51
|
Hu ZQ, Luo JF, Yu XJ, Zhu JN, Huang L, Yang J, Fu YH, Li T, Xue YM, Feng YQ, Shan ZX. Targeting myocyte-specific enhancer factor 2D contributes to the suppression of cardiac hypertrophic growth by miR-92b-3p in mice. Oncotarget 2017; 8:92079-92089. [PMID: 29190899 PMCID: PMC5696165 DOI: 10.18632/oncotarget.20759] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 07/30/2017] [Indexed: 01/05/2023] Open
Abstract
The role of microRNA-92b-3p (miR-92b-3p) in cardiac hypertrophy was not well illustrated. The present study aimed to investigate the expression and potential target of miR-92b-3p in angiotensin II (Ang-II)-induced mouse cardiac hypertrophy. MiR-92b-3p was markedly decreased in the myocardium of Ang-II-infused mice and of patients with cardiac hypertrophy. However, miR-92b-3p expression was revealed increased in Ang-II-induced neonatal mouse cardiomyocytes. Cardiac hypertrophy was shown attenuated in Ang-II-infused mice received tail vein injection of miR-92b-3p mimic. Moreover, miR-92b-3p inhibited the expression of atrial natriuretic peptide (ANP), skeletal muscle α-actin (ACTA1) and β-myosin heavy chain (MHC) in Ang-II-induced mouse cardiomyocytes in vitro. Myocyte-specific enhancer factor 2D (MEF2D), which was increased in Ang-II-induced mouse hypertrophic myocardium and cardiomyocytes, was identified as a target gene of miR-92b-3p. Functionally, miR-92b-3p mimic, consistent with MEF2D siRNA, inhibited cell size increase and protein expression of ANP, ACTA1 and β-MHC in Ang-II-treated mouse cardiomyocytes. Taken together, we demonstrated that MEF2D is a novel target of miR-92b-3p, and attenuation of miR-92b-3p expression may contribute to the increase of MEF2D in cardiac hypertrophy.
Collapse
Affiliation(s)
- Zhi-Qin Hu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jian-Fang Luo
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xue-Ju Yu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jie-Ning Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lei Huang
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jing Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Yong-Heng Fu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tao Li
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu-Mei Xue
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ying-Qing Feng
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhi-Xin Shan
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
52
|
Harrington J, Fillmore N, Gao S, Yang Y, Zhang X, Liu P, Stoehr A, Chen Y, Springer D, Zhu J, Wang X, Murphy E. A Systems Biology Approach to Investigating Sex Differences in Cardiac Hypertrophy. J Am Heart Assoc 2017; 6:e005838. [PMID: 28862954 PMCID: PMC5586433 DOI: 10.1161/jaha.117.005838] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/21/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Heart failure preceded by hypertrophy is a leading cause of death, and sex differences in hypertrophy are well known, although the basis for these sex differences is poorly understood. METHODS AND RESULTS This study used a systems biology approach to investigate mechanisms underlying sex differences in cardiac hypertrophy. Male and female mice were treated for 2 and 3 weeks with angiotensin II to induce hypertrophy. Sex differences in cardiac hypertrophy were apparent after 3 weeks of treatment. RNA sequencing was performed on hearts, and sex differences in mRNA expression at baseline and following hypertrophy were observed, as well as within-sex differences between baseline and hypertrophy. Sex differences in mRNA were substantial at baseline and reduced somewhat with hypertrophy, as the mRNA differences induced by hypertrophy tended to overwhelm the sex differences. We performed an integrative analysis to identify mRNA networks that were differentially regulated in the 2 sexes by hypertrophy and obtained a network centered on PPARα (peroxisome proliferator-activated receptor α). Mouse experiments further showed that acute inhibition of PPARα blocked sex differences in the development of hypertrophy. CONCLUSIONS The data in this study suggest that PPARα is involved in the sex-dimorphic regulation of cardiac hypertrophy.
Collapse
Affiliation(s)
- Josephine Harrington
- Systems Biology Center, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD
| | - Natasha Fillmore
- Systems Biology Center, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD
| | - Shouguo Gao
- System Biology Core, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD
| | - Yanqin Yang
- DNA Sequencing & Genomics Core, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD
| | - Xue Zhang
- System Biology Core, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD
| | - Poching Liu
- DNA Sequencing & Genomics Core, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD
| | - Andrea Stoehr
- Systems Biology Center, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD
| | - Ye Chen
- System Biology Core, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD
| | - Danielle Springer
- Murine Phenotyping Core, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD
| | - Jun Zhu
- Systems Biology Center, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD
- DNA Sequencing & Genomics Core, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD
| | - Xujing Wang
- System Biology Core, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD
| | - Elizabeth Murphy
- Systems Biology Center, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD
| |
Collapse
|
53
|
van Middendorp LB, Kuiper M, Munts C, Wouters P, Maessen JG, van Nieuwenhoven FA, Prinzen FW. Local microRNA-133a downregulation is associated with hypertrophy in the dyssynchronous heart. ESC Heart Fail 2017; 4:241-251. [PMID: 28772031 PMCID: PMC5542733 DOI: 10.1002/ehf2.12154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/18/2017] [Accepted: 02/22/2017] [Indexed: 11/18/2022] Open
Abstract
Aims Left bundle branch block (LBBB) creates considerable regional differences in mechanical load within the left ventricle (LV). We investigated expression of selected microRNAs (miRs) in relation to regional hypertrophy and fibrosis in LBBB hearts and their reversibility upon cardiac resynchronization therapy (CRT). Methods and results Eighteen dogs were followed for 4 months after induction of LBBB, 10 of which received CRT after 2 months. Five additional dogs served as control. LV geometric changes were determined by echocardiography and myocardial strain by magnetic resonance imaging tagging. Expression levels of miRs, their target genes: connective tissue growth factor (CTGF), serum response factor (SRF), nuclear factor of activated T cells (NFATc4), and cardiomyocyte diameter and collagen deposition were measured in the septum and LV free wall (LVfw). In LBBB hearts, LVfw and septal systolic circumferential strain were 200% and 50% of control, respectively. This coincided with local hypertrophy in the LVfw. MiR‐133a expression was reduced by 33% in the LVfw, which corresponded with a selective increase of CTGF expression in the LVfw (279% of control). By contrast, no change was observed in SRF and NFATc4 expression was decreased in LBBB hearts. CRT normalized strain patterns and reversed miR‐133a and CTGF expression towards normal, expression of other miRs, related to remodelling, such as miR‐199b and miR‐155f, were not affected. Conclusions In the clinically relevant large animal model of LBBB, a close inverse relation exists between local hypertrophy and miR‐133a. Reduced miR‐133a correlated with increased CTGF levels but not with SRF and NFATc4.
Collapse
Affiliation(s)
- Lars B van Middendorp
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Limburg, The Netherlands.,Department of Cardiothoracic Surgery, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Limburg, The Netherlands
| | - Marion Kuiper
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Limburg, The Netherlands
| | - Chantal Munts
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Limburg, The Netherlands
| | - Philippe Wouters
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Limburg, The Netherlands
| | - Jos G Maessen
- Department of Cardiothoracic Surgery, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Limburg, The Netherlands
| | - Frans A van Nieuwenhoven
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Limburg, The Netherlands
| | - Frits W Prinzen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Limburg, The Netherlands
| |
Collapse
|
54
|
Diniz GP, Lino CA, Moreno CR, Senger N, Barreto-Chaves MLM. MicroRNA-1 overexpression blunts cardiomyocyte hypertrophy elicited by thyroid hormone. J Cell Physiol 2017; 232:3360-3368. [DOI: 10.1002/jcp.25781] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Gabriela Placoná Diniz
- Laboratory of Cell Biology and Functional Anatomy; Department of Anatomy; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - Caroline Antunes Lino
- Laboratory of Cell Biology and Functional Anatomy; Department of Anatomy; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - Camila Rodrigues Moreno
- Laboratory of Cell Biology and Functional Anatomy; Department of Anatomy; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - Nathalia Senger
- Laboratory of Cell Biology and Functional Anatomy; Department of Anatomy; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - Maria Luiza Morais Barreto-Chaves
- Laboratory of Cell Biology and Functional Anatomy; Department of Anatomy; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| |
Collapse
|
55
|
Hoelscher SC, Doppler SA, Dreßen M, Lahm H, Lange R, Krane M. MicroRNAs: pleiotropic players in congenital heart disease and regeneration. J Thorac Dis 2017; 9:S64-S81. [PMID: 28446969 DOI: 10.21037/jtd.2017.03.149] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Congenital heart disease (CHD) is the leading cause of infant death, affecting approximately 4-14 live births per 1,000. Although surgical techniques and interventions have improved significantly, a large number of infants still face poor clinical outcomes. MicroRNAs (miRs) are known to coordinately regulate cardiac development and stimulate pathological processes in the heart, including fibrosis or hypertrophy and impair angiogenesis. Dysregulation of these regulators could therefore contribute (I) to the initial development of CHD and (II) at least partially to the observed clinical outcomes of many CHD patients by stimulating the aforementioned pathways. Thus, miRs may exhibit great potential as therapeutic targets in regenerative medicine. In this review we provide an overview of miR function and elucidate their role in selected CHDs, including hypoplastic left heart syndrome (HLHS), tetralogy of Fallot (TOF), ventricular septal defects (VSDs) and Holt-Oram syndrome (HOS). We then bridge this knowledge to the potential usefulness of miRs and/or their targets in therapeutic strategies for regenerative purposes in CHDs.
Collapse
Affiliation(s)
- Sarah C Hoelscher
- Division of Experimental Surgery, Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
| | - Stefanie A Doppler
- Division of Experimental Surgery, Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
| | - Martina Dreßen
- Division of Experimental Surgery, Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
| | - Harald Lahm
- Division of Experimental Surgery, Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
| | - Rüdiger Lange
- Division of Experimental Surgery, Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany.,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Markus Krane
- Division of Experimental Surgery, Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany.,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
56
|
Parthenakis F, Marketou M, Kontaraki J, Patrianakos A, Nakou H, Touloupaki M, Vernardos M, Kochiadakis G, Chlouverakis G, Vardas P. Low Levels of MicroRNA-21 Are a Marker of Reduced Arterial Stiffness in Well-Controlled Hypertension. J Clin Hypertens (Greenwich) 2017; 19:235-240. [PMID: 27550546 PMCID: PMC8031006 DOI: 10.1111/jch.12900] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/13/2016] [Accepted: 07/23/2016] [Indexed: 11/28/2022]
Abstract
MicroRNAs (miRNAs) play a crucial role in myocardial and vascular remodeling and have emerged as potential diagnostic and prognostic biomarkers or as therapeutic targets. The authors aimed to investigate the expression profile of selected miRNAs in the peripheral blood of patients with well-controlled essential hypertension in relation to arterial stiffness. Expression levels of miRNAs miRNA-1, miRNA-133a, miRNA-26b, miRNA-208b, miRNA-499, and miRNA-21 in peripheral blood mononuclear cells were quantified by real-time reverse transcription polymerase chain reaction. Carotid-femoral pulse wave velocity (cfPWV) and carotid radial pulse wave velocity (crPWV) were evaluated at baseline and after 1 year of effective antihypertensive therapy. A total of 95 patients (50 men, mean age 62±9 years) with well-controlled essential hypertension were included in the analysis. Only miRNA-21 was independently correlated with changes in both cfPWV and crPWV, independently of blood pressure levels (r=-0.56 and r=-0.46, respectively; P<.001 for both). Low levels of miRNA-21 are strongly associated with an improvement in arterial stiffness in patients with well-controlled essential hypertension, independently of their blood pressure levels. These data highlight the significance of miRNA-21 in vascular remodeling and its role as a potential prognostic marker and future therapeutic target.
