51
|
yKu70/yKu80 and Rif1 regulate silencing differentially at telomeres in Candida glabrata. EUKARYOTIC CELL 2008; 7:2168-78. [PMID: 18836091 DOI: 10.1128/ec.00228-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Candida glabrata, a common opportunistic fungal pathogen, adheres efficiently to mammalian epithelial cells in culture. This interaction in vitro depends mainly on the adhesin Epa1, one of a large family of cell wall proteins. Most of the EPA genes are located in subtelomeric regions, where they are transcriptionally repressed by silencing. In order to better characterize the transcriptional regulation of the EPA family, we have assessed the importance of C. glabrata orthologues of known regulators of subtelomeric silencing in Saccharomyces cerevisiae. To this end, we used a series of strains containing insertions of the reporter URA3 gene within different intergenic regions throughout four telomeres of C. glabrata. Using these reporter strains, we have assessed the roles of SIR2, SIR3, SIR4, HDF1 (yKu70), HDF2 (yKu80), and RIF1 in mediating silencing at four C. glabrata telomeres. We found that, whereas the SIR proteins are absolutely required for silencing of the reporter genes and the native subtelomeric EPA genes, the Rif1 and the Ku proteins regulate silencing at only a subset of the analyzed telomeres. We also mapped a cis element adjacent to the EPA3 locus that can silence a reporter gene when placed at a distance of 31 kb from the telomere. Our data show that silencing of the C. glabrata telomeres varies from telomere to telomere. In addition, recruitment of silencing proteins to the subtelomeres is likely, for certain telomeres, to depend both on the telomeric repeats and on particular discrete silencing elements.
Collapse
|
52
|
Trickey M, Grimaldi M, Yamano H. The anaphase-promoting complex/cyclosome controls repair and recombination by ubiquitylating Rhp54 in fission yeast. Mol Cell Biol 2008; 28:3905-16. [PMID: 18426916 PMCID: PMC2423112 DOI: 10.1128/mcb.02116-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 01/08/2008] [Accepted: 04/07/2008] [Indexed: 11/20/2022] Open
Abstract
Homologous recombination (HR) is important for maintaining genome integrity and for the process of meiotic chromosome segregation and the generation of variation. HR is regulated throughout the cell cycle, being prevalent in the S and G2 phases and suppressed in the G1 phase. Here we show that the anaphase-promoting complex/cyclosome (APC/C) regulates homologous recombination in the fission yeast Schizosaccharomyces pombe by ubiquitylating Rhp54 (an ortholog of Rad54). We show that Rhp54 is a novel APC/C substrate that is destroyed in G1 phase in a KEN-box- and Ste9/Fizzy-related manner. The biological consequences of failing to temporally regulate HR via Rhp54 degradation are seen in haploid cells only in the absence of antirecombinase Srs2 function and are more extensive in diploid cells, which become sensitive to a range of DNA-damaging agents, including hydroxyurea, methyl methanesulfonate, bleomycin, and UV. During meiosis, expression of nondegradable Rhp54 inhibits interhomolog recombination and stimulates sister chromatid recombination. We thus propose that it is critical to control levels of Rhp54 in G1 to suppress HR repair of double-strand breaks and during meiosis to coordinate interhomolog recombination.
Collapse
Affiliation(s)
- Michelle Trickey
- Cell Cycle Control Laboratory, Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 0TL, United Kingdom
| | | | | |
Collapse
|
53
|
Webb CJ, Zakian VA. Identification and characterization of the Schizosaccharomyces pombe TER1 telomerase RNA. Nat Struct Mol Biol 2008; 15:34-42. [PMID: 18157149 PMCID: PMC2703720 DOI: 10.1038/nsmb1354] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 12/04/2007] [Indexed: 12/29/2022]
Abstract
Although the catalytic subunit of the Schizosaccharomyces pombe telomerase holoenzyme was identified over ten years ago, the unusual heterogeneity of its telomeric DNA made it difficult to identify its RNA component. We used a new two-step immunoprecipitation and reverse transcription-PCR technique to identify the S. pombe telomerase RNA, which we call TER1. TER1 RNA was 1,213 nucleotides long, similar in size to the Saccharomyces cerevisiae telomerase RNA, TLC1. TER1 RNA associated in vivo with the two known subunits of the S. pombe telomerase holoenzyme, Est1p and Trt1p, and neither association was dependent on the other holoenzyme component. We present a model to explain how telomerase introduces heterogeneity into S. pombe telomeres. The technique used here to identify TER1 should be generally applicable to other model organisms.
