51
|
Acker J, Ozanne C, Kachouri-Lafond R, Gaillardin C, Neuvéglise C, Marck C. Dicistronic tRNA-5S rRNA genes in Yarrowia lipolytica: an alternative TFIIIA-independent way for expression of 5S rRNA genes. Nucleic Acids Res 2008; 36:5832-44. [PMID: 18790808 PMCID: PMC2566860 DOI: 10.1093/nar/gkn549] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In eukaryotes, genes transcribed by RNA polymerase III (Pol III) carry their own internal promoters and as such, are transcribed as individual units. Indeed, a very few cases of dicistronic Pol III genes are yet known. In contrast to other hemiascomycetes, 5S rRNA genes of Yarrowia lipolytica are not embedded into the tandemly repeated rDNA units, but appear scattered throughout the genome. We report here an unprecedented genomic organization: 48 over the 108 copies of the 5S rRNA genes are located 3' of tRNA genes. We show that these peculiar tRNA-5S rRNA dicistronic genes are expressed in vitro and in vivo as Pol III transcriptional fusions without the need of the 5S rRNA gene-specific factor TFIIIA, the deletion of which displays a viable phenotype. We also report the existence of a novel putative non-coding Pol III RNA of unknown function about 70 nucleotide-long (RUF70), the 13 genes of which are devoid of internal Pol III promoters and located 3' of the 13 copies of the tDNA-Trp (CCA). All genes embedded in the various dicistronic genes, fused 5S rRNA genes, RUF70 genes and their leader tRNA genes appear to be efficiently transcribed and their products correctly processed in vivo.
Collapse
Affiliation(s)
- Joël Acker
- Saclay Biology and Technologies Institute (iBiTec-S), CEA, 91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
52
|
Piekna-Przybylska D, Przybylski P, Baudin-Baillieu A, Rousset JP, Fournier MJ. Ribosome performance is enhanced by a rich cluster of pseudouridines in the A-site finger region of the large subunit. J Biol Chem 2008; 283:26026-36. [PMID: 18611858 DOI: 10.1074/jbc.m803049200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The large subunit rRNA in eukaryotes contains an unusually dense cluster of 8-10 pseudouridine (Psi) modifications located in a three-helix structure (H37-H39) implicated in several functions. This region is dominated by a long flexible helix (H38) known as the "A-site finger" (ASF). The ASF protrudes from the large subunit just above the A-site of tRNA binding, interacts with 5 S rRNA and tRNA, and through the terminal loop, forms a bridge (B1a) with the small subunit. In yeast, the three-helix domain contains 10 Psis and 6 are concentrated in the ASF helix (3 of the ASF Psis are conserved among eukaryotes). Here, we show by genetic depletion analysis that the Psis in the ASF helix and adjoining helices are not crucial for cell viability; however, their presence notably enhances ribosome fitness. Depleting different combinations of Psis suggest that the modification pattern is important and revealed that loss of multiple Psis negatively influences ribosome performance. The effects observed include slower cell growth (reduced rates up to 23% at 30 degrees C and 40-50% at 37 degrees C and 11 degrees C), reduced level of the large subunit (up to 17%), impaired polysome formation (appearance of half-mers), reduced translation activity (up to 20% at 30 degrees C and 25% at 11 degrees C), and increased sensitivity to ribosome-based drugs. The results indicate that the Psis in the three-helix region improve fitness of a eukaryotic ribosome.
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | |
Collapse
|
53
|
Muller H, Hennequin C, Gallaud J, Dujon B, Fairhead C. The asexual yeast Candida glabrata maintains distinct a and alpha haploid mating types. EUKARYOTIC CELL 2008; 7:848-58. [PMID: 18375614 PMCID: PMC2394967 DOI: 10.1128/ec.00456-07] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 03/08/2008] [Indexed: 11/20/2022]
Abstract
The genome of the type strain of Candida glabrata (CBS138, ATCC 2001) contains homologs of most of the genes involved in mating in Saccharomyces cerevisiae, starting with the mating pheromone and receptor genes. Only haploid cells are ever isolated, but C. glabrata strains of both mating types are commonly found, the type strain being MAT alpha and most other strains, such as BG2, being MATa. No sexual cycle has been documented for this species. In order to understand which steps of the mating pathway are defective, we have analyzed the expression of homologs of some of the key genes involved as well as the production of mating pheromones and the organism's sensitivity to artificial pheromones. We show that cells of opposite mating types express both pheromone receptor genes and are insensitive to pheromones. Nonetheless, cells maintain specificity through regulation of the alpha1 and alpha2 genes and, more surprisingly, through differential splicing of the a1 transcript.
Collapse
Affiliation(s)
- Héloïse Muller
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS URA 2171, Université Pierre et Marie Curie-Paris 6 UFR927, F75015 Paris, France.
| | | | | | | | | |
Collapse
|
54
|
Carneiro T, Carvalho C, Braga J, Rino J, Milligan L, Tollervey D, Carmo-Fonseca M. Inactivation of cleavage factor I components Rna14p and Rna15p induces sequestration of small nucleolar ribonucleoproteins at discrete sites in the nucleus. Mol Biol Cell 2008; 19:1499-508. [PMID: 18234838 DOI: 10.1091/mbc.e07-10-1015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) associate with specific proteins forming small nucleolar ribonucleoprotein (snoRNP) particles, which are essential for ribosome biogenesis. The snoRNAs are transcribed, processed, and assembled in snoRNPs in the nucleoplasm. Mature particles are then transported to the nucleolus. In yeast, 3'-end maturation of snoRNAs involves the activity of Rnt1p endonuclease and cleavage factor IA (CFIA). We report that after inhibition of CFIA components Rna14p and Rna15p, the snoRNP proteins Nop1p, Nop58p, and Gar1p delocalize from the nucleolus and accumulate in discrete nucleoplasmic foci. The U14 snoRNA, but not U3 snoRNA, similarly redistributes from the nucleolus to the nucleoplasmic foci. Simultaneous depletion of either Rna14p or Rna15p and the nuclear exosome component Rrp6p induces accumulation of poly(A)(+) RNA at the snoRNP-containing foci. We propose that the foci detected after CFIA inactivation correspond to quality control centers in the nucleoplasm.
Collapse
Affiliation(s)
- Tiago Carneiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | | | | | | | | | | | | |
Collapse
|
55
|
Bertrand E, Bordonné R. Assembly and Traffic of Small Nuclear RNPs. RNA TRAFFICKING AND NUCLEAR STRUCTURE DYNAMICS 2008; 35:79-97. [PMID: 15113080 DOI: 10.1007/978-3-540-74266-1_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535-IFR 122, 1919 route de Mende, 34293, Montpellier Cedex 5, France.
| | | |
Collapse
|
56
|
Comella P, Pontvianne F, Lahmy S, Vignols F, Barbezier N, Debures A, Jobet E, Brugidou E, Echeverria M, Sáez-Vásquez J. Characterization of a ribonuclease III-like protein required for cleavage of the pre-rRNA in the 3'ETS in Arabidopsis. Nucleic Acids Res 2007; 36:1163-75. [PMID: 18158302 PMCID: PMC2275086 DOI: 10.1093/nar/gkm1130] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ribonuclease III (RNaseIII) is responsible for processing and maturation of RNA precursors into functional rRNA, mRNA and other small RNA. In contrast to bacterial and yeast cells, higher eukaryotes contain at least three classes of RNaseIII, including class IV or dicer-like proteins. Here, we describe the functional characterization of AtRTL2, an Arabidopsis thaliana RNaseIII-like protein that belongs to a small family of genes distinct from the dicer family. We demonstrate that AtRTL2 is required for 3′external transcribed spacer (ETS) cleavage of the pre-rRNA in vivo. AtRTL2 localizes in the nucleus and cytoplasm, a nuclear export signal (NES) in the N-terminal sequence probably controlling AtRTL2 cellular localization. The modeled 3D structure of the RNaseIII domain of AtRTL2 is similar to the bacterial RNaseIII domain, suggesting a comparable catalytic mechanism. However, unlike bacterial RNaseIII, the AtRTL2 protein forms a highly salt-resistant homodimer that is only disrupted on treatment with DTT. These data indicate that AtRTL2 may use a dimeric mechanism to cleave double-stranded RNA, but unlike bacterial or yeast RNase III proteins, AtRTL2 forms homodimers through formation of disulfide bonds, suggesting that redox conditions may operate to regulate the activity of RNaseIII.
Collapse
Affiliation(s)
- P Comella
- Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS-UPVD-IRD, Université de Perpignan, 66860 Perpignan cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Deletion of Rnt1p alters the proportion of open versus closed rRNA gene repeats in yeast. Mol Cell Biol 2007; 28:619-29. [PMID: 17991894 DOI: 10.1128/mcb.01805-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, the double-stranded-RNA-specific RNase III (Rnt1p) is required for the processing of pre-rRNA and coprecipitates with transcriptionally active rRNA gene repeats. Here we show that Rnt1p physically interacts with RNA polymerase I (RNAPI) and its deletion decreases the transcription of the rRNA gene and increases the number of rRNA genes with an open chromatin structure. In contrast, depletion of ribosomal proteins or factors that impair RNAPI termination did not increase the number of open rRNA gene repeats, suggesting that changes in the ratio of open and closed rRNA gene chromatin is not due to a nonspecific response to ribosome depletion or impaired termination. The results demonstrate that defects in pre-rRNA processing can influence the chromatin structure of the rRNA gene arrays and reveal links among the rRNA gene chromatin, transcription, and processing.
