51
|
Ruban-Ośmiałowska B, Jakimowicz D, Smulczyk-Krawczyszyn A, Chater KF, Zakrzewska-Czerwińska J. Replisome localization in vegetative and aerial hyphae of Streptomyces coelicolor. J Bacteriol 2006; 188:7311-6. [PMID: 17015671 PMCID: PMC1636232 DOI: 10.1128/jb.00940-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a functional fusion of DnaN to enhanced green fluorescent protein, we examined the subcellular localization of the replisome machinery in the vegetative mycelium and aerial mycelium of the multinucleoid organism Streptomyces coelicolor. Chromosome replication took place in many compartments of both types of hypha, with the apical compartments of the aerial mycelium exhibiting the highest replication activity. Within a single compartment, the number of "current" ongoing DNA replications was lower than the expected chromosome number, and the appearance of fluorescent foci was often heterogeneous, indicating that this process is asynchronous within compartments and that only selected chromosomes undergo replication.
Collapse
Affiliation(s)
- Beata Ruban-Ośmiałowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114, Wrocław, Poland.
| | | | | | | | | |
Collapse
|
52
|
Indiani C, O'Donnell M. The replication clamp-loading machine at work in the three domains of life. Nat Rev Mol Cell Biol 2006; 7:751-61. [PMID: 16955075 DOI: 10.1038/nrm2022] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sliding clamps are ring-shaped proteins that tether DNA polymerases to DNA, which enables the rapid and processive synthesis of both leading and lagging strands at the replication fork. The clamp-loading machinery must repeatedly load sliding-clamp factors onto primed sites at the replication fork. Recent structural and biochemical analyses provide unique insights into how these clamp-loading ATPase machines function to load clamps onto the DNA. Moreover, these studies highlight the evolutionary conservation of the clamp-loading process in the three domains of life.
Collapse
Affiliation(s)
- Chiara Indiani
- Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, New York 10021, USA
| | | |
Collapse
|
53
|
Abstract
Sliding clamps and clamp loaders are processivity factors required for efficient DNA replication. Sliding clamps are ring-shaped complexes that tether DNA polymerases to DNA to increase the processivity of synthesis. Clamp loaders assemble these ring-shaped clamps onto DNA in an ATP-dependent reaction. The overall process of clamp loading is dynamic in that protein-protein and protein-DNA interactions must actively change in a coordinated fashion to complete the mechanical clamp-loading reaction cycle. The clamp loader must initially have a high affinity for both the clamp and DNA to bring these macromolecules together, but then must release the clamp on DNA for synthesis to begin. Evidence is presented for a mechanism in which the clamp-loading reaction comprises a series of binding reactions to ATP, the clamp, DNA, and ADP, each of which promotes some change in the conformation of the clamp loader that alters interactions with the next component of the pathway. These changes in interactions must be rapid enough to allow the clamp loader to keep pace with replication fork movement. This review focuses on the measurement of dynamic and transient interactions required to assemble the Escherichia coli sliding clamp on DNA.
Collapse
Affiliation(s)
- Linda B Bloom
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0245, USA.
| |
Collapse
|
54
|
Seybert A, Singleton MR, Cook N, Hall DR, Wigley DB. Communication between subunits within an archaeal clamp-loader complex. EMBO J 2006; 25:2209-18. [PMID: 16628222 PMCID: PMC1462970 DOI: 10.1038/sj.emboj.7601093] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Accepted: 03/22/2006] [Indexed: 11/09/2022] Open
Abstract
We have investigated the communication between subunits in replication factor C (RFC) from Archaeoglobus fulgidus. Mutation of the proposed arginine finger in the small subunits results in a complex that can still bind ATP but has impaired clamp-loading activity, a process that normally only requires binding of nucleotide. The small subunit alone forms a hexameric ring that is six-fold symmetric in the absence of ATP. However, this symmetry is broken when the nucleotide is bound to the complex. A conformational change associated with nucleotide binding may relate to the opening of PCNA rings by RFC during the loading reaction. The structures also reveal the importance of the N-terminal helix of each subunit at the ATP-binding site. Analysis of mutant protein complexes containing subunits lacking this N-terminal helix reveals key distinct regulatory roles during clamp loading that are different for the large and small subunits in the RFC complex.
Collapse
Affiliation(s)
- Anja Seybert
- Clare Hall Laboratories, Cancer Research UK, London Research Institute, South Mimms Potters Bar, Herts, UK
| | - Martin R Singleton
- Clare Hall Laboratories, Cancer Research UK, London Research Institute, South Mimms Potters Bar, Herts, UK
| | - Nicola Cook
- Clare Hall Laboratories, Cancer Research UK, London Research Institute, South Mimms Potters Bar, Herts, UK
| | - David R Hall
- Clare Hall Laboratories, Cancer Research UK, London Research Institute, South Mimms Potters Bar, Herts, UK
| | - Dale B Wigley
- Clare Hall Laboratories, Cancer Research UK, London Research Institute, South Mimms Potters Bar, Herts, UK
- Clare Hall Laboratories, Cancer Research UK, London Research Institute, Blanche Lane, South Mimms Potters Bar, Herts EN6 3LD, UK. Tel.: +44 207 269 3930; Fax: +44 207 269 3803; E-mail:
| |
Collapse
|
55
|
Rodríguez I, García P, Suárez JE. A second case of -1 ribosomal frameshifting affecting a major virion protein of the Lactobacillus bacteriophage A2. J Bacteriol 2005; 187:8201-4. [PMID: 16291695 PMCID: PMC1291274 DOI: 10.1128/jb.187.23.8201-8204.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 09/12/2005] [Indexed: 11/20/2022] Open
Abstract
The bacteriophage A2 major tail protein gene utilizes a -1 translational frameshift to generate two structural polypeptides. Frameshifting is promoted by a slippery sequence and an RNA pseudoknot located 3' of the gene. The major head gene presents a similar recoding ability. A2 is the only phage described with two -1 frameshifts.
Collapse
Affiliation(s)
- Isabel Rodríguez
- Area de Microbiología, Facultad de Medicina, Universidad de Oviedo, Spain
| | | | | |
Collapse
|
56
|
Jarvis TC, Beaudry AA, Bullard JM, Ochsner U, Dallmann HG, McHenry CS. Discovery and characterization of the cryptic psi subunit of the pseudomonad DNA replicase. J Biol Chem 2005; 280:40465-73. [PMID: 16210315 DOI: 10.1074/jbc.m508310200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reconstituted a minimal DNA replicase from Pseudomonas aeruginosa consisting of alpha and epsilon (polymerase and editing nuclease), beta (processivity factor), and the essential tau, delta, and delta' components of the clamp loader complex (Jarvis, T., Beaudry, A., Bullard, J., Janjic, N., and McHenry, C. (2005) J. Biol. Chem. 280, 7890-7900). In Escherichia coli DNA polymerase III holoenzyme, chi and Psi are tightly associated clamp loader accessory subunits. The addition of E. coli chiPsi to the minimal P. aeruginosa replicase stimulated its activity, suggesting the existence of chi and Psi counterparts in P. aeruginosa. The P. aeruginosa chi subunit was recognizable from sequence similarity, but Psi was not. Here we report purification of an endogenous replication complex from P. aeruginosa. Identification of the components led to the discovery of the cryptic Psi subunit, encoded by holD. P. aeruginosa chi and Psi were co-expressed and purified as a 1:1 complex. P. aeruginosa chiPsi increased the specific activity of tau(3)deltadelta' 25-fold and enabled the holoenzyme to function under physiological salt conditions. A synergistic effect between chiPsi and single-stranded DNA binding protein was observed. Sequence similarity to P. aeruginosa Psi allowed us to identify Psi subunits from several other Pseudomonads and to predict probable translational start sites for this protein family. This represents the first identification of a highly divergent branch of the Psi family and confirms the existence of Psi in several organisms in which Psi was not identifiable based on sequence similarity alone.
Collapse
|
57
|
Abstract
DNA replicases are multicomponent machines that have evolved clever strategies to perform their function. Although the structure of DNA is elegant in its simplicity, the job of duplicating it is far from simple. At the heart of the replicase machinery is a heteropentameric AAA+ clamp-loading machine that couples ATP hydrolysis to load circular clamp proteins onto DNA. The clamps encircle DNA and hold polymerases to the template for processive action. Clamp-loader and sliding clamp structures have been solved in both prokaryotic and eukaryotic systems. The heteropentameric clamp loaders are circular oligomers, reflecting the circular shape of their respective clamp substrates. Clamps and clamp loaders also function in other DNA metabolic processes, including repair, checkpoint mechanisms, and cell cycle progression. Twin polymerases and clamps coordinate their actions with a clamp loader and yet other proteins to form a replisome machine that advances the replication fork.