Collapse
Affiliation(s)
| | - Maria Marketou
- Cardiology DepartmentHeraklion University HospitalCreteGreece
| | - Joanna Kontaraki
- Molecular Cardiology LaboratorySchool of MedicineUniversity of CreteHeraklionGreece
| | | | - Helen Nakou
- Cardiology DepartmentHeraklion University HospitalCreteGreece
| | | | | | | | | | - Panos Vardas
- Cardiology DepartmentHeraklion University HospitalCreteGreece
| |
Collapse
|
57
|
Wahl P, Wehmeier UF, Jansen FJ, Kilian Y, Bloch W, Werner N, Mester J, Hilberg T. Acute Effects of Different Exercise Protocols on the Circulating Vascular microRNAs -16, -21, and -126 in Trained Subjects. Front Physiol 2016; 7:643. [PMID: 28082910 PMCID: PMC5183575 DOI: 10.3389/fphys.2016.00643] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/08/2016] [Indexed: 01/04/2023] Open
Abstract
Aim: mircoRNAs (miRNAs), small non-coding RNAs regulating gene expression, are stably secreted into the blood and circulating miRNAs (c-miRNAs) may play an important role in cell–cell communication. Furthermore, c-miRNAs might serve as novel biomarkers of the current vascular cell status. Here, we examined how the levels of three vascular c-miRNAs (c-miR-16, c-miR-21, c-miR-126) are acutely affected by different exercise intensities and volumes. Methods: 12 subjects performed 3 different endurance exercise protocols: 1. High-Volume Training (HVT; 130 min at 55% peak power output (PPO); 2. High-Intensity Training (HIT; 4 × 4 min at 95% PPO); 3. Sprint-Interval Training (SIT; 4 × 30 s all-out). c-miRNAs were quantified using quantitative real-time PCR with TaqMan probes at time points pre, 0′, 30′, 60′, and 180′ after each intervention. The expression of miR-126 and miR-21 was analyzed in vitro, in human coronary artery endothelial cells, human THP-1 monocytes, human platelets, human endothelial microparticles (EMPs) and human vascular smooth muscle cells (VSMCs). To investigate the transfer of miRNAs via EMPs, VSMCs were incubated with EMPs. Results: HVT and SIT revealed large increases on c-miR-21 [1.9-fold by HVT (cohen's d = 0.85); 1.5-fold by SIT (cohen's d = 0.85)] and c-miR-126 [2.2-fold by SIT (cohen's d = 1.06); 1.9-fold by HVT (cohen's d = 0.85)] post-exercise compared to pre-values, while HIT revealed only small to moderate changes on c-miRs-21 (cohen's d = −0.28) and c-miR-126 (cohen's d = 0.53). c-miR-16 was only slightly affected by SIT (1.4-fold; cohen's d = 0.57), HVT (1.3-fold; cohen's d = 0.61) or HIT (1.1-fold; cohen's d = 0.2). Further in vitro experiments revealed that miR-126 and miR-21 are mainly of endothelial origin. Importantly, under conditions of endothelial apoptosis, miR-126 and miR-21 are packed from endothelial cells into endothelial microparticles, which were shown to transfer miR-126 into target vascular smooth muscle cells. Conclusion: Taken together, we found that HVT and SIT are associated with the release of endothelial miRNAs into the circulation, which can function as intercellular communication devices regulating vascular biology.
Collapse
Affiliation(s)
- Patrick Wahl
- Institute of Training Science and Sport Informatics, German Sport University CologneCologne, Germany; Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University CologneCologne, Germany; The German Research Centre of Elite Sport, German Sport University CologneCologne, Germany
| | - Udo F Wehmeier
- Department for Sports Medicine, University of Wuppertal Wuppertal, Germany
| | - Felix J Jansen
- Department of Internal Medicine II, Cardiology, Pneumology and Angiology, Medical Faculty, University of Bonn Bonn, Germany
| | - Yvonne Kilian
- Institute of Training Science and Sport Informatics, German Sport University CologneCologne, Germany; The German Research Centre of Elite Sport, German Sport University CologneCologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University CologneCologne, Germany; The German Research Centre of Elite Sport, German Sport University CologneCologne, Germany
| | - Nikos Werner
- Department of Internal Medicine II, Cardiology, Pneumology and Angiology, Medical Faculty, University of Bonn Bonn, Germany
| | - Joachim Mester
- Institute of Training Science and Sport Informatics, German Sport University CologneCologne, Germany; The German Research Centre of Elite Sport, German Sport University CologneCologne, Germany
| | - Thomas Hilberg
- Department for Sports Medicine, University of Wuppertal Wuppertal, Germany
| |
Collapse
|
58
|
Chang TH, Chen MC, Chang JP, Huang HD, Ho WC, Lin YS, Pan KL, Huang YK, Liu WH, Wu CC. Exploring Regulatory Mechanisms of Atrial Myocyte Hypertrophy of Mitral Regurgitation through Gene Expression Profiling Analysis: Role of NFAT in Cardiac Hypertrophy. PLoS One 2016; 11:e0166791. [PMID: 27907007 PMCID: PMC5131988 DOI: 10.1371/journal.pone.0166791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 11/03/2016] [Indexed: 01/12/2023] Open
Abstract
Background Left atrial enlargement in mitral regurgitation (MR) predicts a poor prognosis. The regulatory mechanisms of atrial myocyte hypertrophy of MR patients remain unknown. Methods and Results This study comprised 14 patients with MR, 7 patients with aortic valve disease (AVD), and 6 purchased samples from normal subjects (NC). We used microarrays, enrichment analysis and quantitative RT-PCR to study the gene expression profiles in the left atria. Microarray results showed that 112 genes were differentially up-regulated and 132 genes were differentially down-regulated in the left atria between MR patients and NC. Enrichment analysis of differentially expressed genes demonstrated that “NFAT in cardiac hypertrophy” pathway was not only one of the significant associated canonical pathways, but also the only one predicted with a non-zero score of 1.34 (i.e. activated) through Ingenuity Pathway Analysis molecule activity predictor. Ingenuity Pathway Analysis Global Molecular Network analysis exhibited that the highest score network also showed high association with cardiac related pathways and functions. Therefore, 5 NFAT associated genes (PPP3R1, PPP3CB, CAMK1, MEF2C, PLCE1) were studies for validation. The mRNA expressions of PPP3CB and MEF2C were significantly up-regulated, and CAMK1 and PPP3R1 were significantly down-regulated in MR patients compared to NC. Moreover, MR patients had significantly increased mRNA levels of PPP3CB, MEF2C and PLCE1 compared to AVD patients. The atrial myocyte size of MR patients significantly exceeded that of the AVD patients and NC. Conclusions Differentially expressed genes in the “NFAT in cardiac hypertrophy” pathway may play a critical role in the atrial myocyte hypertrophy of MR patients.
Collapse
Affiliation(s)
- Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan
| | - Mien-Cheng Chen
- Division of Cardiology and Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- * E-mail:
| | - Jen-Ping Chang
- Division of Cardiovascular Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsien-Da Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Wan-Chun Ho
- Division of Cardiology and Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Sheng Lin
- Division of Cardiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Kuo-Li Pan
- Division of Cardiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yao-Kuang Huang
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Wen-Hao Liu
- Division of Cardiology and Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Chen Wu
- Division of Cardiovascular Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
59
|
Integrated microRNA and messenger RNA analysis in aortic stenosis. Sci Rep 2016; 6:36904. [PMID: 27876829 PMCID: PMC5120312 DOI: 10.1038/srep36904] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/24/2016] [Indexed: 12/15/2022] Open
Abstract
Aortic valve stenosis (AS) is a major cause of morbidity and mortality, with no effective medical therapies. Investigation into the underlying biology of AS in humans is limited by difficulties in obtaining healthy valvular tissue for use as a control group. However, micro-ribonucleic acids (miRNAs) are stable in post-mortem tissue. We compared valve specimens from patients undergoing aortic valve replacement for AS to non-diseased cadaveric valves. We found 106 differentially expressed miRNAs (p < 0.05, adjusted for multiple comparisons) on microarray analysis, with highly correlated expression among up- and down-regulated miRNAs. Integrated miRNA/gene expression analysis validated the microarray results as a whole, while quantitative polymerase chain reaction confirmed downregulation of miR-122-5p, miR-625-5p, miR-30e-5p and upregulation of miR-21-5p and miR-221-3p. Pathway analysis of the integrated miRNA/mRNA network identified pathways predominantly involved in extracellular matrix function. A number of currently available therapies target products of upregulated genes in the integrated miRNA/mRNA network, with these genes being predominantly more peripheral members of the network. The identification of a group of tissue miRNA associated with AS may contribute to the development of new therapeutic approaches to AS. This study highlights the importance of systems biology-based approaches to complex diseases.
Collapse
|
60
|
Myocyte-specific enhancer factor 2C: a novel target gene of miR-214-3p in suppressing angiotensin II-induced cardiomyocyte hypertrophy. Sci Rep 2016; 6:36146. [PMID: 27796324 PMCID: PMC5087095 DOI: 10.1038/srep36146] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/11/2016] [Indexed: 01/12/2023] Open
Abstract
The role of microRNA-214-3p (miR-214-3p) in cardiac hypertrophy was not well illustrated. The present study aimed to investigate the expression and potential target of miR-214-3p in angiotensin II (Ang-II)-induced mouse cardiac hypertrophy. In mice with either Ang-II infusion or transverse aortic constriction (TAC) model, miR-214-3p expression was markedly decreased in the hypertrophic myocardium. Down-regulation of miR-214-3p was observed in the myocardium of patients with cardiac hypertrophy. Expression of miR-214-3p was upregulated in Ang-II-induced hypertrophic neonatal mouse ventricular cardiomyocytes. Cardiac hypertrophy was attenuated in Ang-II-infused mice by tail vein injection of miR-214-3p. Moreover, miR-214-3p inhibited the expression of atrial natriuretic peptide (ANP) and β-myosin heavy chain (MHC) in Ang-II-treated mouse cardiomyocytes in vitro. Myocyte-specific enhancer factor 2C (MEF2C), which was increased in Ang-II-induced hypertrophic mouse myocardium and cardiomyocytes, was identified as a target gene of miR-214-3p. Functionally, miR-214-3p mimic, consistent with MEF2C siRNA, inhibited cell size increase and protein expression of ANP and β-MHC in Ang-II-treated mouse cardiomyocytes. The NF-κB signal pathway was verified to mediate Ang-II-induced miR-214-3p expression in cardiomyocytes. Taken together, our results revealed that MEF2C is a novel target of miR-214-3p, and attenuation of miR-214-3p expression may contribute to MEF2Cexpressionin cardiac hypertrophy.
Collapse
|
61
|
Joshi SR, Dhagia V, Gairhe S, Edwards JG, McMurtry IF, Gupte SA. MicroRNA-140 is elevated and mitofusin-1 is downregulated in the right ventricle of the Sugen5416/hypoxia/normoxia model of pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol 2016; 311:H689-98. [PMID: 27422986 DOI: 10.1152/ajpheart.00264.2016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 07/13/2016] [Indexed: 01/18/2023]
Abstract
Heart failure, a major cause of morbidity and mortality in patients with pulmonary arterial hypertension (PAH), is an outcome of complex biochemical processes. In this study, we determined changes in microRNAs (miRs) in the right and left ventricles of normal and PAH rats. Using an unbiased quantitative miR microarray analysis, we found 1) miR-21-5p, miR-31-5 and 3p, miR-140-5 and 3p, miR-208b-3p, miR-221-3p, miR-222-3p, miR-702-3p, and miR-1298 were upregulated (>2-fold; P < 0.05) in the right ventricle (RV) of PAH compared with normal rats; 2) miR-31-5 and 3p, and miR-208b-3p were upregulated (>2-fold; P < 0.05) in the left ventricle plus septum (LV+S) of PAH compared with normal rats; 3) miR-187-5p, miR-208a-3p, and miR-877 were downregulated (>2-fold; P < 0.05) in the RV of PAH compared with normal rats; and 4) no miRs were up- or downregulated with >2-fold in LV+S compared with RV of PAH and normal. Upregulation of miR-140 and miR-31 in the hypertrophic RV was further confirmed by quantitative PCR. Interestingly, compared with control rats, expression of mitofusin-1 (MFN1), a mitochondrial fusion protein that regulates apoptosis, and which is a direct target of miR-140, was reduced in the RV relative to LV+S of PAH rats. We found a correlation between increased miR-140 and decreased MFN1 expression in the hypertrophic RV. Our results also demonstrated that upregulation of miR-140 and downregulation of MFN1 correlated with increased RV systolic pressure and hypertrophy. These results suggest that miR-140 and MFN1 play a role in the pathogenesis of PAH-associated RV dysfunction.