Collapse
|
58
|
Zwiers LH, Roohparvar R, de Waard MA. MgAtr7, a new type of ABC transporter from Mycosphaerella graminicola involved in iron homeostasis. Fungal Genet Biol 2007; 44:853-63. [PMID: 17379549 DOI: 10.1016/j.fgb.2007.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 01/16/2007] [Accepted: 02/05/2007] [Indexed: 10/23/2022]
Abstract
The ABC transporter-encoding gene MgAtr7 from the wheat pathogen Mycosphaerella graminicola was cloned based upon its high homology to ABC transporters involved in azole-fungicide sensitivity. Genomic and cDNA sequences indicated that the N-terminus of this ABC transporter contains a motif characteristic for a dityrosine/pyoverdine biosynthesis protein. This makes MgAtr7 the first member of a new class of fungal ABC transporters harboring both a transporter and a biosynthetic moiety. A homologue of MgAtr7 containing the same biosynthetic moiety was only found in the Fusarium graminearum genome and not in any other fungal genome examined so far. The gene structure of both orthologous transporters is highly conserved and the genomic area surrounding the ABC transporter exhibits micro-synteny between M. graminicola and F. graminearum. Functional analyses revealed that MgAtr7 is neither required for virulence nor involved in fungicide sensitivity but indicated a role in maintenance of iron homeostasis.
Collapse
Affiliation(s)
- Lute-Harm Zwiers
- Laboratory of Phytopathology, Wageningen University, P.O. Box 8025, 6700 EE Wageningen, The Netherlands.
| | | | | |
Collapse
|
59
|
Makarova JA, Kramerov DA. Small nucleolar RNA genes. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
60
|
Saveanu C, Fromont-Racine M, Jacquier A. 18 RNA Gene Analysis. METHODS IN MICROBIOLOGY 2007. [DOI: 10.1016/s0580-9517(06)36018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
61
|
Piekna-Przybylska D, Liu B, Fournier MJ. The U1 snRNA hairpin II as a RNA affinity tag for selecting snoRNP complexes. Methods Enzymol 2007; 425:317-53. [PMID: 17673090 DOI: 10.1016/s0076-6879(07)25014-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
When isolating ribonucleoprotein (RNP) complexes by an affinity selection approach, tagging the RNA component can prove to be strategically important. This is especially true for purifying single types of snoRNPs, because in most cases the snoRNA is thought to be the only unique component. Here, we present a general strategy for selecting specific snoRNPs that features a high-affinity tag in the snoRNA and another in a snoRNP core protein. The RNA tag (called U1hpII) is a small (26 nt) stem-loop domain from human U1 snRNA. This structure binds with high affinity (K(D)=10(-11)M) to the RRM domain of the snRNP protein U1A. In our approach, the U1A protein contains a unique affinity tag and is coexpressed in vivo with the tagged snoRNA to yield snoRNP-U1A complexes with two unique protein tags-one in the bound U1A protein and the other in the snoRNP core protein. This scheme has been used effectively to select C/D and H/ACA snoRNPs, including both processing and modifying snoRNPs, and the snoRNA and core proteins are highly enriched. Depending on selection stringency other proteins are isolated as well, including an RNA helicase involved in snoRNP release from pre-rRNA and additional proteins that function in ribosome biogenesis. Tagging the snoRNA component alone is also effective when U1A is expressed with a myc-Tev-protein A fusion sequence. Combined with reduced stringency, enrichment of the U14 snoRNP with this latter system revealed potential interactions with two other snoRNPs, including one processing snoRNP involved in the same cleavages of pre-rRNA.
Collapse
|
62
|
MacRae IJ, Doudna JA. Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr Opin Struct Biol 2006; 17:138-45. [PMID: 17194582 DOI: 10.1016/j.sbi.2006.12.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 11/09/2006] [Accepted: 12/13/2006] [Indexed: 11/20/2022]
Abstract
Ribonuclease III (RNase III) enzymes occur ubiquitously in biology and are responsible for processing RNA precursors into functional RNAs that participate in protein synthesis, RNA interference and a range of other cellular activities. Members of the RNase III enzyme family, including Escherichia coli RNase III, Rnt1, Dicer and Drosha, share the ability to recognize and cleave double-stranded RNA (dsRNA), typically at specific positions or sequences. Recent biochemical and structural data have shed new light on how RNase III enzymes catalyze dsRNA hydrolysis and how substrate specificity is achieved. A major theme emerging from these studies is that accessory domains present in different RNase III enzymes are the key determinants of substrate selectivity, which in turn dictates the specialized biological function of each type of RNase III protein.
Collapse
Affiliation(s)
- Ian J MacRae
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
63
|
Larose S, Laterreur N, Ghazal G, Gagnon J, Wellinger RJ, Elela SA. RNase III-dependent regulation of yeast telomerase. J Biol Chem 2006; 282:4373-4381. [PMID: 17158880 DOI: 10.1074/jbc.m607145200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In bakers' yeast, in vivo telomerase activity requires a ribonucleoprotein (RNP) complex with at least four associated proteins (Est2p, Est1p, Est3p, and Cdc13p) and one RNA species (Tlc1). The function of telomerase in maintaining chromosome ends, called telomeres, is tightly regulated and linked to the cell cycle. However, the mechanisms that regulate the expression of individual components of telomerase are poorly understood. Here we report that yeast RNase III (Rnt1p), a double-stranded RNA-specific endoribonuclease, regulates the expression of telomerase subunits and is required for maintaining normal telomere length. Deletion or inactivation of RNT1 induced the expression of Est1, Est2, Est3, and Tlc1 RNAs and increased telomerase activity, leading to elongation of telomeric repeat tracts. In silico analysis of the different RNAs coding for the telomerase subunits revealed a canonical Rnt1p cleavage site near the 3' end of Est1 mRNA. This predicted structure was cleaved by Rnt1p and its disruption abolished cleavage in vitro. Mutation of the Rnt1p cleavage signal in vivo impaired the cell cycle-dependent degradation of Est1 mRNA without affecting its steady-state level. These results reveal a new mechanism that influences telomeres length by controlling the expression of the telomerase subunits.
Collapse
Affiliation(s)
- Stéphanie Larose
- RNA Group, Département de Microbiologie et d'Infectiologie, Facultéde Médecine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Nancy Laterreur
- RNA Group, Département de Microbiologie et d'Infectiologie, Facultéde Médecine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Ghada Ghazal
- RNA Group, Département de Microbiologie et d'Infectiologie, Facultéde Médecine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Jules Gagnon
- RNA Group, Département de Microbiologie et d'Infectiologie, Facultéde Médecine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Raymund J Wellinger
- RNA Group, Département de Microbiologie et d'Infectiologie, Facultéde Médecine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Sherif Abou Elela
- RNA Group, Département de Microbiologie et d'Infectiologie, Facultéde Médecine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| |
Collapse
|
64
|
Houalla R, Devaux F, Fatica A, Kufel J, Barrass D, Torchet C, Tollervey D. Microarray detection of novel nuclear RNA substrates for the exosome. Yeast 2006; 23:439-54. [PMID: 16652390 DOI: 10.1002/yea.1369] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Microarray analyses were performed on yeast strains mutant for the nuclear-specific exosome components Rrp6p and Rrp47p/Lrp1p or the core component Rrp41p/Ski6p, at permissive temperature and following transfer to 37 degrees C. 339 mRNAs showed clearly altered expression levels, with an unexpectedly high degree of heterogeneity in the different exosome mutants. In contrast, no clear alterations were seen in strains lacking the cytoplasmic exosome component Ski7p. 27 mRNAs that were overexpressed in each strain defective in the nuclear exosome are good candidates for regulation by nuclear turnover. These included the mRNA for the autoregulated RNA-binding protein Nrd1p. Northern and primer extension analyses confirmed the elevated NRD1 mRNA levels in exosome mutants, and revealed the accumulation of truncated 5' fragments of the mRNA. These contain a predicted Nrd1p-binding site, potentially sequestering the protein and disrupting its autoregulation. Several genes located immediately downstream of independently transcribed snoRNA genes were overexpressed in exosome mutants, presumably due to stabilization of the products of transcription termination read-through. Further analyses indicated that many snoRNA and snRNA genes are inefficiently terminated, but read-through transcripts into downstream ORFs are normally rapidly degraded by the exosome.
Collapse
Affiliation(s)
- Rym Houalla
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3JR, UK
| | | | | | | | | | | | | |
Collapse
|
65
|
Vasiljeva L, Buratowski S. Nrd1 Interacts with the Nuclear Exosome for 3′ Processing of RNA Polymerase II Transcripts. Mol Cell 2006; 21:239-48. [PMID: 16427013 DOI: 10.1016/j.molcel.2005.11.028] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 10/07/2005] [Accepted: 11/23/2005] [Indexed: 11/20/2022]
Abstract
The exosome complex is involved in multiple RNA processing and degradation pathways. How exosome is recruited to particular RNA substrates and then chooses between RNA processing and degradation modes remains unclear. We find that the RNA binding protein Nrd1, complexed with its partners Nab3, Sen1, and cap binding complex, physically interacts with the nuclear form of exosome. Nrd1 stimulates the RNA degradation activity of the exosome in vitro. However, Nrd1 can also block 3' to 5' degradation by the exosome at some Nrd1 binding sites. Nrd1 mutations share some phenotypes with exosome mutants, including increased readthrough transcription from several mRNA and sn/snoRNA genes. Therefore, Nrd1 may recruit exosome to RNA and influence the choice between processing and degradation. Since Nrd1 is known to bind RNA polymerase II and be important for sn/snoRNA 3' end processing, Nrd1 may link transcription and RNA 3' end formation with surveillance by the exosome.
Collapse
Affiliation(s)
- Lidia Vasiljeva
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
66
|
Egecioglu DE, Henras AK, Chanfreau GF. Contributions of Trf4p- and Trf5p-dependent polyadenylation to the processing and degradative functions of the yeast nuclear exosome. RNA (NEW YORK, N.Y.) 2006; 12:26-32. [PMID: 16373491 PMCID: PMC1370882 DOI: 10.1261/rna.2207206] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The nuclear exosome is involved in a large number of RNA processing and surveillance pathways. RNase III cleavage intermediates destined to be 3'-processed or degraded can be detected when the Rrp6p subunit of the nuclear exosome is absent. Here we show that these processing and degradation intermediates are polyadenylated, and that their polyadenylation is dependent on the activity of Trf4p and Trf5p, two variant poly(A) polymerases. Polyadenylation of cleavage intermediates was inhibited when Trf4p was absent, and reduced to various extents in the absence of Trf5p, suggesting that these two poly(A) polymerases play functionally distinct roles in the polyadenylation of these RNA species. Finally, in the absence of Trf4p, we observed 3'-extended forms of the U4 snRNA that are similar to those observed in the absence of Rrp6p. These results suggest that polyadenylation of RNA processing intermediates plays a functional role in RNA processing pathways and is not limited to RNA surveillance functions.