Collapse
Affiliation(s)
- Aaron Johnson
- Howard Hughes Medical Institute, New York City, New York 10021-6399, USA.
| | | |
Collapse
|
58
|
Indiani C, McInerney P, Georgescu R, Goodman MF, O'Donnell M. A Sliding-Clamp Toolbelt Binds High- and Low-Fidelity DNA Polymerases Simultaneously. Mol Cell 2005; 19:805-15. [PMID: 16168375 DOI: 10.1016/j.molcel.2005.08.011] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 07/13/2005] [Accepted: 08/11/2005] [Indexed: 12/01/2022]
Abstract
This report demonstrates that the beta sliding clamp of E. coli binds two different DNA polymerases at the same time. One is the high-fidelity Pol III chromosomal replicase and the other is Pol IV, a low-fidelity lesion bypass Y family polymerase. Further, polymerase switching on the primed template junction is regulated in a fashion that limits the action of the low-fidelity Pol IV. Under conditions that cause Pol III to stall on DNA, Pol IV takes control of the primed template. After the stall is relieved, Pol III rapidly regains control of the primed template junction from Pol IV and retains it while it is moving, becoming resistant to further Pol IV takeover events. These polymerase dynamics within the beta toolbelt complex restrict the action of the error-prone Pol IV to only the area on DNA where it is required.
Collapse
Affiliation(s)
- Chiara Indiani
- Laboratory of DNA Replication, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
59
|
Ozawa K, Jergic S, Crowther JA, Thompson PR, Wijffels G, Otting G, Dixon NA. Cell-free protein synthesis in an autoinduction system for NMR studies of protein-protein interactions. JOURNAL OF BIOMOLECULAR NMR 2005; 32:235-41. [PMID: 16132823 DOI: 10.1007/s10858-005-7946-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/06/2005] [Indexed: 05/04/2023]
Abstract
Cell-free protein synthesis systems provide facile access to proteins in a nascent state that enables formation of soluble, native protein-protein complexes even if one of the protein components is prone to self-aggregation and precipitation. Combined with selective isotope-labeling, this allows the rapid analysis of protein-protein interactions with few 15N-HSQC spectra. The concept is demonstrated with binary and ternary complexes between the chi, psi and gamma subunits of Escherichia coli DNA polymerase III: nascent, selectively 15N-labeled psi produced in the presence of chi resulted in a soluble, correctly folded chi-psi complex, whereas psi alone precipitated irrespective of whether gamma was present or not. The 15N-HSQC spectra showed that the N-terminal segment of psi is mobile in the chi-psi complex, yet important for its binding to gamma. The sample preparation was greatly enhanced by an autoinduction strategy, where the T7 RNA polymerase needed for transcription of a gene in a T7-promoter vector was produced in situ.
Collapse
Affiliation(s)
- Kiyoshi Ozawa
- Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | | | | | | | | | | | | |
Collapse
|
60
|
Su'etsugu M, Takata M, Kubota T, Matsuda Y, Katayama T. Molecular mechanism of DNA replication-coupled inactivation of the initiator protein in Escherichia coli: interaction of DnaA with the sliding clamp-loaded DNA and the sliding clamp-Hda complex. Genes Cells 2005; 9:509-22. [PMID: 15189445 DOI: 10.1111/j.1356-9597.2004.00741.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Escherichia coli, the ATP-DnaA protein initiates chromosomal replication. After the DNA polymerase III holoenzyme is loaded on to DNA, DnaA-bound ATP is hydrolysed in a manner depending on Hda protein and the DNA-loaded form of the DNA polymerase III sliding clamp subunit, which yields ADP-DnaA, an inactivated form for initiation. This regulatory DnaA-inactivation represses extra initiation events. In this study, in vitro replication intermediates and structured DNA mimicking replicational intermediates were first used to identify structural prerequisites in the process of DnaA-ATP hydrolysis. Unlike duplex DNA loaded with sliding clamps, primer RNA-DNA heteroduplexes loaded with clamps were not associated with DnaA-ATP hydrolysis, and duplex DNA provided in trans did not rescue this defect. At least 40-bp duplex DNA is competent for the DnaA-ATP hydrolysis when a single clamp was loaded. The DnaA-ATP hydrolysis was inhibited when ATP-DnaA was tightly bound to a DnaA box-bearing oligonucleotide. These results imply that the DnaA-ATP hydrolysis involves the direct interaction of ATP-DnaA with duplex DNA flanking the sliding clamp. Furthermore, Hda protein formed a stable complex with the sliding clamp. Based on these, we suggest a mechanical basis in the DnaA-inactivation that ATP-DnaA interacts with the Hda-clamp complex with the aid of DNA binding.
Collapse
Affiliation(s)
- Masayuki Su'etsugu
- Department of Molecular Biology, Kyushu University Graduate School of Pharmaceutical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
61
|
Coman MM, Jin M, Ceapa R, Finkelstein J, O'Donnell M, Chait BT, Hingorani MM. Dual functions, clamp opening and primer-template recognition, define a key clamp loader subunit. J Mol Biol 2004; 342:1457-69. [PMID: 15364574 PMCID: PMC2849281 DOI: 10.1016/j.jmb.2004.07.097] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2004] [Revised: 07/27/2004] [Accepted: 07/27/2004] [Indexed: 10/26/2022]
Abstract
Clamp loader proteins catalyze assembly of circular sliding clamps on DNA to enable processive DNA replication. During the reaction, the clamp loader binds primer-template DNA and positions it in the center of a clamp to form a topological link between the two. Clamp loaders are multi-protein complexes, such as the five protein Escherichia coli, Saccharomyces cerevisiae, and human clamp loaders, and the two protein Pyrococcus furiosus and Methanobacterium thermoautotrophicum clamp loaders, and thus far the site(s) responsible for binding and selecting primer-template DNA as the target for clamp assembly remain unknown. To address this issue, we analyzed the interaction between the E.coli gamma complex clamp loader and DNA using UV-induced protein-DNA cross-linking and mass spectrometry. The results show that the delta subunit in the gamma complex makes close contact with the primer-template junction. Tryptophan 279 in the delta C-terminal domain lies near the 3'-OH primer end and may play a key role in primer-template recognition. Previous studies have shown that delta also binds and opens the beta clamp (hydrophobic residues in the N-terminal domain of delta contact beta. The clamp-binding and DNA-binding sites on delta appear positioned for facile entry of primer-template into the center of the clamp and exit of the template strand from the complex. A similar analysis of the S.cerevisiae RFC complex suggests that the dual functionality observed for delta in the gamma complex may be true also for clamp loaders from other organisms.
Collapse
Affiliation(s)
- Maria Magdalena Coman
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, CT 06459, USA
| | - Mi Jin
- Rockefeller University, New York, NY 10021, USA
| | - Razvan Ceapa
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, CT 06459, USA
| | - Jeff Finkelstein
- Rockefeller University, New York, NY 10021, USA
- Howard Hughes Medical Institute, New York, NY 10021 USA
| | - Michael O'Donnell
- Rockefeller University, New York, NY 10021, USA
- Howard Hughes Medical Institute, New York, NY 10021 USA
| | | | - Manju M. Hingorani
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, CT 06459, USA
- Corresponding author:
| |
Collapse
|
62
|
McInerney P, O'Donnell M. Functional uncoupling of twin polymerases: mechanism of polymerase dissociation from a lagging-strand block. J Biol Chem 2004; 279:21543-51. [PMID: 15014081 DOI: 10.1074/jbc.m401649200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replication forks are constantly subjected to events that lead to fork stalling, stopping, or collapse. Using a synthetic rolling circle DNA substrate, we demonstrate that a block to the lagging-strand polymerase does not compromise helicase or leading-strand polymerase activity. In fact, lagging-strand synthesis also continues. Thus, the blocked lagging-strand enzyme quickly dissociates from the block site and resumes synthesis on new primed sites. Furthermore, studies in which the lagging polymerase is continuously blocked show that the leading polymerase continues unabated even as it remains attached to the lagging-strand enzyme. Hence, upon encounter of a block to the lagging stand, the polymerases functionally uncouple yet remain physically associated. Further study reveals that naked single-stranded DNA results in disruption of a stalled polymerase from its beta-DNA substrate. Thus, as the replisome advances, the single-stranded DNA loop that accumulates on the lagging-strand template releases the stalled lagging-strand polymerase from beta after SSB protein is depleted. The lagging-strand polymerase is then free to continue Okazaki fragment production.
