51
|
Yuwen L, Ciqiu Y, Yi S, Ruilei L, Yuanhui L, Bo L, Songqi L, Weiming L, Jie L. A Pilot Study of Protein Microarray for Simultaneous Analysis of 274 Cytokines Between Abdominal Aortic Aneurysm and Normal Aorta. Angiology 2019; 70:830-837. [PMID: 31018647 DOI: 10.1177/0003319719844678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cytokines play an important role in the pathogenesis of abdominal aortic aneurysm (AAA). We evaluated the cytokine expression profile of large AAA walls using a 274-cytokine protein array. We hypothesized that AAAs are characterized by an inflammatory, chemotactic cytokine profile. We investigated the cytokine expression profile of 12 patients with AAA and 6 nonaneurysmal controls using an antibody-based protein array. The array generated antibodies against homogenized human aortic tissues to validate the cytokines differentially expressed in AAAs and normal aortas. Data were quantified using fluorescent signal intensities and statistically analyzed by the t test. Fifty-nine cytokines were differentially expressed between the AAA and control samples. Of the 35 selected cytokines that had relative expression >1000, 29 were significantly higher and 6 were lower in AAA samples than in controls. They respectively belonged to CC chemokines, CXC chemokines, pro-inflammatory cytokines, growth factors, proteolytic proteins and inhibitors, and cell adhesion cytokines. Our results show that distinct cytokines are involved in AAAs and suggest that the pathways involving these cytokines may be associated with the pathogenesis and development of AAAs. These findings, if confirmed by larger studies, may suggest treatment targets.
Collapse
Affiliation(s)
- Li Yuwen
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yang Ciqiu
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital & Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Shi Yi
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Liu Ruilei
- Department of Breast and Thyroid Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Lai Yuanhui
- Division of Vascular Surgery, The Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Lin Bo
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Li Songqi
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Lv Weiming
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Li Jie
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
52
|
Abstract
Current management of aortic aneurysms relies exclusively on prophylactic operative repair of larger aneurysms. Great potential exists for successful medical therapy that halts or reduces aneurysm progression and hence alleviates or postpones the need for surgical repair. Preclinical studies in the context of abdominal aortic aneurysm identified hundreds of candidate strategies for stabilization, and data from preoperative clinical intervention studies show that interventions in the pathways of the activated inflammatory and proteolytic cascades in enlarging abdominal aortic aneurysm are feasible. Similarly, the concept of pharmaceutical aorta stabilization in Marfan syndrome is supported by a wealth of promising studies in the murine models of Marfan syndrome-related aortapathy. Although some clinical studies report successful medical stabilization of growing aortic aneurysms and aortic root stabilization in Marfan syndrome, these claims are not consistently confirmed in larger and controlled studies. Consequently, no medical therapy can be recommended for the stabilization of aortic aneurysms. The discrepancy between preclinical successes and clinical trial failures implies shortcomings in the available models of aneurysm disease and perhaps incomplete understanding of the pathological processes involved in later stages of aortic aneurysm progression. Preclinical models more reflective of human pathophysiology, identification of biomarkers to predict severity of disease progression, and improved design of clinical trials may more rapidly advance the opportunities in this important field.
Collapse
Affiliation(s)
- Jan H. Lindeman
- Dept. Vascular Surgery, Leiden University Medical Center, The Netherlands
| | - Jon S. Matsumura
- Division of Vascular Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
53
|
Jing J, Du Z, Ji S, Han K. Urinary proteome analysis of acute hypercoagulable state in rat model induced by ε-aminocaproic acid. Biomed Pharmacother 2018; 110:275-284. [PMID: 30513505 DOI: 10.1016/j.biopha.2018.11.148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
The hypercoagulable state occurs in a group of prothrombotic disorders associated with an increased risk for thromboembolic events, but it is difficult to diagnose due to the lack of available biomarkers. This study aimed to investigate systematic changes of urinary proteome in acute hypercoagulable state induced by certain antifibrinolytics. To reduce the effects of both genetic and environmental factors on the urinary proteome, we used a rat model of acute hypercoagulable state induced by an antifibrinolytic agent ε-aminocaproic acid, resembling human hypercoagulable state. Urine samples were collected during acute hypercoagulable state for analysis by liquid chromatography-tandem mass spectrometry (LCMS/MS). Of 65 significantly changed proteins in acute hypercoagulable state, 38 proteins had human orthologs, and 18 proteins were identified as stable in normal human urine. None of the identified proteins have been found to be clotting factors, but 4 proteins are known to be involved in the regulation of blood coagulation factors. Two proteins were verified as the markers associated with acute hypercoagulable state by Western blot analysis. In addition, four common differential urinary proteins have been found in acute hypercoagulable state induced by another antifibrinolytics tranexamic acid. These four proteins are potential biomarkers for early diagnosis of hypercoagulable state to prevent the development of thrombotic diseases.
Collapse
Affiliation(s)
- Jian Jing
- Beijing Key Lab of Genetic Engineering and Biotechnology, College of Life Sciences, Beijing Normal University, Xinwai St 19, Haidian District, Beijing, 100875, China.
| | - Zhenhuan Du
- Beijing Key Lab of Genetic Engineering and Biotechnology, College of Life Sciences, Beijing Normal University, Xinwai St 19, Haidian District, Beijing, 100875, China
| | - Songyang Ji
- Beijing Key Lab of Genetic Engineering and Biotechnology, College of Life Sciences, Beijing Normal University, Xinwai St 19, Haidian District, Beijing, 100875, China
| | - Keqiang Han
- Beijing Key Lab of Genetic Engineering and Biotechnology, College of Life Sciences, Beijing Normal University, Xinwai St 19, Haidian District, Beijing, 100875, China
| |
Collapse
|
54
|
Zhang X, Liu S, Weng X, Wu T, Yu L, Xu Y, Guo J. Brg1 trans-activates endothelium-derived colony stimulating factor to promote calcium chloride induced abdominal aortic aneurysm in mice. J Mol Cell Cardiol 2018; 125:6-17. [DOI: 10.1016/j.yjmcc.2018.10.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 09/10/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
|
55
|
Carino D, Sarac TP, Ziganshin BA, Elefteriades JA. Abdominal Aortic Aneurysm: Evolving Controversies and Uncertainties. Int J Angiol 2018; 27:58-80. [PMID: 29896039 PMCID: PMC5995687 DOI: 10.1055/s-0038-1657771] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is defined as a permanent dilatation of the abdominal aorta that exceeds 3 cm. Most AAAs arise in the portion of abdominal aorta distal to the renal arteries and are defined as infrarenal. Most AAAs are totally asymptomatic until catastrophic rupture. The strongest predictor of AAA rupture is the diameter. Surgery is indicated to prevent rupture when the risk of rupture exceeds the risk of surgery. In this review, we aim to analyze this disease comprehensively, starting from an epidemiological perspective, exploring etiology and pathophysiology, and concluding with surgical controversies. We will pursue these goals by addressing eight specific questions regarding AAA: (1) Is the incidence of AAA increasing? (2) Are ultrasound screening programs for AAA effective? (3) What causes AAA: Genes versus environment? (4) Animal models: Are they really relevant? (5) What pathophysiology leads to AAA? (6) Indications for AAA surgery: Are surgeons over-eager to operate? (7) Elective AAA repair: Open or endovascular? (8) Emergency AAA repair: Open or endovascular?
Collapse
Affiliation(s)
- Davide Carino
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut
| | - Timur P. Sarac
- Section of Vascular and Endovascular Surgery, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Bulat A. Ziganshin
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut
- Department of Surgical Diseases # 2, Kazan State Medical University, Kazan, Russia
| | - John A. Elefteriades
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
56
|
Liu CL, Guo J, Zhang X, Sukhova GK, Libby P, Shi GP. Cysteine protease cathepsins in cardiovascular disease: from basic research to clinical trials. Nat Rev Cardiol 2018; 15:351-370. [DOI: 10.1038/s41569-018-0002-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
57
|
Sena BF, Figueiredo JL, Aikawa E. Cathepsin S As an Inhibitor of Cardiovascular Inflammation and Calcification in Chronic Kidney Disease. Front Cardiovasc Med 2018; 4:88. [PMID: 29379789 PMCID: PMC5770806 DOI: 10.3389/fcvm.2017.00088] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/14/2017] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular disease (CVD) is responsible for the majority of deaths in the developed world. Particularly, in patients with chronic kidney disease (CKD), the imbalance of calcium and phosphate may lead to the acceleration of both vascular and valve inflammation and calcification. One in two patients with CKD are reported as dying from cardiovascular causes due to the resulting acceleration in the development of atherosclerosis plaques. In addition, CKD patients on hemodialysis are prone to aortic valve calcification and often need valve replacement before kidney transplantation. The lysosomal proteases, cathepsins, are composed of 11 cysteine members (cathepsin B, C, F, H, K, L, O, S, V, W, and Z), as well as serine proteases cathepsin A and G, which cleave peptide bonds with serine as the amino acid, and aspartyl proteases D and E, which use an activated water molecule bound to aspartate to break peptide substrate. Cysteine proteases, also known as thiol proteases, degrade protein via the deprotonation of a thiol and have been found to play a significant role in autoimmune disease, atherosclerosis, aortic valve calcification, cardiac repair, and cardiomyopathy, operating within extracellular spaces. This review sought to evaluate recent findings in this field, highlighting how among cathepsins, the inhibition of cathepsin S in particular, could play a significant role in diminishing the effects of CVD, especially for patients with CKD.
Collapse
Affiliation(s)
- Brena F Sena
- Boston University School of Public Health, Boston, MA, United States
| | - Jose Luiz Figueiredo
- Department of Surgery, Introduction to Clinical and Surgical Techniques Division, Laboratory of Experimental Surgery, Federal University of Pernambuco, Recife, Brazil
| | - Elena Aikawa
- The Center of Excellence in Vascular Biology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
58
|
Wu H, Du Q, Dai Q, Ge J, Cheng X. Cysteine Protease Cathepsins in Atherosclerotic Cardiovascular Diseases. J Atheroscler Thromb 2017; 25:111-123. [PMID: 28978867 PMCID: PMC5827079 DOI: 10.5551/jat.rv17016] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is an inflammatory disease characterized by extensive arterial wall matrix protein degradation. Cysteine protease cathepsins play a pivotal role in extracellular matrix (ECM) remodeling and have been implicated in the development and progression of atherosclerosis-based cardiovascular diseases. An imbalance in expression between cathepsins (such as cathepsins S, K, L, C) and their inhibitor cystatin C may favor proteolysis of ECM in the pathogenesis of cardiovascular disease such as atherosclerosis, aneurysm formation, restenosis, and neovascularization. New insights into cathepsin functions have been made possible by the generation of knock-out mice and by the application of specific inhibitors. Inflammatory cytokines regulate the expression and activities of cathepsins in cultured vascular cells and macrophages. In addition, evaluations of the possibility of cathepsins as a diagnostic tool revealed that the circulating levels of cathepsin S, K, and L, and their endogenous inhibitor cystatin C could be promising biomarkers in the diagnosis of coronary artery disease, aneurysm, adiposity, peripheral arterial disease, and coronary artery calcification. In this review, we summarize the available information regarding the mechanistic contributions of cathepsins to ASCVD.