Collapse
Affiliation(s)
- Defne E Egecioglu
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California Los Angeles, Box 951569, Los Angeles, CA 90095-1569, USA
| | | | | |
Collapse
|
67
|
Henras AK, Sam M, Hiley SL, Wu H, Hughes TR, Feigon J, Chanfreau GF. Biochemical and genomic analysis of substrate recognition by the double-stranded RNA binding domain of yeast RNase III. RNA (NEW YORK, N.Y.) 2005; 11:1225-37. [PMID: 15987808 PMCID: PMC1370806 DOI: 10.1261/rna.2760705] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Members of the RNase III family of double-stranded RNA (dsRNA) endonucleases are important enzymes of RNA metabolism in eukaryotic cells. Rnt1p is the only known member of the RNase III family of endonucleases in Saccharomyces cerevisiae. Previous studies have shown that Rnt1p cleaves dsRNA capped by a conserved AGNN tetraloop motif, which is a major determinant for Rnt1p binding and cleavage. The solution structure of the dsRNA-binding domain (dsRBD) of Rnt1p bound to a cognate RNA substrate revealed the structural basis for binding of the conserved tetraloop motif by alpha-helix 1 of the dsRBD. In this study, we have analyzed extensively the effects of mutations of helix 1 residues that contact the RNA. We show, using microarray analysis, that mutations of these amino acids induce substrate-specific processing defects in vivo. Cleavage kinetics and binding studies show that these mutations affect RNA cleavage and binding in vitro to different extents and suggest a function for some specific amino acids of the dsRBD in the catalytic positioning of the enzyme. Moreover, we show that 2'-hydroxyl groups of nucleotides of the tetraloop or adjacent base pairs predicted to interact with residues of alpha-helix 1 are important for Rnt1p cleavage in vitro. This study underscores the importance of a few amino acid contacts for positioning of a dsRBD onto its RNA target, and implicates the specific orientation of helix 1 on the RNA for proper positioning of the catalytic domain.
Collapse
Affiliation(s)
- Anthony K Henras
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Lee A, Henras AK, Chanfreau G. Multiple RNA Surveillance Pathways Limit Aberrant Expression of Iron Uptake mRNAs and Prevent Iron Toxicity in S. cerevisiae. Mol Cell 2005; 19:39-51. [PMID: 15989963 DOI: 10.1016/j.molcel.2005.05.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 04/14/2005] [Accepted: 05/20/2005] [Indexed: 10/25/2022]
Abstract
Tight regulation of the expression of mRNAs encoding iron uptake proteins is essential to control iron homeostasis and avoid intracellular iron toxicity. We show that many mRNAs encoding iron uptake or iron mobilization proteins are expressed in iron-replete conditions in the absence of the S. cerevisiae RNase III ortholog Rnt1p or of the nuclear exosome component Rrp6p. Extended forms of these mRNAs accumulate in the absence of Rnt1p or of the 5'-->3' exonucleases Xrn1p and Rat1p, showing that multiple degradative pathways contribute to the surveillance of aberrant forms of these transcripts. RNase III-deficient cells are hypersensitive to high iron concentrations, suggesting that Rnt1p-mediated RNA surveillance is required to prevent iron toxicity. These results show that RNA surveillance through multiple ribonucleolytic pathways plays a role in iron homeostasis in yeast to avoid the potentially toxic effects of the expression of the iron starvation response in iron-replete conditions.
Collapse
Affiliation(s)
- Albert Lee
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, Box 951569, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
69
|
Zer C, Chanfreau G. Regulation and surveillance of normal and 3'-extended forms of the yeast aci-reductone dioxygenase mRNA by RNase III cleavage and exonucleolytic degradation. J Biol Chem 2005; 280:28997-9003. [PMID: 15967792 DOI: 10.1074/jbc.m505913200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aci-reductone dioxygenases are key enzymes in the methionine salvage pathway. The mechanisms by which the expression of this important class of enzymes is regulated are poorly understood. Here we show that the expression of the mRNA encoding the yeast aci-reductone dioxygenase ADI1 is controlled post-transcriptionally by RNase III cleavage. Cleavage occurs in a large bipartite stem loop structure present in the open reading frame region of the ADI1 mRNA. The ADI1 mRNA is up-regulated in the absence of the yeast orthologue of RNase III Rnt1p or of the 5' --> 3' exonucleases Xrn1p and Rat1p. 3'-Extended forms of this mRNA, including a polycistronic mRNA ADI1-YMR010W mRNA, also accumulate in cells lacking Rnt1p, Xrn1p, and Rat1p or the nuclear exosome component Rrp6p, suggesting that these 3'-extended forms are subject to nuclear surveillance. We show that the ADI1 mRNA is up-regulated under heat shock conditions in a Rnt1p-independent manner. We propose that Rnt1p cleavage targets degradation of the ADI1 mRNA to prevent its expression prior to heat shock conditions and that RNA surveillance by multiple ribonucleases helps prevent accumulation of aberrant 3'-extended forms of this mRNA that arise from intrinsically inefficient 3'-processing signals.
Collapse
Affiliation(s)
- Cindy Zer
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
70
|
Ghazal G, Ge D, Gervais-Bird J, Gagnon J, Abou Elela S. Genome-wide prediction and analysis of yeast RNase III-dependent snoRNA processing signals. Mol Cell Biol 2005; 25:2981-94. [PMID: 15798187 PMCID: PMC1069626 DOI: 10.1128/mcb.25.8.2981-2994.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, the maturation of both pre-rRNA and pre-small nucleolar RNAs (pre-snoRNAs) involves common factors, thereby providing a potential mechanism for the coregulation of snoRNA and rRNA synthesis. In this study, we examined the global impact of the double-stranded-RNA-specific RNase Rnt1p, which is required for pre-rRNA processing, on the maturation of all known snoRNAs. In silico searches for Rnt1p cleavage signals, and genome-wide analysis of the Rnt1p-dependent expression profile, identified seven new Rnt1p substrates. Interestingly, two of the newly identified Rnt1p-dependent snoRNAs, snR39 and snR59, are located in the introns of the ribosomal protein genes RPL7A and RPL7B. In vitro and in vivo experiments indicated that snR39 is normally processed from the lariat of RPL7A, suggesting that the expressions of RPL7A and snR39 are linked. In contrast, snR59 is produced by a direct cleavage of the RPL7B pre-mRNA, indicating that a single pre-mRNA transcript cannot be spliced to produce a mature RPL7B mRNA and processed by Rnt1p to produce a mature snR59 simultaneously. The results presented here reveal a new role of yeast RNase III in the processing of intron-encoded snoRNAs that permits independent regulation of the host mRNA and its associated snoRNA.
Collapse
Affiliation(s)
- Ghada Ghazal
- Université de Sherbrooke, Département de Microbiologie et d'Infectiologie, 3001 12e Ave nord, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | | | |
Collapse
|
71
|
Ge D, Lamontagne B, Elela SA. RNase III-mediated silencing of a glucose-dependent repressor in yeast. Curr Biol 2005; 15:140-5. [PMID: 15668170 DOI: 10.1016/j.cub.2004.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 10/21/2004] [Accepted: 11/10/2004] [Indexed: 11/19/2022]
Abstract
Members of the RNase III family are found in all species examined with the exception of archaebacteria, where the functions of RNase III are carried out by the bulge-helix-bulge nuclease (BHB). In bacteria, RNase III contributes to the processing of many noncoding RNAs and directly cleaves several cellular and phage mRNAs. In eukaryotes, orthologs of RNase III participate in the biogenesis of many miRNAs and siRNAs, and this biogenesis initiates the degradation or translational repression of several mRNAs. However, the capacity of eukaryotic RNase IIIs to regulate gene expression by directly cleaving within the coding sequence of mRNAs remains speculative. Here we show that Rnt1p, a member of the RNase III family, selectively inhibits gene expression in baker's yeast by directly cleaving a stem-loop structure within the mRNA coding sequence. Analysis of mRNA expression upon the deletion of Rnt1p revealed an upregulation of the glucose-dependent repressor Mig2p. Mig2p mRNA became more stable upon the deletion of Rnt1p and resisted glucose-dependent degradation. In vitro, Rnt1p cleaved Mig2p mRNA and a silent mutation that disrupts Rnt1p signals blocked Mig2p mRNA degradation. These observations reveal a new RNase III-dependent mechanism of eukaryotic mRNA degradation.
Collapse
Affiliation(s)
- Dongling Ge
- Groupe ARN/RNA Group, Département de Microbiologie et d'Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | |
Collapse
|
72
|
Gioia U, Laneve P, Dlakic M, Arceci M, Bozzoni I, Caffarelli E. Functional characterization of XendoU, the endoribonuclease involved in small nucleolar RNA biosynthesis. J Biol Chem 2005; 280:18996-9002. [PMID: 15755742 DOI: 10.1074/jbc.m501160200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
XendoU is the endoribonuclease involved in the biosynthesis of a specific subclass of Xenopus laevis intron-encoded small nucleolar RNAs. XendoU has no homology to any known cellular RNase, although it has sequence similarity with proteins tentatively annotated as serine proteases. It has been recently shown that XendoU represents the cellular counterpart of a nidovirus replicative endoribonuclease (NendoU), which plays a critical role in viral replication and transcription. In this paper, we combined prediction and experimental data to define the amino acid residues directly involved in XendoU catalysis. Specifically, we find that XendoU residues Glu-161, Glu-167, His-162, His-178, and Lys-224 are essential for RNA cleavage, which occurs in the presence of manganese ions. Furthermore, we identified the RNA sequence required for XendoU binding and showed that the formation of XendoU-RNA complex is Mn2+-independent.