Collapse
Affiliation(s)
- Peter McInerney
- Laboratory of DNA Replication, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
63
|
Haroniti A, Anderson C, Doddridge Z, Gardiner L, Roberts CJ, Allen S, Soultanas P. The clamp-loader-helicase interaction in Bacillus. Atomic force microscopy reveals the structural organisation of the DnaB-tau complex in Bacillus. J Mol Biol 2004; 336:381-93. [PMID: 14757052 PMCID: PMC3034218 DOI: 10.1016/j.jmb.2003.12.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The clamp-loader-helicase interaction is an important feature of the replisome. Although significant biochemical and structural work has been carried out on the clamp-loader-clamp-DNA polymerase alpha interactions in Escherichia coli, the clamp-loader-helicase interaction is poorly understood by comparison. The tau subunit of the clamp-loader mediates the interaction with DnaB. We have recently characterised this interaction in the Bacillus system and established a tau(5)-DnaB(6) stoichiometry. Here, we have obtained atomic force microscopy images of the tau-DnaB complex that reveal the first structural insight into its architecture. We show that despite the reported absence of the shorter gamma version in Bacillus, tau has a domain organisation similar to its E.coli counterpart and possesses an equivalent C-terminal domain that interacts with DnaB. The interaction interface of DnaB is also localised in its C-terminal domain. The combined data contribute towards our understanding of the bacterial replisome.
Collapse
Affiliation(s)
- Anna Haroniti
- School of Chemistry University of Nottingham University Park, Nottingham NG7 2RD, UK
| | - Christopher Anderson
- Laboratory of Biophysics and Surface Analysis School of Pharmacy University of Nottingham University Park, Nottingham NG7 2RD, UK
| | - Zara Doddridge
- School of Chemistry University of Nottingham University Park, Nottingham NG7 2RD, UK
| | - Laurence Gardiner
- School of Chemistry University of Nottingham University Park, Nottingham NG7 2RD, UK
| | - Clive J. Roberts
- Laboratory of Biophysics and Surface Analysis School of Pharmacy University of Nottingham University Park, Nottingham NG7 2RD, UK
| | - Stephanie Allen
- Laboratory of Biophysics and Surface Analysis School of Pharmacy University of Nottingham University Park, Nottingham NG7 2RD, UK
| | - Panos Soultanas
- School of Chemistry University of Nottingham University Park, Nottingham NG7 2RD, UK
- Corresponding author
| |
Collapse
|
64
|
Gulbis JM, Kazmirski SL, Finkelstein J, Kelman Z, O'Donnell M, Kuriyan J. Crystal structure of the chi:psi sub-assembly of the Escherichia coli DNA polymerase clamp-loader complex. ACTA ACUST UNITED AC 2004; 271:439-49. [PMID: 14717711 DOI: 10.1046/j.1432-1033.2003.03944.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chi (chi) and psi (psi) subunits of Escherichia coli DNA polymerase III form a heterodimer that is associated with the ATP-dependent clamp-loader machinery. In E. coli, the chi:psi heterodimer serves as a bridge between the clamp-loader complex and the single-stranded DNA-binding protein. We determined the crystal structure of the chi:psi heterodimer at 2.1 A resolution. Although neither chi (147 residues) nor psi (137 residues) bind to nucleotides, the fold of each protein is similar to the folds of mononucleotide-(chi) or dinucleotide-(psi) binding proteins, without marked similarity to the structures of the clamp-loader subunits. Genes encoding chi and psi proteins are found to be readily identifiable in several bacterial genomes and sequence alignments showed that residues at the chi:psi interface are highly conserved in both proteins, suggesting that the heterodimeric interaction is of functional significance. The conservation of surface-exposed residues is restricted to the interfacial region and to just two other regions in the chi:psi complex. One of the conserved regions was found to be located on chi, distal to the psi interaction region, and we identified this as the binding site for a C-terminal segment of the single-stranded DNA-binding protein. The other region of sequence conservation is localized to an N-terminal segment of psi (26 residues) that is disordered in the crystal structure. We speculate that psi is linked to the clamp-loader complex by this flexible, but conserved, N-terminal segment, and that the chi:psi unit is linked to the single-stranded DNA-binding protein via the distal surface of chi. The base of the clamp-loader complex has an open C-shaped structure, and the shape of the chi:psi complex is suggestive of a loose docking within the crevice formed by the open faces of the delta and delta' subunits of the clamp-loader.
Collapse
Affiliation(s)
- Jacqueline M Gulbis
- Laboratory of Molecular Biophysics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
65
|
Lo T, van Der Schalie E, Werner T, Brun YV, Din N. A temperature-sensitive mutation in the dnaE gene of Caulobacter crescentus that prevents initiation of DNA replication but not ongoing elongation of DNA. J Bacteriol 2004; 186:1205-12. [PMID: 14762018 PMCID: PMC344199 DOI: 10.1128/jb.186.4.1205-1212.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A genetic screen for cell division cycle mutants of Caulobacter crescentus identified a temperature-sensitive DNA replication mutant. Genetic complementation experiments revealed a mutation within the dnaE gene, encoding the alpha-catalytic subunit of DNA polymerase III holoenzyme. Sequencing of the temperature-sensitive dnaE allele indicated a single base pair substitution resulting in a change from valine to glutamic acid within the C-terminal portion of the protein. This mutation lies in a region of the DnaE protein shown in Escherichia coli, to be important in interactions with other essential DNA replication proteins. Using DNA replication assays and fluorescence flow cytometry, we show that the observed block in DNA synthesis in the Caulobacter dnaE mutant strain occurs at the initiation stage of replication and that there is also a partial block of DNA elongation.
Collapse
Affiliation(s)
- Teresa Lo
- Department of Biology, Loyola College, Baltimore, Maryland 21210, USA
| | | | | | | | | |
Collapse
|
66
|
Majka J, Burgers PMJ. The PCNA-RFC families of DNA clamps and clamp loaders. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 78:227-60. [PMID: 15210332 DOI: 10.1016/s0079-6603(04)78006-x] [Citation(s) in RCA: 248] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The proliferating cell nuclear antigen PCNA functions at multiple levels in directing DNA metabolic pathways. Unbound to DNA, PCNA promotes localization of replication factors with a consensus PCNA-binding domain to replication factories. When bound to DNA, PCNA organizes various proteins involved in DNA replication, DNA repair, DNA modification, and chromatin modeling. Its modification by ubiquitin directs the cellular response to DNA damage. The ring-like PCNA homotrimer encircles double-stranded DNA and slides spontaneously across it. Loading of PCNA onto DNA at template-primer junctions is performed in an ATP-dependent process by replication factor C (RFC), a heteropentameric AAA+ protein complex consisting of the Rfc1, Rfc2, Rfc3, Rfc4, and Rfc5 subunits. Loading of yeast PCNA (POL30) is mechanistically distinct from analogous processes in E. coli (beta subunit by the gamma complex) and bacteriophage T4 (gp45 by gp44/62). Multiple stepwise ATP-binding events to RFC are required to load PCNA onto primed DNA. This stepwise mechanism should permit editing of this process at individual steps and allow for divergence of the default process into more specialized modes. Indeed, alternative RFC complexes consisting of the small RFC subunits together with an alternative Rfc1-like subunit have been identified. A complex required for the DNA damage checkpoint contains the Rad24 subunit, a complex required for sister chromatid cohesion contains the Ctf18 subunit, and a complex that aids in genome stability contains the Elg1 subunit. Only the RFC-Rad24 complex has a known associated clamp, a heterotrimeric complex consisting of Rad17, Mec3, and Ddc1. The other putative clamp loaders could either act on clamps yet to be identified or act on the two known clamps.
Collapse
Affiliation(s)
- Jerzy Majka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
67
|
Viguera E, Petranovic M, Zahradka D, Germain K, Ehrlich DS, Michel B. Lethality of bypass polymerases in Escherichia coli cells with a defective clamp loader complex of DNA polymerase III. Mol Microbiol 2003; 50:193-204. [PMID: 14507374 DOI: 10.1046/j.1365-2958.2003.03658.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Escherichia coli DNA polymerase III (Pol III) is one of the best studied replicative DNA polymerases. Here we report the properties of an E. coli mutant that lacks one of the subunits of the Pol III clamp loader complex, Psi (psi), as a result of the complete inactivation of the holD gene. We show that, in this mutant, chronic induction of the SOS response in a RecFOR-dependent way leads to lethality at high temperature. The SOS-induced proteins that are lethal in the holD mutant are the specialized DNA polymerases Pol II and Pol IV, combined with the division inhibitor SfiA. Prevention of SOS induction or inactivation of Pol II, Pol IV and SfiA encoding genes allows growth of the holD mutant, although at a reduced rate compared to a wild-type cell. In contrast, the SOS-induced Pol V DNA polymerase does not participate to the lethality of the holD mutant. We conclude that: (i) Psi is essential for efficient replication of the E. coli chromosome; (ii) SOS-induction of specialized DNA polymerases can be lethal in cells in which the replicative polymerase is defective, and (iii) specialized DNA polymerases differ in respect to their access to inactivated replication forks.