Collapse
Affiliation(s)
- Hongxian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
| | - Qiuna Du
- Department of Nephrology, Tongji Hospital, Tongji University
| | - Qiuyan Dai
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
| | - Xianwu Cheng
- Department of Cardiology, Yanbian University Hospital.,Institute of Innovation for Future Society, Nagoya University, Graduate School of Medicine.,Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
59
|
Yan P, Chen K, Wang Q, Yang D, Li D, Yang Y. UCP-2 is involved in angiotensin-II-induced abdominal aortic aneurysm in apolipoprotein E-knockout mice. PLoS One 2017; 12:e0179743. [PMID: 28683125 PMCID: PMC5500278 DOI: 10.1371/journal.pone.0179743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 06/02/2017] [Indexed: 02/07/2023] Open
Abstract
UCP-2 shows an important role in modulating of mitochondrial membrane potential and cell apoptosis. Whether or not UCP-2 could been a critical factor in preventing AAA formation is not known. We report that UCP-2 protein and mRNA expression were significantly higher in Ang-Ⅱ-induced AAA of mice. The incident rate of AAA in UCP-2-/-ApoE-/- mice after Ang-Ⅱtreatment was higher than the rate in the UCP-2+/+ApoE-/- mice. The abdominal aorta from UCP-2-/-ApoE-/- mice showed the medial hypertrophy, fragmentation of elastic lamellas and depletion of α-SMA. The NADPH oxidase activity and level of MDA was significantly higher in UCP-2-/-ApoE-/- mice than UCP-2+/+ApoE-/- or WT mice. Besides, the SOD activity is increased in UCP-2+/+ApoE-/- mice as compared with WT mice, whereas deficiency of UCP-2 decreased the increasing SOD activity in Ang-Ⅱ treated ApoE-/- mice. UCP-2 knockout up-regulated the MMP2 and MMP9 expression in aortic aneurysm. Ang-Ⅱ induced apoptosis of VSMCs was increased in UCP-2-/-ApoE-/- mice. And the expression of eNOS in vascular tissue from UCP-2-/-ApoE-/- mice is lower than WT and UCP-2+/+ApoE-/- mice. This study provides a mechanism by which UCP-2, via anti-oxidants and anti-apoptosis, participates in the preventing of AAA formation.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Angiotensin II/pharmacology
- Animals
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Apoptosis/drug effects
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Gene Expression Regulation
- Malondialdehyde/metabolism
- Matrix Metalloproteinase 2/genetics
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Membrane Potential, Mitochondrial/drug effects
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NADPH Oxidases/genetics
- NADPH Oxidases/metabolism
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction
- Superoxide Dismutase/genetics
- Superoxide Dismutase/metabolism
- Uncoupling Protein 2/deficiency
- Uncoupling Protein 2/genetics
Collapse
Affiliation(s)
- Peng Yan
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, P.R. China
| | - Ken Chen
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, P.R. China
| | - Qiang Wang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, P.R. China
| | - Dachun Yang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, P.R. China
| | - De Li
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, P.R. China
| | - Yongjian Yang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, P.R. China
- * E-mail:
| |
Collapse
|
60
|
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening disease associated with high morbidity, and high mortality in the event of aortic rupture. Major advances in open surgical and endovascular repair of AAA have been achieved during the past 2 decades. However, drug-based therapies are still lacking, highlighting a real need for better understanding of the molecular and cellular mechanisms involved in AAA formation and progression. The main pathological features of AAA include extracellular matrix remodelling associated with degeneration and loss of vascular smooth muscle cells and accumulation and activation of inflammatory cells. The inflammatory process has a crucial role in AAA and substantially influences many determinants of aortic wall remodelling. In this Review, we focus specifically on the involvement of monocytes and macrophages, summarizing current knowledge on the roles, origin, and functions of these cells in AAA development and its complications. Furthermore, we show and propose that distinct monocyte and macrophage subsets have critical and differential roles in initiation, progression, and healing of the aneurysmal process. On the basis of experimental and clinical studies, we review potential translational applications to detect, assess, and image macrophage subsets in AAA, and discuss the relevance of these applications for clinical practice.
Collapse
|
61
|
Osborn MJ, Webber BR, McElmurry RT, Rudser KD, DeFeo AP, Muradian M, Petryk A, Hallgrimsson B, Blazar BR, Tolar J, Braunlin EA. Angiotensin receptor blockade mediated amelioration of mucopolysaccharidosis type I cardiac and craniofacial pathology. J Inherit Metab Dis 2017; 40:281-289. [PMID: 27743312 PMCID: PMC5335863 DOI: 10.1007/s10545-016-9988-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 11/26/2022]
Abstract
Mucopolysaccharidosis type I (MPS IH) is a lysosomal storage disease (LSD) caused by inactivating mutations to the alpha-L-iduronidase (IDUA) gene. Treatment focuses on IDUA enzyme replacement and currently employed methods can be non-uniform in their efficacy particularly for the cardiac and craniofacial pathology. Therefore, we undertook efforts to better define the pathological cascade accounting for treatment refractory manifestations and demonstrate a role for the renin angiotensin system (RAS) using the IDUA-/- mouse model. Perturbation of the RAS in the aorta was more profound in male animals suggesting a causative role in the observed gender dimorphism and angiotensin receptor blockade (ARB) resulted in improved cardiac function. Further, we show the ability of losartan to prevent shortening of the snout, a common craniofacial anomaly in IDUA-/- mice. These data show a key role for the RAS in MPS associated pathology and support the inclusion of losartan as an augmentation to current therapies.
Collapse
Affiliation(s)
- Mark J Osborn
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, 420 Delaware ST SE, MMC 366, Minneapolis, MN, 55455, USA.
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
- Asan-Minnesota Institute for Innovating Transplantation, Seoul, Republic of Korea.
- School of Public Health, University of Minnesota, Minneapolis, MN, USA.
| | - Beau R Webber
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, 420 Delaware ST SE, MMC 366, Minneapolis, MN, 55455, USA
| | - Ronald T McElmurry
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, 420 Delaware ST SE, MMC 366, Minneapolis, MN, 55455, USA
| | - Kyle D Rudser
- Department of Cell Biology and Anatomy and the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Anthony P DeFeo
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, 420 Delaware ST SE, MMC 366, Minneapolis, MN, 55455, USA
| | - Michael Muradian
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, 420 Delaware ST SE, MMC 366, Minneapolis, MN, 55455, USA
| | - Anna Petryk
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, 420 Delaware ST SE, MMC 366, Minneapolis, MN, 55455, USA
| | - Benedikt Hallgrimsson
- Department of Cell Biology and Anatomy and the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, 420 Delaware ST SE, MMC 366, Minneapolis, MN, 55455, USA
| | - Jakub Tolar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, 420 Delaware ST SE, MMC 366, Minneapolis, MN, 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
- Asan-Minnesota Institute for Innovating Transplantation, Seoul, Republic of Korea
- School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Elizabeth A Braunlin
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, 420 Delaware ST SE, MMC 366, Minneapolis, MN, 55455, USA.
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
62
|
Steubl D, Kumar SV, Tato M, Mulay SR, Larsson A, Lind L, Risérus U, Renders L, Heemann U, Carlsson AC, Ärnlöv J, Anders HJ. Circulating cathepsin-S levels correlate with GFR decline and sTNFR1 and sTNFR2 levels in mice and humans. Sci Rep 2017; 7:43538. [PMID: 28240259 PMCID: PMC5327444 DOI: 10.1038/srep43538] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/25/2017] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular complications determine morbidity/mortality in chronic kidney disease (CKD). We hypothesized that progressive CKD drives the release of cathepsin-S (Cat-S), a cysteine protease that promotes endothelial dysfunction and cardiovascular complications. Therefore, Cat-S, soluble tumor-necrosis-factor receptor (sTNFR) 1/2 and glomerular filtration rate (GFR) were measured in a CKD mouse model, a German CKD-cohort (MCKD, n = 421) and two Swedish community-based cohorts (ULSAM, n = 764 and PIVUS, n = 804). Association between Cat-S and sTNFR1/2/GFR was assessed using multivariable linear regression. In the mouse model, Cat-S and sTNFR1/2 concentrations were increased following the progressive decline of GFR, showing a strong correlation between Cat-S and GFR (r = −0.746, p < 0.001) and Cat-S and sTNFR1/sTNFR2 (r = 0.837/0.916, p < 0.001, respectively). In the human cohorts, an increase of one standard deviation of estimated GFR was associated with a decrease of 1.008 ng/ml (95%-confidence interval (95%-CI) −1.576–(−0.439), p < 0.001) in Cat-S levels in MCKD; in ULSAM and PIVUS, results were similar. In all three cohorts, Cat-S and sTNFR1/sTNFR2 levels were associated in multivariable linear regression (p < 0.001). In conclusion, as GFR declines Cat-S and markers of inflammation-related endothelial dysfunction increase. The present data indicating that Cat-S activity increases with CKD progression suggest that Cat-S might be a therapeutic target to prevent cardiovascular complications in CKD.
Collapse
Affiliation(s)
- Dominik Steubl
- Abteilung für Nephrologie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Santhosh V Kumar
- Medizinische Klinik und Poliklinik IV, Renal Division, Klinikum der Universität München, Campus Innenstadt, München, Germany
| | - Maia Tato
- Medizinische Klinik und Poliklinik IV, Renal Division, Klinikum der Universität München, Campus Innenstadt, München, Germany
| | - Shrikant R Mulay
- Medizinische Klinik und Poliklinik IV, Renal Division, Klinikum der Universität München, Campus Innenstadt, München, Germany
| | - Anders Larsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ulf Risérus
- Departments of Public Health and Caring Sciences/Clinical Nutrition, Uppsala University, Uppsala, Sweden
| | - Lutz Renders
- Abteilung für Nephrologie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Uwe Heemann
- Abteilung für Nephrologie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Axel C Carlsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Division of Family Medicine, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - Johan Ärnlöv
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,School of Health and Social Studies, Dalarna University, Falun, Sweden
| | - Hans-Joachim Anders
- Medizinische Klinik und Poliklinik IV, Renal Division, Klinikum der Universität München, Campus Innenstadt, München, Germany
| |
Collapse
|
63
|
Falcão AS, Carvalho LAR, Lidónio G, Vaz AR, Lucas SD, Moreira R, Brites D. Dipeptidyl Vinyl Sulfone as a Novel Chemical Tool to Inhibit HMGB1/NLRP3-Inflammasome and Inflamma-miRs in Aβ-Mediated Microglial Inflammation. ACS Chem Neurosci 2017; 8:89-99. [PMID: 27797173 DOI: 10.1021/acschemneuro.6b00250] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rapid microglial activation and associated inflammatory pathways contribute to immune-defense and tissue repair in the central nervous system (CNS). However, persistent activation of these cells will ultimately result in vast production of pro-inflammatory mediators and other neurotoxic factors, which may induce neuronal damage and contribute to chronic neurodegenerative diseases, as Alzheimer's disease (AD). Therefore, small molecules with immunomodulatory effects on microglia may be considered as potential tools to counteract their proinflammatory phenotype and neuroimmune dysregulation in such disorders. Indeed, reducing amyloid-β (Aβ)-induced microglia activation is believed to be effective in treating AD. In this study, we investigated whether dipeptidyl vinyl sulfone (VS) was able to attenuate Aβ-mediated inflammatory response using a mouse microglial (N9) cell line and a solution containing a mixture of Aβ aggregates. We show that low levels of VS are able to prevent cell death while reducing microglia phagocytosis upon Aβ treatment. VS also suppressed Aβ-induced expression of inflammatory mediators in microglia, such as matrix metalloproteinase (MMP)-2 and MMP-9, as well as high-mobility group box protein-1 (HMGB1), nod-like receptor protein 3 (NLRP3)-inflammasome, and interleukin (IL)-1β. Interestingly, increased expression of the two critical inflammation-related microRNAs (miR)-155 and miR-146a in microglia upon Aβ treatment was also prevented by VS coincubation. Taken together, VS emerges as a potential new therapeutic strategy worthy of further investigation in improved cellular and animal models of AD.