Collapse
Affiliation(s)
| | - Vidhi Dhagia
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Salina Gairhe
- Department of Pharmacology and Center for Lung Biology, University of South Alabama, College of Medicine, Mobile, Alabama; and
| | - John G Edwards
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Ivan F McMurtry
- Department of Pharmacology and Center for Lung Biology, University of South Alabama, College of Medicine, Mobile, Alabama; and
| | - Sachin A Gupte
- Department of Pharmacology, New York Medical College, Valhalla, New York;
| |
Collapse
|
62
|
Chu H, Kohane DS, Langer R. RNA therapeutics - The potential treatment for myocardial infarction. Regen Ther 2016; 4:83-91. [PMID: 31245491 PMCID: PMC6581817 DOI: 10.1016/j.reth.2016.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/05/2016] [Accepted: 03/05/2016] [Indexed: 01/19/2023] Open
Abstract
RNA therapeutics mainly control gene expression at the transcript level. In contrast to conventional gene therapy which solely increases production of a protein, delivered RNAs can enhance, reduce or abolish synthesis of a particular protein, which control its relevant activities in a more diverse fashion. Thus, they hold promise to treat many human diseases including myocardial infarction (MI). MI is a serious health burden that causes substantial morbidity and mortality. An unmet clinical need for treating MI is the recovery of cardiac function, which requires regeneration of the functional tissues including the vasculature, nerves, and myocardium. Several classes of RNA therapeutics have been investigated in preclinical MI models, and the results have demonstrated their benefits and encourage their future development. In this review, we summarize the common RNA therapeutic approaches and highlight their application in MI therapy.
Collapse
Affiliation(s)
- Hunghao Chu
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Daniel S. Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, United States
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
63
|
Dörr O, Liebetrau C, Möllmann H, Gaede L, Troidl C, Lankes S, Guckel D, Boeder N, Voss S, Bauer T, Hamm C, Nef H. Effect of Renal Sympathetic Denervation on Specific MicroRNAs as an Indicator of Reverse Remodeling Processes in Hypertensive Heart Disease. J Clin Hypertens (Greenwich) 2016; 18:497-502. [PMID: 26916982 PMCID: PMC8031684 DOI: 10.1111/jch.12797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 12/31/2022]
Abstract
A total of 90 consecutive patients undergoing renal sympathetic denervation (RSD) were included in this study. A significant reduction in office systolic blood pressure (SBP) of 21.1 mm Hg (P<.001) was documented 6 months after RSD. At this time point, circulating concentrations of microRNA (miR)-133a were significantly increased (sevenfold; P<.001) compared with baseline values. Correlation analysis showed a significant relationship between baseline SBP values and SBP reduction (P<.001) as well as between miR-133a baseline levels and the increase in miR-133a expression (P<.001) after the 6-month follow-up. The effect of RSD on miR-133a expression was significantly greater in patients at high risk for hypertensive heart disease. In addition to the effective blood pressure reduction in response to RSD, this study demonstrates an effect of RSD on miR reflecting cardiovascular reverse remodeling processes. Thus, these results provide information on a beneficial effect of RSD on cardiac recovery in patients at high risk for hypertensive heart disease.
Collapse
Affiliation(s)
- Oliver Dörr
- Department of CardiologyUniversity Clinic of GiessenGiessenGermany
| | | | - Helge Möllmann
- Department of CardiologyKerckhoff Heart and Thorax CenterBad NauheimGermany
| | - Luise Gaede
- Department of CardiologyKerckhoff Heart and Thorax CenterBad NauheimGermany
| | - Christian Troidl
- Department of CardiologyKerckhoff Heart and Thorax CenterBad NauheimGermany
| | - Simone Lankes
- Department of CardiologyUniversity Clinic of GiessenGiessenGermany
| | - Denise Guckel
- Department of CardiologyUniversity Clinic of GiessenGiessenGermany
| | - Niklas Boeder
- Department of CardiologyUniversity Clinic of GiessenGiessenGermany
| | - Sandra Voss
- Department of CardiologyKerckhoff Heart and Thorax CenterBad NauheimGermany
| | - Timm Bauer
- Department of CardiologyUniversity Clinic of GiessenGiessenGermany
| | - Christian Hamm
- Department of CardiologyUniversity Clinic of GiessenGiessenGermany
- Department of CardiologyKerckhoff Heart and Thorax CenterBad NauheimGermany
| | - Holger Nef
- Department of CardiologyUniversity Clinic of GiessenGiessenGermany
| |
Collapse
|
64
|
Liu JJ, Zhao CM, Li ZG, Wang YM, Miao W, Wu XJ, Wang WJ, Liu C, Wang D, Wang K, Li L, Peng LY. miR-218 Involvement in Cardiomyocyte Hypertrophy Is Likely through Targeting REST. Int J Mol Sci 2016; 17:848. [PMID: 27258257 PMCID: PMC4926382 DOI: 10.3390/ijms17060848] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 05/10/2016] [Accepted: 05/25/2016] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) have been identified as key players in cardiomyocyte hypertrophy, which is associated with significant risks of heart failure. However, many microRNAs are still not recognized for their functions in pathophysiological processes. In this study, we evaluated effects of miR-218 in cardiomyocyte hypertrophy using both in vitro and in vivo models. We found that miR-218 was evidently downregulated in a transverse aortic constriction (TAC) mouse model. Overexpression of miR-218 is sufficient to reduce hypertrophy, whereas the suppression of miR-218 aggravates hypertrophy in primary cardiomyocytes induced by isoprenaline (ISO). In addition, we identified RE1-silencing transcription factor (REST) as a novel target of miR-218; it negatively regulated the expression of REST in hypertrophic cardiomyocytes and the TAC model. These results showed that miR-218 plays a crucial role in cardiomyocyte hypertrophy, likely via targeting REST, suggesting a potential candidate target for interfering hypertrophy.
Collapse
Affiliation(s)
- Jing-Jing Liu
- Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, Shanghai 200092, China.
| | - Cui-Mei Zhao
- Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, Shanghai 200092, China.
| | - Zhi-Gang Li
- Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, Shanghai 200092, China.
| | - Yu-Mei Wang
- Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, Shanghai 200092, China.
| | - Wei Miao
- Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, Shanghai 200092, China.
| | - Xiu-Juan Wu
- Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, Shanghai 200092, China.
| | - Wen-Jing Wang
- Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, Shanghai 200092, China.
| | - Chang Liu
- Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, Shanghai 200092, China.
| | - Duo Wang
- Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, Shanghai 200092, China.
| | - Kang Wang
- Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, Shanghai 200092, China.
| | - Li Li
- Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, Shanghai 200092, China.
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China.
| | - Lu-Ying Peng
- Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, Shanghai 200092, China.
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
65
|
Liu W, Liu Y, Zhang Y, Zhu X, Zhang R, Guan L, Tang Q, Jiang H, Huang C, Huang H. MicroRNA-150 Protects Against Pressure Overload-Induced Cardiac Hypertrophy. J Cell Biochem 2016; 116:2166-76. [PMID: 25639779 DOI: 10.1002/jcb.25057] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 12/18/2014] [Indexed: 01/15/2023]
Abstract
Cardiac hypertrophy is the response of the heart to a variety of hypertrophic stimuli; this condition progresses to heart failure and sudden death. MicroRNAs (miRs) are a family of small, non-coding RNAs that mediate posttranscriptional gene silencing. Recent studies have identified miRs as important regulators in cardiac hypertrophy. One specific miR, miR-150 has been reported to be downregulated in hypertrophic murine hearts. However, the role of miR-150 as a regulator of cardiac hypertrophy remains unclear. In the present study, we used gain-of-function and loss-of-function approaches to investigate the functional roles of miR-150 in cardiac hypertrophy induced by aortic banding. The extent of the cardiac hypertrophy was evaluated by echocardiography and by pathological and molecular analyses of heart samples. Our results revealed that transgenic mice that overexpress miR-150 in the heart were resistant to cardiac hypertrophy and fibrosis through down-regulation of serum response factor (SRF). Conversely, the loss of function of miR-150 by genetic knockdown or antagomiR approaches produced the opposite effects. These studies suggest that miR-150 plays an important role in the regulation of cardiac hypertrophy and SRF is involved in miR-150 mediated anti-hypertrophic effect. Thus, miR-150 may be a new therapeutic target for cardiac hypertrophy.
Collapse
Affiliation(s)
- Wanli Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
| | - Yu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
| | - Yan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
| | - Xueyong Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
| | - Rui Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
| | - Lihua Guan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
| |
Collapse
|
66
|
Yang L, Li Y, Wang X, Mu X, Qin D, Huang W, Alshahrani S, Nieman M, Peng J, Essandoh K, Peng T, Wang Y, Lorenz J, Soleimani M, Zhao ZQ, Fan GC. Overexpression of miR-223 Tips the Balance of Pro- and Anti-hypertrophic Signaling Cascades toward Physiologic Cardiac Hypertrophy. J Biol Chem 2016; 291:15700-13. [PMID: 27226563 DOI: 10.1074/jbc.m116.715805] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) have been extensively examined in pathological cardiac hypertrophy. However, few studies focused on profiling the miRNA alterations in physiological hypertrophic hearts. In this study we generated a transgenic mouse model with cardiac-specific overexpression of miR-223. Our results showed that elevation of miR-223 caused physiological cardiac hypertrophy with enhanced cardiac function but no fibrosis. Using the next generation RNA sequencing, we observed that most of dys-regulated genes (e.g. Atf3/5, Egr1/3, Sfrp2, Itgb1, Ndrg4, Akip1, Postn, Rxfp1, and Egln3) in miR-223-transgenic hearts were associated with cell growth, but they were not directly targeted by miR-223. Interestingly, these dys-regulated genes are known to regulate the Akt signaling pathway. We further identified that miR-223 directly interacted with 3'-UTRs of FBXW7 and Acvr2a, two negative regulators of the Akt signaling. However, we also validated that miR-223 directly inhibited the expression of IGF-1R and β1-integrin, two positive regulators of the Akt signaling. Lastly, Western blotting did reveal that Akt was activated in miR-223-overexpressing hearts. Adenovirus-mediated overexpression of miR-223 in neonatal rat cardiomyocytes induced cell hypertrophy, which was blocked by the addition of MK2206, a specific inhibitor of Akt Taken together, these data represent the first piece of work showing that miR-223 tips the balance of promotion and inactivation of Akt signaling cascades toward activation of Akt, a key regulator of physiological cardiac hypertrophy. Thus, our study suggests that the ultimate phenotype outcome of a miRNA may be decided by the secondary net effects of the whole target network rather than by several primary direct targets in an organ/tissue.