Collapse
Affiliation(s)
- Ubaldo Gioia
- Institute Pasteur-Fondazione Cenci Bolognetti, Department of Genetics and Molecular Biology, University La Sapienza, p.le A. Moro 5, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
73
|
Faber AW, Vos JC, Vos HR, Ghazal G, Elela SA, Raué HA. The RNA catabolic enzymes Rex4p, Rnt1p, and Dbr1p show genetic interaction with trans-acting factors involved in processing of ITS1 in Saccharomyces cerevisiae pre-rRNA. RNA (NEW YORK, N.Y.) 2004; 10:1946-56. [PMID: 15525710 PMCID: PMC1370683 DOI: 10.1261/rna.7155904] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Accepted: 09/22/2004] [Indexed: 05/13/2023]
Abstract
Eukaryotes have two types of ribosomes containing either 5.8SL or 5.8SS rRNA that are produced by alternative pre-rRNA processing. The exact processing pathway for the minor 5.8SL rRNA species is poorly documented. We have previously shown that the trans-acting factor Rrp5p and the RNA exonuclease Rex4p genetically interact to influence the ratio between the two forms of 5.8S rRNA in the yeast Saccharomyces cerevisiae. Here we report a further analysis of ITS1 processing in various yeast mutants that reveals genetic interactions between, on the one hand, Rrp5p and RNase MRP, the endonuclease required for 5.8SS rRNA synthesis, and, on the other, Rex4p, the RNase III homolog Rnt1p, and the debranching enzyme Dbr1p. Yeast cells carrying a temperature-sensitive mutation in RNase MRP (rrp2-1) exhibit a pre-rRNA processing phenotype very similar to that of the previously studied rrp5-33 mutant: ITS2 processing precedes ITS1 processing, 5.8SL rRNA becomes the major species, and ITS1 is processed at the recently reported novel site A4 located midway between sites A2 and A3. As in the rrp5-Delta3 mutant, all of these phenotypical processing features disappear upon inactivation of the REX4 gene. Moreover, inactivation of the DBR1 gene in rrp2-1, or the RNT1 gene in rrp5-Delta3 mutant cells also negates the effects of the original mutation on pre-rRNA processing. These data link a total of three RNA catabolic enzymes, Rex4p, Rnt1p, and Dbr1p, to ITS1 processing and the relative production of 5.8SS and 5.8SL rRNA. A possible model for the indirect involvement of the three enzymes in yeast pre-rRNA processing is discussed.
Collapse
Affiliation(s)
- Alex W Faber
- Section of Biochemistry and Molecular Biology, Vrije Universiteit, de Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
74
|
Henras AK, Bertrand E, Chanfreau G. A cotranscriptional model for 3'-end processing of the Saccharomyces cerevisiae pre-ribosomal RNA precursor. RNA (NEW YORK, N.Y.) 2004; 10:1572-1585. [PMID: 15337846 PMCID: PMC1370644 DOI: 10.1261/rna.7750804] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Accepted: 07/15/2004] [Indexed: 05/24/2023]
Abstract
Cleavage of the Saccharomyces cerevisiae primary ribosomal RNA (rRNA) transcript in the 3' external transcribed spacer (ETS) by Rnt1p generates the 35S pre-rRNA, the earliest detectable species in the pre-rRNA processing pathway. In this study we show that Rnt1p is concentrated in a subnucleolar dot-shaped territory distinct from the nucleolar body. The 35S pre-rRNA is localized at the periphery of the Rnt1p dot, in a pattern that suggests a diffusion of the 35S pre-rRNA from the site of Rnt1p processing. When plasmid-borne versions of the rDNA are used to express rRNAs, the Rnt1p territory reorganizes around these plasmids, suggesting a close association between Rnt1p and the plasmid-borne rDNA units. Rnt1p was found associated with the endogenous rDNA by chromatin immunoprecipitation. Deletion of functionally important Rnt1p domains result in a loss of the dot-shaped territory, showing that this subnucleolar territory corresponds to a functional site of processing. These results show that a large fraction of Rnt1p is localized at the site of transcription of the rDNA, suggesting that the cleavage of the primary pre-rRNA transcript to generate the 35S pre-rRNA is a cotranscriptional event.
Collapse
Affiliation(s)
- Anthony K Henras
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California Los Angeles, Box 951569, Los Angeles, CA 90095-1569, USA
| | | | | |
Collapse
|
75
|
Chanfreau G. Conservation of RNase III processing pathways and specificity in hemiascomycetes. EUKARYOTIC CELL 2004; 2:901-9. [PMID: 14555472 PMCID: PMC219366 DOI: 10.1128/ec.2.5.901-909.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rnt1p, the only known Saccharomyces cerevisiae RNase III endonuclease, plays important functions in the processing of precursors of rRNAs (pre-rRNAs) and of a large number of small nuclear RNAs (snRNAs) and small nucleolar RNAs (snoRNAs). While most eukaryotic RNases III, including the Schizosaccharomyces pombe enzyme Pac1p, cleave double-stranded RNA without sequence specificity, Rnt1p cleavage relies on the presence of terminal tetraloop structures that carry the consensus sequence AGNN. To search for the conservation of these processing signals, I have systematically analyzed predicted secondary structures of the 3' external transcribed spacer (ETS) sequences of the pre-rRNAs and of flanking sequences of snRNAs and snoRNAs from sequences available in 13 other Hemiascomycetes species. In most of these species, except in Yarrowia lipolytica, double-stranded RNA regions capped by terminal AGNN tetraloops can be found in the 3' ETS sequences of rRNA, in the 5'- or 3'-end flanking sequences of sn(o)RNAs, or in the intergenic spacers of polycistronic snoRNA transcription units. This analysis shows that RNase III processing signals and RNase III cleavage specificity are conserved in most Hemiascomycetes species but probably not in the evolutionarily more distant species Y. lipolytica.
Collapse
Affiliation(s)
- Guillaume Chanfreau
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095-1569, USA.
| |
Collapse
|
76
|
Liu B, Fournier MJ. Interference probing of rRNA with snoRNPs: a novel approach for functional mapping of RNA in vivo. RNA (NEW YORK, N.Y.) 2004; 10:1130-41. [PMID: 15208448 PMCID: PMC1370603 DOI: 10.1261/rna.7190104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Synthesis of eukaryotic ribosomal RNAs (rRNAs) includes methylation of scores of nucleotides at the 2'-O-ribose position (Nm) by small nucleolar RNP complexes (snoRNPs). Sequence specificity is provided by the snoRNA component through base-pairing of a guide sequence with rRNA. Here, we report that methylation snoRNPs can be targeted to many new sites in yeast rRNA, by providing the snoRNA with a novel guide sequence, and that in some cases growth and translation activity are strongly impaired. Novel snoRNAs can be expressed individually or by a unique library strategy that yields guide sequences specific for a large target region. Interference effects were observed for sites in both the small and large subunits, including the reaction center region. Targeting guide RNAs to nucleotides flanking the sensitive sites caused little or no defect, indicating that methylation is responsible for the interference rather than a simple antisense effect or misguided chaperone function. To our knowledge, this is the only approach that has been used to mutagenize the backbone of rRNA in vivo.
Collapse
Affiliation(s)
- Ben Liu
- Department of Biochemistry and Molecular Biology, Lederle Graduate Research Center, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
77
|
Morlando M, Ballarino M, Greco P, Caffarelli E, Dichtl B, Bozzoni I. Coupling between snoRNP assembly and 3' processing controls box C/D snoRNA biosynthesis in yeast. EMBO J 2004; 23:2392-401. [PMID: 15167896 PMCID: PMC423293 DOI: 10.1038/sj.emboj.7600254] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Accepted: 05/04/2004] [Indexed: 11/08/2022] Open
Abstract
RNA polymerase II transcribes genes encoding proteins and a large number of small stable RNAs. While pre-mRNA 3'-end formation requires a machinery ensuring tight coupling between cleavage and polyadenylation, small RNAs utilize polyadenylation-independent pathways. In yeast, specific factors required for snRNA and snoRNA 3'-end formation were characterized as components of the APT complex that is associated with the core complex of the cleavage/polyadenylation machinery (core-CPF). Other essential factors were identified as independent components: Nrd1p, Nab3p and Sen1p. Here we report that mutations in the conserved box D of snoRNAs and in the snoRNP-specific factor Nop1p interfere with transcription and 3'-end formation of box C/D snoRNAs. We demonstrate that Nop1p is associated with box C/D snoRNA genes and that it interacts with APT components. These data suggest a mechanism of quality control in which efficient transcription and 3'-end formation occur only when nascent snoRNAs are successfully assembled into functional particles.