Collapse
Affiliation(s)
- Ana S. Falcão
- Neuron
Glia Biology in Health and Disease Group, Research Institute
for Medicines (iMed.ULisboa), ‡Department of Biochemistry and Human Biology, §Medicinal Chemistry
Group, Research Institute for Medicines (iMed.ULisboa), and ∥Department of
Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Luís A. R. Carvalho
- Neuron
Glia Biology in Health and Disease Group, Research Institute
for Medicines (iMed.ULisboa), ‡Department of Biochemistry and Human Biology, §Medicinal Chemistry
Group, Research Institute for Medicines (iMed.ULisboa), and ∥Department of
Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Gonçalo Lidónio
- Neuron
Glia Biology in Health and Disease Group, Research Institute
for Medicines (iMed.ULisboa), ‡Department of Biochemistry and Human Biology, §Medicinal Chemistry
Group, Research Institute for Medicines (iMed.ULisboa), and ∥Department of
Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana R. Vaz
- Neuron
Glia Biology in Health and Disease Group, Research Institute
for Medicines (iMed.ULisboa), ‡Department of Biochemistry and Human Biology, §Medicinal Chemistry
Group, Research Institute for Medicines (iMed.ULisboa), and ∥Department of
Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Susana D. Lucas
- Neuron
Glia Biology in Health and Disease Group, Research Institute
for Medicines (iMed.ULisboa), ‡Department of Biochemistry and Human Biology, §Medicinal Chemistry
Group, Research Institute for Medicines (iMed.ULisboa), and ∥Department of
Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Rui Moreira
- Neuron
Glia Biology in Health and Disease Group, Research Institute
for Medicines (iMed.ULisboa), ‡Department of Biochemistry and Human Biology, §Medicinal Chemistry
Group, Research Institute for Medicines (iMed.ULisboa), and ∥Department of
Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Dora Brites
- Neuron
Glia Biology in Health and Disease Group, Research Institute
for Medicines (iMed.ULisboa), ‡Department of Biochemistry and Human Biology, §Medicinal Chemistry
Group, Research Institute for Medicines (iMed.ULisboa), and ∥Department of
Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
64
|
Zhou Y, Chen H, Liu L, Yu X, Sukhova GK, Yang M, Kyttaris VC, Stillman IE, Gelb B, Libby P, Tsokos GC, Shi GP. Cathepsin K Deficiency Ameliorates Systemic Lupus Erythematosus-like Manifestations in Faslpr Mice. THE JOURNAL OF IMMUNOLOGY 2017; 198:1846-1854. [PMID: 28093526 DOI: 10.4049/jimmunol.1501145] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 12/19/2016] [Indexed: 12/29/2022]
Abstract
Cysteinyl cathepsin K (CatK) is expressed in osteoclasts to mediate bone resorption, but is also inducible under inflammatory conditions. Faslpr mice on a C57BL/6 background develop spontaneous systemic lupus erythematosus-like manifestations. Although normal mouse kidneys expressed negligible CatK, those from Faslpr mice showed elevated CatK expression in the glomeruli and tubulointerstitial space. Faslpr mice also showed elevated serum CatK levels. CatK deficiency in Faslpr mice reduced all tested kidney pathologies, including glomerulus and tubulointerstitial scores, glomerulus complement C3 and IgG deposition, chemokine expression and macrophage infiltration, and serum autoantibodies. CatK contributed to Faslpr mouse autoimmunity and pathology in part by its activity in TLR-7 proteolytic processing and consequent regulatory T (Treg) cell biology. Elevated TLR7 expression and proteolytic processing in Faslpr mouse kidneys and Tregs showed significantly reduced levels in CatK-deficient mice, leading to increased spleen and kidney Treg content. Purified CD4+CD25highFoxp3+ Tregs from CatK-deficient mice doubled their immunosuppressive activity against T effector cells, compared with those from CatK-sufficient mice. In Faslpr mice, repopulation of purified Tregs from CatK-sufficient mice reduced spleen sizes, autoantibody titers, and glomerulus C3 and IgG deposition, and increased splenic and kidney Treg contents. Tregs from CatK-deficient mice had significantly more potency than CatK-sufficient Tregs in reducing spleen sizes, serum autoantibody titers, and glomerulus C3 deposition, and in increasing splenic and kidney Treg content. This study established a possible role of CatK in TLR7 proteolytic activation, Treg immunosuppressive activity, and lupus autoimmunity and pathology.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Nephrology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Huimei Chen
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115.,Research Institute of Nephrology, Nanjing University School of Medicine, Nanjing 210002, China
| | - Li Liu
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115.,Department of Biology, School of Life Science, Huzhou Teachers College, Huzhou, Zhejiang 313000, China
| | - Xueqing Yu
- Department of Nephrology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China;
| | - Galina K Sukhova
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Min Yang
- Department of Rheumatology, Nan Fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Vasileios C Kyttaris
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Isaac E Stillman
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Bruce Gelb
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115;
| |
Collapse
|
65
|
Qin Y, Wang Y, Liu O, Jia L, Fang W, Du J, Wei Y. Tauroursodeoxycholic Acid Attenuates Angiotensin II Induced Abdominal Aortic Aneurysm Formation in Apolipoprotein E-deficient Mice by Inhibiting Endoplasmic Reticulum Stress. Eur J Vasc Endovasc Surg 2016; 53:337-345. [PMID: 27889204 DOI: 10.1016/j.ejvs.2016.10.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE/BACKGROUND Abdominal aortic aneurysm (AAA) is characterised by the infiltration of smooth muscle cell (SMC) apoptosis, inflammatory cells, neovascularisation, and degradation of the extracellular matrix. Previous work has shown that endoplasmic reticulum (ER) stress and SMC apoptosis were increased both in a mouse model and human thoracic aortic aneurysm. However, whether the ER stress is activated in AAA formation and whether suppressing ER stress attenuates AAA is unknown. METHODS Human AAA and control aorta samples were collected. Expression of ER stress chaperones glucose-regulated protein (GRP)-78 and GRP-94 was detected by immunohistochemical staining. The effect of ER stress inhibitor tauroursodeoxycholic acid (TUDCA) on AAA formation in angiotensin (Ang) II induced apolipoprotein E-/- mice was explored. Elastin staining was used to observe the rupture of elastic fragmentation. Immunohistochemistry and Western blot analysis were performed, to detect the protein expression of ER stress chaperones and apoptosis molecules. RESULTS There was significant upregulation of GRP-78 and GRP-94 in aneurysmal areas of human AAA and Ang II induced ApoE-/- mice (p < .05). TUDCA significantly attenuated the maximum diameters of abdominal aortas in Ang II induced ApoE-/- mice (p < .05). TUDCA significantly reduced expression of ER stress chaperones and the apoptotic cell numbers (p < .05). Furthermore, TUDCA significantly reduced expression of apoptosis molecules, such as caspase-3, caspase-12, C/EBP homologous protein, c-Jun N-terminal kinase activating transcription factor 4, X-box binding protein, and eukaryotic initiation factor 2α in Ang II induced ApoE-/- mice (p < .05). CONCLUSION The results suggest that ER stress is involved in human and Ang II induced AAA formation in ApoE-/- mice. TUDCA attenuates Ang II induced AAA formation in ApoE-/- mice by inhibiting ER stress mediated apoptosis.
Collapse
Affiliation(s)
- Y Qin
- The Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China.
| | - Y Wang
- The Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - O Liu
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - L Jia
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - W Fang
- The Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - J Du
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Y Wei
- The Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China.
| |
Collapse
|
66
|
Jiang WJ, Ren WH, Liu XJ, Liu Y, Wu FJ, Sun LZ, Lan F, Du J, Zhang HJ. Disruption of mechanical stress in extracellular matrix is related to Stanford type A aortic dissection through down-regulation of Yes-associated protein. Aging (Albany NY) 2016; 8:1923-1939. [PMID: 27608489 PMCID: PMC5076445 DOI: 10.18632/aging.101033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/06/2016] [Indexed: 01/19/2023]
Abstract
In this study, we assessed whether the down-regulation of Yes-associated protein (YAP) is involved in the pathogenesis of extracellular matrix (ECM) mechanical stress-induced Stanford type A aortic dissection (STAAD). Human aortic samples were obtained from heart transplantation donors as normal controls and from STAAD patients undergoing surgical replacement of the ascending aorta. Decreased maximum aortic wall velocity, ECM disorders, increased VSMC apoptosis, and YAP down-regulation were identified in STAAD samples. In a mouse model of STAAD, YAP was down-regulated over time during the development of ECM damage, and increased VSMC apoptosis was also observed. YAP knockdown induced VSMC apoptosis under static conditions in vitro, and the change in mechanical stress induced YAP down-regulation and VSMC apoptosis. This study provides evidence that YAP down-regulation caused by the disruption of mechanical stress is associated with the development of STAAD via the induction of apoptosis in aortic VSMCs. As STAAD is among the most elusive and life-threatening vascular diseases, better understanding of the molecular pathogenesis of STAAD is critical to improve clinical outcome.
