTs, co-localizing with GLAST or GLT-1 in vivo to form a macromolecular complex and operate as a functional unit to regulate glutamatergic neurotransmission. Therefore, GluTs/Na(+), K(+)-ATPase may be involved in the neuroprotective effect as a potential regulatory target of Glu uptake in neurodegenerative diseases induced by Glu-mediated neurotoxicity as the final common pathway.
Collapse
Affiliation(s)
- Li-Nan Zhang
- Department of Pharmacy, Hebei University of Science and Technology, 70 Yuhua East Road, Shijiazhuang, Hebei, 050018, People's Republic of China
| | - Yong-Jun Sun
- Department of Pharmacy, Hebei University of Science and Technology, 70 Yuhua East Road, Shijiazhuang, Hebei, 050018, People's Republic of China
| | - Li-Xue Wang
- Cadre Ward, Capital Medical University Electric Power Teaching Hospital, Compound A1, Taiping Bridge Xili, Beijing, 100073, People's Republic of China
| | - Zi-Bin Gao
- Department of Pharmacy, Hebei University of Science and Technology, 70 Yuhua East Road, Shijiazhuang, Hebei, 050018, People's Republic of China. .,State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, 70 Yuhua East Road, Shijiazhuang, 050018, People's Republic of China.
| |
Collapse
|
90
|
Seidel JL, Faideau M, Aiba I, Pannasch U, Escartin C, Rouach N, Bonvento G, Shuttleworth CW. Ciliary neurotrophic factor (CNTF) activation of astrocytes decreases spreading depolarization susceptibility and increases potassium clearance. Glia 2015; 63:91-103. [PMID: 25092804 PMCID: PMC5141616 DOI: 10.1002/glia.22735] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 07/17/2014] [Indexed: 11/08/2022]
Abstract
Waves of spreading depolarization (SD) have been implicated in the progressive expansion of acute brain injuries. SD can persist over several days, coincident with the time course of astrocyte activation, but little is known about how astrocyte activation may influence SD susceptibility. We examined whether activation of astrocytes modified SD threshold in hippocampal slices. Injection of a lentiviral vector encoding Ciliary neurotrophic factor (CNTF) into the hippocampus in vivo, led to sustained astrocyte activation, verified by up-regulation of glial fibrillary acidic protein (GFAP) at the mRNA and protein levels, as compared to controls injected with vector encoding LacZ. In acute brain slices from LacZ controls, localized 1M KCl microinjections invariably generated SD in CA1 hippocampus, but SD was never induced with this stimulus in CNTF tissues. No significant change in intrinsic excitability was observed in CA1 neurons, but excitatory synaptic transmission was significantly reduced in CNTF samples. mRNA levels of the predominantly astrocytic Na(+) /K(+) -ATPase pump α2 subunit were higher in CNTF samples, and the kinetics of extracellular K(+) transients during matched synaptic activation were consistent with increased K(+) uptake in CNTF tissues. Supporting a role for the Na(+) /K(+) -ATPase pump in increased SD threshold, ouabain, an inhibitor of the pump, was able to generate SD in CNTF tissues. These data support the hypothesis that activated astrocytes can limit SD onset via increased K(+) clearance and suggest that therapeutic strategies targeting these glial cells could improve the outcome following acute brain injuries associated with SD.