Collapse
Affiliation(s)
- Liwang Yang
- From the Shanxi Medical University, Taiyuan 030001, China, Department of Pharmacology and Cell Biophysics
| | - Yutian Li
- Department of Pharmacology and Cell Biophysics
| | | | | | - Dongze Qin
- From the Shanxi Medical University, Taiyuan 030001, China, Department of Pharmacology and Cell Biophysics
| | - Wei Huang
- Department of Pathology and Laboratory Medicine
| | - Saeed Alshahrani
- Department of Pharmacology and Cell Biophysics, Research Services, Veterans Affairs Hospital and Department of Medicine, and
| | - Michelle Nieman
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0575
| | - Jiangtong Peng
- Department of Pharmacology and Cell Biophysics, Department of Cardiology, Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China, and
| | | | - Tianqing Peng
- Critical Illness Research, Lawson Health Research Institute, Ontario N6A 4G5, Canada
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine
| | - John Lorenz
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0575
| | - Manoocher Soleimani
- Research Services, Veterans Affairs Hospital and Department of Medicine, and
| | - Zhi-Qing Zhao
- From the Shanxi Medical University, Taiyuan 030001, China
| | | |
Collapse
|
67
|
Cramariuc D, Gerdts E. Epidemiology of left ventricular hypertrophy in hypertension: implications for the clinic. Expert Rev Cardiovasc Ther 2016; 14:915-26. [DOI: 10.1080/14779072.2016.1186542] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
68
|
Jiang F, Zhou X, Huang J. Long Non-Coding RNA-ROR Mediates the Reprogramming in Cardiac Hypertrophy. PLoS One 2016; 11:e0152767. [PMID: 27082978 PMCID: PMC4833345 DOI: 10.1371/journal.pone.0152767] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 03/18/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cardiac hypertrophy associated with various cardiovascular diseases results in heart failure and sudden death. A clear understanding of the mechanisms of hypertrophy will benefit the development of novel therapies. Long non-coding RNAs (lncRNAs) have been shown to play essential roles in many biological process, however, whether lncRNA-ROR plays functional roles in the reprogramming of cardiomyocyte remains unclear. METHODOLOGY/PRINCIPAL FINDINGS Here we show that lncRNA-ROR plays important roles in the pathogenesis of cardiac hypertrophy. In hypertrophic heart and cardiomyocytes, the expression of lncRNA-ROR is dramatically increased, downregulation of which attenuates the hypertrophic responses. Furthermore, the expression of lncRNA-ROR negatively correlates with miR-133, whose expression is increased when lncRNA-ROR is knocked down. In line with this, overexpression of miR-133 prevents the elevation of lncRNA-ROR and re-expression of ANP and BNP in cardiomyocytes subject to phenylephrine treatment. CONCLUSIONS/SIGNIFICANCE Taken together, our study demonstrates that lncRNA-ROR promotes cardiac hypertrophy via interacting with miR-133, indicating that lncRNA-ROR could be targeted for developing novel antihypertrophic therapeutics.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangyu Zhou
- Department of Vascular and Thyroid Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Huang
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
69
|
Wong LL, Wang J, Liew OW, Richards AM, Chen YT. MicroRNA and Heart Failure. Int J Mol Sci 2016; 17:502. [PMID: 27058529 PMCID: PMC4848958 DOI: 10.3390/ijms17040502] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 12/12/2022] Open
Abstract
Heart failure (HF) imposes significant economic and public health burdens upon modern society. It is known that disturbances in neurohormonal status play an important role in the pathogenesis of HF. Therapeutics that antagonize selected neurohormonal pathways, specifically the renin-angiotensin-aldosterone and sympathetic nervous systems, have significantly improved patient outcomes in HF. Nevertheless, mortality remains high with about 50% of HF patients dying within five years of diagnosis thus mandating ongoing efforts to improve HF management. The discovery of short noncoding microRNAs (miRNAs) and our increasing understanding of their functions, has presented potential therapeutic applications in complex diseases, including HF. Results from several genome-wide miRNA studies have identified miRNAs differentially expressed in HF cohorts suggesting their possible involvement in the pathogenesis of HF and their potential as both biomarkers and as therapeutic targets. Unravelling the functional relevance of miRNAs within pathogenic pathways is a major challenge in cardiovascular research. In this article, we provide an overview of the role of miRNAs in the cardiovascular system. We highlight several HF-related miRNAs reported from selected cohorts and review their putative roles in neurohormonal signaling.
Collapse
Affiliation(s)
- Lee Lee Wong
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, #08-01, MD6 Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore.
| | - Juan Wang
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, #08-01, MD6 Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore.
| | - Oi Wah Liew
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, #08-01, MD6 Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore.
| | - Arthur Mark Richards
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, #08-01, MD6 Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore.
- Cardiac Department, National University Health System, Tower Block Level 9, 1E Kent Ridge Road, Singapore 119228, Singapore.
- Christchurch Heart Institute, Department of Medicine, University of Otago, PO Box 4345, Christchurch 8014, New Zealand.
| | - Yei-Tsung Chen
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, #08-01, MD6 Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore.
| |
Collapse
|
70
|
Parthenakis FI, Marketou ME, Kontaraki JE, Maragoudakis F, Maragkoudakis S, Nakou H, Roufas K, Patrianakos A, Chlouverakis G, Malliaraki N, Vardas PE. Comparative microRNA profiling in relation to urinary albumin excretion in newly diagnosed hypertensive patients. J Hum Hypertens 2016; 30:685-689. [DOI: 10.1038/jhh.2016.15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/28/2016] [Accepted: 02/11/2016] [Indexed: 01/07/2023]
|
71
|
Samanta S, Balasubramanian S, Rajasingh S, Patel U, Dhanasekaran A, Dawn B, Rajasingh J. MicroRNA: A new therapeutic strategy for cardiovascular diseases. Trends Cardiovasc Med 2016; 26:407-19. [PMID: 27013138 DOI: 10.1016/j.tcm.2016.02.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/13/2016] [Accepted: 02/17/2016] [Indexed: 12/21/2022]
Abstract
Myocardial infarction, atherosclerosis, and hypertension are the most common heart-related diseases that affect both the heart and the blood vessels. Multiple independent risk factors have been shown to be responsible for cardiovascular diseases. The combination of a healthy diet, exercise, and smoking cessation keeps these risk factors in check and helps maintain homeostasis. The dynamic monolayer endothelial cell integrity and cell-cell communication are the fundamental mechanisms in maintaining homeostasis. Recently, it has been revealed that small noncoding RNAs (ncRNAs) play a critical role in regulation of genes involved in either posttranscriptional or pretranslational modifications. They also control diverse biological functions like development, differentiation, growth, and metabolism. Among ncRNAs, the short interfering RNAs (siRNAs), and microRNAs (miRNAs) have been extensively studied, but their specific functions remain largely unknown. In recent years, miRNAs are efficiently studied as one of the important candidates for involvement in most biological processes and have been implicated in many human diseases. Thus, the identification and the respective targets of miRNAs may provide novel molecular insight and new therapeutic strategies to treat diseases. This review summarizes the recent developments and insight on the role of miRNAs in cardiovascular disease prognosis, diagnostic and clinical applications.
Collapse
Affiliation(s)
- Saheli Samanta
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS
| | - Sathyamoorthy Balasubramanian
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS; Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, India
| | - Sheeja Rajasingh
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS
| | - Urmi Patel
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS
| | | | - Buddhadeb Dawn
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS
| | - Johnson Rajasingh
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS.
| |
Collapse
|
72
|
Abstract
The worldwide increase in the prevalence of obesity and type 2 diabetes and the associated elevated risk of cardiovascular disease (CVD) has emphasized the need to seek new therapeutic targets to offset the negative impact on human health outcomes. In this regards, microRNAs (miRNAs), a class of small noncoding RNAs that mediate posttranscriptional gene silencing, have received considerable interest. miRNAs repress gene expression by their ability to pair with target sequences in the 3' untranslated region of the messenger RNA. miRNAs play a crucial role in the biogenesis and function of the cardiovascular system and are implicated as dynamic regulators of cardiac and vascular signaling and pathophysiology. Numerous miRNAs have been identified as novel biomarkers and potential therapeutic targets for CVD. In this review, we discuss the contribution of miRNAs to the regulation of CVD, their role in macrovascular/microvascular (dys)function, their potential as important biomarkers for the early detection of CVD, and, finally, as therapeutic targets.
Collapse
|
73
|
Ali SS, Kala C, Abid M, Ahmad N, Sharma US, Khan NA. Pathological microRNAs in acute cardiovascular diseases and microRNA therapeutics. JOURNAL OF ACUTE DISEASE 2016. [DOI: 10.1016/j.joad.2015.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
74
|
Guedes EC, França GS, Lino CA, Koyama FC, Moreira LDN, Alexandre JG, Barreto-Chaves MLM, Galante PAF, Diniz GP. MicroRNA Expression Signature Is Altered in the Cardiac Remodeling Induced by High Fat Diets. J Cell Physiol 2015; 231:1771-83. [PMID: 26638879 DOI: 10.1002/jcp.25280] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 12/04/2015] [Indexed: 12/28/2022]
Abstract
Recent studies have revealed the involvement of microRNAs (miRNAs) in the control of cardiac hypertrophy and myocardial function. In addition, several reports have demonstrated that high fat (HF) diet induces cardiac hypertrophy and remodeling. In the current study, we investigated the effect of diets containing different percentages of fat on the cardiac miRNA expression signature. To address this question, male C57Bl/6 mice were fed with a low fat (LF) diet or two HF diets, containing 45 kcal% fat (HF45%) and 60 kcal% fat (HF60%) for 10 and 20 weeks. HF60% diet promoted an increase on body weight, fasting glycemia, insulin, leptin, total cholesterol, triglycerides, and induced glucose intolerance. HF feeding promoted cardiac remodeling, as evidenced by increased cardiomyocyte transverse diameter and interstitial fibrosis. RNA sequencing analysis demonstrated that HF feeding induced distinct miRNA expression patterns in the heart. HF45% diet for 10 and 20 weeks changed the abundance of 64 and 26 miRNAs in the heart, respectively. On the other hand, HF60% diet for 10 and 20 weeks altered the abundance of 27 and 88 miRNAs in the heart, respectively. Bioinformatics analysis indicated that insulin signaling pathway was overrepresented in response to HF diet. An inverse correlation was observed between cardiac levels of GLUT4 and miRNA-29c. Similarly, we found an inverse correlation between expression of GSK3β and the expression of miRNA-21a-3p, miRNA-29c-3p, miRNA-144-3p, and miRNA-195a-3p. In addition, miRNA-1 overexpression prevented cardiomyocyte hypertrophy. Taken together, our results revealed differentially expressed miRNA signatures in the heart in response to different HF diets. J. Cell. Physiol. 231: 1771-1783, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elaine Castilho Guedes
- Department of Anatomy, Laboratory of Cell Biology and Functional Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Gustavo Starvaggi França
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Sao Paulo, Brazil.,Department of Biochemistry, Chemistry Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Caroline Antunes Lino
- Department of Anatomy, Laboratory of Cell Biology and Functional Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Luana do Nascimento Moreira
- Department of Anatomy, Laboratory of Cell Biology and Functional Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Juliana Gomes Alexandre
- Department of Anatomy, Laboratory of Cell Biology and Functional Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Luiza M Barreto-Chaves
- Department of Anatomy, Laboratory of Cell Biology and Functional Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Gabriela Placoná Diniz
- Department of Anatomy, Laboratory of Cell Biology and Functional Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
75
|
Yuan W, Tang C, Zhu W, Zhu J, Lin Q, Fu Y, Deng C, Xue Y, Yang M, Wu S, Shan Z. CDK6 mediates the effect of attenuation of miR-1 on provoking cardiomyocyte hypertrophy. Mol Cell Biochem 2015; 412:289-96. [PMID: 26699910 DOI: 10.1007/s11010-015-2635-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/15/2015] [Indexed: 01/21/2023]
Abstract
MicroRNA-1 (miR-1) is approved involved in cardiac hypertrophy, but the underlying molecular mechanisms of miR-1 in cardiac hypertrophy are not well elucidated. The present study aimed to investigate the potential role of miR-1 in modulating CDKs-Rb pathway during cardiomyocyte hypertrophy. A rat model of hypertrophy was established with abdominal aortic constriction, and a cell model of hypertrophy was also achieved based on PE-promoted neonatal rat ventricular cardiomyocytes (NRVCs). We demonstrated that miR-1 expression was markedly decreased in hypertrophic myocardium and hypertrophic cardiomyocytes. Dual luciferase reporter assays revealed that miR-1 interacted with the 3'UTR of CDK6, and miR-1 was verified to inhibit CDK6 expression at the posttranscriptional level. CDK6 protein expression was observed increased in hypertrophic myocardium and hypertrophic cardiomyocytes. Morover, miR-1 mimic, in parallel to CDK6 siRNA, could inhibit PE-induced hypertrophy of NRVCs, with decreases in cell size, newly transcribed RNA, expressions of ANF and β-MHC, and the phosphorylated pRb. Taken together, our results reveal that derepression of CDK6 and activation of Rb pathway contributes to the effect of attenuation of miR-1 on provoking cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Weiwei Yuan
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Chunmei Tang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Wensi Zhu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Jiening Zhu
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Qiuxiong Lin
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yongheng Fu
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Chunyu Deng
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yumei Xue
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Min Yang
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Shulin Wu
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Zhixin Shan
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
76
|
Levy D. From the Editor. ACTA ACUST UNITED AC 2015; 9:745-746. [PMID: 26506128 DOI: 10.1016/j.jash.2015.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
77
|
MicroRNAs Based Therapy of Hypertrophic Cardiomyopathy: The Road Traveled So Far. BIOMED RESEARCH INTERNATIONAL 2015; 2015:983290. [PMID: 26504850 PMCID: PMC4609405 DOI: 10.1155/2015/983290] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/19/2015] [Indexed: 01/01/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is an autosomal dominant disease characterized by variable expressivity, age penetrance, and a high heterogeneity. The transcriptional profile (miRNAs, mRNAs), epigenetic modifications, and posttranslational modifications seem to be highly relevant for the onset of the disease. miRNAs, small noncoding RNAs with 22 nucleotides, have been implicated in the regulation of cardiomyocyte function, being differentially expressed in several heart diseases, including HCM. Moreover, a different miRNA expression profile in the various stages of HCM development is also observed. This review summarizes the current knowledge of the profile of miRNAs characteristic of asymptomatic to overt HCM patients, discussing alongside their potential use for diagnosis and therapy. Indeed, the stability and specificity of miRNAs make them suitable targets for use as biomarkers for diagnosis and prognosis and as therapeutical targets.