Collapse
Affiliation(s)
- Wen-Jian Jiang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 10029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 10029, China
- Beijing Laboratory for Cardiovascular Precision Medicine, Beijing, China, 10029
- The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing 10029, China
- Beijing Aortic Disease Center, Cardiovascular Surgery Center, Beijing 10029, China
- Beijing Engineering Research Center for Vascular Prostheses, Beijing 10029, China
| | - Wei-Hong Ren
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 10029, China
- Beijing Laboratory for Cardiovascular Precision Medicine, Beijing, China, 10029
| | - Xu-Jie Liu
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 10029, China
- Beijing Laboratory for Cardiovascular Precision Medicine, Beijing, China, 10029
| | - Yan Liu
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 10029, China
- Beijing Laboratory for Cardiovascular Precision Medicine, Beijing, China, 10029
| | - Fu-Jian Wu
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 10029, China
- Beijing Laboratory for Cardiovascular Precision Medicine, Beijing, China, 10029
| | - Li-Zhong Sun
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 10029, China
- Beijing Laboratory for Cardiovascular Precision Medicine, Beijing, China, 10029
- The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing 10029, China
- Beijing Aortic Disease Center, Cardiovascular Surgery Center, Beijing 10029, China
- Beijing Engineering Research Center for Vascular Prostheses, Beijing 10029, China
| | - Feng Lan
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 10029, China
- Beijing Laboratory for Cardiovascular Precision Medicine, Beijing, China, 10029
| | - Jie Du
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 10029, China
- Beijing Laboratory for Cardiovascular Precision Medicine, Beijing, China, 10029
| | - Hong-Jia Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 10029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 10029, China
- Beijing Laboratory for Cardiovascular Precision Medicine, Beijing, China, 10029
- The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing 10029, China
- Beijing Aortic Disease Center, Cardiovascular Surgery Center, Beijing 10029, China
- Beijing Engineering Research Center for Vascular Prostheses, Beijing 10029, China
| |
Collapse
|
67
|
Duca L, Blaise S, Romier B, Laffargue M, Gayral S, El Btaouri H, Kawecki C, Guillot A, Martiny L, Debelle L, Maurice P. Matrix ageing and vascular impacts: focus on elastin fragmentation. Cardiovasc Res 2016; 110:298-308. [DOI: 10.1093/cvr/cvw061] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/07/2016] [Indexed: 12/17/2022] Open
|
68
|
Deeg MA, Meijer CA, Chan LS, Shen L, Lindeman JHN. Prognostic and predictive biomarkers of abdominal aortic aneurysm growth rate. Curr Med Res Opin 2016; 32:509-17. [PMID: 26636178 DOI: 10.1185/03007995.2015.1128406] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES To test the utility of clinical and circulating biomarkers to predict abdominal aortic aneurysm (AAA) growth rate and response to doxycycline therapy. METHODS Plasma samples were obtained in the Pharmaceutical Aneurysm Stabilization Trial that tested the effect of doxycycline (n = 44) vs. placebo (n = 49) in patients with a 35-50 mm AAA. Approximately 200 biomarkers were evaluated in a candidate approach that included markers of matrix turnover and cathepsin S activity and a broad-based approach of predominantly inflammation-related and clinical biomarkers. RESULTS In a recursive partitioning based analysis, total cholesterol, baseline AAA size, and apolipoprotein B were prognostic of AAA growth in the placebo group whereas elastin and biglycan degradation products were predictive of AAA growth with doxycycline treatment. Univariate analysis of these biomarkers showed that baseline total cholesterol (r = 0.38, unadjusted P = 0.011), apolipoprotein B (r = 0.41, unadjusted P = 0.005), and baseline AAA size (r = 0.35, unadjusted P = 0.013) correlated with AAA growth in the placebo but not the doxycycline group. Elastin fragments were associated with 18 month AAA growth (r = 0.33, unadjusted P = 0.031) in the doxycycline group. LIMITATIONS Limitations of this study include small sample size, a retrospective growth analysis, and translatability of the method used to measure the analytes. CONCLUSIONS This study implies that total cholesterol, baseline AAA size, and apolipoprotein B are predictors of AAA growth. Levels of elastin and biglycan fragments are predictive of doxycycline effects on AAA growth and provide a clue towards this unexpected negative effect.
Collapse
Affiliation(s)
- Mark A Deeg
- a a Lilly Research Laboratories, Eli Lilly & Co. , Indianapolis , IN , USA
| | - C Arnoud Meijer
- b b Department of Vascular Surgery , Leiden University Medical Center , Leiden , The Netherlands
| | - Lai Shan Chan
- a a Lilly Research Laboratories, Eli Lilly & Co. , Indianapolis , IN , USA
| | - Lei Shen
- a a Lilly Research Laboratories, Eli Lilly & Co. , Indianapolis , IN , USA
| | - Jan H N Lindeman
- b b Department of Vascular Surgery , Leiden University Medical Center , Leiden , The Netherlands
| |
Collapse
|
69
|
Zhang P, Hou S, Chen J, Zhang J, Lin F, Ju R, Cheng X, Ma X, Song Y, Zhang Y, Zhu M, Du J, Lan Y, Yang X. Smad4 Deficiency in Smooth Muscle Cells Initiates the Formation of Aortic Aneurysm. Circ Res 2015; 118:388-99. [PMID: 26699655 DOI: 10.1161/circresaha.115.308040] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/21/2015] [Indexed: 12/12/2022]
Abstract
RATIONALE Aortic aneurysm is a life-threatening cardiovascular disorder caused by the predisposition for dissection and rupture. Genetic studies have proved the involvement of the transforming growth factor-β (TGF-β) pathway in aortic aneurysm. Smad4 is the central mediator of the canonical TGF-β signaling pathway. However, the exact role of Smad4 in smooth muscle cells (SMCs) leading to the pathogenesis of aortic aneurysms is largely unknown. OBJECTIVE To determine the role of smooth muscle Smad4 in the pathogenesis of aortic aneurysms. METHODS AND RESULTS Conditional gene knockout strategy combined with histology and expression analysis showed that Smad4 or TGF-β receptor type II deficiency in SMCs led to the occurrence of aortic aneurysms along with an upregulation of cathepsin S and matrix metallopeptidase-12, which are proteases essential for elastin degradation. We further demonstrated a previously unknown downregulation of matrix metallopeptidase-12 by TGF-β in the aortic SMCs, which is largely abrogated in the absence of Smad4. Chemotactic assay and pharmacologic treatment demonstrated that Smad4-deficient SMCs directly triggered aortic wall inflammation via the excessive production of chemokines to recruit macrophages. Monocyte/macrophage depletion or blocking selective chemokine axis largely abrogated the progression of aortic aneurysm caused by Smad4 deficiency in SMCs. CONCLUSIONS The findings reveal that Smad4-dependent TGF-β signaling in SMCs protects against aortic aneurysm formation and dissection. The data also suggest important implications for novel therapeutic strategies to limit the progression of the aneurysm resulting from TGF-β signaling loss-of-function mutations.
Collapse
Affiliation(s)
- Peng Zhang
- From the State Key Laboratory of Proteomics, Collaborative Innovation Center for Cardiovascular Disorders, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, PR China (P.Z., S.H., J.C., J.Z., F.L., R.J., X.C., Y.L., X.Y.); Model Organism Division, E-institutes of Shanghai Universities, Shanghai Jiaotong University, Shanghai, PR China (P.Z., J.C., X.Y.); Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, PR China (X.M., Y.S., Y.Z.); Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study and School of Medicine, Nanjing University, Nanjing, PR China (M.Z.); and Beijing AnZhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, PR China (J.D.)
| | - Siyuan Hou
- From the State Key Laboratory of Proteomics, Collaborative Innovation Center for Cardiovascular Disorders, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, PR China (P.Z., S.H., J.C., J.Z., F.L., R.J., X.C., Y.L., X.Y.); Model Organism Division, E-institutes of Shanghai Universities, Shanghai Jiaotong University, Shanghai, PR China (P.Z., J.C., X.Y.); Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, PR China (X.M., Y.S., Y.Z.); Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study and School of Medicine, Nanjing University, Nanjing, PR China (M.Z.); and Beijing AnZhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, PR China (J.D.)
| | - Jicheng Chen
- From the State Key Laboratory of Proteomics, Collaborative Innovation Center for Cardiovascular Disorders, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, PR China (P.Z., S.H., J.C., J.Z., F.L., R.J., X.C., Y.L., X.Y.); Model Organism Division, E-institutes of Shanghai Universities, Shanghai Jiaotong University, Shanghai, PR China (P.Z., J.C., X.Y.); Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, PR China (X.M., Y.S., Y.Z.); Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study and School of Medicine, Nanjing University, Nanjing, PR China (M.Z.); and Beijing AnZhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, PR China (J.D.)
| | - Jishuai Zhang
- From the State Key Laboratory of Proteomics, Collaborative Innovation Center for Cardiovascular Disorders, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, PR China (P.Z., S.H., J.C., J.Z., F.L., R.J., X.C., Y.L., X.Y.); Model Organism Division, E-institutes of Shanghai Universities, Shanghai Jiaotong University, Shanghai, PR China (P.Z., J.C., X.Y.); Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, PR China (X.M., Y.S., Y.Z.); Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study and School of Medicine, Nanjing University, Nanjing, PR China (M.Z.); and Beijing AnZhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, PR China (J.D.)
| | - Fuyu Lin
- From the State Key Laboratory of Proteomics, Collaborative Innovation Center for Cardiovascular Disorders, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, PR China (P.Z., S.H., J.C., J.Z., F.L., R.J., X.C., Y.L., X.Y.); Model Organism Division, E-institutes of Shanghai Universities, Shanghai Jiaotong University, Shanghai, PR China (P.Z., J.C., X.Y.); Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, PR China (X.M., Y.S., Y.Z.); Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study and School of Medicine, Nanjing University, Nanjing, PR China (M.Z.); and Beijing AnZhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, PR China (J.D.)
| | - Renjie Ju
- From the State Key Laboratory of Proteomics, Collaborative Innovation Center for Cardiovascular Disorders, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, PR China (P.Z., S.H., J.C., J.Z., F.L., R.J., X.C., Y.L., X.Y.); Model Organism Division, E-institutes of Shanghai Universities, Shanghai Jiaotong University, Shanghai, PR China (P.Z., J.C., X.Y.); Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, PR China (X.M., Y.S., Y.Z.); Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study and School of Medicine, Nanjing University, Nanjing, PR China (M.Z.); and Beijing AnZhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, PR China (J.D.)
| | - Xuan Cheng
- From the State Key Laboratory of Proteomics, Collaborative Innovation Center for Cardiovascular Disorders, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, PR China (P.Z., S.H., J.C., J.Z., F.L., R.J., X.C., Y.L., X.Y.); Model Organism Division, E-institutes of Shanghai Universities, Shanghai Jiaotong University, Shanghai, PR China (P.Z., J.C., X.Y.); Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, PR China (X.M., Y.S., Y.Z.); Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study and School of Medicine, Nanjing University, Nanjing, PR China (M.Z.); and Beijing AnZhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, PR China (J.D.)
| | - Xiaowei Ma
- From the State Key Laboratory of Proteomics, Collaborative Innovation Center for Cardiovascular Disorders, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, PR China (P.Z., S.H., J.C., J.Z., F.L., R.J., X.C., Y.L., X.Y.); Model Organism Division, E-institutes of Shanghai Universities, Shanghai Jiaotong University, Shanghai, PR China (P.Z., J.C., X.Y.); Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, PR China (X.M., Y.S., Y.Z.); Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study and School of Medicine, Nanjing University, Nanjing, PR China (M.Z.); and Beijing AnZhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, PR China (J.D.)