Collapse
Affiliation(s)
- Jessica L Seidel
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | | | | | | | | | | | | | | |
Collapse
|
91
|
A novel optical intracellular imaging approach for potassium dynamics in astrocytes. PLoS One 2014; 9:e109243. [PMID: 25275375 PMCID: PMC4183569 DOI: 10.1371/journal.pone.0109243] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/09/2014] [Indexed: 11/19/2022] Open
Abstract
Astrocytes fulfill a central role in regulating K+ and glutamate, both released by neurons into the extracellular space during activity. Glial glutamate uptake is a secondary active process that involves the influx of three Na+ ions and one proton and the efflux of one K+ ion. Thus, intracellular K+ concentration ([K+]i) is potentially influenced both by extracellular K+ concentration ([K+]o) fluctuations and glutamate transport in astrocytes. We evaluated the impact of these K+ ion movements on [K+]i in primary mouse astrocytes by microspectrofluorimetry. We established a new noninvasive and reliable approach to monitor and quantify [K+]i using the recently developed K+ sensitive fluorescent indicator Asante Potassium Green-1 (APG-1). An in situ calibration procedure enabled us to estimate the resting [K+]i at 133±1 mM. We first investigated the dependency of [K+]i levels on [K+]o. We found that [K+]i followed [K+]o changes nearly proportionally in the range 3–10 mM, which is consistent with previously reported microelectrode measurements of intracellular K+ concentration changes in astrocytes. We then found that glutamate superfusion caused a reversible drop of [K+]i that depended on the glutamate concentration with an apparent EC50 of 11.1±1.4 µM, corresponding to the affinity of astrocyte glutamate transporters. The amplitude of the [K+]i drop was found to be 2.3±0.1 mM for 200 µM glutamate applications. Overall, this study shows that the fluorescent K+ indicator APG-1 is a powerful new tool for addressing important questions regarding fine [K+]i regulation with excellent spatial resolution.
Collapse
|
92
|
Roberts RC, Roche JK, McCullumsmith RE. Localization of excitatory amino acid transporters EAAT1 and EAAT2 in human postmortem cortex: a light and electron microscopic study. Neuroscience 2014; 277:522-40. [PMID: 25064059 PMCID: PMC4164610 DOI: 10.1016/j.neuroscience.2014.07.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/14/2014] [Indexed: 01/03/2023]
Abstract
The process of glutamate release, activity, and reuptake involves the astrocyte, the presynaptic and postsynaptic neurons. Glutamate is released into the synapse and may occupy and activate receptors on both neurons and astrocytes. Glutamate is rapidly removed from the synapse by a family of plasma membrane excitatory amino acid transporters (EAATs), also localized to neurons and astrocytes. The purpose of the present study was to examine EAAT labeling in the postmortem human cortex at the light and electron microscopic (EM) levels. The postmortem prefrontal cortex was processed for EAAT1 and EAAT2 immunohistochemistry. At the light microscopic level, EAAT1 and EAAT2 labeling was found in both gray and white matter. Most cellular labeling was in small cells which were morphologically similar to glia. In addition, EAAT1-labeled neurons were scattered throughout, some of which were pyramidal in shape. At the EM level, EAAT1 and EAAT2 labeling was found in astrocytic soma and processes surrounding capillaries. EAAT labeling was also found in small astrocytic processes adjacent to axon terminals forming asymmetric (glutamatergic) synapses. While EAAT2 labeling was most prevalent in astrocytic processes, EAAT1 labeling was also present in neuronal processes including the soma, axons, and dendritic spines. Expression of EAAT1 protein on neurons may be due to the hypoxia associated with the postmortem interval, and requires further confirmation. The localization of EAATs on the astrocytic plasma membrane and adjacent to excitatory synapses is consistent with the function of facilitating glutamate reuptake and limiting glutamate spillover. Establishment that EAAT1 and EAAT2 can be measured at the EM level in human postmortem tissues will permit testing of hypotheses related to these molecules in diseases lacking analogous animal models.