Collapse
Affiliation(s)
- Mariangela Morlando
- Department of Genetics and Molecular Biology, Institute Pasteur Cenci-Bolognetti, University of Rome ‘La Sapienza', Rome, Italy
| | - Monica Ballarino
- Department of Genetics and Molecular Biology, Institute Pasteur Cenci-Bolognetti, University of Rome ‘La Sapienza', Rome, Italy
| | - Paolo Greco
- Department of Genetics and Molecular Biology, Institute Pasteur Cenci-Bolognetti, University of Rome ‘La Sapienza', Rome, Italy
| | - Elisa Caffarelli
- Institute of Molecular Biology and Pathology of CNR, University of Rome ‘La Sapienza', Rome, Italy
| | - Bernhard Dichtl
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse, Basel, Switzerland
| | - Irene Bozzoni
- Department of Genetics and Molecular Biology, Institute Pasteur Cenci-Bolognetti, University of Rome ‘La Sapienza', Rome, Italy
- Institute of Molecular Biology and Pathology of CNR, University of Rome ‘La Sapienza', Rome, Italy
| |
Collapse
|
78
|
Lamontagne B, Hannoush RN, Damha MJ, Abou Elela S. Molecular requirements for duplex recognition and cleavage by eukaryotic RNase III: discovery of an RNA-dependent DNA cleavage activity of yeast Rnt1p. J Mol Biol 2004; 338:401-18. [PMID: 15066440 DOI: 10.1016/j.jmb.2004.02.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 02/10/2004] [Accepted: 02/14/2004] [Indexed: 11/24/2022]
Abstract
Members of the double-stranded RNA (dsRNA) specific RNase III family are known to use a conserved dsRNA-binding domain (dsRBD) to distinguish RNA A-form helices from DNA B-form ones, however, the basis of this selectivity and its effect on cleavage specificity remain unknown. Here, we directly examine the molecular requirements for dsRNA recognition and cleavage by the budding yeast RNase III (Rnt1p), and compare it to both bacterial RNase III and fission yeast RNase III (Pac1). We synthesized substrates with either chemically modified nucleotides near the cleavage sites, or with different DNA/RNA combinations, and investigated their binding and cleavage by Rnt1p. Substitution for the ribonucleotide vicinal to the scissile phosphodiester linkage with 2'-deoxy-2'-fluoro-beta-d-ribose (2' F-RNA), a deoxyribonucleotide, or a 2'-O-methylribonucleotide permitted cleavage by Rnt1p, while the introduction of a 2', 5'-phosphodiester linkage permitted binding, but not cleavage. This indicates that the position of the phosphodiester link with respect to the nuclease domain, and not the 2'-OH group, is critical for cleavage by Rnt1p. Surprisingly, Rnt1p bound to a DNA helix capped with an NGNN tetraribonucleotide loop indicating that the binding of at least one member of the RNase III family is not restricted to RNA. The results also suggest that the dsRBD may accommodate B-form DNA duplexes. Interestingly, Rnt1p, but not Pac1 nor bacterial RNase III, cleaved the DNA strand of a DNA/RNA hybrid, indicating that A-form RNA helix is not essential for cleavage by Rnt1p. In contrast, RNA/DNA hybrids bound to, but were not cleaved by Rnt1p, underscoring the critical role for the nucleotide located at 3' end of the tetraloop and suggesting an asymmetrical mode of substrate recognition. In cell extracts, the native enzyme effectively cleaved the DNA/RNA hybrid, indicating much broader Rnt1p substrate specificity than previously thought. The discovery of this novel RNA-dependent deoxyribonuclease activity has potential implications in devising new antiviral strategies that target actively transcribed DNA.
Collapse
Affiliation(s)
- Bruno Lamontagne
- Groupe ARN/RNA Group, Département de microbiologie et d'infectiologie, faculté de médecine, Université de Sherbrooke, Sherbrooke, Que., Canada J1H 5N4
| | | | | | | |
Collapse
|
79
|
Wu H, Henras A, Chanfreau G, Feigon J. Structural basis for recognition of the AGNN tetraloop RNA fold by the double-stranded RNA-binding domain of Rnt1p RNase III. Proc Natl Acad Sci U S A 2004; 101:8307-12. [PMID: 15150409 PMCID: PMC420390 DOI: 10.1073/pnas.0402627101] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Specific recognition of double-stranded RNA (dsRNA) by dsRNA-binding domains (dsRBDs) is involved in a large number of biological and regulatory processes. Although structures of dsRBDs in complex with dsRNA have revealed how they can bind to dsRNA in general, these do not explain how a dsRBD can recognize specific RNAs. Rnt1p, a member of the RNase III family of dsRNA endonucleases, is a key component of the Saccharomyces cerevisiae RNA-processing machinery. The Rnt1p dsRBD has been implicated in targeting this endonuclease to its RNA substrates, by recognizing hairpins closed by AGNN tetraloops. We report the solution structure of Rnt1p dsRBD complexed to the 5' terminal hairpin of one of its small nucleolar RNA substrates, the snR47 precursor. The conserved AGNN tetraloop fold is retained in the protein-RNA complex. The dsRBD contacts the RNA at successive minor, major, and tetraloop minor grooves on one face of the helix. Surprisingly, neither the universally conserved G nor the highly conserved A are recognized by specific hydrogen bonds to the bases. Rather, the N-terminal helix fits snugly into the minor groove of the RNA tetraloop and top of the stem, interacting in a non-sequence-specific manner with the sugar-phosphate backbone and the two nonconserved tetraloop bases. Mutational analysis of residues that contact the tetraloop region show that they are functionally important for RNA processing in the context of the entire protein in vivo. These results show how a single dsRBD can convey specificity for particular RNA targets, by structure specific recognition of a conserved tetraloop fold.
Collapse
Affiliation(s)
- Haihong Wu
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | | | | | | |
Collapse
|
80
|
Catala M, Lamontagne B, Larose S, Ghazal G, Elela SA. Cell cycle-dependent nuclear localization of yeast RNase III is required for efficient cell division. Mol Biol Cell 2004; 15:3015-30. [PMID: 15090619 PMCID: PMC452560 DOI: 10.1091/mbc.e04-03-0183] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Members of the double-stranded RNA-specific ribonuclease III (RNase III) family were shown to affect cell division and chromosome segregation, presumably through an RNA interference-dependent mechanism. Here, we show that in Saccharomyces cerevisiae, where the RNA interference machinery is not conserved, an orthologue of RNase III (Rnt1p) is required for progression of the cell cycle and nuclear division. The deletion of Rnt1p delayed cells in both G1 and G2/M phases of the cell cycle. Nuclear division and positioning at the bud neck were also impaired in Deltarnt1 cells. The cell cycle defects were restored by the expression of catalytically inactive Rnt1p, indicating that RNA cleavage is not essential for cell cycle progression. Rnt1p was found to exit from the nucleolus to the nucleoplasm in the G2/M phase, and perturbation of its localization pattern delayed the progression of cell division. A single mutation in the Rnt1p N-terminal domain prevented its accumulation in the nucleoplasm and slowed exit from mitosis without any detectable effects on RNA processing. Together, the data reveal a new role for a class II RNase III in the cell cycle and suggest that at least some members of the RNase III family possess catalysis-independent functions.
Collapse
Affiliation(s)
- Mathieu Catala
- RNA Group/Groupe ARN, Département de Microbiologie et d'Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | | | | | | | | |
Collapse
|
81
|
Baba SW, Belogrudov GI, Lee JC, Lee PT, Strahan J, Shepherd JN, Clarke CF. Yeast Coq5 C-methyltransferase is required for stability of other polypeptides involved in coenzyme Q biosynthesis. J Biol Chem 2003; 279:10052-9. [PMID: 14701817 DOI: 10.1074/jbc.m313712200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coenzyme Q (Q) functions in the electron transport chain of both prokaryotes and eukaryotes. The biosynthesis of Q requires a number of steps involving at least eight Coq polypeptides. Coq5p is required for the C-methyltransferase step in Q biosynthesis. In this study we demonstrate that Coq5p is peripherally associated with the inner mitochondrial membrane on the matrix side. Phenotypic characterization of a collection of coq5 mutant yeast strains indicates that while each of the coq5 mutant strains are rescued by the Saccharomyces cerevisiae COQ5 gene, only the coq5-2 and coq5-5 mutants are rescued by expression of Escherichia coli ubiE, a homolog of COQ5. The coq5-2 and coq5-5 mutants contain mutations within or adjacent to conserved methyltransferase motifs that would be expected to disrupt the catalysis of C-methylation. The steady state levels of the Coq5-2 and Coq5-5 mutant polypeptides are not decreased relative to wild type Coq5p. Two other polypeptides required for Q biosynthesis, Coq3p and Coq4p, are detected in the wild type parent and in the coq5-2 and coq5-5 mutants, but are not detected in the coq5-null mutant, or in the coq5-4 or coq5-3 mutants. The effect of the coq5-4 mutation is similar to a null, since it results in a stop codon at position 93. However, the coq5-3 mutation (G304D) is located just four amino acids away from the C terminus. While C-methyltransferase activity is detectable in mitochondria isolated from this mutant, the steady state level of Coq5p is dramatically decreased. These studies show that at least two functions can be attributed to Coq5p; first, it is required to catalyze the C-methyltransferase step in Q biosynthesis and second, it is involved in stabilizing the Coq3 and Coq4 polypeptides required for Q biosynthesis.
Collapse
Affiliation(s)
- Suzie W Baba
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Mattick JS. Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. Bioessays 2003; 25:930-9. [PMID: 14505360 DOI: 10.1002/bies.10332] [Citation(s) in RCA: 316] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The central dogma of biology holds that genetic information normally flows from DNA to RNA to protein. As a consequence it has been generally assumed that genes generally code for proteins, and that proteins fulfil not only most structural and catalytic but also most regulatory functions, in all cells, from microbes to mammals. However, the latter may not be the case in complex organisms. A number of startling observations about the extent of non-protein-coding RNA (ncRNA) transcription in the higher eukaryotes and the range of genetic and epigenetic phenomena that are RNA-directed suggests that the traditional view of the structure of genetic regulatory systems in animals and plants may be incorrect. ncRNA dominates the genomic output of the higher organisms and has been shown to control chromosome architecture, mRNA turnover and the developmental timing of protein expression, and may also regulate transcription and alternative splicing. This paper re-examines the available evidence and suggests a new framework for considering and understanding the genomic programming of biological complexity, autopoietic development and phenotypic variation.