Collapse
Affiliation(s)
- Christopher J Webb
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
54
|
Jaendling A, Ramayah S, Pryce DW, McFarlane RJ. Functional characterisation of the Schizosaccharomyces pombe homologue of the leukaemia-associated translocation breakpoint binding protein translin and its binding partner, TRAX. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:203-13. [PMID: 18062930 DOI: 10.1016/j.bbamcr.2007.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 09/10/2007] [Accepted: 10/25/2007] [Indexed: 11/25/2022]
Abstract
Translin is a conserved protein which associates with the breakpoint junctions of chromosomal translocations linked with the development of some human cancers. It binds to both DNA and RNA and has been implicated in mRNA metabolism and regulation of genome stability. It has a binding partner, translin-associated protein X (TRAX), levels of which are regulated by the translin protein in higher eukaryotes. In this study we find that this regulatory function is conserved in the lower eukaryotes, suggesting that translin and TRAX have important functions which provide a selective advantage to both unicellular and multi-cellular eukaryotes, indicating that this function may not be tissue-specific in nature. However, to date, the biological importance of translin and TRAX remains unclear. Here we systematically investigate proposals that suggest translin and TRAX play roles in controlling mitotic cell proliferation, DNA damage responses, genome stability, meiotic/mitotic recombination and stability of GT-rich repeat sequences. We find no evidence for translin and/or TRAX primary function in these pathways, indicating that the conserved biochemical function of translin is not implicated in primary pathways for regulating genome stability and/or segregation.
Collapse
Affiliation(s)
- Alessa Jaendling
- North West Cancer Research Fund Institute, University of Wales Bangor, Bangor, Gwynedd, LL57 2UW, United Kingdom
| | | | | | | |
Collapse
|
55
|
Heacock ML, Idol RA, Friesner JD, Britt AB, Shippen DE. Telomere dynamics and fusion of critically shortened telomeres in plants lacking DNA ligase IV. Nucleic Acids Res 2007; 35:6490-500. [PMID: 17897968 PMCID: PMC2095805 DOI: 10.1093/nar/gkm472] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the absence of the telomerase, telomeres undergo progressive shortening and are ultimately recruited into end-to-end chromosome fusions via the non-homologous end joining (NHEJ) double-strand break repair pathway. Previously, we showed that fusion of critically shortened telomeres in Arabidopsis proceeds with approximately the same efficiency in the presence or absence of KU70, a key component of NHEJ. Here we report that DNA ligase IV (LIG4) is also not essential for telomere joining. We observed only a modest decrease (3-fold) in the frequency of chromosome fusions in triple tert ku70 lig4 mutants versus tert ku70 or tert. Sequence analysis revealed that, relative to tert ku70, chromosome fusion junctions in tert ku70 lig4 mutants contained less microhomology and less telomeric DNA. These findings argue that the KU-LIG4 independent end-joining pathway is less efficient and mechanistically distinct from KU-independent NHEJ. Strikingly, in all the genetic backgrounds we tested, chromosome fusions are initiated when the shortest telomere in the population reaches approximately 1 kb, implying that this size represents a critical threshold that heralds a detrimental structural transition. These data reveal the transitory nature of telomere stability, and the robust and flexible nature of DNA repair mechanisms elicited by telomere dysfunction.