Collapse
Affiliation(s)
- R C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - J K Roche
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - R E McCullumsmith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
93
|
Schreiner AE, Durry S, Aida T, Stock MC, Rüther U, Tanaka K, Rose CR, Kafitz KW. Laminar and subcellular heterogeneity of GLAST and GLT-1 immunoreactivity in the developing postnatal mouse hippocampus. J Comp Neurol 2014; 522:204-24. [PMID: 23939750 DOI: 10.1002/cne.23450] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 05/23/2013] [Accepted: 08/02/2013] [Indexed: 11/06/2022]
Abstract
Astrocytes express two sodium-coupled transporters, glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1), which are essential for the maintenance of low extracellular glutamate levels. We performed a comparative analysis of the laminar and subcellular expression profile of GLAST and GLT-1 in the developing postnatal mouse hippocampus by using immunohistochemistry and western blotting and employing high-resolution fluorescence microscopy. Astrocytes were identified by costaining with glial fibrillary acidic protein (GFAP) or S100β. In CA1, the density of GFAP-positive cells and GFAP expression rose during the first 2 weeks after birth, paralleled by a steady increase in GLAST immunoreactivity and protein content. Upregulation of GLT-1 was completed only at postnatal days (P) P20-25 and was thus delayed by about 10 days. GLAST staining was highest along the stratum pyramidale and was especially prominent in astrocytes at P3-5. GLAST immunoreactivity indicated no preferential localization to a specific cellular compartment. GLT-1 exhibited a laminar expression pattern from P10-15 on, with the highest immunoreactivity in the stratum lacunosum-moleculare. At the cellular level, GLT-1 immunoreactivity did not entirely cover astrocyte somata and exhibited clusters at processes. In neonatal and juvenile animals, discrete clusters of GLT-1 were also detected at perivascular endfeet. From these results, we conclude there is a remarkable subcellular heterogeneity of GLAST and GLT-1 expression in the developing hippocampus. The clustering of GLT-1 at astrocyte endfeet indicates that it might serve a specialized functional role at the blood-brain barrier during formation of the hippocampal network.
Collapse
Affiliation(s)
- Alexandra E Schreiner
- Institute of Neurobiology, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Pietrobon D, Moskowitz MA. Chaos and commotion in the wake of cortical spreading depression and spreading depolarizations. Nat Rev Neurosci 2014; 15:379-93. [PMID: 24857965 DOI: 10.1038/nrn3770] [Citation(s) in RCA: 285] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Punctuated episodes of spreading depolarizations erupt in the brain, encumbering tissue structure and function, and raising fascinating unanswered questions concerning their initiation and propagation. Linked to migraine aura and headache, cortical spreading depression contributes to the morbidity in the world's migraine with aura population. Even more ominously, erupting spreading depolarizations accelerate tissue damage during brain injury. The once-held view that spreading depolarizations may not exist in the human brain has changed, largely because of the discovery of migraine genes that confer cortical spreading depression susceptibility, the application of sophisticated imaging tools and efforts to interrogate their impact in the acutely injured human brain.
Collapse
Affiliation(s)
- Daniela Pietrobon
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova 35121 Padova, Italy
| | - Michael A Moskowitz
- 1] Stroke and Neurovascular Regulation Laboratory, Departments of Radiology and Neurology, 149 13th Street, Room 6403, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA. [2] Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
95
|
Warsi J, Luo D, Elvira B, Jilani K, Shumilina E, Hosseinzadeh Z, Lang F. Upregulation of excitatory amino acid transporters by coexpression of Janus kinase 3. J Membr Biol 2014; 247:713-20. [PMID: 24928228 DOI: 10.1007/s00232-014-9695-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/26/2014] [Indexed: 10/25/2022]
Abstract
Janus kinase 3 (JAK3) contributes to cytokine receptor signaling, confers cell survival and stimulates cell proliferation. The gain of function mutation JAK3(A572V) is found in acute megakaryoplastic leukemia. Replacement of ATP coordinating lysine by alanine yields inactive JAK3(K855A). Most recent observations revealed the capacity of JAK3 to regulate ion transport. This study thus explored whether JAK3 regulates glutamate transporters EAAT1-4, carriers accomplishing transport of glutamate and aspartate in a variety of cells including intestinal cells, renal cells, glial cells, and neurons. To this end, EAAT1, 2, 3, or 4 were expressed in Xenopus oocytes with or without additional expression of mouse wild-type JAK3, constitutively active JAK3(A568V) or inactive JAK3(K851A), and electrogenic glutamate transport was determined by dual electrode voltage clamp. Moreover, Ussing chamber was employed to determine electrogenic glutamate transport in intestine from mice lacking functional JAK3 (jak3(-/-)) and from corresponding wild-type mice (jak3(+/+)). As a result, in EAAT1, 2, 3, or 4 expressing oocytes, but not in oocytes injected with water, addition of glutamate to extracellular bath generated an inward current (Ig), which was significantly increased following coexpression of JAK3. Ig in oocytes expressing EAAT3 was further increased by JAK3(A568V) but not by JAK3(K851A). Ig in EAAT3 + JAK3 expressing oocytes was significantly decreased by JAK3 inhibitor WHI-P154 (22 µM). Kinetic analysis revealed that JAK3 increased maximal Ig and significantly reduced the glutamate concentration required for half maximal Ig (Km). Intestinal electrogenic glutamate transport was significantly lower in jak3(-/-) than in jak3(+/+) mice. In conclusion, JAK3 is a powerful regulator of excitatory amino acid transporter isoforms.