Collapse
Affiliation(s)
- John S Mattick
- ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, St. Lucia QLD 4072, Australia.
| |
Collapse
|
83
|
Lee CY, Lee A, Chanfreau G. The roles of endonucleolytic cleavage and exonucleolytic digestion in the 5'-end processing of S. cerevisiae box C/D snoRNAs. RNA (NEW YORK, N.Y.) 2003; 9:1362-70. [PMID: 14561886 PMCID: PMC1287058 DOI: 10.1261/rna.5126203] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Accepted: 08/08/2003] [Indexed: 05/19/2023]
Abstract
Small nucleolar RNAs (snoRNAs) play important roles in ribosomal RNA metabolism. In Saccharomyces cerevisiae, box C/D snoRNAs are synthesized from excised introns, polycistronic precursors, or independent transcription units. Previous studies have shown that only a few independently transcribed box C/D snoRNAs are processed at their 5' end. Here we describe 12 additional independently transcribed box C/D snoRNAs that undergo 5'-end processing. 5' Extensions found in the precursors of these snoRNAs contain cleavage sites for Rnt1p, the S. cerevisiae homolog of RNase III, and unprocessed precursors accumulate in vivo in the absence of Rnt1p. Rnt1p cleavage products were identified in vivo when the 5' --> 3' exonucleases Xrn1p and Rat1p are inactivated (xrn1delta rat1-1) and in vitro using model RNA substrates and recombinant Rnt1p. Some of these snoRNAs show increased levels of unprocessed precursors when the rnt1Delta deletion is combined to the xrn1delta rat1-1 mutation, suggesting that these exonucleases participate in the 5' processing or the degradation of the snoRNA precursors. Unprocessed precursors are not significantly destabilized in the absence of the trimethylguanosine capping enzyme Tgs1p, suggesting that a 5' monomethyl cap is sufficient to ensure stabilization of these precursors. These results demonstrate that the majority of independently transcribed box C/D snoRNAs from the yeast genome undergo 5'-end processing and that the Rnt1p endonuclease and the Xrn1p and Rat1p 5' --> 3'exonucleases have partially redundant functions in the 5'-end processing of these snoRNAs.
Collapse
Affiliation(s)
- Chrissie Young Lee
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095-1569, USA
| | | | | |
Collapse
|
84
|
Bernard DG, Gabilly ST, Dujardin G, Merchant S, Hamel PP. Overlapping specificities of the mitochondrial cytochrome c and c1 heme lyases. J Biol Chem 2003; 278:49732-42. [PMID: 14514677 DOI: 10.1074/jbc.m308881200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heme attachment to the apoforms of fungal mitochondrial cytochrome c and c1 requires the activity of cytochrome c and c1 heme lyases (CCHL and CC1HL), which are enzymes with distinct substrate specificity. However, the presence of a single heme lyase in higher eukaryotes is suggestive of broader substrate specificity. Here, we demonstrate that yeast CCHL is active toward the non-cognate substrate apocytochrome c1, i.e. CCHL promotes low levels of apocytochrome c1 conversion to its holoform in the absence of CC1HL. Moreover, that the single human heme lyase also displays a broader cytochrome specificity is evident from its ability to substitute for both yeast CCHL and CC1HL. Multicopy and genetic suppressors of the absence of CC1HL were isolated and their analysis revealed that the activity of CCHL toward cytochrome c1 can be enhanced by: 1) reducing the abundance of the cognate substrate apocytochrome c, 2) increasing the accumulation of CCHL, 3) modifying the substrate-enzyme interaction through point mutations in CCHL or cytochrome c1, or 4) overexpressing Cyc2p, a protein known previously only as a mitochondrial biogenesis factor. Based on the functional interaction of Cyc2p with CCHL and the presence of a putative FAD-binding site in the protein, we hypothesize that Cyc2p controls the redox chemistry of the heme lyase reaction.
Collapse
Affiliation(s)
- Delphine G Bernard
- Centre de Génétique Moléculaire, CNRS, Avenue de la Terrasse, 97198 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
85
|
Chung KR, Daub ME, Ehrenshaft M. Expression of the cercosporin toxin resistance gene ( CRG1) as a dicistronic mRNA in the filamentous fungus Cercospora nicotianae. Curr Genet 2003; 43:415-24. [PMID: 12802507 DOI: 10.1007/s00294-003-0414-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2003] [Revised: 05/19/2003] [Accepted: 05/22/2003] [Indexed: 11/28/2022]
Abstract
The CRG1 gene in Cercospora nicotianae encodes a transcription factor and is required for cercosporin toxin resistance and production. Cloning and sequencing of the downstream region of the CRG1 gene led to the discovery of an adjacent gene ( PUT1) encoding a putative uracil transporter. Expression of CRG1 and PUT1 as assessed by Northern analysis indicated that, in addition to the expected monocistronic mRNAs (2.6 kb and 2.0 kb, respectively), a common 4.5-kb mRNA could be identified, using either a CRG1 or a PUT1 gene probe. The 2.6-kb transcript identified only by the CRG1 probe was expressed constitutively, whereas the 2.0-kb transcript identified only by the PUT1 probe was differentially expressed in various media. Four cDNA clones containing CRG1, PUT1, and the CRG1- PUT1 intergenic region were identified as part of the products from the 4.5-kb transcript. Both the 4.5-kb and 2.6-kb transcripts were not detectable in three crg1-disrupted mutants, using the CRG1 probe. The 2.0-kb transcript, but not the 4.5-kb one was detected using the PUT1 probe in the three crg1-disrupted mutants. Taken together, we conclude that the 4.5-kb transcript is a dicistronic mRNA of both CRG1 and PUT1 in the fungus C. nicotianae. This is the first example of a dicistronic mRNA identified in filamentous fungi.
Collapse
Affiliation(s)
- Kuang-Ren Chung
- Citrus Research and Education Center and Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA.
| | | | | |
Collapse
|
86
|
Dheur S, Vo LTA, Voisinet-Hakil F, Minet M, Schmitter JM, Lacroute F, Wyers F, Minvielle-Sebastia L. Pti1p and Ref2p found in association with the mRNA 3' end formation complex direct snoRNA maturation. EMBO J 2003; 22:2831-40. [PMID: 12773397 PMCID: PMC156750 DOI: 10.1093/emboj/cdg253] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Eukaryotic RNA polymerase II transcribes precursors of mRNAs and of non-protein-coding RNAs such as snRNAs and snoRNAs. These RNAs have to be processed at their 3' ends to be functional. mRNAs are matured by cleavage and polyadenylation that require a well-characterized protein complex. Small RNAs are also subject to 3' end cleavage but are not polyadenylated. Here we show that two newly identified proteins, Pti1p and Ref2p, although they were found associated with the pre-mRNA 3' end processing complex, are essential for yeast snoRNA 3' end maturation. We also provide evidence that Pti1p probably acts by uncoupling cleavage and polyadenylation, and functions in coordination with the Nrd1p-dependent pathway for 3' end formation of non-polyadenylated transcripts.
Collapse
Affiliation(s)
- Sonia Dheur
- Institut de Biochimie et Génétique Cellulaires, CNRS, UMR 5095, 1 Rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Danin-Kreiselman M, Lee CY, Chanfreau G. RNAse III-mediated degradation of unspliced pre-mRNAs and lariat introns. Mol Cell 2003; 11:1279-89. [PMID: 12769851 DOI: 10.1016/s1097-2765(03)00137-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Double-stranded RNA (dsRNA) has emerged as a modulator of gene expression, from gene silencing to antiviral responses. Here we show that dsRNA stem-loop structures found in intronic regions of the S. cerevisiae RPS22B and RPL18A transcripts trigger degradation of unspliced pre-mRNAs and lariat introns and can control the level of mRNA produced from these intron-containing genes. The dsRNA regions are cleaved by Rnt1p, the yeast ortholog of RNase III, which creates an entry site for complete degradation by the Xrn1p and Rat1p exonucleases and by the nuclear exosome. These results identify an alternative discard pathway for precursors and products of the splicing machinery and a physiological function for dsRNA in eukaryotic RNA catabolism.
Collapse
Affiliation(s)
- Michal Danin-Kreiselman
- Department of Chemistry and Biochemistry and The Molecular Biology Institute, University of California, Los Angeles, Box 951569, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
88
|
Lamontagne B, Ghazal G, Lebars I, Yoshizawa S, Fourmy D, Elela SA. Sequence dependence of substrate recognition and cleavage by yeast RNase III. J Mol Biol 2003; 327:985-1000. [PMID: 12662924 DOI: 10.1016/s0022-2836(03)00231-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Yeast Rnt1p is a member of the double-stranded RNA (dsRNA) specific RNase III family of endoribonucleases involved in RNA processing and RNA interference (RNAi). Unlike other RNase III enzymes, which recognize a variety of RNA duplexes, Rnt1p cleaves specifically RNA stems capped with the conserved AGNN tetraloop. This unusual substrate specificity challenges the established dogma for substrate selection by RNase III and questions the dsRNA contribution to recognition by Rnt1p. Here we show that the dsRNA sequence adjacent to the tetraloop regulates Rnt1p cleavage by interfering with RNA binding. In context, sequences surrounding the cleavage site directly influence the cleavage efficiency. Introduction of sequences that stabilize the RNA helix enhanced binding while reducing the turnover rate indicating that, unlike the tetraloop, Rnt1p binding to the dsRNA helix may become rate-limiting. These results suggest that Rnt1p activity is strictly regulated by a combination of primary and tertiary structural elements allowing a substrate-specific binding and cleavage efficiency.
Collapse
Affiliation(s)
- Bruno Lamontagne
- Groupe ARN/RNA Group, Département de Microbiologie et d'Infectiologie, Faculté de Médecine, Université de Sherbrooke, 3001 12e Avenue Nord, J1H 5N4, Sherbrooke, Que., Canada
| | | | | | | | | | | |
Collapse
|
89
|
Kufel J, Allmang C, Petfalski E, Beggs J, Tollervey D. Lsm Proteins are required for normal processing and stability of ribosomal RNAs. J Biol Chem 2003; 278:2147-56. [PMID: 12438310 DOI: 10.1074/jbc.m208856200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Depletion of any of the essential Lsm proteins, Lsm2-5p or Lsm8p, delayed pre-rRNA processing and led to the accumulation of many aberrant processing intermediates, indicating that an Lsm complex is required to maintain the normally strict order of processing events. In addition, high levels of degradation products derived from both precursors and mature rRNAs accumulated in Lsm-depleted strains. Depletion of the essential Lsm proteins reduced the apparent processivity of both 5' and 3' exonuclease activities involved in 5.8S rRNA processing, and the degradation intermediates that accumulated were consistent with inefficient 5' and 3' degradation. Many, but not all, pre-rRNA species could be coprecipitated with tagged Lsm3p, but not with tagged Lsm1p or non-tagged control strains, suggesting their direct interaction with an Lsm2-8p complex. We propose that Lsm proteins facilitate RNA protein interactions and structural changes required during ribosomal subunit assembly.