Collapse
|
78
|
Filice E, Pasqua T, Quintieri AM, Cantafio P, Scavello F, Amodio N, Cerra MC, Marban C, Schneider F, Metz-Boutigue MH, Angelone T. Chromofungin, CgA47-66-derived peptide, produces basal cardiac effects and postconditioning cardioprotective action during ischemia/reperfusion injury. Peptides 2015; 71:40-8. [PMID: 26151429 DOI: 10.1016/j.peptides.2015.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 12/12/2022]
Abstract
Endogenous chromogranin A (CgA)-derived peptides are secreted by nervous, endocrine and immune cells. Chromofungin (Chr: CgA47-66) is one of these peptides that display antimicrobial activities and activate neutrophils, with important implications in inflammation and innate immunity. The aim of the present study is to examine the effects of Chr on isolated and Langendorff perfused rat hearts. The study was performed by using the isolated and Langendorff perfused rat hearts, Elisa assay and real-time PCR. We found that, under basal conditions, increasing doses (11-165nM) of Chr induced negative inotropic effects without changing coronary pressure. This action was mediated by the AKT/eNOS/cGMP/PKG pathway. We also found that Chr acted as a postconditioning (PostC) agent against ischemia/reperfusion (I/R) damages, reducing infarct size and LDH level. Cardioprotection involved PI3K, RISK pathway, MitoKATP and miRNA-21. We suggest that Chr directly affects heart performance, protects against I/R myocardial injuries through the activation of prosurvival kinases. Results may propose Chr as a new physiological neuroendocrine modulator able to prevent heart dysfunctions, also encouraging the clarification of its clinical potential.
Collapse
Affiliation(s)
- Elisabetta Filice
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Teresa Pasqua
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Anna Maria Quintieri
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Patrizia Cantafio
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Francesco Scavello
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, Catanzaro, Italy
| | - Maria Carmela Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; National Institute of Cardiovascular Research, Italy
| | - Céline Marban
- University of Strasbourg, Biomatériaux et Ingénierie Tissulaire, Inserm U977, Strasbourg, France
| | - Francis Schneider
- University of Strasbourg, Biomatériaux et Ingénierie Tissulaire, Inserm U977, Strasbourg, France
| | | | - Tommaso Angelone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; National Institute of Cardiovascular Research, Italy.
| |
Collapse
|
79
|
Mother's nutritional miRNA legacy: Nutrition during pregnancy and its possible implications to develop cardiometabolic disease in later life. Pharmacol Res 2015; 100:322-34. [PMID: 26325301 DOI: 10.1016/j.phrs.2015.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 01/02/2023]
Abstract
Maternal nutrition during pregnancy and lactation influences the offspring's health in the long-term. Indeed, human epidemiological studies and animal model experiments suggest that either an excess or a deficit in maternal nutrition influence offspring development and susceptibility to metabolic disorders. Different epigenetic mechanisms may explain in part the way by which dietary factors in early critical developmental steps might be able to affect the susceptibility to develop metabolic diseases in adulthood. microRNAs are versatile regulators of gene expression and play a major role during tissue homeostasis and disease. Dietary factors have also been shown to modify microRNA expression. However, the role of microRNAs in fetal programming remains largely unstudied. This review evaluates in vivo studies conducted to analyze the effect of maternal diet on the modulation of the microRNA expression in the offspring and their influence to develop metabolic and cardiovascular disease in later life. In overall, the available evidence suggests that nutritional status during pregnancy influence offspring susceptibility to the development of cardiometabolic risk factors, partly through microRNA action. Thus, therapeutic modulation of microRNAs can open up new strategies to combat - later in life - the effects of nutritional insult during critical points of development.
Collapse
|
80
|
Fernandes T, Baraúna VG, Negrão CE, Phillips MI, Oliveira EM. Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs. Am J Physiol Heart Circ Physiol 2015; 309:H543-H552. [PMID: 26071549 PMCID: PMC4537939 DOI: 10.1152/ajpheart.00899.2014] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/07/2015] [Indexed: 01/01/2023]
Abstract
Left ventricular (LV) hypertrophy is an important physiological compensatory mechanism in response to chronic increase in hemodynamic overload. There are two different forms of LV hypertrophy, one physiological and another pathological. Aerobic exercise induces beneficial physiological LV remodeling. The molecular/cellular mechanisms for this effect are not totally known, and here we review various mechanisms including the role of microRNA (miRNA). Studies in the heart, have identified antihypertrophic miRNA-1, -133, -26, -9, -98, -29, -378, and -145 and prohypertrophic miRNA-143, -103, -130a, -146a, -21, -210, -221, -222, -27a/b, -199a/b, -208, -195, -499, -34a/b/c, -497, -23a, and -15a/b. Four miRNAs are recognized as cardiac-specific: miRNA-1, -133a/b, -208a/b, and -499 and called myomiRs. In our studies we have shown that miRNAs respond to swimming aerobic exercise by 1) decreasing cardiac fibrosis through miRNA-29 increasing and inhibiting collagen, 2) increasing angiogenesis through miRNA-126 by inhibiting negative regulators of the VEGF pathway, and 3) modulating the renin-angiotensin system through the miRNAs-27a/b and -143. Exercise training also increases cardiomyocyte growth and survival by swimming-regulated miRNA-1, -21, -27a/b, -29a/c, -30e, -99b, -100, -124, -126, -133a/b, -143, -144, -145, -208a, and -222 and running-regulated miRNA-1, -26, -27a, -133, -143, -150, and -222, which influence genes associated with the heart remodeling and angiogenesis. We conclude that there is a potential role of these miRNAs in promoting cardioprotective effects on physiological growth.
Collapse
Affiliation(s)
- Tiago Fernandes
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Valério G Baraúna
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitoria, Brazil
| | - Carlos E Negrão
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil; Heart Institute (InCor), Medical School, University of São Paulo, São Paulo, Brazil; and
| | - M Ian Phillips
- Laboratory of Stem Cells, Keck Graduate Institute, Claremont, California
| | - Edilamar M Oliveira
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil;
| |
Collapse
|
81
|
Kontaraki JE, Marketou ME, Parthenakis FI, Maragkoudakis S, Zacharis EA, Petousis S, Kochiadakis GE, Vardas PE. Hypertrophic and antihypertrophic microRNA levels in peripheral blood mononuclear cells and their relationship to left ventricular hypertrophy in patients with essential hypertension. ACTA ACUST UNITED AC 2015; 9:802-810. [PMID: 26358152 DOI: 10.1016/j.jash.2015.07.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/03/2015] [Accepted: 07/23/2015] [Indexed: 12/22/2022]
Abstract
MicroRNAs regulate several aspects of physiological and pathologic cardiac hypertrophy, and they represent promising therapeutic targets in cardiovascular disease. We assessed the expression levels of the microRNAs miR-1, miR-133a, miR-26b, miR-208b, miR-499, and miR-21, in 102 patients with essential hypertension and 30 healthy individuals. All patients underwent two-dimensional echocardiography. MicroRNA expression levels in peripheral blood mononuclear cells were quantified by real-time reverse transcription polymerase chain reaction. Hypertensive patients showed significantly lower miR-133a (5.06 ± 0.50 vs. 13.20 ± 2.15, P < .001) and miR-26b (6.76 ± 0.53 vs. 9.36 ± 1.40, P = .037) and higher miR-1 (25.99 ± 3.07 vs. 12.28 ± 2.06, P = .019), miR-208b (22.29 ± 2.96 vs. 8.73 ± 1.59, P = .016), miR-499 (10.06 ± 1.05 vs. 5.70 ± 0.91, P = .033), and miR-21 (2.75 ± 0.15 vs. 1.82 ± 0.20, P = .002) expression levels compared with healthy controls. In hypertensive patients, we observed significant negative correlations of miR-1 (r = -0.374, P < .001) and miR-133a (r = -0.431, P < .001) and significant positive correlations of miR-26b (r = 0.302, P = .002), miR-208b (r = 0.426, P < .001), miR-499 (r = 0.433, P < .001) and miR-21 (r = 0.498, P < .001) expression levels with left ventricular mass index. Our data reveal that miR-1, miR-133a, miR-26b, miR-208b, miR-499, and miR-21 show distinct expression profiles in hypertensive patients relative to healthy individuals and they are associated with clinical indices of left ventricular hypertrophy in hypertensive patients. Thus, they may be related to heart hypertrophy in hypertensive patients and are possibly candidate therapeutic targets in hypertensive heart disease.
Collapse
Affiliation(s)
- Joanna E Kontaraki
- Molecular Cardiology Laboratory, Department of Cardiology, School of Medicine, University of Crete, Heraklion, Greece.
| | - Maria E Marketou
- Department of Cardiology, Heraklion University Hospital, Crete, Greece
| | | | | | | | - Stelios Petousis
- Department of Cardiology, Heraklion University Hospital, Crete, Greece
| | | | - Panos E Vardas
- Department of Cardiology, Heraklion University Hospital, Crete, Greece
| |
Collapse
|
82
|
Abstract
Heart failure (HF) is the end result of a diverse set of causes such as genetic cardiomyopathies, coronary artery disease, and hypertension and represents the primary cause of hospitalization in Europe. This serious clinical disorder is mostly associated with pathological remodeling of the myocardium, pump failure, and sudden death. While the survival of HF patients can be prolonged with conventional pharmacological therapies, the prognosis remains poor. New therapeutic modalities are thus needed that will target the underlying causes and not only the symptoms of the disease. Under chronic cardiac stress, small noncoding RNAs, in particular microRNAs, act as critical regulators of cardiac tissue remodeling and represent a new class of therapeutic targets in patients suffering from HF. Here, we focus on the potential use of microRNA inhibitors as a new treatment paradigm for HF.
Collapse
|
83
|
Ramasamy S, Velmurugan G, Shanmugha Rajan K, Ramprasath T, Kalpana K. MiRNAs with apoptosis regulating potential are differentially expressed in chronic exercise-induced physiologically hypertrophied hearts. PLoS One 2015; 10:e0121401. [PMID: 25793527 PMCID: PMC4368613 DOI: 10.1371/journal.pone.0121401] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/31/2015] [Indexed: 11/19/2022] Open
Abstract
Physiological cardiac hypertrophy is an adaptive mechanism, induced during chronic exercise. As it is reversible and not associated with cardiomyocyte death, it is considered as a natural tactic to prevent cardiac dysfunction and failure. Though, different studies revealed the importance of microRNAs (miRNAs) in pathological hypertrophy, their role during physiological hypertrophy is largely unexplored. Hence, this study is aimed at revealing the global expression profile of miRNAs during physiological cardiac hypertrophy. Chronic swimming protocol continuously for eight weeks resulted in induction of physiological hypertrophy in rats and histopathology revealed the absence of tissue damage, apoptosis or fibrosis. Subsequently, the total RNA was isolated and small RNA sequencing was executed. Analysis of small RNA reads revealed the differential expression of a large set of miRNAs during physiological hypertrophy. The expression profile of the significantly differentially expressed miRNAs was validated by qPCR. In silico prediction of target genes by miRanda, miRdB and TargetScan and subsequent qPCR analysis unraveled that miRNAs including miR-99b, miR-100, miR-19b, miR-10, miR-208a, miR-133, miR-191a, miR-22, miR-30e and miR-181a are targeting the genes that primarily regulate cell proliferation and cell death. Gene ontology and pathway mapping showed that the differentially expressed miRNAs and their target genes were mapped to apoptosis and cell death pathways principally via PI3K/Akt/mTOR and MAPK signaling. In summary, our data indicates that regulation of these miRNAs with apoptosis regulating potential can be one of the major key factors in determining pathological or physiological hypertrophy by controlling fibrosis, apoptosis and cell death mechanisms.