Collapse
Affiliation(s)
- Enrique Viguera
- Génétique Microbienne, Institut National de la Recherche Agronomique, 78350 Jouy en Josas, France
| | | | | | | | | | | |
Collapse
|
68
|
Snyder AK, Williams CR, Johnson A, O'Donnell M, Bloom LB. Mechanism of loading the Escherichia coli DNA polymerase III sliding clamp: II. Uncoupling the beta and DNA binding activities of the gamma complex. J Biol Chem 2003; 279:4386-93. [PMID: 14610068 DOI: 10.1074/jbc.m310430200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sliding clamps tether DNA polymerases to DNA to increase the processivity of synthesis. The Escherichia coli gamma complex loads the beta sliding clamp onto DNA in an ATP-dependent reaction in which ATP binding and hydrolysis modulate the affinity of the gamma complex for beta and DNA. This is the second of two reports (Williams, C. R., Snyder, A. K., Kuzmic, P., O'Donnell, M., and Bloom, L. B. (2004) J. Biol. Chem. 279, 4376-4385) addressing the question of how ATP binding and hydrolysis regulate specific interactions with DNA and beta. Mutations were made to an Arg residue in a conserved SRC motif in the delta' and gamma subunits that interacts with the ATP site of the neighboring gamma subunit. Mutation of the delta' subunit reduced the ATP-dependent beta binding activity, whereas mutation of the gamma subunits reduced the DNA binding activity of the gamma complex. The gamma complex containing the delta' mutation gave a pre-steady-state burst of ATP hydrolysis, but at a reduced rate and amplitude relative to the wild-type gamma complex. A pre-steady-state burst of ATP hydrolysis was not observed for the complex containing the gamma mutations, consistent with the reduced DNA binding activity of this complex. The differential effects of these mutations suggest that ATP binding at the gamma1 site may be coupled to conformational changes that largely modulate interactions with beta, whereas ATP binding at the gamma2 and/or gamma3 site may be coupled to conformational changes that have a major role in interactions with DNA. Additionally, these results show that the "arginine fingers" play a structural role in facilitating the formation of a conformation that has high affinity for beta and DNA.
Collapse
Affiliation(s)
- Anita K Snyder
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610-0245, USA
| | | | | | | | | |
Collapse
|
69
|
Williams CR, Snyder AK, Kuzmic P, O'Donnell M, Bloom LB. Mechanism of loading the Escherichia coli DNA polymerase III sliding clamp: I. Two distinct activities for individual ATP sites in the gamma complex. J Biol Chem 2003; 279:4376-85. [PMID: 14610067 DOI: 10.1074/jbc.m310429200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli DNA polymerase III gamma complex loads the beta clamp onto DNA, and the clamp tethers the core polymerase to DNA to increase the processivity of synthesis. ATP binding and hydrolysis promote conformational changes within the gamma complex that modulate its affinity for the clamp and DNA, allowing it to accomplish the mechanical task of assembling clamps on DNA. This is the first of two reports (Snyder, A. K., Williams, C. R., Johnson, A., O'Donnell, M., and Bloom, L. B. (2004) J. Biol. Chem. 279, 4386-4393) addressing the question of how ATP binding and hydrolysis modulate specific interactions with DNA and beta. Pre-steady-state rates of ATP hydrolysis were slower when reactions were initiated by addition of ATP than when the gamma complex was equilibrated with ATP and were limited by the rate of an intramolecular reaction, possibly ATP-induced conformational changes. Kinetic modeling of assays in which the gamma complex was incubated with ATP for different periods of time prior to adding DNA to trigger hydrolysis suggests a mechanism in which a relatively slow conformational change step (kforward = 6.5 s(-1)) produces a species of the gamma complex that is activated for DNA (and beta) binding. In the absence of beta, 2 of the 3 molecules of ATP are hydrolyzed rapidly prior to releasing DNA, and the 3rd molecule is hydrolyzed slowly. In the presence of beta, all 3 molecules of ATP are hydrolyzed rapidly. These results suggest that hydrolysis of 2 molecules of ATP may be coupled to conformational changes that reduce interactions with DNA, whereas hydrolysis of the 3rd is coupled to changes that result in release of beta.
Collapse
Affiliation(s)
- Christopher R Williams
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610-0245, USA
| | | | | | | | | |
Collapse
|
70
|
Haroniti A, Till R, Smith MCM, Soultanas P. Clamp-loader-helicase interaction in Bacillus. Leucine 381 is critical for pentamerization and helicase binding of the Bacillus tau protein. Biochemistry 2003; 42:10955-64. [PMID: 12974630 PMCID: PMC3034353 DOI: 10.1021/bi034955g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, we revealed the architecture of the clamp-loader-helicase (tau-DnaB) complex in Bacillus by atomic force microscopy imaging and constructed a structural model, whereby a pentameric clamp-loader interacts with the hexameric helicase. Crucial to this model is the assumption that the clamp-loader forms a pentamer in the absence of other components of the clamp-loader complex such as deltadelta'. Here, we show that the Bacillus subtilis tau protein, even in the absence of deltadelta', interacts as a pentamer with the hexameric DnaB and that the L381 of tau is critical for the integrity of the tau oligomer and interaction with DnaB. The effects of the L381A mutation were confirmed by gel filtration, ultracentrifugation, circular dichroism, cross-linking studies, and genetic replacement of the dnaX gene with a mutant L381A dnaX gene in vivo. The L381A protein is able to support growth in vivo only when expressed in high quantities. Finally, despite the fact that a mutation at P465 has been reported to result in a thermosensitive gene in vivo, a P465L mutant protein interacts with DnaB in vitro suggesting that this defect is not a result of a defective tau-DnaB interaction.
Collapse
Affiliation(s)
| | | | | | - P. Soultanas
- Corresponding author. Tel.: (+44)-(0)-115-9513525. Fax: (+44)-(0)-115-9513564.
| |
Collapse
|
71
|
McHenry CS. Chromosomal replicases as asymmetric dimers: studies of subunit arrangement and functional consequences. Mol Microbiol 2003; 49:1157-65. [PMID: 12940977 DOI: 10.1046/j.1365-2958.2003.03645.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Studies of the DNA polymerase III holoenzyme of Escherichia coli support a model in which both the leading and lagging strand polymerases are held together in a complex with the replicative helicase and priming activities, allowing two identical alpha catalytic subunits to assume different functions on the two strands of the replication fork. Creation of distinct functions for each of the two polymerases within the holoenzyme depends on the asymmetric character of the entire complex. The asymmetry of the holoenzyme is created by the DnaX complex, a heptamer that includes tau and gamma products of the dnaX gene. tau and gamma perform unique functions in the DnaX complex, and the interaction between alpha and tau appears to dictate the catalytic subunit's role in the replicative reaction. This review considers the properties of the DnaX complex including both tau and gamma, with the goal of understanding the properties of the replicase and its function in vivo. Recent studies in eukaryotic and other prokaryotic systems suggest that an asymmetric dimeric replicase may be universal. The leading and lagging strand polymerases may be distinct in some systems. For example, Pol e and Pol delta may function as distinct leading and lagging strand polymerases in eukaryotes, and PolC and DnaE may function as distinct leading and lagging strand polymerases in low GC content Gram-positive bacteria.
Collapse
Affiliation(s)
- Charles S McHenry
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| |
Collapse
|
72
|
Johnson A, O'Donnell M. Ordered ATP hydrolysis in the gamma complex clamp loader AAA+ machine. J Biol Chem 2003; 278:14406-13. [PMID: 12582167 DOI: 10.1074/jbc.m212708200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gamma complex couples ATP hydrolysis to the loading of beta sliding clamps onto DNA for processive replication. The gamma complex structure shows that the clamp loader subunits are arranged as a circular heteropentamer. The three gamma motor subunits bind ATP, the delta wrench opens the beta ring, and the delta' stator modulates the delta-beta interaction. Neither delta nor delta' bind ATP. This report demonstrates that the delta' stator contributes a catalytic arginine for hydrolysis of ATP bound to the adjacent gamma(1) subunit. Thus, the delta' stator contributes to the motor function of the gamma trimer. Mutation of arginine 169 of gamma, which removes the catalytic arginines from only the gamma(2) and gamma(3) ATP sites, abolishes ATPase activity even though ATP site 1 is intact and all three sites are filled. This result implies that hydrolysis of the three ATP molecules occurs in a particular order, the reverse of ATP binding, where ATP in site 1 is not hydrolyzed until ATP in sites 2 and/or 3 is hydrolyzed. Implications of these results to clamp loaders of other systems are discussed.