| | - Yao Song
- From the State Key Laboratory of Proteomics, Collaborative Innovation Center for Cardiovascular Disorders, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, PR China (P.Z., S.H., J.C., J.Z., F.L., R.J., X.C., Y.L., X.Y.); Model Organism Division, E-institutes of Shanghai Universities, Shanghai Jiaotong University, Shanghai, PR China (P.Z., J.C., X.Y.); Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, PR China (X.M., Y.S., Y.Z.); Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study and School of Medicine, Nanjing University, Nanjing, PR China (M.Z.); and Beijing AnZhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, PR China (J.D.)
| | - Youyi Zhang
- From the State Key Laboratory of Proteomics, Collaborative Innovation Center for Cardiovascular Disorders, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, PR China (P.Z., S.H., J.C., J.Z., F.L., R.J., X.C., Y.L., X.Y.); Model Organism Division, E-institutes of Shanghai Universities, Shanghai Jiaotong University, Shanghai, PR China (P.Z., J.C., X.Y.); Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, PR China (X.M., Y.S., Y.Z.); Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study and School of Medicine, Nanjing University, Nanjing, PR China (M.Z.); and Beijing AnZhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, PR China (J.D.)
| | - Minsheng Zhu
- From the State Key Laboratory of Proteomics, Collaborative Innovation Center for Cardiovascular Disorders, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, PR China (P.Z., S.H., J.C., J.Z., F.L., R.J., X.C., Y.L., X.Y.); Model Organism Division, E-institutes of Shanghai Universities, Shanghai Jiaotong University, Shanghai, PR China (P.Z., J.C., X.Y.); Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, PR China (X.M., Y.S., Y.Z.); Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study and School of Medicine, Nanjing University, Nanjing, PR China (M.Z.); and Beijing AnZhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, PR China (J.D.)
| | - Jie Du
- From the State Key Laboratory of Proteomics, Collaborative Innovation Center for Cardiovascular Disorders, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, PR China (P.Z., S.H., J.C., J.Z., F.L., R.J., X.C., Y.L., X.Y.); Model Organism Division, E-institutes of Shanghai Universities, Shanghai Jiaotong University, Shanghai, PR China (P.Z., J.C., X.Y.); Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, PR China (X.M., Y.S., Y.Z.); Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study and School of Medicine, Nanjing University, Nanjing, PR China (M.Z.); and Beijing AnZhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, PR China (J.D.)
| | - Yu Lan
- From the State Key Laboratory of Proteomics, Collaborative Innovation Center for Cardiovascular Disorders, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, PR China (P.Z., S.H., J.C., J.Z., F.L., R.J., X.C., Y.L., X.Y.); Model Organism Division, E-institutes of Shanghai Universities, Shanghai Jiaotong University, Shanghai, PR China (P.Z., J.C., X.Y.); Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, PR China (X.M., Y.S., Y.Z.); Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study and School of Medicine, Nanjing University, Nanjing, PR China (M.Z.); and Beijing AnZhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, PR China (J.D.).
| | - Xiao Yang
- From the State Key Laboratory of Proteomics, Collaborative Innovation Center for Cardiovascular Disorders, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, PR China (P.Z., S.H., J.C., J.Z., F.L., R.J., X.C., Y.L., X.Y.); Model Organism Division, E-institutes of Shanghai Universities, Shanghai Jiaotong University, Shanghai, PR China (P.Z., J.C., X.Y.); Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, PR China (X.M., Y.S., Y.Z.); Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study and School of Medicine, Nanjing University, Nanjing, PR China (M.Z.); and Beijing AnZhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, PR China (J.D.).
| |
Collapse
|
70
|
Dale MA, Suh MK, Zhao S, Meisinger T, Gu L, Swier VJ, Agrawal DK, Greiner TC, Carson JS, Baxter BT, Xiong W. Background differences in baseline and stimulated MMP levels influence abdominal aortic aneurysm susceptibility. Atherosclerosis 2015; 243:621-9. [PMID: 26546710 DOI: 10.1016/j.atherosclerosis.2015.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/10/2015] [Accepted: 10/05/2015] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Evidence has demonstrated profound influence of genetic background on cardiovascular phenotypes. Murine models in Marfan syndrome (MFS) have shown that genetic background-related variations affect thoracic aortic aneurysm formation, rupture, and lifespan of mice. MFS mice with C57Bl/6 genetic background are less susceptible to aneurysm formation compared to the 129/SvEv genetic background. In this study, we hypothesize that susceptibility to abdominal aortic aneurysm (AAA) will be increased in 129/SvEv mice versus C57Bl/6 mice. We tested this hypothesis by assessing differences in aneurysm size, tissue properties, immune response, and MMP expression. METHODS Mice of C57Bl/6 or 129/SvEv background underwent AAA induction by periaortic application of CaCl2. Baseline aortic diameters, tissue properties and MMP levels were measured. After aneurysm induction, diameters, MMP expression, and immune response (macrophage infiltration and bone marrow transplantation) were measured. RESULTS Aneurysms were larger in 129/SvEv mice than C57Bl/6 mice (83.0% ± 13.6 increase compared to 57.8% ± 6.4). The aorta was stiffer in the 129/SvEv mice compared to C57Bl/6 mice (952.5 kPa ± 93.6 versus 621.4 kPa ± 84.2). Baseline MMP-2 and post-aneurysm MMP-2 and -9 levels were higher in 129/SvEv aortas compared to C57Bl/6 aortas. Elastic lamella disruption/fragmentation and macrophage infiltration were increased in 129/SvEv mice. Myelogenous cell reversal by bone marrow transplantation did not affect aneurysm size. CONCLUSIONS These data demonstrate that 129/SvEv mice are more susceptible to AAA compared to C57Bl/6 mice. Intrinsic properties of the aorta between the two strains of mice, including baseline expression of MMP-2, influence susceptibility to AAA.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/enzymology
- Aorta, Abdominal/immunology
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/immunology
- Aortic Aneurysm, Abdominal/pathology
- Bone Marrow Transplantation
- Calcium Chloride
- Dilatation, Pathologic
- Disease Models, Animal
- Elastic Modulus
- Genetic Predisposition to Disease
- Macrophages/enzymology
- Macrophages/immunology
- Male
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 9/metabolism
- Mice, 129 Strain
- Mice, Inbred C57BL
- Pancreatic Elastase/metabolism
- Species Specificity
- Tropoelastin/metabolism
- Up-Regulation
- Vascular Stiffness
Collapse
Affiliation(s)
- Matthew A Dale
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Melissa K Suh
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shijia Zhao
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Trevor Meisinger
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Linxia Gu
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Vicki J Swier
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K Agrawal
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Timothy C Greiner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jeffrey S Carson
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - B Timothy Baxter
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wanfen Xiong
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
71
|
Payne CD, Deeg MA, Chan M, Tan LH, LaBell ES, Shen T, DeBrota DJ. Pharmacokinetics and pharmacodynamics of the cathepsin S inhibitor, LY3000328, in healthy subjects. Br J Clin Pharmacol 2015; 78:1334-42. [PMID: 25039273 DOI: 10.1111/bcp.12470] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 07/11/2014] [Indexed: 11/27/2022] Open
Abstract
AIM The aim of this study was to assess the safety and tolerability, pharmacokinetics and pharmacodynamics of LY3000328 when administered as single escalating doses to healthy volunteers. METHODS This was a phase 1, placebo-controlled, dose escalation study with LY3000328 in 21 healthy male volunteers. Subjects were administered escalating LY3000328 doses up to 300 mg with food in this single dose study. Blood samples were collected at set times post-dose for the assessment of LY3000328 pharmacokinetics and the measurement of cathepsin S (CatS) activity, CatS mass and calculated CatS specific activity. RESULTS All doses of LY3000328 were well tolerated, with linear pharmacokinetics up to the 300 mg dose. The pharmacodynamic activity of LY3000328 was measured ex vivo showing a biphasic response to LY3000328, where CatS activity declines, then returns to baseline, and then increases to a level above baseline. CatS mass was also assessed post-dose which increased in a dose-dependent manner, and continued to increase after LY3000328 had been cleared from the body. CatS specific activity was additionally calculated to normalize CatS activity for changes in CatS mass. This demonstrated the increase in CatS activity was attributable to the increase in CatS mass detected in plasma. CONCLUSION A specific inhibitor of CatS which is cleared quickly from plasma may produce a transient decrease in plasma CatS activity which is followed by a more prolonged increase in plasma CatS mass which may have implications for the future clinical development of inhibitors of CatS.
Collapse
Affiliation(s)
- Christopher D Payne
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Parvizi M, Harmsen MC. Therapeutic Prospect of Adipose-Derived Stromal Cells for the Treatment of Abdominal Aortic Aneurysm. Stem Cells Dev 2015; 24:1493-505. [DOI: 10.1089/scd.2014.0517] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Mojtaba Parvizi
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martin C. Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
73
|
Lindeman JHN. The pathophysiologic basis of abdominal aortic aneurysm progression: a critical appraisal. Expert Rev Cardiovasc Ther 2015; 13:839-51. [PMID: 26028299 DOI: 10.1586/14779072.2015.1052408] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An aneurysm of the abdominal aorta is a common pathology and a major cause of sudden death in the elderly. Currently, abdominal aortic aneurysms (AAAs) can only be treated by surgery and an effective medical therapy is urgently missing. The pathophysiology of AAAs is complex and is believed to be best described as a comprehensive inflammatory response with an accompanying proteolytic imbalance; the latter being held responsible for the progressive weakening of the aortic wall. Remarkably, while interference in inflammatory and/or proteolytic cascades proves highly effective in preclinical studies, emerging clinical studies consistently fail to show a benefit. In fact, some anti-inflammatory interventions appear to adversely influence the disease process. Altogether, recent clinical observations not only challenge the prevailing concepts of AAA progression, but also raise doubt on the translatability of findings from rodent models for growing AAA.