Collapse
Affiliation(s)
- Subbiah Ramasamy
- Cardiac Hypertrophy Laboratory, Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamilnadu, India
- * E-mail:
| | - Ganesan Velmurugan
- Cardiac Hypertrophy Laboratory, Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamilnadu, India
| | - K. Shanmugha Rajan
- Cardiac Hypertrophy Laboratory, Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamilnadu, India
| | | | - Krishnan Kalpana
- Department of Plant Pathology, Regional Research Station, Tamilnadu Agricultural University, Krishangiri, Tamilnadu, India
| |
Collapse
|
84
|
Kim JO, Song DW, Kwon EJ, Hong SE, Song HK, Min CK, Kim DH. miR-185 plays an anti-hypertrophic role in the heart via multiple targets in the calcium-signaling pathways. PLoS One 2015; 10:e0122509. [PMID: 25767890 PMCID: PMC4358957 DOI: 10.1371/journal.pone.0122509] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/11/2015] [Indexed: 01/15/2023] Open
Abstract
MicroRNA (miRNA) is an endogenous non-coding RNA species that either inhibits RNA translation or promotes degradation of target mRNAs. miRNAs often regulate cellular signaling by targeting multiple genes within the pathways. In the present study, using Gene Set Analysis, a useful bioinformatics tool to identify miRNAs with multiple target genes in the same pathways, we identified miR-185 as a key candidate regulator of cardiac hypertrophy. Using a mouse model, we found that miR-185 was significantly down-regulated in myocardial cells during cardiac hypertrophy induced by transverse aortic constriction. To confirm that miR-185 is an anti-hypertrophic miRNA, genetic manipulation studies such as overexpression and knock-down of miR-185 in neonatal rat ventricular myocytes were conducted. The results showed that up-regulation of miR-185 led to anti-hypertrophic effects, while down-regulation led to pro-hypertrophic effects, suggesting that miR-185 has an anti-hypertrophic role in the heart. Our study further identified Camk2d, Ncx1, and Nfatc3 as direct targets of miR-185. The activity of Nuclear Factor of Activated T-cell (NFAT) and calcium/calmodulin-dependent protein kinase II delta (CaMKIIδ) was negatively regulated by miR-185 as assessed by NFAT-luciferase activity and western blotting. The expression of phospho-phospholamban (Thr-17), a marker of CaMKIIδ activity, was also significantly reduced by miR-185. In conclusion, miR-185 effectively blocked cardiac hypertrophy signaling through multiple targets, rendering it a potential drug target for diseases such as heart failure.
Collapse
Affiliation(s)
- Jin Ock Kim
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Dong Woo Song
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Eun Jeong Kwon
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Seong-Eui Hong
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Hong Ki Song
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Choon Kee Min
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Do Han Kim
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| |
Collapse
|
85
|
Dimitrakopoulou K, Vrahatis AG, Bezerianos A. Integromics network meta-analysis on cardiac aging offers robust multi-layer modular signatures and reveals micronome synergism. BMC Genomics 2015; 16:147. [PMID: 25887273 PMCID: PMC4367845 DOI: 10.1186/s12864-015-1256-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/19/2015] [Indexed: 02/02/2023] Open
Abstract
Background The avalanche of integromics and panomics approaches shifted the deciphering of aging mechanisms from single molecular entities to communities of them. In this orientation, we explore the cardiac aging mechanisms – risk factor for multiple cardiovascular diseases - by capturing the micronome synergism and detecting longevity signatures in the form of communities (modules). For this, we developed a meta-analysis scheme that integrates transcriptome expression data from multiple cardiac-specific independent studies in mouse and human along with proteome and micronome interaction data in the form of multiple independent weighted networks. Modularization of each weighted network produced modules, which in turn were further analyzed so as to define consensus modules across datasets that change substantially during lifespan. Also, we established a metric that determines - from the modular perspective - the synergism of microRNA-microRNA interactions as defined by significantly functionally associated targets. Results The meta-analysis provided 40 consensus integromics modules across mouse datasets and revealed microRNA relations with substantial collective action during aging. Three modules were reproducible, based on homology, when mapped against human-derived modules. The respective homologs mainly represent NADH dehydrogenases, ATP synthases, cytochrome oxidases, Ras GTPases and ribosomal proteins. Among various observations, we corroborate to the involvement of miR-34a (included in consensus modules) as proposed recently; yet we report that has no synergistic effect. Moving forward, we determined its age-related neighborhood in which HCN3, a known heart pacemaker channel, was included. Also, miR-125a-5p/-351, miR-200c/-429, miR-106b/-17, miR-363/-92b, miR-181b/-181d, miR-19a/-19b, let-7d/-7f, miR-18a/-18b, miR-128/-27b and miR-106a/-291a-3p pairs exhibited significant synergy and their association to aging and/or cardiovascular diseases is supported in many cases by a disease database and previous studies. On the contrary, we suggest that miR-22 has not substantial impact on heart longevity as proposed recently. Conclusions We revised several proteins and microRNAs recently implicated in cardiac aging and proposed for the first time modules as signatures. The integromics meta-analysis approach can serve as an efficient subvening signature tool for more-oriented better-designed experiments. It can also promote the combinational multi-target microRNA therapy of age-related cardiovascular diseases along the continuum from prevention to detection, diagnosis, treatment and outcome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1256-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Aristidis G Vrahatis
- Department of Medical Physics, School of Medicine, University of Patras, Patras, 26500, Greece. .,Department of Computer Engineering and Informatics, University of Patras, Patras, 26500, Greece.
| | - Anastasios Bezerianos
- Department of Medical Physics, School of Medicine, University of Patras, Patras, 26500, Greece. .,Singapore Institute for Neurotechnology (SINAPSE), Center of Life Sciences, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
86
|
Hirt MN, Werner T, Indenbirken D, Alawi M, Demin P, Kunze AC, Stenzig J, Starbatty J, Hansen A, Fiedler J, Thum T, Eschenhagen T. Deciphering the microRNA signature of pathological cardiac hypertrophy by engineered heart tissue- and sequencing-technology. J Mol Cell Cardiol 2015; 81:1-9. [PMID: 25633833 DOI: 10.1016/j.yjmcc.2015.01.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/24/2014] [Accepted: 01/14/2015] [Indexed: 01/27/2023]
Abstract
Pathological cardiac hypertrophy and fibrosis are modulated by a set of microRNAs, most of which have been detected in biologically complex animal models of hypertrophy by arrays with moderate sensitivity and disregard of passenger strand (previously "star") microRNAs. Here, we aimed at precisely analyzing the microRNA signature of cardiac hypertrophy and fibrosis by RNA sequencing in a standardized in vitro hypertrophy model based on engineered heart tissue (EHT). Spontaneously beating, force-generating fibrin EHTs from neonatal rat heart cells were subjected to afterload enhancement for 7days (AE-EHT), and EHTs without intervention served as controls. AE resulted in reduced contractile force and relaxation velocity, fibrotic changes and reactivation of the fetal gene program. Small RNAs were extracted from control and AE-EHTs and sequencing yielded almost 750 different mature microRNAs, many of which have never been described before in rats. The detection of both arms of the precursor stem-loop (pre-miRNA), namely -3p and -5p miRs, was frequent. 22 abundantly sequenced microRNAs were >1.3× upregulated and 15 abundantly sequenced microRNAs downregulated to <0.77×. Among the upregulated microRNAs were 3 pairs of guide and passenger strand microRNAs (miR-21-5p/-3p, miR-322-5p/-3p, miR-210-3p/-5p) and one single passenger strand microRNA (miR-140-3p). Among downregulated microRNAs were 3 pairs (miR-133a-3p/-5p, miR-30e-5p/3p, miR-30c-5p/-3p). Preincubating EHTs with anti-miR-21-5p markedly attenuated the AE-induced contractile failure, cardiomyocyte hypertrophy and fibrotic response, recapitulating prior results in whole animals. Taken together, AE-induced pathological hypertrophy in EHTs is associated with 37 differentially regulated microRNAs, including many passenger strands. Antagonizing miR-21-5p ameliorates dysfunction in this model.
Collapse
Affiliation(s)
- Marc N Hirt
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Tessa Werner
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Daniela Indenbirken
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Malik Alawi
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany; Bioinformatics Service Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Demin
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ann-Cathrin Kunze
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Justus Stenzig
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Jutta Starbatty
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany.
| |
Collapse
|
87
|
Huang S, Zou X, Zhu JN, Fu YH, Lin QX, Liang YY, Deng CY, Kuang SJ, Zhang MZ, Liao YL, Zheng XL, Yu XY, Shan ZX. Attenuation of microRNA-16 derepresses the cyclins D1, D2 and E1 to provoke cardiomyocyte hypertrophy. J Cell Mol Med 2015; 19:608-19. [PMID: 25583328 PMCID: PMC4369817 DOI: 10.1111/jcmm.12445] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/25/2014] [Indexed: 12/14/2022] Open
Abstract
Cyclins/retinoblastoma protein (pRb) pathway participates in cardiomyocyte hypertrophy. MicroRNAs (miRNAs), the endogenous small non-coding RNAs, were recognized to play significant roles in cardiac hypertrophy. But, it remains unknown whether cyclin/Rb pathway is modulated by miRNAs during cardiac hypertrophy. This study investigates the potential role of microRNA-16 (miR-16) in modulating cyclin/Rb pathway during cardiomyocyte hypertrophy. An animal model of hypertrophy was established in a rat with abdominal aortic constriction (AAC), and in a mouse with transverse aortic constriction (TAC) and in a mouse with subcutaneous injection of phenylephrine (PE) respectively. In addition, a cell model of hypertrophy was also achieved based on PE-promoted neonatal rat ventricular cardiomyocyte and based on Ang-II-induced neonatal mouse ventricular cardiomyocyte respectively. We demonstrated that miR-16 expression was markedly decreased in hypertrophic myocardium and hypertrophic cardiomyocytes in rats and mice. Overexpression of miR-16 suppressed rat cardiac hypertrophy and hypertrophic phenotype of cultured cardiomyocytes, and inhibition of miR-16 induced a hypertrophic phenotype in cardiomyocytes. Expressions of cyclins D1, D2 and E1, and the phosphorylated pRb were increased in hypertrophic myocardium and hypertrophic cardiomyocytes, but could be reversed by enforced expression of miR-16. Cyclins D1, D2 and E1, not pRb, were further validated to be modulated post-transcriptionally by miR-16. In addition, the signal transducer and activator of transcription-3 and c-Myc were activated during myocardial hypertrophy, and inhibitions of them prevented miR-16 attenuation. Therefore, attenuation of miR-16 provoke cardiomyocyte hypertrophy via derepressing the cyclins D1, D2 and E1, and activating cyclin/Rb pathway, revealing that miR-16 might be a target to manage cardiac hypertrophy.