Collapse
Affiliation(s)
- Jamshed Warsi
- Department of Physiology I, University of Tuebingen, Gmelinstr. 5, 72076, Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
96
|
Synaptic glutamate spillover due to impaired glutamate uptake mediates heroin relapse. J Neurosci 2014; 34:5649-57. [PMID: 24741055 DOI: 10.1523/jneurosci.4564-13.2014] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Reducing the enduring vulnerability to relapse is a therapeutic goal in treating drug addiction. Studies with animal models of drug addiction show a marked increase in extrasynaptic glutamate in the core subcompartment of the nucleus accumbens (NAcore) during reinstated drug seeking. However, the synaptic mechanisms linking drug-induced changes in extrasynaptic glutamate to relapse are poorly understood. Here, we discovered impaired glutamate elimination in rats extinguished from heroin self-administration that leads to spillover of synaptically released glutamate into the nonsynaptic extracellular space in NAcore and investigated whether restoration of glutamate transport prevented reinstated heroin seeking. Through multiple functional assays of glutamate uptake and analyzing NMDA receptor-mediated currents, we show that heroin self-administration produced long-lasting downregulation of glutamate uptake and surface expression of the transporter GLT-1. This downregulation was associated with spillover of synaptic glutamate to extrasynaptic NMDA receptors within the NAcore. Ceftriaxone restored glutamate uptake and prevented synaptic glutamate spillover and cue-induced heroin seeking. Ceftriaxone-induced inhibition of reinstated heroin seeking was blocked by morpholino-antisense targeting GLT-1 synthesis. These data reveal that the synaptic glutamate spillover in the NAcore results from reduced glutamate transport and is a critical pathophysiological mechanism underling reinstated drug seeking in rats extinguished from heroin self-administration.
Collapse
|
97
|
Illarionava NB, Brismar H, Aperia A, Gunnarson E. Role of Na,K-ATPase α1 and α2 isoforms in the support of astrocyte glutamate uptake. PLoS One 2014; 9:e98469. [PMID: 24901986 PMCID: PMC4046997 DOI: 10.1371/journal.pone.0098469] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/03/2014] [Indexed: 01/28/2023] Open
Abstract
Glutamate released during neuronal activity is cleared from the synaptic space via the astrocytic glutamate/Na+ co-transporters. This transport is driven by the transmembrane Na+ gradient mediated by Na,K-ATPase. Astrocytes express two isoforms of the catalytic Na,K-ATPase α subunits; the ubiquitously expressed α1 subunit and the α2 subunit that has a more specific expression profile. In the brain α2 is predominantly expressed in astrocytes. The isoforms differ with regard to Na+ affinity, which is lower for α2. The relative roles of the α1 and α2 isoforms in astrocytes are not well understood. Here we present evidence that the presence of the α2 isoform may contribute to a more efficient restoration of glutamate triggered increases in intracellular sodium concentration [Na+]i. Studies were performed on primary astrocytes derived from E17 rat striatum expressing Na,K-ATPase α1 and α2 and the glutamate/Na+ co-transporter GLAST. Selective inhibition of α2 resulted in a modest increase of [Na+]i accompanied by a disproportionately large decrease in uptake of aspartate, an indicator of glutamate uptake. To compare the capacity of α1 and α2 to handle increases in [Na+]i triggered by glutamate, primary astrocytes overexpressing either α1 or α2 were used. Exposure to glutamate 200 µM caused a significantly larger increase in [Na+]i in α1 than in α2 overexpressing cells, and as a consequence restoration of [Na+]i, after glutamate exposure was discontinued, took longer time in α1 than in α2 overexpressing cells. Both α1 and α2 interacted with astrocyte glutamate/Na+ co-transporters via the 1st intracellular loop.