Collapse
Affiliation(s)
- Michelle L. Heacock
- Department of Biochemistry and Biophysics, Texas A&M University 2128 TAMU, College Station, TX 77843-2128, Section of Molecular and Cellular Biology, UC Davis, Davis, CA, 95616 and Section of Plant Biology, UC Davis, Davis, CA 95616, USA
| | - Rachel A. Idol
- Department of Biochemistry and Biophysics, Texas A&M University 2128 TAMU, College Station, TX 77843-2128, Section of Molecular and Cellular Biology, UC Davis, Davis, CA, 95616 and Section of Plant Biology, UC Davis, Davis, CA 95616, USA
| | - Joanna D. Friesner
- Department of Biochemistry and Biophysics, Texas A&M University 2128 TAMU, College Station, TX 77843-2128, Section of Molecular and Cellular Biology, UC Davis, Davis, CA, 95616 and Section of Plant Biology, UC Davis, Davis, CA 95616, USA
| | - Anne B. Britt
- Department of Biochemistry and Biophysics, Texas A&M University 2128 TAMU, College Station, TX 77843-2128, Section of Molecular and Cellular Biology, UC Davis, Davis, CA, 95616 and Section of Plant Biology, UC Davis, Davis, CA 95616, USA
| | - Dorothy E. Shippen
- Department of Biochemistry and Biophysics, Texas A&M University 2128 TAMU, College Station, TX 77843-2128, Section of Molecular and Cellular Biology, UC Davis, Davis, CA, 95616 and Section of Plant Biology, UC Davis, Davis, CA 95616, USA
- *To whom correspondence should be addressed. (979) 862 2342(979) 845 9274
| |
Collapse
|
56
|
Wu Y, Xiao S, Zhu XD. MRE11-RAD50-NBS1 and ATM function as co-mediators of TRF1 in telomere length control. Nat Struct Mol Biol 2007; 14:832-40. [PMID: 17694070 DOI: 10.1038/nsmb1286] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 07/03/2007] [Indexed: 01/21/2023]
Abstract
Human telomeres are associated with ATM and the protein complex consisting of MRE11, RAD50 and NBS1 (MRN), which are central to maintaining genomic stability. Here we show that when targeted to telomeres, wild-type RAD50 downregulates telomeric association of TRF1, a negative regulator of telomere maintenance. TRF1 binding to telomeres is upregulated in cells deficient in NBS1 or under ATM inhibition. The TRF1 association with telomeres induced by ATM inhibition is abrogated in cells lacking MRE11 or NBS1, suggesting that MRN and ATM function in the same pathway controlling TRF1 binding to telomeres. The ability of TRF1 to interact with telomeric DNA in vitro is impaired by ATM-mediated phosphorylation. We propose that MRN is required for TRF1 phosphorylation by ATM and that such phosphorylation results in the release of TRF1 from telomeres, promoting telomerase access to the ends of telomeres.
Collapse
Affiliation(s)
- Yili Wu
- Department of Biology, LSB438 McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada L8S4K1
| | | | | |
Collapse
|
57
|
Villalba F, Collemare J, Landraud P, Lambou K, Brozek V, Cirer B, Morin D, Bruel C, Beffa R, Lebrun MH. Improved gene targeting in Magnaporthe grisea by inactivation of MgKU80 required for non-homologous end joining. Fungal Genet Biol 2007; 45:68-75. [PMID: 17716934 DOI: 10.1016/j.fgb.2007.06.006] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 06/11/2007] [Accepted: 06/19/2007] [Indexed: 02/04/2023]
Abstract
The ascomycete Magnaporthe grisea is a model species for the study of plant fungal interactions. As in many filamentous fungi, targeted gene replacement occurs at low frequency in M. grisea (average 7%). mus52/KU80 is a gene essential for non-homologous end joining (NHEJ) of DNA double-strand breaks. Its deletion increases the frequency of targeted gene replacement in fungi [Ninomiya, Y., Suzuki, K., Ishii, C., Inoue, H., 2004. Highly efficient gene replacements in Neurospora strains deficient for non-homologous end joining. Proc. Natl. Acad. Sci. USA 101(33), 12248-53]. M. grisea KU80 deletion mutants were constructed and displayed wild-type phenotypes regarding pathogenicity, growth, sporulation and mating. MgADE4 targeted gene replacement frequency was increased in Deltaku80 mutants (80% vs 5%) and high frequencies (>80%) were observed at seven other loci. However, the deletion of MgKU80 did not increase the frequency of ACE1 replacement indicating that this locus has an intrinsic reduced ability for gene replacement. These results open the way to large-scale reverse genetics experiments in M. grisea facilitating the study of the infection process.