Collapse
Affiliation(s)
- Shuai Huang
- Medical Research Department of Guangdong General Hospital, Guangdong Provincial Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Xu N, Guan S, Chen Z, Yu Y, Xie J, Pan FY, Zhao NW, Liu L, Yang ZZ, Gao X, Xu B, Li CJ. The alteration of protein prenylation induces cardiomyocyte hypertrophy through Rheb-mTORC1 signalling and leads to chronic heart failure. J Pathol 2015; 235:672-85. [DOI: 10.1002/path.4480] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/25/2014] [Accepted: 11/05/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Na Xu
- Ministry of Education Key Laboratory of Model Animals for Disease Study; Model Animal Research Centre and Medical School of Nanjing University, National Resource Centre for Mutant Mice; Nanjing People's Republic of China
| | - Shan Guan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology; College of Life Science, Nanjing Normal University; Nanjing People's Republic of China
| | - Zhong Chen
- Ministry of Education Key Laboratory of Model Animals for Disease Study; Model Animal Research Centre and Medical School of Nanjing University, National Resource Centre for Mutant Mice; Nanjing People's Republic of China
| | - Yang Yu
- State Key Laboratory of Reproductive Biology; Institute of Zoology/Chinese Academy of Sciences; Beijing People's Republic of China
| | - Jun Xie
- Department of Cardiology; Affiliated Drum Tower Hospital of Nanjing University Medical School; Nanjing People's Republic of China
| | - Fei-Yan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology; College of Life Science, Nanjing Normal University; Nanjing People's Republic of China
| | - Ning-Wei Zhao
- Biomedical Research Laboratory; Shimadzu (China) Co. Ltd; Shanghai People's Republic of China
| | - Li Liu
- Department of Geriatrics; First Affiliated Hospital with Nanjing Medical University; Nanjing People's Republic of China
| | - Zhong-Zhou Yang
- Ministry of Education Key Laboratory of Model Animals for Disease Study; Model Animal Research Centre and Medical School of Nanjing University, National Resource Centre for Mutant Mice; Nanjing People's Republic of China
| | - Xiang Gao
- Ministry of Education Key Laboratory of Model Animals for Disease Study; Model Animal Research Centre and Medical School of Nanjing University, National Resource Centre for Mutant Mice; Nanjing People's Republic of China
| | - Biao Xu
- Department of Cardiology; Affiliated Drum Tower Hospital of Nanjing University Medical School; Nanjing People's Republic of China
| | - Chao-Jun Li
- Ministry of Education Key Laboratory of Model Animals for Disease Study; Model Animal Research Centre and Medical School of Nanjing University, National Resource Centre for Mutant Mice; Nanjing People's Republic of China
| |
Collapse
|
89
|
Yan M, Chen C, Gong W, Yin Z, Zhou L, Chaugai S, Wang DW. miR-21-3p regulates cardiac hypertrophic response by targeting histone deacetylase-8. Cardiovasc Res 2014; 105:340-52. [PMID: 25504627 DOI: 10.1093/cvr/cvu254] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIMS Growing evidences indicate that microRNAs (miRNAs) are involved in cardiac hypertrophy development. Multiple miRNAs have been identified as diagnostic and prognostic biomarkers of cardiac hypertrophy, as well as potential therapeutic tools. The present study aimed to investigate the functions and regulatory mechanisms of miR-21-3p in cardiac hypertrophy. METHODS AND RESULTS Decreased expression of miR-21-3p was observed in cardiac hypertrophy induced by transverse aortic constriction (TAC) and angiotensin (Ang) II infusion in mice. To further explore the role of miR-21-3p in cardiac hypertrophy, rAAV-miR-21-3p was administered intravenously in mice. Overexpression of miR-21-3p markedly suppressed TAC-induced cardiac hypertrophy and also blocked Ang II-induced cardiac hypertrophy as determined by cardiac function measurement and biomarker detection. Furthermore, western blot assays showed that histone deacetylase-8 (HDAC8) was silenced by miR-21-3p, and luciferase reporter assays showed that miR-21-3p binds to the 3' UTR of HDAC8. Moreover, re-expression of HDAC8 attenuated miR-21-3p-mediated suppression of cardiac hypertrophy by enhancing phospho-Akt and phospho-Gsk3β expression. CONCLUSION Our data reveal a role of miR-21-3p in regulating HDAC8 expression and Akt/Gsk3β pathway, and suggest that modulation of miR-21-3p levels may provide a therapeutic approach for cardiac hypertrophy.
Collapse
Affiliation(s)
- Mengwen Yan
- Department of Internal Medicine, Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Chen Chen
- Department of Internal Medicine, Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Wei Gong
- Department of Internal Medicine, Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Zhongwei Yin
- Department of Internal Medicine, Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Ling Zhou
- Department of Internal Medicine, Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Sandip Chaugai
- Department of Internal Medicine, Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Dao Wen Wang
- Department of Internal Medicine, Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| |
Collapse
|
90
|
Kunz M, Xiao K, Liang C, Viereck J, Pachel C, Frantz S, Thum T, Dandekar T. Bioinformatics of cardiovascular miRNA biology. J Mol Cell Cardiol 2014; 89:3-10. [PMID: 25486579 DOI: 10.1016/j.yjmcc.2014.11.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/05/2014] [Accepted: 11/29/2014] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) are small ~22 nucleotide non-coding RNAs and are highly conserved among species. Moreover, miRNAs regulate gene expression of a large number of genes associated with important biological functions and signaling pathways. Recently, several miRNAs have been found to be associated with cardiovascular diseases. Thus, investigating the complex regulatory effect of miRNAs may lead to a better understanding of their functional role in the heart. To achieve this, bioinformatics approaches have to be coupled with validation and screening experiments to understand the complex interactions of miRNAs with the genome. This will boost the subsequent development of diagnostic markers and our understanding of the physiological and therapeutic role of miRNAs in cardiac remodeling. In this review, we focus on and explain different bioinformatics strategies and algorithms for the identification and analysis of miRNAs and their regulatory elements to better understand cardiac miRNA biology. Starting with the biogenesis of miRNAs, we present approaches such as LocARNA and miRBase for combining sequence and structure analysis including phylogenetic comparisons as well as detailed analysis of RNA folding patterns, functional target prediction, signaling pathway as well as functional analysis. We also show how far bioinformatics helps to tackle the unprecedented level of complexity and systemic effects by miRNA, underlining the strong therapeutic potential of miRNA and miRNA target structures in cardiovascular disease. In addition, we discuss drawbacks and limitations of bioinformatics algorithms and the necessity of experimental approaches for miRNA target identification. This article is part of a Special Issue entitled 'Non-coding RNAs'.
Collapse
Affiliation(s)
- Meik Kunz
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Würzburg, Germany; Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Ke Xiao
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany; Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | - Chunguang Liang
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Würzburg, Germany
| | - Janika Viereck
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Christina Pachel
- Department of Internal Medicine I, University Hospital Würzburg, Germany and Comprehensive Heart Failure Center, University of Würzburg, Germany
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital Würzburg, Germany and Comprehensive Heart Failure Center, University of Würzburg, Germany
| | - Thomas Thum
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany; Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany; National Heart and Lung Institute, Imperial College London, London, UK
| | - Thomas Dandekar
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Würzburg, Germany; EMBL Heidelberg, BioComputing Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
91
|
Chini VP. Micro-RNAs and next generation sequencing: new perspectives in heart failure. Clin Chim Acta 2014; 443:114-9. [PMID: 25463748 DOI: 10.1016/j.cca.2014.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 01/26/2023]
Abstract
miRNAs are small non-coding RNAs that regulate gene expression. They have significant role in the regulation of cardiovascular function and conditions, such as Heart Failure (HF), as demonstrated by studies of miRNA expression profiling in myocardial tissue. The importance of the use of miRNAs as biomarkers in HF was enhanced when found that they exist extracellularly, with remarkable stability and there are indications that their expression levels reflect the cell response in cardiovascular conditions including Heart Failure. Advances in technology and bioinformatics broaden the field of applications of miRNAs in HF. The introduction of new platforms, such as Next Generation Sequencing, enabled the discovery of novel miRNAs that might be utilized as Heart Failure biomarkers for diagnostic and prognostic purposes and with potential applications in targeted therapeutics.
Collapse
Affiliation(s)
- Vasiliki P Chini
- Qatar Biomedical Research Institute (QBRI), Medical Genetics Center, 69 Lusail Street, 33123 Doha, Qatar.
| |
Collapse
|
92
|
Aggarwal P, Turner A, Matter A, Kattman SJ, Stoddard A, Lorier R, Swanson BJ, Arnett DK, Broeckel U. RNA expression profiling of human iPSC-derived cardiomyocytes in a cardiac hypertrophy model. PLoS One 2014; 9:e108051. [PMID: 25255322 PMCID: PMC4177883 DOI: 10.1371/journal.pone.0108051] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/30/2014] [Indexed: 01/12/2023] Open
Abstract
Cardiac hypertrophy is an independent risk factor for cardiovascular disease and heart failure. There is increasing evidence that microRNAs (miRNAs) play an important role in the regulation of messenger RNA (mRNA) and the pathogenesis of various cardiovascular diseases. However, the ability to comprehensively study cardiac hypertrophy on a gene regulatory level is impacted by the limited availability of human cardiomyocytes. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer the opportunity for disease modeling. Here we utilize a previously established invitro model of cardiac hypertrophy to interrogate the regulatory mechanism associated with the cardiac disease process. We perform miRNA sequencing and mRNA expression analysis on endothelin 1 (ET-1) stimulated hiPSC-CMs to describe associated RNA expression profiles. MicroRNA sequencing revealed over 250 known and 34 predicted novel miRNAs to be differentially expressed between ET-1 stimulated and unstimulated control hiPSC-CMs. Messenger RNA expression analysis identified 731 probe sets with significant differential expression. Computational target prediction on significant differentially expressed miRNAs and mRNAs identified nearly 2000 target pairs. A principal component analysis approach comparing the invitro data with human myocardial biopsies detected overlapping expression changes between the invitro samples and myocardial biopsies with Left Ventricular Hypertrophy. These results provide further insights into the complex RNA regulatory mechanism associated with cardiac hypertrophy.
Collapse
Affiliation(s)
- Praful Aggarwal
- Department of Pediatrics, Children’s Research Institute, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Amy Turner
- Department of Pediatrics, Children’s Research Institute, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Andrea Matter
- Department of Pediatrics, Children’s Research Institute, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Steven J. Kattman
- Cellular Dynamics International Inc., Madison, Wisconsin, United States of America
| | - Alexander Stoddard
- Department of Pediatrics, Children’s Research Institute, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Rachel Lorier
- Department of Pediatrics, Children’s Research Institute, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Bradley J. Swanson
- Cellular Dynamics International Inc., Madison, Wisconsin, United States of America
| | - Donna K. Arnett
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ulrich Broeckel
- Department of Pediatrics, Children’s Research Institute, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
93
|
Chen Z, Li C, Xu Y, Li Y, Yang H, Rao L. Circulating level of miR-378 predicts left ventricular hypertrophy in patients with aortic stenosis. PLoS One 2014; 9:e105702. [PMID: 25157568 PMCID: PMC4144890 DOI: 10.1371/journal.pone.0105702] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 07/23/2014] [Indexed: 02/05/2023] Open
Abstract
Aims Excessively high left ventricle mass is an independent predictor of adverse prognosis. MicroRNAs (miRs) play crucial roles in the regulation of left ventricle hypertrophy (LVH). However, few circulating miRs have been established as predictors of LVH in aortic stenosis (AS) patients. In this study, we aimed to investigate whether circulating levels of miR-1, miR-133, and miR-378 predict LVH in patients with AS. Methods and Results One-hundred twelve patients with moderate to severe AS and 40 healthy controls were included in the study. Levels of miR-1, miR-133, and miR-378 in the plasma were measured by qPCR. Compared with healthy controls, AS patients had significantly lower circulating levels of miR-1, miR-133, and miR-378. AS patients with LVH had significantly lower miR-378 but not miR-1 and miR-133 compared with those without LVH. Linear regression analysis showed circulating miR-378 had strong correlation with left ventricular mass index (r = 0.283, p = 0.002) and logistic regression showed that lower miR-378 was an independent predictor for LVH in patients with AS (p = 0.037, OR 4.110, 95% CI 1.086 to 15.558). Conclusion Circulating levels of miR-1, miR-133 and miR-378 were decreased in AS patients, and miR-378 predicts LVH independent of the pressure gradient. Further prospective investigations are needed to elucidate whether these circulating miRs affect clinical outcome.