Collapse
Affiliation(s)
- Nina B. Illarionava
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Hjalmar Brismar
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Cell Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Anita Aperia
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Eli Gunnarson
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
98
|
Shan D, Mount D, Moore S, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE. Abnormal partitioning of hexokinase 1 suggests disruption of a glutamate transport protein complex in schizophrenia. Schizophr Res 2014; 154:1-13. [PMID: 24560881 PMCID: PMC4151500 DOI: 10.1016/j.schres.2014.01.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 01/13/2014] [Accepted: 01/17/2014] [Indexed: 02/08/2023]
Abstract
Excitatory amino acid transporter 2 (EAAT2) belongs to a family of Na(+) dependent glutamate transporters that maintain a low synaptic concentration of glutamate by removing glutamate from the synaptic cleft into astroglia and neurons. EAAT2 activity depends on Na(+) and K(+) gradients generated by Na(+)/K(+) ATPase and ATP. Hexokinase 1 (HK1), an initial enzyme of glycolysis, binds to mitochondrial outer membrane where it couples cytosolic glycolysis to mitochondrial oxidative phosphorylation, producing ATP utilized by the EAAT2/Na(+)/K(+) ATPase protein complex to facilitate glutamate reuptake. In this study, we hypothesized that the protein complex formed by EAAT2, Na(+)/K(+) ATPase and mitochondrial proteins in human postmortem prefrontal cortex may be disrupted, leading to abnormal glutamate transmission in schizophrenia. We first determined that EAAT2, Na(+)/K(+) ATPase, HK1 and aconitase were found in both EAAT2 and Na(+)/K(+) ATPase interactomes by immunoisolation and mass spectrometry in human postmortem prefrontal cortex. Next, we measured levels of glutamate transport complex proteins in subcellular fractions in the dorsolateral prefrontal cortex and found increases in the EAAT2B isoform of EAAT2 in a fraction containing extrasynaptic membranes and increased aconitase 1 in a mitochondrial fraction. Finally, an increased ratio of HK1 protein in the extrasynaptic membrane/mitochondrial fraction was found in subjects with schizophrenia, suggesting that HK1 protein is abnormally partitioned in this illness. Our findings indicate that the integrity of the glutamate transport protein complex may be disrupted, leading to decreased perisynaptic buffering and reuptake of glutamate, as well as impaired energy metabolism in schizophrenia.
Collapse
Affiliation(s)
- Dan Shan
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel Mount
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stephen Moore
- Department of Science and Engineering Complex, University of Alabama, Tuscaloosa, AL, USA
| | | | - James H. Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA,Evelyn F. McKnight Brain Institute, Birmingham, AL, USA
| | - Robert E. McCullumsmith
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, USA,Corresponding author at: Department of Psychiatry, 231 Albert Sabin Way, ML 0583, Suite E688, Cincinnati, OH 45267-0583, USA
| |
Collapse
|
99
|
Uchitel OD, González Inchauspe C, Di Guilmi MN. Calcium channels and synaptic transmission in familial hemiplegic migraine type 1 animal models. Biophys Rev 2014; 6:15-26. [PMID: 28509957 DOI: 10.1007/s12551-013-0126-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/18/2013] [Indexed: 11/26/2022] Open
Abstract
One of the outstanding developments in clinical neurology has been the identification of ion channel mutations as the origin of a wide variety of inherited disorders like migraine, epilepsy, and ataxia. The study of several channelopathies has provided crucial insights into the molecular mechanisms, pathogenesis, and therapeutic approaches to complex neurological diseases. This review addresses the mutations underlying familial hemiplegic migraine (FHM) with particular interest in Cav2.1 (i.e., P/Q-type) voltage-activated Ca2+ channel FHM type-1 mutations (FHM1). Transgenic mice harboring the human pathogenic FHM1 mutation R192Q or S218L (KI) have been used as models to study neurotransmission at several central and peripheral synapses. FHM1 KI mice are a powerful tool to explore presynaptic regulation associated with expression of Cav2.1 channels. FHM1 Cav2.1 channels activate at more hyperpolarizing potentials and show an increased open probability. These biophysical alterations may lead to a gain-of-function on synaptic transmission depending upon factors such as action potential waveform and/or Cav2.1 splice variants and auxiliary subunits. Analysis of FHM knock-in mouse models has demonstrated a deficient regulation of the cortical excitation/inhibition (E/I) balance. The resulting excessive increases in cortical excitation may be the mechanisms that underlie abnormal sensory processing together with an increase in the susceptibility to cortical spreading depression (CSD). Increasing evidence from FHM KI animal studies support the idea that CSD, the underlying mechanism of aura, can activate trigeminal nociception, and thus trigger the headache mechanisms.