Collapse
|
58
|
Ueno K, Uno J, Nakayama H, Sasamoto K, Mikami Y, Chibana H. Development of a highly efficient gene targeting system induced by transient repression of YKU80 expression in Candida glabrata. EUKARYOTIC CELL 2007; 6:1239-47. [PMID: 17513567 PMCID: PMC1951112 DOI: 10.1128/ec.00414-06] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Accepted: 05/04/2007] [Indexed: 11/20/2022]
Abstract
In the pathogenic yeast Candida glabrata, gene targeting to generate knockouts and "knockins" is a potentially powerful method for the analysis of gene function. Its importance increased after the C. glabrata genome sequence project, but progress in the field is hampered by inefficient mechanisms for gene targeting. With the use of 40-bp homologous flanking DNA, no gene targeting was identified. To address this issue, YKU80 was disrupted, leading to an increase in targeting efficiency of 5.1% using 40-bp flanking homologous DNA. To harness the beneficial effects of YKU80 inactivation on gene targeting frequency without incurring any negative effects, such as synthetic sickness or lethality, we developed a new system whereby the expression of YKU80 was restored following a transient knockdown of expression during transformation. Strains used for this new system carried a SAT1 flipper in the YKU80 promoter region, which was used to repress expression during transformation but was spontaneously excised from the locus after the transformation. By using this strain, DNA damage induced by methyl methane sulfonate, H(2)O(2), UV irradiation, and hydroxyurea before and during gene targeting was evaluated and the mutation rate of URA3 was determined. No significant effects of the SAT1 flipper on these processes have been identified. After the SAT1 flipper is excised, a 34-bp FLP recombination target sequence is left in the promoter region. However, the levels of mRNA transcription were restored and no difference in the survival ratio in vivo compared to that with the YKU80 wild-type strain was identified.
Collapse
Affiliation(s)
- Keigo Ueno
- Research Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University, 1-8-1 Inohana, Chiba 260-8673, Japan
| | | | | | | | | | | |
Collapse
|
59
|
Decottignies A. Microhomology-mediated end joining in fission yeast is repressed by pku70 and relies on genes involved in homologous recombination. Genetics 2007; 176:1403-15. [PMID: 17483423 PMCID: PMC1931558 DOI: 10.1534/genetics.107.071621] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Two DNA repair pathways are known to mediate DNA double-strand-break (DSB) repair: homologous recombination (HR) and nonhomologous end joining (NHEJ). In addition, a nonconservative backup pathway showing extensive nucleotide loss and relying on microhomologies at repair junctions was identified in NHEJ-deficient cells from a variety of organisms and found to be involved in chromosomal translocations. Here, an extrachromosomal assay was used to characterize this microhomology-mediated end-joining (MMEJ) mechanism in fission yeast. MMEJ was found to require at least five homologous nucleotides and its efficiency was decreased by the presence of nonhomologous nucleotides either within the overlapping sequences or at DSB ends. Exo1 exonuclease and Rad22, a Rad52 homolog, were required for repair, suggesting that MMEJ is related to the single-strand-annealing (SSA) pathway of HR. In addition, MMEJ-dependent repair of DSBs with discontinuous microhomologies was strictly dependent on Pol4, a PolX DNA polymerase. Although not strictly required, Msh2 and Pms1 mismatch repair proteins affected the pattern of MMEJ repair. Strikingly, Pku70 inhibited MMEJ and increased the minimal homology length required for efficient MMEJ. Overall, this study strongly suggests that MMEJ does not define a distinct DSB repair mechanism but reflects "micro-SSA."