Collapse
Affiliation(s)
- Zhongxiu Chen
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Chen Li
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuanning Xu
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yajiao Li
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hao Yang
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Li Rao
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
94
|
Nagalingam RS, Sundaresan NR, Noor M, Gupta MP, Solaro RJ, Gupta M. Deficiency of cardiomyocyte-specific microRNA-378 contributes to the development of cardiac fibrosis involving a transforming growth factor β (TGFβ1)-dependent paracrine mechanism. J Biol Chem 2014; 289:27199-27215. [PMID: 25104350 DOI: 10.1074/jbc.m114.580977] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Understanding the regulation of cardiac fibrosis is critical for controlling adverse cardiac remodeling during heart failure. Previously we identified miR-378 as a cardiomyocyte-abundant miRNA down-regulated in several experimental models of cardiac hypertrophy and in patients with heart failure. To understand the consequence of miR-378 down-regulation during cardiac remodeling, our current study employed a locked nucleic acid-modified antimiR to target miR-378 in vivo. Results showed development of cardiomyocyte hypertrophy and fibrosis in mouse hearts. Mechanistically, miR-378 depletion was found to induce TGFβ1 expression in mouse hearts and in cultured cardiomyocytes. Among various secreted cytokines in the conditioned-media of miR-378-depleted cardiomyocytes, only TGFβ1 levels were found to be increased. The increase was prevented by miR-378 expression. Treatment of cardiac fibroblasts with the conditioned media of miR-378-depleted myocytes activated pSMAD2/3 and induced fibrotic gene expression. This effect was counteracted by including a TGFβ1-neutralizing antibody in the conditioned-medium. In cardiomyocytes, adenoviruses expressing dominant negative N-Ras or c-Jun prevented antimiR-mediated induction of TGFβ1 mRNA, documenting the importance of Ras and AP-1 signaling in this response. Our study demonstrates that reduction of miR-378 during pathological conditions contributes to cardiac remodeling by promoting paracrine release of profibrotic cytokine, TGFβ1 from cardiomyocytes. Our data imply that the presence in cardiomyocyte of miR-378 plays a critical role in the protection of neighboring fibroblasts from activation by pro-fibrotic stimuli.
Collapse
Affiliation(s)
- Raghu S Nagalingam
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois, Chicago, Illinois 60612 and
| | | | - Mariam Noor
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois, Chicago, Illinois 60612 and
| | - Mahesh P Gupta
- Department of Cardiothoracic Surgery, University of Chicago, Chicago, Illinois 60637
| | - R John Solaro
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois, Chicago, Illinois 60612 and
| | - Madhu Gupta
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois, Chicago, Illinois 60612 and.
| |
Collapse
|
95
|
Yoshida T, Yamashita M, Horimai C, Hayashi M. Kruppel-like factor 4 protein regulates isoproterenol-induced cardiac hypertrophy by modulating myocardin expression and activity. J Biol Chem 2014; 289:26107-26118. [PMID: 25100730 DOI: 10.1074/jbc.m114.582809] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Kruppel-like factor 4 (KLF4) plays an important role in vascular diseases, including atherosclerosis and vascular injury. Although KLF4 is expressed in the heart in addition to vascular cells, the role of KLF4 in cardiac disease has not been fully determined. The goals of this study were to investigate the role of KLF4 in cardiac hypertrophy and to determine the underlying mechanisms. Cardiomyocyte-specific Klf4 knockout (CM Klf4 KO) mice were generated by the Cre/LoxP technique. Cardiac hypertrophy was induced by chronic infusion of the β-adrenoreceptor agonist isoproterenol (ISO). Results showed that ISO-induced cardiac hypertrophy was enhanced in CM Klf4 KO mice compared with control mice. Accelerated cardiac hypertrophy in CM Klf4 KO mice was accompanied by the augmented cellular enlargement of cardiomyocytes as well as the exaggerated expression of fetal cardiac genes, including atrial natriuretic factor (Nppa). Additionally, induction of myocardin, a transcriptional cofactor regulating fetal cardiac genes, was enhanced in CM Klf4 KO mice. Interestingly, KLF4 regulated Nppa expression by modulating the expression and activity of myocardin, providing a mechanical basis for accelerated cardiac hypertrophy in CM Klf4 KO mice. Moreover, we showed that KLF4 mediated the antihypertrophic effect of trichostatin A, a histone deacetylase inhibitor, because ISO-induced cardiac hypertrophy in CM Klf4 KO mice was attenuated by olmesartan, an angiotensin II type 1 antagonist, but not by trichostatin A. These results provide novel evidence that KLF4 is a regulator of cardiac hypertrophy by modulating the expression and the activity of myocardin.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Apheresis and Dialysis Center, School of Medicine, Keio University, Tokyo 160-8582, Japan.
| | - Maho Yamashita
- Apheresis and Dialysis Center, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Chihiro Horimai
- Apheresis and Dialysis Center, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Matsuhiko Hayashi
- Apheresis and Dialysis Center, School of Medicine, Keio University, Tokyo 160-8582, Japan
| |
Collapse
|
96
|
Systemic approach to identify serum microRNAs as potential biomarkers for acute myocardial infarction. BIOMED RESEARCH INTERNATIONAL 2014; 2014:418628. [PMID: 24900964 PMCID: PMC4036490 DOI: 10.1155/2014/418628] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/14/2014] [Indexed: 12/25/2022]
Abstract
Background. Recent studies have revealed the role of microRNAs (miRNAs) in a variety of biological and pathological processes, including acute myocardial infarction (AMI). We hypothesized that ST-segment elevation myocardial infarction (STEMI) may be associated with an alteration of miRNAs and that circulating miRNAs may be used as diagnostic markers for STEMI. Methods. Expression levels of 270 serum miRNAs were analyzed in 8 STEMI patients and 8 matched healthy controls to identify miRNAs differentially expressed in the sera of patients with AMI. The differentially expressed miRNAs were evaluated in a separate cohort of 62 subjects, including 31 STEMI patients and 31 normal controls. Results. The initial profiling study identified 12 upregulated and 13 downregulated serum miRNAs in the AMI samples. A subsequent validation study confirmed that serum miR-486-3p and miR-150-3p were upregulated while miR-126-3p, miR-26a-5p, and miR-191-5p were significantly downregulated in the sera of patients with AMI. Ratios between the level of upregulated and downregulated miRNAs were also significantly different in those with AMI. Receiver operator characteristics curve analysis using the expression ratio of miR-486-3p and miR-191-5p showed an area under the curve of 0.863. Conclusion. Our results suggest that serum miRNAs may be used as potential diagnostic biomarkers for STEMI.
Collapse
|
97
|
Li C, Li X, Gao X, Zhang R, Zhang Y, Liang H, Xu C, Du W, Zhang Y, Liu X, Ma N, Xu Z, Wang L, Chen X, Lu Y, Ju J, Yang B, Shan H. MicroRNA-328 as a regulator of cardiac hypertrophy. Int J Cardiol 2014; 173:268-76. [DOI: 10.1016/j.ijcard.2014.02.035] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 01/22/2014] [Accepted: 02/22/2014] [Indexed: 01/23/2023]
|
98
|
Barnes J, Pat B, Chen YW, Powell PC, Bradley WE, Zheng J, Karki A, Cui X, Guichard J, Wei CC, Collawn J, Dell'Italia LJ. Whole-genome profiling highlights the molecular complexity underlying eccentric cardiac hypertrophy. Ther Adv Cardiovasc Dis 2014; 8:97-118. [PMID: 24692245 DOI: 10.1177/1753944714527490] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Heart failure is typically preceded by myocardial hypertrophy and remodeling, which can be concentric due to pressure overload (PO), or eccentric because of volume overload (VO). The molecular mechanisms that underlie these differing patterns of hypertrophy are distinct and have yet to be fully elucidated. Thus, the goal of this work is to identify novel therapeutic targets for cardiovascular conditions marked by hypertrophy that have previously been resistant to medical treatment, such as a pure VO. METHODS Concentric or eccentric hypertrophy was induced in rats for 2 weeks with transverse aortic constriction (TAC) or aortocaval fistula (ACF), respectively. Hemodynamic and echocardiographic analysis were used to assess the development of left ventricular (LV) hypertrophy and functional differences between groups. Changes in gene expression were determined by microarray and further characterized with Ingenuity Pathway Analysis. RESULTS Both models of hypertrophy increased LV mass. Rats with TAC demonstrated concentric LV remodeling while rats with ACF exhibited eccentric LV remodeling. Microarray analysis associated eccentric remodeling with a more extensive alteration of gene expression compared with concentric remodeling. Rats with VO had a marked activation of extracellular matrix genes, promotion of cell cycle genes, downregulation of genes associated with oxidative metabolism, and dysregulation of genes critical to cardiac contractile function. Rats with PO demonstrated similar categorical changes, but with the involvement of fewer individual genes. CONCLUSIONS Our results indicate that eccentric remodeling is a far more complex process than concentric remodeling. This study highlights the importance of several key biological functions early in the course of VO, including regulation of matrix, metabolism, cell proliferation, and contractile function. Thus, the results of this analysis will inform the ongoing search for new treatments to prevent the progression to heart failure in VO.
Collapse
Affiliation(s)
- Justin Barnes
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USADepartment of Medicine, Division of Cardiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Betty Pat
- Department of Medicine, Division of Cardiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yuan-Wen Chen
- Department of Medicine, Division of Cardiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Pamela C Powell
- Department of Medicine, Division of Cardiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Wayne E Bradley
- Department of Medicine, Division of Cardiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Junying Zheng
- Department of Medicine, Division of Cardiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Amrit Karki
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xiangqin Cui
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jason Guichard
- Department of Medicine, Division of Cardiology, University of Alabama at Birmingham, Birmingham, Alabama, USADepartment of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chih-Chang Wei
- Birmingham Department of Veteran Affairs, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - James Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
99
|
Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI, Vardas PE. MicroRNA-9 and microRNA-126 expression levels in patients with essential hypertension: potential markers of target-organ damage. ACTA ACUST UNITED AC 2014; 8:368-75. [PMID: 24794206 DOI: 10.1016/j.jash.2014.03.324] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/21/2014] [Accepted: 03/21/2014] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRs), as essential gene expression regulators, modulate cardiovascular development and disease and thus they are emerging as potential biomarkers and therapeutic targets in cardiovascular disease, including hypertension. We assessed the expression levels of the microRNAs miR-9 and miR-126 in 60 patients with untreated essential hypertension and 29 healthy individuals. All patients underwent two-dimensional echocardiography and 24-hour ambulatory blood pressure monitoring. MicroRNA expression levels in peripheral blood mononuclear cells were quantified by real-time reverse transcription polymerase chain reaction. Hypertensive patients showed significantly lower miR-9 (9.69 ± 1.56 vs 41.08 ± 6.06; P < .001) and miR-126 (3.88 ± 0.47 vs 8.96 ± 1.69; P < .001) expression levels compared with healthy controls. In hypertensive patients, miR-9 expression levels showed a significant positive correlation (r = 0.437; P < .001) with left ventricular mass index. Furthermore, both miR-9 (r = 0.312; P = .015) and miR-126 (r = 0.441; P < .001) expression levels in hypertensive patients showed significant positive correlations with the 24-hour mean pulse pressure. Our data reveal that miR-9 and miR-126 are closely related to essential hypertension in humans, as they show a distinct expression profile in hypertensive patients relative to healthy individuals, and they are associated with clinical prognostic indices of hypertensive target-organ damage in hypertensive patients. Thus, they may possibly represent potential biomarkers and candidate therapeutic targets in essential hypertension.
Collapse
Affiliation(s)
- Joanna E Kontaraki
- Molecular Cardiology Laboratory, School of Medicine, University of Crete, Greece.
| | - Maria E Marketou
- Department of Cardiology, Heraklion University Hospital, Crete, Greece
| | | | | | - Panos E Vardas
- Department of Cardiology, Heraklion University Hospital, Crete, Greece
| |
Collapse
|
100
|
Peters T, Schroen B. Missing links in cardiology: long non-coding RNAs enter the arena. Pflugers Arch 2014; 466:1177-87. [PMID: 24619481 DOI: 10.1007/s00424-014-1479-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/07/2014] [Accepted: 02/08/2014] [Indexed: 11/25/2022]
Abstract
Heart failure as a consequence of ischemic, hypertensive, infectious, or hereditary heart disease is a major challenge in cardiology and topic of intense research. Recently, new players appeared in this field and promise deeper insights into cardiac development, function, and disease. Long non-coding RNAs are a novel class of transcripts that can regulate gene expression and may have many more functions inside the cell. Here, we present examples on long non-coding RNA (lncRNA) function in cardiac development and give suggestions on how lncRNAs may be involved in cardiomyocyte dysfunction, myocardial fibrosis, and inflammation, three hallmarks of the failing heart. Above that, we point out opportunities as well as challenges that should be considered in the endeavor to investigate cardiac lncRNAs.
Collapse
Affiliation(s)
- Tim Peters
- Experimental Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | | |
Collapse
|