Collapse
MESH Headings
- Base Sequence
- Blotting, Northern
- Gene Deletion
- Genotype
- Models, Genetic
- Molecular Sequence Data
- N-Terminal Acetyltransferase C
- Phenotype
- Precipitin Tests
- RNA/metabolism
- RNA Cap-Binding Proteins
- RNA, Messenger/metabolism
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 5.8S/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/physiology
- Ribonucleoprotein, U4-U6 Small Nuclear/genetics
- Ribonucleoprotein, U4-U6 Small Nuclear/physiology
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/physiology
Collapse
Affiliation(s)
- Joanna Kufel
- Wellcome Trust Centre for Cell Biology, Swann Building, King's Buildings, University of Edinburgh, United Kingdom
| | | | | | | | | |
Collapse
|
90
|
Yang PK, Rotondo G, Porras T, Legrain P, Chanfreau G. The Shq1p.Naf1p complex is required for box H/ACA small nucleolar ribonucleoprotein particle biogenesis. J Biol Chem 2002; 277:45235-42. [PMID: 12228251 DOI: 10.1074/jbc.m207669200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Small nucleolar ribonucleoprotein particles (snoRNPs) are essential cofactors in ribosomal RNA metabolism. Although snoRNP composition has been thoroughly characterized, the biogenesis process of these particles is poorly understood. We have identified two proteins from the yeast Saccharomyces cerevisiae, Yil104c/Shq1p and Ynl124w/Naf1p, which are essential and required for the stability of box H/ACA snoRNPs. Depletion of either Shq1p or Naf1p leads to a dramatic and specific decrease in box H/ACA snoRNA levels in vivo. A severe concomitant defect in ribosomal RNA processing is observed, consistent with the depletion of this family of snoRNAs. Shq1p and Naf1p show nuclear localization and interact with Nhp2p and Cbf5p, two core proteins of mature box H/ACA snoRNPs. Shq1p and Naf1p form a complex, but they are not strongly associated with box H/ACA snoRNPs. We propose that Shq1p and Naf1p are involved in the early biogenesis steps of box H/ACA snoRNP assembly.
Collapse
Affiliation(s)
- Pok Kwan Yang
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095-1569, USA
| | | | | | | | | |
Collapse
|
91
|
Dez C, Noaillac-Depeyre J, Caizergues-Ferrer M, Henry Y. Naf1p, an essential nucleoplasmic factor specifically required for accumulation of box H/ACA small nucleolar RNPs. Mol Cell Biol 2002; 22:7053-65. [PMID: 12242285 PMCID: PMC139812 DOI: 10.1128/mcb.22.20.7053-7065.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Box H/ACA small nucleolar ribonucleoprotein particles (H/ACA snoRNPs) play key roles in the synthesis of eukaryotic ribosomes. The ways in which these particles are assembled and correctly localized in the dense fibrillar component of the nucleolus remain largely unknown. Recently, the essential Saccharomyces cerevisiae Naf1p protein (encoded by the YNL124W open reading frame) was found to interact in a two-hybrid assay with two core protein components of mature H/ACA snoRNPs, Cbf5p and Nhp2p (T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki, Proc. Natl. Acad. Sci. USA 98:4569-4574, 2001). Here we show that several H/ACA snoRNP components are weakly but specifically immunoprecipitated with epitope-tagged Naf1p, suggesting that the latter protein is involved in H/ACA snoRNP biogenesis, trafficking, and/or function. Consistent with this, we find that depletion of Naf1p leads to a defect in 18S rRNA accumulation. Naf1p is unlikely to directly assist H/ACA snoRNPs during pre-rRNA processing in the dense fibrillar component of the nucleolus for two reasons. Firstly, Naf1p accumulates predominantly in the nucleoplasm. Secondly, Naf1p sediments in a sucrose gradient chiefly as a free protein or associated in a complex of the size of free snoRNPs, whereas extremely little Naf1p is found in fractions containing preribosomes. These results are more consistent with a role for Naf1p in H/ACA snoRNP biogenesis and/or intranuclear trafficking. Indeed, depletion of Naf1p leads to a specific and dramatic decrease in the steady-state accumulation of all box H/ACA snoRNAs tested and of Cbf5p, Gar1p, and Nop10p. Naf1p is unlikely to be directly required for the synthesis of H/ACA snoRNP components. Naf1p could participate in H/ACA snoRNP assembly and/or transport.
Collapse
Affiliation(s)
- Christophe Dez
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul Sabatier, 31062 Toulouse Cedex 04, France
| | | | | | | |
Collapse
|
92
|
Fortin KR, Nicholson RH, Nicholson AW. Mouse ribonuclease III. cDNA structure, expression analysis, and chromosomal location. BMC Genomics 2002; 3:26. [PMID: 12191433 PMCID: PMC122089 DOI: 10.1186/1471-2164-3-26] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2002] [Accepted: 08/21/2002] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Members of the ribonuclease III superfamily of double-stranded(ds)-RNA-specific endoribonucleases participate in diverse RNA maturation and decay pathways in eukaryotic and prokaryotic cells. A human RNase III orthologue has been implicated in ribosomal RNA maturation. To better understand the structure and mechanism of mammalian RNase III and its involvement in RNA metabolism we determined the cDNA structure, chromosomal location, and expression patterns of mouse RNase III. RESULTS The predicted mouse RNase III polypeptide contains 1373 amino acids (approximately 160 kDa). The polypeptide exhibits a single C-terminal dsRNA-binding motif (dsRBM), tandem catalytic domains, a proline-rich region (PRR) and an RS domain. Northern analysis and RT-PCR reveal that the transcript (4487 nt) is expressed in all tissues examined, including extraembryonic tissues and the midgestation embryo. Northern analysis indicates the presence of an additional, shorter form of the transcript in testicular tissue. Fluorescent in situ hybridization demonstrates that the mouse RNase III gene maps to chromosome 15, region B, and that the human RNase III gene maps to a syntenic location on chromosome 5p13-p14. CONCLUSIONS The broad transcript expression pattern indicates a conserved cellular role(s) for mouse RNase III. The putative polypeptide is highly similar to human RNase III (99% amino acid sequence identity for the two catalytic domains and dsRBM), but is distinct from other eukaryotic orthologues, including Dicer, which is involved in RNA interference. The mouse RNase III gene has a chromosomal location distinct from the Dicer gene.
Collapse
Affiliation(s)
- Kristine R Fortin
- Department of Biological Sciences, Wayne State University 5047 Gullen Mall, Detroit, MI 48202
| | - Rhonda H Nicholson
- Department of Biological Sciences, Wayne State University 5047 Gullen Mall, Detroit, MI 48202
| | - Allen W Nicholson
- Department of Biological Sciences, Wayne State University 5047 Gullen Mall, Detroit, MI 48202
| |
Collapse
|
93
|
Abstract
In eukaryotes, the site-specific formation of the two prevalent types of rRNA modified nucleotides, 2'-O-methylated nucleotides and pseudouridines, is directed by two large families of snoRNAs. These are termed box C/D and H/ACA snoRNAs, respectively, and exert their function through the formation of a canonical guide RNA duplex at the modification site. In each family, one snoRNA acts as a guide for one, or at most two modifications, through a single, or a pair of appropriate antisense elements. The two guide families now appear much larger than anticipated and their role not restricted to ribosome synthesis only. This is reflected by the recent detection of guides that can target other cellular RNAs, including snRNAs, tRNAs and possibly even mRNAs, and by the identification of scores of tissue-specific specimens in mammals. Recent characterization of homologs of eukaryotic modification guide snoRNAs in Archaea reveals the ancient origin of these non-coding RNA families and offers new perspectives as to their range of function.
Collapse
Affiliation(s)
- Jean Pierre Bachellerie
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul-Sabatier, 118, route de Narbonne, 31062 Toulouse cedex 4,France.
| | | | | |
Collapse
|
94
|
Tremblay A, Lamontagne B, Catala M, Yam Y, Larose S, Good L, Elela SA. A physical interaction between Gar1p and Rnt1pi is required for the nuclear import of H/ACA small nucleolar RNA-associated proteins. Mol Cell Biol 2002; 22:4792-802. [PMID: 12052886 PMCID: PMC133895 DOI: 10.1128/mcb.22.13.4792-4802.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During rRNA biogenesis, multiple RNA and protein substrates are modified and assembled through the coordinated activity of many factors. In Saccharomyces cerevisiae, the double-stranded RNA nuclease Rnt1p and the H/ACA snoRNA pseudouridylase complex participate in the transformation of the nascent pre-rRNA transcript into 35S pre-rRNA. Here we demonstrate the binding of a component of the H/ACA complex (Gar1p) to Rnt1p in vivo and in vitro in the absence of other factors. In vitro, Rnt1p binding to Gar1p is mutually exclusive of its RNA binding and cleavage activities. Mutations in Rnt1p that disrupt Gar1p binding do not inhibit RNA cleavage in vitro but slow RNA processing, prevent nucleolar localization of H/ACA snoRNA-associated proteins, and reduce pre-rRNA pseudouridylation in vivo. These results demonstrate colocalization of various components of the rRNA maturation complex and suggest a mechanism that links rRNA pseudouridylation and cleavage factors.