Collapse
Affiliation(s)
- Aaron Johnson
- Howard Hughes Medical Institute and the Rockefeller University, New York, New York 10021, USA.
| | | |
Collapse
|
73
|
Ason B, Handayani R, Williams CR, Bertram JG, Hingorani MM, O'Donnell M, Goodman MF, Bloom LB. Mechanism of loading the Escherichia coli DNA polymerase III beta sliding clamp on DNA. Bona fide primer/templates preferentially trigger the gamma complex to hydrolyze ATP and load the clamp. J Biol Chem 2003; 278:10033-40. [PMID: 12519754 DOI: 10.1074/jbc.m211741200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli DNA polymerase III gamma complex clamp loader assembles the ring-shaped beta sliding clamp onto DNA. The core polymerase is tethered to the template by beta, enabling processive replication of the genome. Here we investigate the DNA substrate specificity of the clamp-loading reaction by measuring the pre-steady-state kinetics of DNA binding and ATP hydrolysis using elongation-proficient and deficient primer/template DNA. The ATP-bound clamp loader binds both elongation-proficient and deficient DNA substrates either in the presence or absence of beta. However, elongation-proficient DNA preferentially triggers gamma complex to release beta onto DNA with concomitant hydrolysis of ATP. Binding to elongation-proficient DNA converts the gamma complex from a high affinity ATP-bound state to an ADP-bound state having a 10(5)-fold lower affinity for DNA. Steady-state binding assays are misleading, suggesting that gamma complex binds much more avidly to non-extendable primer/template DNA because recycling to the high affinity binding state is rate-limiting. Pre-steady-state rotational anisotropy data reveal a dynamic association-dissociation of gamma complex with extendable primer/templates leading to the diametrically opposite conclusion. The strongly favored dynamic recognition of extendable DNA does not require the presence of beta. Thus, the gamma complex uses ATP binding and hydrolysis as a mechanism for modulating its interaction with DNA in which the ATP-bound form binds with high affinity to DNA but elongation-proficient DNA substrates preferentially trigger hydrolysis of ATP and conversion to a low affinity state.
Collapse
Affiliation(s)
- Brandon Ason
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville 32610-0245, USA
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Podobnik M, Weitze TF, O'Donnell M, Kuriyan J. Nucleotide-induced conformational changes in an isolated Escherichia coli DNA polymerase III clamp loader subunit. Structure 2003; 11:253-63. [PMID: 12623013 DOI: 10.1016/s0969-2126(03)00027-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sliding clamps are loaded onto DNA by ATP-driven clamp loader complexes. The structure of the E. coli clamp loader in a nucleotide-free state has been determined previously. We now report crystal structures of a truncated form of the isolated gamma-ATPase subunit, gamma(1-243), of the E. coli clamp loader, in nucleotide-free and bound forms. The gamma subunit adopts a defined conformation when empty, in which the nucleotide binding site is blocked. The binding of either ATPgammaS or ADP, which are shown to bind with equal affinity to gamma(1-243), induces a change in the relative orientation of the two domains such that nucleotides can be accommodated. This change would break one of the gamma:gamma interfaces seen in the empty clamp loader complex, and may represent one step in the activation process.
Collapse
Affiliation(s)
- Marjetka Podobnik
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
75
|
Abstract
We isolated a mutant allele of dnaX, encoding the tau and gamma subunits of the DNA polymerase III holoenzyme, that causes extreme cell filamentation but does not affect either cell growth or DNA replication. This phenotype results from a defect in daughter chromosome decatenation during rapid growth. In these cells, ParC, one subunit of topoisomerase IV, no longer associated with the replication factory, as occurs in wild-type cells, and was instead distributed uniformly on the nucleoid; the distribution of ParE, the other subunit of topoisomerase IV, was unaffected. In addition, the majority of topoisomerase IV activity in synchronized cell populations was restricted to late in the cell cycle, when replication was essentially complete. These observations suggest that topoisomerase IV activity in vivo might be dependent on release of ParC from the replication factory.
Collapse
Affiliation(s)
- Olivier Espeli
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | |
Collapse
|
76
|
Al Mamun AAM, Marians KJ, Humayun MZ. DNA polymerase III from Escherichia coli cells expressing mutA mistranslator tRNA is error-prone. J Biol Chem 2002; 277:46319-27. [PMID: 12324458 DOI: 10.1074/jbc.m206856200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Translational stress-induced mutagenesis (TSM) refers to the elevated mutagenesis observed in Escherichia coli cells in which mistranslation has been increased as a result of mutations in tRNA genes (such as mutA) or by exposure to streptomycin. TSM does not require lexA-regulated SOS functions but is suppressed in cells defective for homologous recombination genes. Crude cell-free extracts from TSM-induced E. coli strains express an error-prone DNA polymerase. To determine whether DNA polymerase III is involved in the TSM phenotype, we first asked if the phenotype is expressed in cells defective for all four of the non-replicative DNA polymerases, namely polymerase I, II, IV, and V. By using a colony papillation assay based on the reversion of a lacZ mutant, we show that the TSM phenotype is expressed in such cells. Second, we asked if pol III from TSM-induced cells is error-prone. By purifying DNA polymerase III* from TSM-induced and control cells, and by testing its fidelity on templates bearing 3,N(4)-ethenocytosine (a mutagenic DNA lesion), as well as on undamaged DNA templates, we show here that polymerase III* purified from mutA cells is error-prone as compared with that from control cells. These findings suggest that DNA polymerase III is modified in TSM-induced cells.
Collapse
Affiliation(s)
- Abu Amar M Al Mamun
- University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Department of Microbiology and Molecular Genetics, International Center for Public Health, Newark, New Jersey 07101-1709, USA
| | | | | |
Collapse
|
77
|
Davey MJ, Jeruzalmi D, Kuriyan J, O'Donnell M. Motors and switches: AAA+ machines within the replisome. Nat Rev Mol Cell Biol 2002; 3:826-35. [PMID: 12415300 DOI: 10.1038/nrm949] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Clamp loaders are required to load the ring-shaped clamps that tether replicative DNA polymerases onto DNA. Recently solved crystal structures, along with a series of biochemical studies, have provided a detailed understanding of the clamp loading reaction. In particular, studies of the Escherichia coli clamp loader--an AAA+ machine--have provided insights into the architecture of clamp loaders from eukaryotes, bacteriophage T4 and archaea. Other AAA+ proteins are also involved in the initiation of DNA replication, and studies of the E. coli clamp loader indicate mechanisms by which these proteins might function.
Collapse
Affiliation(s)
- Megan J Davey
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | | | | | |
Collapse
|
78
|
Seybert A, Scott DJ, Scaife S, Singleton MR, Wigley DB. Biochemical characterisation of the clamp/clamp loader proteins from the euryarchaeon Archaeoglobus fulgidus. Nucleic Acids Res 2002; 30:4329-38. [PMID: 12384579 PMCID: PMC137147 DOI: 10.1093/nar/gkf584] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Replicative polymerases of eukaryotes, prokaryotes and archaea obtain processivity using ring-shaped DNA sliding clamps that are loaded onto DNA by clamp loaders [replication factor C (RFC) in eukaryotes]. In this study, we cloned the two genes for the subunits of the RFC homologue of the euryarchaeon Archaeoglobus fulgidus. The proteins were expressed and purified from Escherichia coli both individually and as a complex. The afRFC subunits form a heteropentameric complex consisting of one copy of the large subunit and four copies of the small subunits. To analyse the functionality of afRFC, we also expressed the A.fulgidus PCNA homologue and a type B polymerase (PolB1) in E.coli. In primer extension assays, afRFC stimulated the processivity of afPolB1 in afPCNA-dependent reactions. Although the afRFC complex showed significant DNA-dependent ATPase activity, which could be further stimulated by afPCNA, neither of the isolated afRFC subunits showed this activity. However, both the large and small afRFC subunits showed interaction with afPCNA. Furthermore, we demonstrate that ATP binding, but not hydrolysis, is needed to stimulate interactions of the afRFC complex with afPCNA and DNA.