Collapse
Affiliation(s)
- Jan H N Lindeman
- Department Vascular and Transplant Surgery, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
74
|
Jia LX, Zhang WM, Zhang HJ, Li TT, Wang YL, Qin YW, Gu H, Du J. Mechanical stretch-induced endoplasmic reticulum stress, apoptosis and inflammation contribute to thoracic aortic aneurysm and dissection. J Pathol 2015; 236:373-83. [PMID: 25788370 PMCID: PMC5029755 DOI: 10.1002/path.4534] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/13/2015] [Accepted: 03/15/2015] [Indexed: 12/18/2022]
Abstract
Thoracic aortic aneurysm/dissection (TAAD) is characterized by excessive smooth muscle cell (SMC) loss, extracellular matrix (ECM) degradation and inflammation. In response to certain stimuli, endoplasmic reticulum (ER) stress is activated and regulates apoptosis and inflammation. Excessive apoptosis promotes aortic inflammation and degeneration, leading to TAAD. Therefore, we studied the role of ER stress in TAAD formation. A lysyl oxidase inhibitor, 3-aminopropionitrile fumarate (BAPN), was administrated to induce TAAD formation in mice, which showed significant SMC loss (α-SMA level). Excessive apoptosis (TUNEL staining) and ER stress (ATF4 and CHOP), along with inflammation, were present in TAAD samples from both mouse and human. Transcriptional profiling of SMCs after mechanical stress demonstrated the expression of genes for ER stress and inflammation. To explore the causal role of ER stress in initiating degenerative signalling events and TAAD, we treated wild-type (CHOP(+/+)) or CHOP(-/-) mice with BAPN and found that CHOP deficiency protected against TAAD formation and rupture, as well as reduction in α-SMA level. Both SMC apoptosis and inflammation were significantly reduced in CHOP(-/-) mice. Moreover, SMCs isolated from CHOP(-/-) mice were resistant to mechanical stress-induced apoptosis. Taken together, our results demonstrated that mechanical stress-induced ER stress promotes SMCs apoptosis, inflammation and degeneration, providing insight into TAAD formation and progression.
Collapse
Affiliation(s)
- Li-Xin Jia
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodelling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, People's Republic of China
| | - Wen-Mei Zhang
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodelling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, People's Republic of China
| | - Hong-Jia Zhang
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodelling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, People's Republic of China
| | - Tao-Tao Li
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodelling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, People's Republic of China
| | - Yue-Li Wang
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodelling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, People's Republic of China
| | - Yan-Wen Qin
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodelling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, People's Republic of China
| | - Hong Gu
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodelling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, People's Republic of China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodelling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, People's Republic of China
| |
Collapse
|
75
|
Otsuki S, Sawada H, Yodoya N, Shinohara T, Kato T, Ohashi H, Zhang E, Imanaka-Yoshida K, Shimpo H, Maruyama K, Komada Y, Mitani Y. Potential contribution of phenotypically modulated smooth muscle cells and related inflammation in the development of experimental obstructive pulmonary vasculopathy in rats. PLoS One 2015; 10:e0118655. [PMID: 25714834 PMCID: PMC4340876 DOI: 10.1371/journal.pone.0118655] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 01/14/2015] [Indexed: 11/19/2022] Open
Abstract
We tested the hypothesis that phenotypically modulated smooth muscle cells (SMCs) and related inflammation are associated with the progression of experimental occlusive pulmonary vascular disease (PVD). Occlusive PVD was induced by combined exposure to a vascular endothelial growth factor receptor tyrosine kinase inhibitor Sugen 5416 and hypobaric hypoxia for 3 weeks in rats, which were then returned to ambient air. Hemodynamic, morphometric, and immunohistochemical studies, as well as gene expression analyses, were performed at 3, 5, 8, and 13 weeks after the initial treatment (n = 78). Experimental animals developed pulmonary hypertension and right ventricular hypertrophy, and exhibited a progressive increase in indices of PVD, including cellular intimal thickening and intimal fibrosis. Cellular intimal lesions comprised α smooth muscle actin (α SMA)+, SM1+, SM2+/-, vimentin+ immature SMCs that were covered by endothelial monolayers, while fibrous intimal lesions typically included α SMA+, SM1+, SM2+, vimentin+/- mature SMCs. Plexiform lesions comprised α SMA+, vimentin+, SM1-, SM2- myofibroblasts covered by endothelial monolayers. Immature SMC-rich intimal and plexiform lesions were proliferative and were infiltrated by macrophages, while fibrous intimal lesions were characterized by lower proliferative abilities and were infiltrated by few macrophages. Compared with controls, the number of perivascular macrophages was already higher at 3 weeks and progressively increased during the experimental period; gene expression of pulmonary hypertension-related inflammatory molecules, including IL6, MCP1, MMP9, cathepsin-S, and RANTES, was persistently or progressively up-regulated in lungs of experimental animals. We concluded that phenotypically modulated SMCs and related inflammation are potentially associated with the progression of experimental obstructive PVD.
Collapse
MESH Headings
- Animals
- Arterial Occlusive Diseases/genetics
- Arterial Occlusive Diseases/metabolism
- Arterial Occlusive Diseases/pathology
- Arterial Occlusive Diseases/physiopathology
- Disease Models, Animal
- Fibrosis
- Gene Expression
- Hemodynamics
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypoxia/metabolism
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Macrophages/immunology
- Macrophages/pathology
- Male
- Mast Cells/immunology
- Mast Cells/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Phenotype
- Rats
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Tunica Intima/metabolism
- Tunica Intima/pathology
Collapse
Affiliation(s)
- Shoichiro Otsuki
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Hirofumi Sawada
- Department of Pediatrics, and Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Noriko Yodoya
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Tsutomu Shinohara
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Taichi Kato
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hiroyuki Ohashi
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Erquan Zhang
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kyoko Imanaka-Yoshida
- Department of Pathology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Hideto Shimpo
- Department of Thoracic and Cardiovascular Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kazuo Maruyama
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yoshihiro Komada
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yoshihide Mitani
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- * E-mail:
| |
Collapse
|
76
|
Figueiredo JL, Aikawa M, Zheng C, Aaron J, Lax L, Libby P, de Lima Filho JL, Gruener S, Fingerle J, Haap W, Hartmann G, Aikawa E. Selective cathepsin S inhibition attenuates atherosclerosis in apolipoprotein E-deficient mice with chronic renal disease. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1156-66. [PMID: 25680278 DOI: 10.1016/j.ajpath.2014.11.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/28/2014] [Accepted: 11/25/2014] [Indexed: 01/02/2023]
Abstract
Chronic renal disease (CRD) accelerates the development of atherosclerosis. The potent protease cathepsin S cleaves elastin and generates bioactive elastin peptides, thus promoting vascular inflammation and calcification. We hypothesized that selective cathepsin S inhibition attenuates atherogenesis in hypercholesterolemic mice with CRD. CRD was induced by 5/6 nephrectomy in high-fat high-cholesterol fed apolipoprotein E-deficient mice. CRD mice received a diet admixed with 6.6 or 60 mg/kg of the potent and selective cathepsin S inhibitor RO5444101 or a control diet. CRD mice had significantly higher plasma levels of osteopontin, osteocalcin, and osteoprotegerin (204%, 148%, and 55%, respectively; P < 0.05), which were inhibited by RO5444101 (60%, 40%, and 36%, respectively; P < 0.05). Near-infrared fluorescence molecular imaging revealed a significant reduction in cathepsin activity in treated mice. RO5444101 decreased osteogenic activity. Histologic assessment in atherosclerotic plaque demonstrated that RO5444101 reduced immunoreactive cathepsin S (P < 0.05), elastin degradation (P = 0.01), plaque size (P = 0.01), macrophage accumulation (P < 0.01), growth differentiation factor-15 (P = 0.0001), and calcification (alkaline phosphatase activity, P < 0.01; osteocalcin, P < 0.05). Furthermore, cathepsin S inhibitor or siRNA significantly decreased expression of growth differentiation factor-15 and monocyte chemotactic protein-1 in a murine macrophage cell line and human primary macrophages. Systemic inhibition of cathepsin S attenuates the progression of atherosclerotic lesions in 5/6 nephrectomized mice, serving as a potential treatment for atherosclerosis in patients with CRD.
Collapse
Affiliation(s)
- Jose-Luiz Figueiredo
- The Center of Excellence in Vascular Biology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, Brazil
| | - Masanori Aikawa
- The Center of Excellence in Vascular Biology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, Brazil
| | - Chunyu Zheng
- The Center of Excellence in Vascular Biology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, Brazil
| | - Jacob Aaron
- The Center of Excellence in Vascular Biology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, Brazil
| | - Lilian Lax
- The Center of Excellence in Vascular Biology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, Brazil
| | - Peter Libby
- The Center of Excellence in Vascular Biology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, Brazil
| | | | - Sabine Gruener
- Pharma Research and Early Development, Hoffman La Roche, Basel, Switzerland
| | - Jürgen Fingerle
- Pharma Research and Early Development, Hoffman La Roche, Basel, Switzerland
| | - Wolfgang Haap
- Pharma Research and Early Development, Hoffman La Roche, Basel, Switzerland
| | - Guido Hartmann
- Pharma Research and Early Development, Hoffman La Roche, Basel, Switzerland
| | - Elena Aikawa
- The Center of Excellence in Vascular Biology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, Brazil.
| |
Collapse
|
77
|
Wang J, Lindholt JS, Sukhova GK, Shi MA, Xia M, Chen H, Xiang M, He A, Wang Y, Xiong N, Libby P, Wang JA, Shi GP. IgE actions on CD4+ T cells, mast cells, and macrophages participate in the pathogenesis of experimental abdominal aortic aneurysms. EMBO Mol Med 2015; 6:952-69. [PMID: 24963147 PMCID: PMC4119357 DOI: 10.15252/emmm.201303811] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Immunoglobulin E (IgE) activates mast cells (MCs). It remains unknown whether IgE also activates other inflammatory cells, and contributes to the pathogenesis of abdominal aortic aneurysms (AAAs). This study demonstrates that CD4+ T cells express IgE receptor FcεR1, at much higher levels than do CD8+ T cells. IgE induces CD4+ T-cell production of IL6 and IFN-γ, but reduces their production of IL10. FcεR1 deficiency (Fcer1a−/−) protects apolipoprotein E-deficient (Apoe−/−) mice from angiotensin-II infusion-induced AAAs and reduces plasma IL6 levels. Adoptive transfer of CD4+ T cells (but not CD8+ T cells), MCs, and macrophages from Apoe−/− mice, but not those from Apoe−/−Fcer1a−/− mice, increases AAA size and plasma IL6 in Apoe−/−Fcer1a−/− recipient mice. Biweekly intravenous administration of an anti-IgE monoclonal antibody ablated plasma IgE and reduced AAAs in Apoe−/− mice. Patients with AAAs had significantly higher plasma IgE levels than those without AAAs. This study establishes an important role of IgE in AAA pathogenesis by activating CD4+ T cells, MCs, and macrophages and supports consideration of neutralizing plasma IgE in the therapeutics of human AAAs.