Collapse
Affiliation(s)
- Osvaldo D Uchitel
- Instituto de Fisiología, Biología Molecular y Neurociencias (CONICET), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, piso 2, Ciudad Universitaria, Buenos Aires, 1428, Argentina.
| | - Carlota González Inchauspe
- Instituto de Fisiología, Biología Molecular y Neurociencias (CONICET), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, piso 2, Ciudad Universitaria, Buenos Aires, 1428, Argentina
| | - Mariano N Di Guilmi
- Instituto de Fisiología, Biología Molecular y Neurociencias (CONICET), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, piso 2, Ciudad Universitaria, Buenos Aires, 1428, Argentina
| |
Collapse
|
100
|
Larsen BR, Assentoft M, Cotrina ML, Hua SZ, Nedergaard M, Kaila K, Voipio J, MacAulay N. Contributions of the Na⁺/K⁺-ATPase, NKCC1, and Kir4.1 to hippocampal K⁺ clearance and volume responses. Glia 2014; 62:608-22. [PMID: 24482245 DOI: 10.1002/glia.22629] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 11/06/2022]
Abstract
Network activity in the brain is associated with a transient increase in extracellular K(+) concentration. The excess K(+) is removed from the extracellular space by mechanisms proposed to involve Kir4.1-mediated spatial buffering, the Na(+)/K(+)/2Cl(-) cotransporter 1 (NKCC1), and/or Na(+)/K(+)-ATPase activity. Their individual contribution to [K(+)]o management has been of extended controversy. This study aimed, by several complementary approaches, to delineate the transport characteristics of Kir4.1, NKCC1, and Na(+)/K(+)-ATPase and to resolve their involvement in clearance of extracellular K(+) transients. Primary cultures of rat astrocytes displayed robust NKCC1 activity with [K(+)]o increases above basal levels. Increased [K(+)]o produced NKCC1-mediated swelling of cultured astrocytes and NKCC1 could thereby potentially act as a mechanism of K(+) clearance while concomitantly mediate the associated shrinkage of the extracellular space. In rat hippocampal slices, inhibition of NKCC1 failed to affect the rate of K(+) removal from the extracellular space while Kir4.1 enacted its spatial buffering only during a local [K(+)]o increase. In contrast, inhibition of the different isoforms of Na(+)/K(+)-ATPase reduced post-stimulus clearance of K(+) transients. The astrocyte-characteristic α2β2 subunit composition of Na(+)/K(+)-ATPase, when expressed in Xenopus oocytes, displayed a K(+) affinity and voltage-sensitivity that would render this subunit composition specifically geared for controlling [K(+)]o during neuronal activity. In rat hippocampal slices, simultaneous measurements of the extracellular space volume revealed that neither Kir4.1, NKCC1, nor Na(+)/K(+)-ATPase accounted for the stimulus-induced shrinkage of the extracellular space. Thus, NKCC1 plays no role in activity-induced extracellular K(+) recovery in native hippocampal tissue while Kir4.1 and Na(+)/K(+)-ATPase serve temporally distinct roles.
Collapse
Affiliation(s)
- Brian Roland Larsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|