Collapse
Affiliation(s)
- Anja Seybert
- Molecular Enzymology Laboratory, London Research Institute, Clare Hall Laboratories, Cancer Research UK
| | | | | | | | | |
Collapse
|
79
|
Bruck I, Yuzhakov A, Yurieva O, Jeruzalmi D, Skangalis M, Kuriyan J, O'Donnell M. Analysis of a multicomponent thermostable DNA polymerase III replicase from an extreme thermophile. J Biol Chem 2002; 277:17334-48. [PMID: 11859073 DOI: 10.1074/jbc.m110198200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This report takes a proteomic/genomic approach to characterize the DNA polymerase III replication apparatus of the extreme thermophile, Aquifex aeolicus. Genes (dnaX, holA, and holB) encoding the subunits required for clamp loading activity (tau, delta, and delta') were identified. The dnaX gene produces only the full-length product, tau, and therefore differs from Escherichia coli dnaX that produces two proteins (gamma and tau). Nonetheless, the A. aeolicus proteins form a taudeltadelta' complex. The dnaN gene encoding the beta clamp was identified, and the taudeltadelta' complex is active in loading beta onto DNA. A. aeolicus contains one dnaE homologue, encoding the alpha subunit of DNA polymerase III. Like E. coli, A. aeolicus alpha and tau interact, although the interaction is not as tight as the alpha-tau contact in E. coli. In addition, the A. aeolicus homologue to dnaQ, encoding the epsilon proofreading 3'-5'-exonuclease, interacts with alpha but does not form a stable alpha.epsilon complex, suggesting a need for a brace or bridging protein to tightly couple the polymerase and exonuclease in this system. Despite these differences to the E. coli system, the A. aeolicus proteins function to yield a robust replicase that retains significant activity at 90 degrees C. Similarities and differences between the A. aeolicus and E. coli pol III systems are discussed, as is application of thermostable pol III to biotechnology.
Collapse
Affiliation(s)
- Irina Bruck
- Rockefeller University and Howard Hughes Medical Institute, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Bullard JM, Williams JC, Acker WK, Jacobi C, Janjic N, McHenry CS. DNA polymerase III holoenzyme from Thermus thermophilus identification, expression, purification of components, and use to reconstitute a processive replicase. J Biol Chem 2002; 277:13401-8. [PMID: 11823461 DOI: 10.1074/jbc.m110833200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA replication in bacteria is performed by a specialized multicomponent replicase, the DNA polymerase III holoenzyme, that consist of three essential components: a polymerase, the beta sliding clamp processivity factor, and the DnaX complex clamp-loader. We report here the assembly of the minimal functional holoenzyme from Thermus thermophilus (Tth), an extreme thermophile. The minimal holoenzyme consists of alpha (pol III catalytic subunit), beta (sliding clamp processivity factor), and the essential DnaX (tau/gamma), delta and delta' components of the DnaX complex. We show with purified recombinant proteins that these five components are required for rapid and processive DNA synthesis on long single-stranded DNA templates. Subunit interactions known to occur in DNA polymerase III holoenzyme from mesophilic bacteria including delta-delta' interaction, deltadelta'-tau/gamma complex formation, and alpha-tau interaction, also occur within the Tth enzyme. As in mesophilic holoenzymes, in the presence of a primed DNA template, these subunits assemble into a stable initiation complex in an ATP-dependent manner. However, in contrast to replicative polymerases from mesophilic bacteria, Tth holoenzyme is efficient only at temperatures above 50 degrees C, both with regard to initiation complex formation and processive DNA synthesis. The minimal Tth DNA polymerase III holoenzyme displays an elongation rate of 350 bp/s at 72 degrees C and a processivity of greater than 8.6 kilobases, the length of the template that is fully replicated after a single association event.
Collapse
|
81
|
Bullard JM, Pritchard AE, Song MS, Glover BP, Wieczorek A, Chen J, Janjic N, McHenry CS. A three-domain structure for the delta subunit of the DNA polymerase III holoenzyme delta domain III binds delta' and assembles into the DnaX complex. J Biol Chem 2002; 277:13246-56. [PMID: 11809766 DOI: 10.1074/jbc.m108708200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using psi-BLAST, we have developed a method for identifying the poorly conserved delta subunit of the DNA polymerase III holoenzyme from all sequenced bacteria. This approach, starting with Escherichia coli delta, leads not only to the identification of delta but also to the DnaX and delta' subunits of the DnaX complex and other AAA(+)-class ATPases. This suggests that, although not an ATPase, delta is related structurally to the other subunits of the DnaX complex that loads the beta sliding clamp processivity factor onto DNA. To test this prediction, we aligned delta sequences with those of delta' and, using the start of delta' Domain III established from its x-ray crystal structure, predicted the juncture between Domains II and III of delta. This putative delta Domain III could be expressed to high levels, consistent with the prediction that it folds independently. delta Domain III, like Domain III of DnaX and delta', assembles by itself into a complex with the other DnaX complex components. Cross-linking studies indicated a contact of delta with the DnaX subunits. These observations are consistent with a model where two tau subunits and one each of the gamma, delta', and delta subunits mutually interact to form a pentameric functional core for the DnaX complex.
Collapse
|
82
|
Abstract
A coherent view of the structure and function of DNA polymerase processivity factors (sliding clamps and clamp loaders) is emerging from recent structural studies. Crystal structures of sliding clamps from the T4 and RB69 bacteriophages, and from an archaebacterium expand the gallery of ring-shaped processivity factors and clarify how the clamp interacts with the DNA polymerase. Crystallographic and electron microscopic views of clamp loaders from bacteria, archaebacteria and eukaryotes emphasize their common architecture and have produced models of how ATPbinding might be coupled to clamp opening/loading.
Collapse
Affiliation(s)
- David Jeruzalmi
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, The University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
83
|
Song MS, McHenry CS. Carboxyl-terminal domain III of the delta' subunit of DNA polymerase III holoenzyme binds DnaX and supports cooperative DnaX complex assembly. J Biol Chem 2001; 276:48709-15. [PMID: 11606586 DOI: 10.1074/jbc.m107936200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The delta' subunit of the DNA polymerase-III holoenzyme is a key component of the DnaX complex; it is required for loading the beta(2) processivity factor onto a primed template. The x-ray crystal structure of delta' indicates a three domain C-shaped structure (Guenther, B., Onrust, R., Sali, A., O'Donnell, M., and Kuriyan, J. (1997) Cell 91, 335-345). In this study, we localized the DnaX-binding domain of delta' to its carboxyl-terminal domain III by quantifying protein-protein interactions using a series of delta' fusion proteins lacking specific domains. The fusion protein corresponding to domain III of delta' bound to DnaX with an affinity approaching that of full-length delta'. In contrast, a construct bearing delta' domains I-II did not bind DnaX at detectable levels. The presence of delta and chi psi strengthened the interaction of DnaX with full-length delta' and delta' domain III. Thus, domain III of delta' not only contains the DnaX-binding site, but also contains the elements required for positive cooperative assembly of the DnaX complex. A domain III-specific anti-delta' monoclonal antibody interfered with DnaX complex formation and abolished the replication activity of DNA polymerase III holoenzyme.
Collapse
Affiliation(s)
- M S Song
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
84
|
Leu FP, O'Donnell M. Interplay of clamp loader subunits in opening the beta sliding clamp of Escherichia coli DNA polymerase III holoenzyme. J Biol Chem 2001; 276:47185-94. [PMID: 11572866 DOI: 10.1074/jbc.m106780200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli beta dimer is a ring-shaped protein that encircles DNA and acts as a sliding clamp to tether the replicase, DNA polymerase III holoenzyme, to DNA. The gamma complex (gammadeltadelta'chipsi) clamp loader couples ATP to the opening and closing of beta in assembly of the ring onto DNA. These proteins are functionally and structurally conserved in all cells. The eukaryotic equivalents are the replication factor C (RFC) clamp loader and the proliferating cell nuclear antigen (PCNA) clamp. The delta subunit of the E. coli gamma complex clamp loader is known to bind beta and open it by parting one of the dimer interfaces. This study demonstrates that other subunits of gamma complex also bind beta, although weaker than delta. The gamma subunit like delta, affects the opening of beta, but with a lower efficiency than delta. The delta' subunit regulates both gamma and delta ring opening activities in a fashion that is modulated by ATP interaction with gamma. The implications of these actions for the workings of the E. coli clamp loading machinery and for eukaryotic RFC and PCNA are discussed.
Collapse
Affiliation(s)
- F P Leu
- Department of Pharmacology, Joan and Sanford I. Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | | |
Collapse
|
85
|
Dervyn E, Suski C, Daniel R, Bruand C, Chapuis J, Errington J, Jannière L, Ehrlich SD. Two essential DNA polymerases at the bacterial replication fork. Science 2001; 294:1716-9. [PMID: 11721055 DOI: 10.1126/science.1066351] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
DNA replication in bacteria is carried out by a multiprotein complex, which is thought to contain only one essential DNA polymerase, specified by the dnaE gene in Escherichia coli and the polC gene in Bacillus subtilis. Bacillus subtilis genome analysis has revealed another DNA polymerase gene, dnaE(BS), which is homologous to dnaE. We show that, in B. subtilis, dnaE(BS) is essential for cell viability and for the elongation step of DNA replication, as is polC, and we conclude that there are two different essential DNA polymerases at the replication fork of B. subtilis, as was previously observed in eukaryotes. dnaE(BS) appears to be involved in the synthesis of the lagging DNA strand and to be associated with the replication factory, which suggests that two different polymerases carry out synthesis of the two DNA strands in B. subtilis and in many other bacteria that contain both polC and dnaE genes.