Collapse
Affiliation(s)
- Jing Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jes S Lindholt
- Department of Cardiovascular and Thoracic Surgery, Elitary Research Centre of Individualized Medicine in Arterial Diseases, University Hospital of Odense, Odense, Denmark
| | - Galina K Sukhova
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael A Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mingcan Xia
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Han Chen
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, College of Medicine, The Second Affiliated Hospital Zhejiang University, Hangzhou, China
| | - Meixiang Xiang
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, College of Medicine, The Second Affiliated Hospital Zhejiang University, Hangzhou, China
| | - Aina He
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yi Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Na Xiong
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jian-An Wang
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, College of Medicine, The Second Affiliated Hospital Zhejiang University, Hangzhou, China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
78
|
Li X, Cheng XW, Hu L, Wu H, Hao CN, Jiang H, Zhu E, Huang Z, Inoue A, Sasaki T, Du Q, Takeshita K, Okumura K, Murohara T, Kuzuya M. Cathepsin S activity controls ischemia-induced neovascularization in mice. Int J Cardiol 2015; 183:198-208. [PMID: 25668148 DOI: 10.1016/j.ijcard.2015.01.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/11/2014] [Accepted: 01/25/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND Evidence from human and animal studies has demonstrated elevated levels of the cysteine protease cathepsin S (CatS) in hypoxic atherosclerotic lesions. We hypothesized that silencing of CatS gene would suppress ischemia-induced angiogenic action. METHODS AND RESULTS Left femoral artery ligation-induced ischemia in mice showed the increased expression and activity of CatS in the ischemic muscle. The CatS-deficiency (CatS(-/-)) mice showed impaired functional recovery following hindlimb ischemia and reduced levels of peroxisome proliferator-activated receptor-γ (PPAR-γ), phospho-Akt (p-Akt), p-endothelial nitric oxide synthase, p-extracellular signal-regulated kinase1/2 (Erk1/2), p-p38 mitogen-activated protein kinase, and vascular endothelial growth factor (VEGF) proteins, as well as reduced levels of matrix metalloproteinase-9 and macrophage infiltration in the ischemic muscles. In vitro, CatS silencing reduced the levels of these targeted essential molecules for angiogenesis and vasculogenesis. Together, the results indicated that the effects of CatS knockdown led to defective endothelial cell invasion, proliferation, and tube formation. This notion was reinforced by the finding that CatS inhibition led to a decreased PPAR-γ level and VEGF/Erk1/2 signaling activation in response to ischemia. CatS(-/-) resulted in decreased circulating EPC-like CD31(+)/c-Kit(+) cells, accompanied by the reduction of the cellular levels of PPAR-γ, p-Akt, and VEGF induced by ischemic stress. Transplantation of bone-marrow-derived mononuclear cells from CatS(+/+) mice restored neovascularization in CatS(-/-) mice. CONCLUSIONS CatS activity controls ischemia-induced neovascularization partially via the modulation of PPAR-γ and VEGF/Akt signaling activation.
Collapse
Affiliation(s)
- Xiang Li
- Department of Cardiology, Yanbian University Hospital, China
| | - Xian Wu Cheng
- Department of Cardiology, Yanbian University Hospital, China; Department of Geriatrics, Nagoya University Graduate School of Medicine, Japan.
| | - Lina Hu
- Department of Geriatrics, Nagoya University Graduate School of Medicine, Japan
| | - Hongxian Wu
- Department of Cardiology, Nagoya University Graduate School of Medicine, Japan
| | - Chang-Ning Hao
- Department of Cardiology, Nagoya University Graduate School of Medicine, Japan
| | - Haiying Jiang
- Department of Geriatrics, Nagoya University Graduate School of Medicine, Japan; Department of Physiology, Yanbian University School of Medicine, China
| | - Enbo Zhu
- Department of Cardiology, Yanbian University Hospital, China
| | - Zhe Huang
- Department of Neurology, Nagoya University Graduate School of Medicine, Japan
| | - Aiko Inoue
- Department of Geriatrics, Nagoya University Graduate School of Medicine, Japan
| | - Takeshi Sasaki
- Department of Anatomy, Hamamatsu University School of Medicine, Japan
| | - Qiuna Du
- Department of Nephrology, Nagoya University Graduate School of Medicine, Japan
| | - Kyosuke Takeshita
- Department of Cardiology, Nagoya University Graduate School of Medicine, Japan
| | - Kenji Okumura
- Department of Cardiology, Nagoya University Graduate School of Medicine, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Japan
| | - Masafumi Kuzuya
- Department of Geriatrics, Nagoya University Graduate School of Medicine, Japan
| |
Collapse
|
79
|
Gal D, Vandevelde W, Cheng H, Sipido KR. Cardiovascular research as a forum for publications from China: present, past, and future. Cardiovasc Res 2014; 104:383-7. [PMID: 25388663 DOI: 10.1093/cvr/cvu238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Diane Gal
- Department of Cardiovascular Sciences, Division of Experimental Cardiology, KU Leuven, Campus Gasthuisberg O/N1 704, Herestraat 49, Leuven B-3000, Belgium
| | - Wouter Vandevelde
- Department of Cardiovascular Sciences, Division of Experimental Cardiology, KU Leuven, Campus Gasthuisberg O/N1 704, Herestraat 49, Leuven B-3000, Belgium
| | - Heping Cheng
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Karin R Sipido
- Department of Cardiovascular Sciences, Division of Experimental Cardiology, KU Leuven, Campus Gasthuisberg O/N1 704, Herestraat 49, Leuven B-3000, Belgium
| |
Collapse
|
80
|
Jadhav PK, Schiffler MA, Gavardinas K, Kim EJ, Matthews DP, Staszak MA, Coffey DS, Shaw BW, Cassidy KC, Brier RA, Zhang Y, Christie RM, Matter WF, Qing K, Durbin JD, Wang Y, Deng GG. Discovery of Cathepsin S Inhibitor LY3000328 for the Treatment of Abdominal Aortic Aneurysm. ACS Med Chem Lett 2014; 5:1138-42. [PMID: 25313327 DOI: 10.1021/ml500283g] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/27/2014] [Indexed: 11/29/2022] Open
Abstract
Cathepsin S (Cat S) plays an important role in many pathological conditions, including abdominal aortic aneurysm (AAA). Inhibition of Cat S may provide a new treatment for AAA. To date, several classes of Cat S inhibitors have been reported, many of which form covalent interactions with the active site Cys25. Herein, we report the discovery of a novel series of noncovalent inhibitors of Cat S through a medium-throughput focused cassette screen and the optimization of the resulting hits. Structure-based optimization efforts led to Cat S inhibitors such as 5 and 9 with greatly improved potency and drug disposition properties. This series of compounds binds to the S2 and S3 subsites without interacting with the active site Cys25. On the basis of in vitro potency, selectivity, and efficacy in a CaCl2-induced AAA in vivo model, 5 (LY3000328) was selected for clinical development.
Collapse
Affiliation(s)
- Prabhakar K. Jadhav
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Matthew A. Schiffler
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Kostas Gavardinas
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Euibong J. Kim
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Donald P. Matthews
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Michael A. Staszak
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - D. Scott Coffey
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Bruce W. Shaw
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Kenneth C. Cassidy
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Richard A. Brier
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Yuke Zhang
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Robert M. Christie
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - William F. Matter
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Keyun Qing
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Jim D. Durbin
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Yong Wang
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Gary G. Deng
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| |
Collapse
|
81
|
Moran CS, Jose RJ, Biros E, Golledge J. Osteoprotegerin deficiency limits angiotensin II-induced aortic dilatation and rupture in the apolipoprotein E-knockout mouse. Arterioscler Thromb Vasc Biol 2014; 34:2609-16. [PMID: 25301844 DOI: 10.1161/atvbaha.114.304587] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Mounting evidence links osteoprotegerin with cardiovascular disease. Elevated serum and aortic tissue osteoprotegerin are associated with the presence and growth of abdominal aortic aneurysm in humans; however, a role for osteoprotegerin in abdominal aortic aneurysm pathogenesis remains to be shown. We examined the functional significance of osteoprotegerin in aortic aneurysm using an Opg-deficient mouse model and in vitro investigations. APPROACH AND RESULTS Homozygous deletion of Opg in apolipoprotein E-deficient mice (ApoE(-/-)Opg(-/-)) inhibited angiotensin II-induced aortic dilatation. Survival free from aortic rupture was increased from 67% in ApoE(-/-)Opg(+/+) controls to 94% in ApoE(-/-)Opg(-/-) mice (P=0.040). Serum concentrations of proinflammatory cytokines/chemokines, and aortic expression for cathepsin S (CTSS), matrix metalloproteinase 2, and matrix metalloproteinase 9 after 7 days (early-phase) of angiotensin II infusion were significantly reduced in ApoE(-/-)Opg(-/-) mice compared with ApoE(-/-)Opg(+/+) controls. In addition, aortic expression of markers for an inflammatory phenotype in aortic vascular smooth muscle cells in response to early-phase of angiotensin II infusion was significantly lower in Opg-deficient mice. In vitro, human abdominal aortic aneurysm vascular smooth muscle cells produced more CTSS and exhibited increased CTSS-derived elastolytic activity than healthy aortic vascular smooth muscle cells, whereas recombinant human osteoprotegerin stimulated CTSS-dependent elastase activity in aortic vascular smooth muscle cells. CONCLUSIONS These findings support a role for osteoprotegerin in aortic aneurysm through upregulation of CTSS, matrix metalloproteinase 2, and matrix metalloproteinase 9 within the aorta, promoting an inflammatory phenotype in aortic vascular smooth muscle cells in response to angiotensin II.
Collapse
Affiliation(s)
- Corey S Moran
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia (C.S.M., R.J.J., E.B., J.G.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia (J.G.)
| | - Roby J Jose
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia (C.S.M., R.J.J., E.B., J.G.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia (J.G.)
| | - Erik Biros
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia (C.S.M., R.J.J., E.B., J.G.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia (J.G.)
| | - Jonathan Golledge
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia (C.S.M., R.J.J., E.B., J.G.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia (J.G.).
| |
Collapse
|
82
|
IL-17A promotes ventricular remodeling after myocardial infarction. J Mol Med (Berl) 2014; 92:1105-16. [PMID: 24965614 DOI: 10.1007/s00109-014-1176-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 05/02/2014] [Accepted: 05/23/2014] [Indexed: 12/21/2022]
Abstract
Inflammatory responses play an important role in the pathogenesis of adverse ventricular remodeling after myocardial infarction (MI). We previously demonstrated that interleukin (IL)-17A plays a pathogenic role in myocardial ischemia/reperfusion injury and viral myocarditis. However, the role of IL-17A in post-MI remodeling and the related mechanisms have not been fully elucidated. Acute MI was induced by permanent ligation of the left anterior descending coronary artery in C57BL/6 mice. Repletion of IL-17A significantly aggravated both early- and late-phase ventricular remodeling, as demonstrated by increased infarct size, deteriorated cardiac function, increased myocardial fibrosis, and cardiomyocyte apoptosis. By contrast, genetic IL-17A deficiency had the opposite effect. Additional studies in vitro indicated that IL-17A induces neonatal cardiomyocyte (from C57BL/6 mice) apoptosis through the activation of p38, p53 phosphorylation, and Bax redistribution. These data demonstrate that IL-17A induces cardiomyocyte apoptosis through the p38 mitogen-activated protein kinase (MAPK)-p53-Bax signaling pathway and promotes both early- and late-phase post-MI ventricular remodeling. IL-17A might be an important target in preventing heart failure after MI. Key message: We demonstrated that IL-17A plays a pathogenic role both in the early and late stages of post-MI remodeling. IL-17A induces murine cardiomyocyte apoptosis. IL-17A induces murine cardiomyocyte apoptosis through the p38 MAPK-p53-Bax signaling pathway.