Collapse
Affiliation(s)
- Annie Tremblay
- Groupe ARN, Département de Microbiologie et d'Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
Eukaryotic cells contain a very complex population of small nucleolar RNAs. They function, as small nucleolar ribonucleoproteins, in pre-ribosomal RNA processing reactions, and also guide methylation and pseudouridylation of ribosomal RNA, spliceosomal small nuclear RNAs, and possibly other cellular RNAs. Synthesis of small nucleolar RNAs frequently follows unusual strategies. Some newly discovered brain-specific small nucleolar RNAs of unknown function are encoded in introns of tandemly repeated units, expression of which is paternally imprinted. Recent studies of the protein components and factors participating in small nucleolar ribonucleoprotein assembly have revealed interesting connections with other classes of cellular ribonucleoproteins such as spliceosomal small nuclear ribonucleoproteins and telomerase. Cajal bodies emerge as nuclear structures important for the biogenesis and function of small nucleolar ribonucleoproteins.
Collapse
Affiliation(s)
- Witold Filipowicz
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
| | | |
Collapse
|
96
|
Morlando M, Greco P, Dichtl B, Fatica A, Keller W, Bozzoni I. Functional analysis of yeast snoRNA and snRNA 3'-end formation mediated by uncoupling of cleavage and polyadenylation. Mol Cell Biol 2002; 22:1379-89. [PMID: 11839805 PMCID: PMC134709 DOI: 10.1128/mcb.22.5.1379-1389.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many nuclear and nucleolar small RNAs are accumulated as nonpolyadenylated species and require 3'-end processing for maturation. Here, we show that several genes coding for box C/D and H/ACA snoRNAs and for the U5 and U2 snRNAs contain sequences in their 3' portions which direct cleavage of primary transcripts without being polyadenylated. Genetic analysis of yeasts with mutations in different components of the pre-mRNA cleavage and polyadenylation machinery suggests that this mechanism of 3"-end formation requires cleavage factor IA (CF IA) but not cleavage and polyadenylation factor activity. However, in vitro results indicate that other factors participate in the reaction besides CF IA. Sequence analysis of snoRNA genes indicated that they contain conserved motifs in their 3" noncoding regions, and mutational studies demonstrated their essential role in 3"-end formation. We propose a model in which CF IA functions in cleavage and polyadenylation of pre-mRNAs and, in combination with a different set of factors, in 3"-end formation of nonpolyadenylated polymerase II transcripts.
Collapse
Affiliation(s)
- Mariangela Morlando
- Institut Pasteur Fondazione Cenci-Bolognetti, Department of Genetics and Molecular Biology, University La Sapienza, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
97
|
Abstract
RNases play an important role in the processing of precursor RNAs, creating the mature, functional RNAs. The ribonuclease III family currently is one of the most interesting families of endoribonucleases. Surprisingly, RNase III is involved in the maturation of almost every class of prokaryotic and eukaryotic RNA. We present an overview of the various substrates and their processing. RNase III contains one of the most prominent protein domains used in RNA-protein recognition, the double-stranded RNA binding domain (dsRBD). Progress in the understanding of this domain is summarized. Furthermore, RNase III only recently emerged as a key player in the new exciting biological field of RNA silencing, or RNA interference. The eukaryotic RNase III homologues which are likely involved in this process are compared with the other members of the RNase III family.
Collapse
Affiliation(s)
- Christian Conrad
- Institut für Mikro- und Molekularbiologie, Justus Liebig Universität Giessen, Heinrich Buff Ring 26-32, 35392 Giessen, Germany.
| | | |
Collapse
|
98
|
Wu H, Yang PK, Butcher SE, Kang S, Chanfreau G, Feigon J. A novel family of RNA tetraloop structure forms the recognition site for Saccharomyces cerevisiae RNase III. EMBO J 2001; 20:7240-9. [PMID: 11743000 PMCID: PMC125782 DOI: 10.1093/emboj/20.24.7240] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNases III are a family of double-stranded RNA (dsRNA) endoribonucleases involved in the processing and decay of a large number of cellular RNAs as well as in RNA interference. The dsRNA substrates of Saccharomyces cerevisiae RNase III (Rnt1p) are capped by tetraloops with the consensus sequence AGNN, which act as the primary docking site for the RNase. We have solved the solution structures of two RNA hairpins capped by AGNN tetraloops, AGAA and AGUU, using NMR spectroscopy. Both tetraloops have the same overall structure, in which the backbone turn occurs on the 3' side of the syn G residue in the loop, with the first A and G in a 5' stack and the last two residues in a 3' stack. A non-bridging phosphate oxygen and the universal G which are essential for Rnt1p binding are strongly exposed. The compared biochemical and structural analysis of various tetraloop sequences defines a novel family of RNA tetraloop fold with the consensus (U/A)GNN and implicates this conserved structure as the primary determinant for specific recognition of Rnt1p substrates.
Collapse
Affiliation(s)
| | | | - Samuel E. Butcher
- Department of Chemistry and Biochemistry, 405 Hilgard Avenue, PO Box 951569, University of California, Los Angeles, CA 90095-1569, USA
Present address: Department of Biochemistry, 433 Babcock Drive, University of Wisconsin, Madison, WI 53706, USA Corresponding authors e-mail: or
| | | | - Guillaume Chanfreau
- Department of Chemistry and Biochemistry, 405 Hilgard Avenue, PO Box 951569, University of California, Los Angeles, CA 90095-1569, USA
Present address: Department of Biochemistry, 433 Babcock Drive, University of Wisconsin, Madison, WI 53706, USA Corresponding authors e-mail: or
| | - Juli Feigon
- Department of Chemistry and Biochemistry, 405 Hilgard Avenue, PO Box 951569, University of California, Los Angeles, CA 90095-1569, USA
Present address: Department of Biochemistry, 433 Babcock Drive, University of Wisconsin, Madison, WI 53706, USA Corresponding authors e-mail: or
| |
Collapse
|
99
|
Giorgi C, Fatica A, Nagel R, Bozzoni I. Release of U18 snoRNA from its host intron requires interaction of Nop1p with the Rnt1p endonuclease. EMBO J 2001; 20:6856-65. [PMID: 11726521 PMCID: PMC125767 DOI: 10.1093/emboj/20.23.6856] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An external stem, essential for the release of small nucleolar RNAs (snoRNAs) from their pre-mRNAs, flanks the majority of yeast intron-encoded snoRNAs. Even if this stem is not a canonical Rnt1p substrate, several experiments have indicated that the Rnt1p endonuclease is required for snoRNA processing. To identify the factors necessary for processing of intron-encoded snoRNAs, we have raised in vitro extracts able to reproduce such activity. We found that snoRNP factors are associated with the snoRNA- coding region throughout all the processing steps, and that mutants unable to assemble snoRNPs have a processing-deficient phenotype. Specific depletion of Nop1p completely prevents U18 snoRNA synthesis, but does not affect processing of a dicistronic snoRNA-coding unit that has a canonical Rnt1p site. Correct cleavage of intron-encoded U18 and snR38 snoRNAs can be reproduced in vitro by incubating together purified Nop1p and Rnt1p. Pull-down experiments showed that the two proteins interact physically. These data indicate that cleavage of U18, snR38 and possibly other intron-encoded snoRNAs is a regulated process, since the stem is cleaved by the Rnt1p endonuclease only when snoRNP assembly has occurred.
Collapse
Affiliation(s)
| | - Alessandro Fatica
- Institute Pasteur Fondazione Cenci-Bolognetti, Department of Genetics and Molecular Biology, University ‘La Sapienza’, P. le A. Moro 5, 00185 Rome, Italy and
Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064, USA Present address: Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh, UK Corresponding author e-mail:
| | - Roland Nagel
- Institute Pasteur Fondazione Cenci-Bolognetti, Department of Genetics and Molecular Biology, University ‘La Sapienza’, P. le A. Moro 5, 00185 Rome, Italy and
Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064, USA Present address: Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh, UK Corresponding author e-mail:
| | - Irene Bozzoni
- Institute Pasteur Fondazione Cenci-Bolognetti, Department of Genetics and Molecular Biology, University ‘La Sapienza’, P. le A. Moro 5, 00185 Rome, Italy and
Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064, USA Present address: Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh, UK Corresponding author e-mail:
| |
Collapse
|
100
|
Brown JW, Clark GP, Leader DJ, Simpson CG, Lowe T. Multiple snoRNA gene clusters from Arabidopsis. RNA (NEW YORK, N.Y.) 2001. [PMID: 11780637 DOI: 10.1017/s1355838201011980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Small nucleolar RNAs (snoRNAs) are involved in precursor ribosomal RNA (pre-rRNA) processing and rRNA base modification (2'-O-ribose methylation and pseudouridylation). In all eukaryotes, certain snoRNAs (e.g., U3) are transcribed from classical promoters. In vertebrates, the majority are encoded in introns of protein-coding genes, and are released by exonucleolytic cleavage of linearized intron lariats. In contrast, in maize and yeast, nonintronic snoRNA gene clusters are transcribed as polycistronic pre-snoRNA transcripts from which individual snoRNAs are processed. In this article, 43 clusters of snoRNA genes, an intronic snoRNA, and 10 single genes have been identified by cloning and by computer searches, giving a total of 136 snoRNA gene copies of 71 different snoRNA genes. Of these, 31 represent snoRNA genes novel to plants. A cluster of four U14 snoRNA genes and two clusters containing five different snoRNA genes (U31, snoR4, U33, U51, and snoR5) from Arabidopsis have been isolated and characterized. Of these genes, snoR4 is a novel box C/D snoRNA that has the potential to base pair with the 3' end of 5.8S rRNA and snoR5 is a box H/ACA snoRNA gene. In addition, 42 putative sites of 2'-O-ribose methylation in plant 5.8S, 18S, and 25S rRNAs have been mapped by primer extension analysis, including eight sites novel to plant rRNAs. The results clearly show that, in plants, the most common gene organization is polycistronic and that over a third of predicted and mapped methylation sites are novel to plant rRNAs. The variation in this organization among gene clusters highlights mechanisms of snoRNA evolution.
Collapse
Affiliation(s)
- J W Brown
- Unit of Gene Expression, Genetics Division, Scottish Crop Research Institute, Dundee, United Kingdom.
| | | | | | | | | |
Collapse
|