Collapse
Affiliation(s)
- E Dervyn
- Génétique Microbienne, Institut National de la Recherche Agronomique, Jouy-en-Josas, 78352 Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
86
|
O'Donnell M, Jeruzalmi D, Kuriyan J. Clamp loader structure predicts the architecture of DNA polymerase III holoenzyme and RFC. Curr Biol 2001; 11:R935-46. [PMID: 11719243 DOI: 10.1016/s0960-9822(01)00559-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recent determinations of the crystal structure of the Escherichia coli gamma complex and delta-beta assembly have shed light on the bacterial clamp loading reaction. In this review, we discuss the structures of delta-beta and the gamma(3)deltadelta' complex and its mechanism of action as a clamp loader of the E. coli beta sliding clamp. We also expand upon the implications of the structural findings to the structure and function of the eukaryotic clamp loader, RFC, and the structure of E. coli DNA polymerase III holoenzyme.
Collapse
Affiliation(s)
- M O'Donnell
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | | | |
Collapse
|
87
|
Song MS, Dallmann HG, McHenry CS. Carboxyl-terminal domain III of the delta' subunit of the DNA polymerase III holoenzyme binds delta. J Biol Chem 2001; 276:40668-79. [PMID: 11518714 DOI: 10.1074/jbc.m106373200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The delta and delta' subunits are essential components of the DNA polymerase III holoenzyme, required for assembly and function of the DnaX-complex clamp loader (tau2gammadeltadelta'chipsi). The x-ray crystal structure of delta' contains three structural domains (Guenther, B., Onrust, R., Sali, A., O'Donnell, M., and Kuriyan, J. (1997) Cell 91, 335-345). In this study, we localize the delta-binding domain of delta' to a carboxyl-terminal domain III by quantifying the interaction of delta with a series of delta' fusion proteins lacking specific domains. Purification and immobilization of the fusion proteins were facilitated by the inclusion of a tag containing hexahistidine and a short biotinylation sequence. Both NH2- and COOH-terminal-tagged full-length delta' were soluble and had specific activities comparable with that of native delta'. delta and delta' form a 1:1 heterodimer with a dissociation constant (K(D)) of 5 x 10(-7) m determined by equilibrium sedimentation. The K(D) determined by surface plasmon resonance was comparable. Domain III alone bound delta at an affinity comparable to that of wild type delta', whereas proteins lacking domain III did not bind delta. Using a panel of domain-specific anti-delta' monoclonal antibodies, we found that two of the domain III-specific monoclonal antibodies interfered with delta-delta' interaction and abolished the replication activity of DNA polymerase-III holoenzyme.
Collapse
Affiliation(s)
- M S Song
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | |
Collapse
|
88
|
Glover BP, Pritchard AE, McHenry CS. tau binds and organizes Escherichia coli replication proteins through distinct domains: domain III, shared by gamma and tau, oligomerizes DnaX. J Biol Chem 2001; 276:35842-6. [PMID: 11463787 DOI: 10.1074/jbc.m103719200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tau and gamma proteins of the DNA polymerase III holoenzyme DnaX complex are products of the dnaX gene with gamma being a truncated version of tau arising from ribosomal frameshifting. tau is comprised of five structural domains, the first three of which are shared by gamma (Gao, D., and McHenry, C. (2001) J. Biol. Chem. 276, 4433-4453). In the absence of the other holoenzyme subunits, DnaX exists as a tetramer. Association of delta, delta', chi, and psi with domain III of DnaX(4) results in a DnaX complex with a stoichiometry of DnaX(3)deltadelta'chipsi. To identify which domain facilitates DnaX self-association, we examined the properties of purified biotin-tagged DnaX fusion proteins containing domains I-II or III-V. Unlike domain I-II, treatment of domain III-V, gamma, and tau with the chemical cross-linking reagent BS3 resulted in the appearance of high molecular weight intramolecular cross-linked protein. Gel filtration of domains I-II and III-V demonstrated that domain I-II was monomeric, and domain III-V was an oligomer. Biotin-tagged domain III-V, and not domain I-II, was able to form a mixed DnaX complex by recruiting tau, delta, delta', chi, and psi onto streptavidin-agarose beads. Thus, domain III not only contains the delta, delta', chi, and psi binding interface, but also the region that enables DnaX to oligomerize.
Collapse
Affiliation(s)
- B P Glover
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | |
Collapse
|
89
|
Song MS, Pham PT, Olson M, Carter JR, Franden MA, Schaaper RM, McHenry CS. The delta and delta ' subunits of the DNA polymerase III holoenzyme are essential for initiation complex formation and processive elongation. J Biol Chem 2001; 276:35165-75. [PMID: 11432857 DOI: 10.1074/jbc.m100389200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
delta and delta' are required for assembly of the processivity factor beta(2) onto primed DNA in the DNA polymerase III holoenzyme-catalyzed reaction. We developed protocols for generating highly purified preparations of delta and delta'. In holoenzyme reconstitution assays, delta' could not be replaced by delta, tau, or gamma, even when either of the latter were present at a 10,000-fold molar excess. Likewise, delta could not be replaced by delta', tau, or gamma. Bacterial strains bearing chromosomal knockouts of either the holA(delta) or holB(delta') genes were not viable, demonstrating that both delta and delta' are essential. Western blots of isolated initiation complexes demonstrated the presence of both delta and delta'. However, in the absence of chipsi and single-stranded DNA-binding protein, a stable initiation complex lacking deltadelta' was isolated by gel filtration. Lack of delta-delta' decreased the rate of elongation about 3-fold, and the extent of processive replication was significantly decreased. Adding back delta-delta' but not chipsi, delta, or delta' alone restored the diminished activity, indicating that in addition to being key components required for the beta loading activity of the DnaX complex, deltadelta' is present in initiation complex and is required for processive elongation.
Collapse
Affiliation(s)
- M S Song
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | | | |
Collapse
|
90
|
Pritchard AE, McHenry CS. Assembly of DNA polymerase III holoenzyme: co-assembly of gamma and tau is inhibited by DnaX complex accessory proteins but stimulated by DNA polymerase III core. J Biol Chem 2001; 276:35217-22. [PMID: 11463784 DOI: 10.1074/jbc.m102735200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the two alternative Escherichia coli dnaX gene products, tau and gamma, are found co-assembled in purified DNA polymerase III holoenzyme, the pathway of assembly is not well understood. When the 10 subunits of holoenzyme are simultaneously mixed, they rapidly form a nine-subunit assembly containing tau but not gamma. We developed a new assay based on the binding of complexes containing biotin-tagged tau to streptavidin-coated agarose beads to investigate the effects of various DNA polymerase III holoenzyme subunits on the kinetics of co-assembly of gamma and tau into the same complex. Auxiliary proteins in combination with delta' almost completely blocked co-assembly, whereas chipsi or delta' alone slowed the association only moderately compared with the interaction of tau with gamma alone. In contrast, DNA polymerase III core, in the absence of deltadelta' and chipsi, accelerated the co-assembly of tau and gamma, suggesting a role for DNA polymerase III' [tau(2)(pol III core)(2)] in the assembly pathway of holoenzyme.
Collapse
Affiliation(s)
- A E Pritchard
- Department of Biochemistry and Molecular Genetics and the Program in Molecular Biology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
91
|
Jeruzalmi D, O'Donnell M, Kuriyan J. Crystal structure of the processivity clamp loader gamma (gamma) complex of E. coli DNA polymerase III. Cell 2001; 106:429-41. [PMID: 11525729 DOI: 10.1016/s0092-8674(01)00463-9] [Citation(s) in RCA: 248] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gamma complex, an AAA+ ATPase, is the bacterial homolog of eukaryotic replication factor C (RFC) that loads the sliding clamp (beta, homologous to PCNA) onto DNA. The 2.7/3.0 A crystal structure of gamma complex reveals a pentameric arrangement of subunits, with stoichiometry delta':gamma(3):delta. The C-terminal domains of the subunits form a circular collar that supports an asymmetric arrangement of the N-terminal ATP binding domains of the gamma motor and the structurally related domains of the delta' stator and the delta wrench. The structure suggests a mechanism by which the gamma complex switches between a closed state, in which the beta-interacting element of delta is hidden by delta', and an open form similar to the crystal structure, in which delta is free to bind to beta.