Collapse
|
83
|
Fonović M, Turk B. Cysteine cathepsins and extracellular matrix degradation. Biochim Biophys Acta Gen Subj 2014; 1840:2560-70. [PMID: 24680817 DOI: 10.1016/j.bbagen.2014.03.017] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/16/2014] [Accepted: 03/22/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND Cysteine cathepsins are normally found in the lysosomes where they are involved in intracellular protein turnover. Their ability to degrade the components of the extracellular matrix in vitro was first reported more than 25years ago. However, cathepsins were for a long time not considered to be among the major players in ECM degradation in vivo. During the last decade it has, however, become evident that abundant secretion of cysteine cathepsins into extracellular milieu is accompanying numerous physiological and disease conditions, enabling the cathepsins to degrade extracellular proteins. SCOPE OF VIEW In this review we will focus on cysteine cathepsins and their extracellular functions linked with ECM degradation, including regulation of their activity, which is often enhanced by acidification of the extracellular microenvironment, such as found in the bone resorption lacunae or tumor microenvironment. We will further discuss the ECM substrates of cathepsins with a focus on collagen and elastin, including the importance of that for pathologies. Finally, we will overview the current status of cathepsin inhibitors in clinical development for treatment of ECM-linked diseases, in particular osteoporosis. MAJOR CONCLUSIONS Cysteine cathepsins are among the major proteases involved in ECM remodeling, and their role is not limited to degradation only. Deregulation of their activity is linked with numerous ECM-linked diseases and they are now validated targets in a number of them. Cathepsins S and K are the most attractive targets, especially cathepsin K as a major therapeutic target for osteoporosis with drugs targeting it in advanced clinical trials. GENERAL SIGNIFICANCE Due to their major role in ECM remodeling cysteine cathepsins have emerged as an important group of therapeutic targets for a number of ECM-related diseases, including, osteoporosis, cancer and cardiovascular diseases. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
- Marko Fonović
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Boris Turk
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia.
| |
Collapse
|
84
|
Shi HT, Wang Y, Jia LX, Qin YW, Liu Y, Li HH, Qi YF, Du J. Cathepsin S contributes to macrophage migration via degradation of elastic fibre integrity to facilitate vein graft neointimal hyperplasia. Cardiovasc Res 2014; 101:454-463. [DOI: 10.1093/cvr/cvt273] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
85
|
Cathepsins: a new culprit behind abdominal aortic aneurysm. Regen Med Res 2013; 1:5. [PMID: 25984324 PMCID: PMC4431531 DOI: 10.1186/2050-490x-1-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/19/2013] [Indexed: 01/17/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a fatal disease defined as an abdominal aortic diameter of 3.0 cm or more, where the abdominal aorta exceeds the normal diameter by more than 50%. Histopathological changes of AAA mainly include extracellular matrix (ECM) remodeling at the abdominal aorta wall, but there is lack of specific drugs to treat AAA. Recent studies have reported that lysosomal cathepsins could induce vascular remodeling and AAA formation by regulating vascular inflammation, medial smooth muscle cell apoptosis, neovascularization, and protease expression. Thus, cathepsins are expected to become a new therapeutic target for AAA treatment.
Collapse
|
86
|
Xu N, Zhang YY, Lin Y, Bao B, Zheng L, Shi GP, Liu J. Increased levels of lysosomal cysteinyl cathepsins in human varicose veins: a histology study. Thromb Haemost 2013; 111:333-44. [PMID: 24154706 DOI: 10.1160/th13-04-0309] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 09/27/2013] [Indexed: 01/09/2023]
Abstract
Varicose veins are a major chronic venous disease characterised by extensive remodelling of the extracellular matrix architecture in the vascular wall. Although matrix metalloproteinases have been implicated in these pathologic events, little is known about the functional relevance of other protease family members. Here, we studied the distribution of lysosomal cysteine proteases, cathepsins B, L, K, and S, and their endogenous inhibitor, cystatin C, in long saphenous vein specimens from nine normal donors and 18 patients with varicose veins (VVs). Immunohistochemical analysis demonstrated increased levels of cathepsins L, K, B, and S and reduced levels of cystatin C in VVs. This imbalance between cysteinyl cathepsins and cystatin C may favour VV remodelling. To investigate the inflammatory mechanism of their expression, we examined a detailed inflammatory cell profile in VVs, including macrophages, T lymphocytes, and mast cells. Increased numbers of CD3-positive T cells and tryptase-positive mast cells were found in VVs, and enhanced levels of cysteinyl cathepsins were detected from lesion CD3-positive T cells, chymase-positive mast cells, endothelial cells, and smooth-muscle cells. Elevated cathepsins, and their co-localisation to infiltrated inflammatory cells and to vascular cells, suggest that these proteases participate in extracellular matrix degradation in response to inflammation during VV pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jian Liu
- Jian Liu, PhD, School of Biotechnology and Food Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. Republic of China, Tel.: +86 551 62901349, Fax:+86 551 62901331, E-mail:
| |
Collapse
|
87
|
Qin Y, Yang Y, Liu R, Cao X, Liu O, Liu J, Wang M, Yang Y, Chen Z, Zhang H, Du J. Combined Cathepsin S and hs-CRP predicting inflammation of Abdominal Aortic Aneurysm. Clin Biochem 2013; 46:1026-1029. [DOI: 10.1016/j.clinbiochem.2013.05.065] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 05/18/2013] [Accepted: 05/20/2013] [Indexed: 01/11/2023]
|
88
|
He A, Shi GP. Mast cell chymase and tryptase as targets for cardiovascular and metabolic diseases. Curr Pharm Des 2013; 19:1114-25. [PMID: 23016684 DOI: 10.2174/1381612811319060012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/16/2012] [Indexed: 01/01/2023]
Abstract
Mast cells are critical effectors in inflammatory diseases, including cardiovascular and metabolic diseases and their associated complications. These cells exert their physiological and pathological activities by releasing granules containing histamine, cytokines, chemokines, and proteases, including mast cell-specific chymases and tryptases. Several recent human and animal studies have shown direct or indirect participation of mast cell-specific proteases in atherosclerosis, abdominal aortic aneurysms, obesity, diabetes, and their complications. Animal studies have demonstrated the beneficial effects of highly selective and potent chymase and tryptase inhibitors in several experimental cardiovascular and metabolic diseases. In this review, we summarize recent discoveries from in vitro cell-based studies to experimental animal disease models, from protease knockout mice to treatments with recently developed selective and potent protease inhibitors, and from patients with preclinical disorders to those affected by complications. We hypothesize that inhibition of chymases and tryptases would benefit patients suffering from cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Aina He
- Department of Oncology, The Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | | |
Collapse
|
89
|
Plasma levels of cathepsins L, K, and V and risks of abdominal aortic aneurysms: a randomized population-based study. Atherosclerosis 2013; 230:100-105. [PMID: 23958260 DOI: 10.1016/j.atherosclerosis.2013.05.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 05/16/2013] [Accepted: 05/16/2013] [Indexed: 11/23/2022]
Abstract
BACKGROUND Cathepsin L (CatL), cathepsin K (CatK), and cathepsin V (CatV) are potent elastases implicated in human arterial wall remodeling. Whether plasma levels of these cathepsins are altered in patients with abdominal aortic aneurysms (AAAs) remains unknown. METHODS AND RESULTS Plasma samples were collected from 476 male AAA patients and 200 age-matched male controls to determine CatL, CatK, and CatV levels by ELISA. Student's t-test demonstrated significantly higher plasma CatL levels in AAA patients than in controls (P < 0.0001), whereas CatK and CatV levels were lower in AAA patients than in controls (P = 0.052, P = 0.025). ROC curve analysis confirmed higher plasma CatL levels in AAA patients than in controls (P < 0.001). As potential confounders, current smoking and use of angiotensin-converting enzyme (ACE) inhibitors, aspirin, clopidogrel, and statins associated with significantly increased plasma CatL. Pearson's correlation test demonstrated that plasma CatL associated positively with CatS (r = 0.43, P < 0.0001), body-mass index (BMI) (r = 0.07, P = 0.047) and maximal aortic diameter (r = 0.29, P < 0.001), and negatively with lowest measured ankle-brachial index (ABI) (r = -0.22, P < 0.001). Plasma CatL remained associated positively with CatS (r = 0.43, P < 0.0001) and aortic diameter (r = 0.212, P < 0.001) and negatively with ABI (r = -0.10, P = 0.011) after adjusting for the aforementioned potential confounders in a partial correlation analysis. Multivariate logistic regression analysis indicated that plasma CatL was a risk factor of AAA before (odds ratio [OR] = 3.04, P < 0.001) and after (OR = 2.42, P < 0.001) the same confounder adjustment. CONCLUSIONS Correlation of plasma CatL levels with aortic diameter and the lowest ABI suggest that this cysteinyl protease plays a detrimental role in the pathogenesis of human peripheral arterial diseases and AAAs.
Collapse
|
90
|
Qin Y, Cao X, Yang Y, Shi GP. Cysteine protease cathepsins and matrix metalloproteinases in the development of abdominal aortic aneurysms. Future Cardiol 2013; 9:89-103. [PMID: 23259477 DOI: 10.2217/fca.12.71] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Both cysteine protease cathepsins and matrix metalloproteinases are implicated in the pathogenesis of abdominal aortic aneurysms (AAAs) in humans and animals. Blood and aortic tissues from humans or animals with AAAs contain much higher levels of these proteases, and often lower levels of their endogenous inhibitors, than do blood and aortic tissues from healthy subjects. Protease- and protease inhibitor-deficient mice and synthetic protease inhibitors have affirmed that cysteinyl cathepsins and matrix metalloproteinases both participate directly in AAA development in several experimental model systems. Here, we summarize our current understanding of how proteases contribute to the pathogenesis of AAA, and discuss whether proteases or their inhibitors may serve as diagnostic biomarkers or potential therapeutic targets for this common human arterial disease.
Collapse
Affiliation(s)
- Yanwen Qin
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Ministry of Education, Beijing Institute of Heart, Lung & Blood Vessel Diseases, Beijing 100029, China
| | | | | | | |
Collapse
|
91
|
Takai S, Jin D, Yamamoto D, Li ZL, Otsuki Y, Miyazaki M. Significance of Matrix Metalloproteinase-9 Inhibition by Imidapril for Prevention of Abdominal Aortic Aneurysms in Angiotensin II Type 1 Receptor–Knockout Mice. J Pharmacol Sci 2013; 123:185-94. [DOI: 10.1254/jphs.13040fp] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
92
|
Aneurysm prevention: keep the cat out of the bag. Cardiovasc Res 2012; 96:350-1. [DOI: 10.1093/cvr/cvs308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|