Collapse
Affiliation(s)
- D Jeruzalmi
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
92
|
López de Saro FJ, O'Donnell M. Interaction of the beta sliding clamp with MutS, ligase, and DNA polymerase I. Proc Natl Acad Sci U S A 2001; 98:8376-80. [PMID: 11459978 PMCID: PMC37446 DOI: 10.1073/pnas.121009498] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The beta and proliferating cell nuclear antigen (PCNA) sliding clamps were first identified as components of their respective replicases, and thus were assigned a role in chromosome replication. Further studies have shown that the eukaryotic clamp, PCNA, interacts with several other proteins that are involved in excision repair, mismatch repair, cellular regulation, and DNA processing, indicating a much wider role than replication alone. Indeed, the Escherichia coli beta clamp is known to function with DNA polymerases II and V, indicating that beta also interacts with more than just the chromosomal replicase, DNA polymerase III. This report demonstrates three previously undetected protein-protein interactions with the beta clamp. Thus, beta interacts with MutS, DNA ligase, and DNA polymerase I. Given the diverse use of these proteins in repair and other DNA transactions, this expanded list of beta interactive proteins suggests that the prokaryotic beta ring participates in a wide variety of reactions beyond its role in chromosomal replication.
Collapse
Affiliation(s)
- F J López de Saro
- Howard Hughes Medical Institute and The Rockefeller University, 1230 York Avenue, Box 228, New York, NY 10021, USA.
| | | |
Collapse
|
93
|
Abstract
The AAA+ superfamily of ATPases, which contain a homologous ATPase module, are found in all kingdoms of living organisms where they participate in diverse cellular processes including membrane fusion, proteolysis and DNA replication. Recent structural studies have revealed that they usually form ring-shaped oligomers, which are crucial for their ATPase activities and mechanisms of action. These ring-shaped oligomeric complexes are versatile in their mode of action, which collectively seem to involve some form of disruption of molecular or macromolecular structure; unfolding of proteins, disassembly of protein complexes, unwinding of DNA, or alteration of the state of DNA-protein complexes. Thus, the AAA+ proteins represent a novel type of molecular chaperone. Comparative analyses have also revealed significant similarities and differences in structure and molecular mechanism between AAA+ ATPases and other ring-shaped ATPases.
Collapse
Affiliation(s)
- T Ogura
- Division of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 862-0976, Japan.
| | | |
Collapse
|
94
|
Glover BP, McHenry CS. The DNA polymerase III holoenzyme: an asymmetric dimeric replicative complex with leading and lagging strand polymerases. Cell 2001; 105:925-34. [PMID: 11439188 DOI: 10.1016/s0092-8674(01)00400-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The DNA Polymerase III holoenzyme forms initiation complexes on primed DNA in an ATP-dependent reaction. We demonstrate that the nonhydrolyzable ATP analog, ATP gamma S, supports the formation of an isolable leading strand complex that loads and replicates the lagging strand only in the presence of ATP, beta, and the single-stranded DNA binding protein. The single endogenous DnaX complex within DNA polymerase III holoenzyme assembles beta onto both the leading and lagging strand polymerases by an ordered mechanism. The dimeric replication complex disassembles in the opposite order from which it assembled. Upon ATP gamma S-induced dissociation, the leading strand polymerase is refractory to disassembly allowing cycling to occur exclusively on the lagging strand. These results establish holoenzyme as an intrinsic asymmetric dimer with distinguishable leading and lagging strand polymerases.
Collapse
Affiliation(s)
- B P Glover
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | |
Collapse
|
95
|
Stewart J, Hingorani MM, Kelman Z, O'Donnell M. Mechanism of beta clamp opening by the delta subunit of Escherichia coli DNA polymerase III holoenzyme. J Biol Chem 2001; 276:19182-9. [PMID: 11279099 DOI: 10.1074/jbc.m100592200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta sliding clamp encircles the primer-template and tethers DNA polymerase III holoenzyme to DNA for processive replication of the Escherichia coli genome. The clamp is formed via hydrophobic and ionic interactions between two semicircular beta monomers. This report demonstrates that the beta dimer is a stable closed ring and is not monomerized when the gamma complex clamp loader (gamma(3)delta(1)delta(1)chi(1)psi(1)) assembles the beta ring around DNA. delta is the subunit of the gamma complex that binds beta and opens the ring; it also does not appear to monomerize beta. Point mutations were introduced at the beta dimer interface to test its structural integrity and gain insight into its interaction with delta. Mutation of two residues at the dimer interface of beta, I272A/L273A, yields a stable beta monomer. We find that delta binds the beta monomer mutant at least 50-fold tighter than the beta dimer. These findings suggest that when delta interacts with the beta clamp, it binds one beta subunit with high affinity and utilizes some of that binding energy to perform work on the dimeric clamp, probably cracking one dimer interface open.
Collapse
Affiliation(s)
- J Stewart
- Rockefeller University and Howard Hughes Medical Institute, Laboratory of DNA Replication, New York, New York 10021, USA
| | | | | | | |
Collapse
|
96
|
Gao D, McHenry CS. tau binds and organizes Escherichia coli replication through distinct domains. Partial proteolysis of terminally tagged tau to determine candidate domains and to assign domain V as the alpha binding domain. J Biol Chem 2001; 276:4433-40. [PMID: 11078743 DOI: 10.1074/jbc.m009828200] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tau subunit dimerizes Escherichia coli DNA polymerase III core through interactions with the alpha subunit. In addition to playing critical roles in the structural organization of the holoenzyme, tau mediates intersubunit communications required for efficient replication fork function. We identified potential structural domains of this multifunctional subunit by limited proteolysis of C-terminal biotin-tagged tau proteins. The cleavage sites of each of eight different proteases were found to be clustered within four regions of the tau subunit. The second susceptible region corresponds to the hinge between domain II and III of the highly homologous delta' subunit, and the third region is near the C-terminal end of the tau-delta' alignment (Guenther, B., Onrust, R., Sali, A., O'Donnell, M., and Kuriyan, J. (1997) Cell 91, 335-345). We propose a five-domain structure for the tau protein. Domains I and II are based on the crystallographic structure of delta' by Guenther and colleagues. Domains III-V are based on our protease cleavage results. Using this information, we expressed biotin-tagged tau proteins lacking specific protease-resistant domains and analyzed their binding to the alpha subunit by surface plasmon resonance. Results from these studies indicated that the alpha binding site of tau lies within its C-terminal 147 residues (domain V).
Collapse
Affiliation(s)
- D Gao
- Department of Biochemistry and Molecular Genetics and Program in Molecular Biology, University of Colorado Health Sciences Center, Denver, Colorado 80262
| | | |
Collapse
|
97
|
Gao D, McHenry CS. Tau binds and organizes Escherichia coli replication proteins through distinct domains. Domain III, shared by gamma and tau, binds delta delta ' and chi psi. J Biol Chem 2001; 276:4447-53. [PMID: 11078742 DOI: 10.1074/jbc.m009827200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DnaX complex of the DNA polymerase holoenzyme assembles the beta(2) processivity factor onto the primed template enabling highly processive replication. The key ATPases within this complex are tau and gamma, alternative frameshift products of the dnaX gene. Of the five domains of tau, I-III are shared with gamma In vivo, gamma binds the auxiliary subunits deltadelta' and chipsi (Glover, B. P., and McHenry, C. S. (2000) J. Biol. Chem. 275, 3017-3020). To localize deltadelta' and chipsi binding domains within gamma domains I-III, we measured the binding of purified biotin-tagged DnaX proteins lacking specific domains to deltadelta' and chipsi by surface plasmon resonance. Fusion proteins containing either DnaX domains I-III or domains III-V bound deltadelta' and chipsi subunits. A DnaX protein only containing domains I and II did not bind deltadelta' or chipsi. The binding affinity of chipsi for DnaX domains I-III and domains III-V was the same as that of chipsi for full-length tau, indicating that domain III contained all structural elements required for chipsi binding. Domain III of tau also contained deltadelta' binding sites, although the interaction between deltadelta' and domains III-V of tau was 10-fold weaker than the interaction between deltadelta' and full length tau. The presence of both delta and chipsi strengthened the delta'-C(0)tau interaction by at least 15-fold. Domain III was the only domain common to all of tau fusion proteins whose interaction with delta' was enhanced in the presence of delta and chipsi. Thus, domain III of the DnaX proteins not only contains the deltadelta' and chipsi binding sites but also contains the elements required for the positive cooperative assembly of the DnaX complex.
Collapse
Affiliation(s)
- D Gao
- Department of Biochemistry, Program in Molecular Biology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|