Collapse
Affiliation(s)
- Anabelle Decottignies
- Cellular Genetics, Christian de Duve Institute of Cellular Pathology, Catholic University of Louvain, 1200 Brussels, Belgium.
| |
Collapse
|
60
|
Baker A, Rohleder KJ, Hanakahi LA, Ketner G. Adenovirus E4 34k and E1b 55k oncoproteins target host DNA ligase IV for proteasomal degradation. J Virol 2007; 81:7034-40. [PMID: 17459921 PMCID: PMC1933317 DOI: 10.1128/jvi.00029-07] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cells infected by adenovirus E4 mutants accumulate end-to-end concatemers of the viral genome that are assembled from unit-length viral DNAs by nonhomologous end joining (NHEJ). Genome concatenation can be prevented by expression either of E4 11k (product of E4orf3) or of the complex of E4 34k (product of E4orf6) and E1b 55k. Both E4 11k and the E4 34k/E1b 55k complex prevent concatenation at least in part by inactivation of the host protein Mre11: E4 11k sequesters Mre11 in aggresomes, while the E4 34k/E1b 55k complex participates in a virus-specific E3 ubiquitin ligase that mediates ubiquitination and proteasomal degradation. The E4 34k/E1b 55k complex, but not E4 11k, also inhibits NHEJ activity on internal breaks in the viral genome and on V(D)J recombination substrate plasmids, suggesting that it may interfere with NHEJ independently of its effect on Mre11. We show here that DNA ligase IV, which performs the joining step of NHEJ, is degraded as a consequence of adenovirus infection. Degradation is dependent upon E4 34k and E1b 55k, functional proteasomes, and the activity of cellular cullin 5, a component of the adenoviral ubiquitin ligase. DNA ligase IV also interacts physically with E1b 55k. The data demonstrate that DNA ligase IV, like Mre11, is a substrate for the adenovirus-specific E3 ubiquitin ligase; identify an additional viral approach to prevention of genome concatenation; and provide a mechanism for the general inhibition of NHEJ by adenoviruses.
Collapse
Affiliation(s)
- Amy Baker
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
61
|
Riha K, Heacock ML, Shippen DE. The role of the nonhomologous end-joining DNA double-strand break repair pathway in telomere biology. Annu Rev Genet 2007; 40:237-77. [PMID: 16822175 DOI: 10.1146/annurev.genet.39.110304.095755] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Double-strand breaks are a cataclysmic threat to genome integrity. In higher eukaryotes the predominant recourse is the nonhomologous end-joining (NHEJ) double-strand break repair pathway. NHEJ is a versatile mechanism employing the Ku heterodimer, ligase IV/XRCC4 and a host of other proteins that juxtapose two free DNA ends for ligation. A critical function of telomeres is their ability to distinguish the ends of linear chromosomes from double-strand breaks, and avoid NHEJ. Telomeres accomplish this feat by forming a unique higher order nucleoprotein structure. Paradoxically, key components of NHEJ associate with normal telomeres and are required for proper length regulation and end protection. Here we review the biochemical mechanism of NHEJ in double-strand break repair, and in the response to dysfunctional telomeres. We discuss the ways in which NHEJ proteins contribute to telomere biology, and highlight how the NHEJ machinery and the telomere complex are evolving to maintain genome stability.
Collapse
Affiliation(s)
- Karel Riha
- Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, A-1030 Vienna, Austria.
| | | | | |
Collapse
|
62
|
Ribes-Zamora A, Mihalek I, Lichtarge O, Bertuch AA. Distinct faces of the Ku heterodimer mediate DNA repair and telomeric functions. Nat Struct Mol Biol 2007; 14:301-7. [PMID: 17351632 DOI: 10.1038/nsmb1214] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 02/13/2007] [Indexed: 01/16/2023]
Abstract
The Ku heterodimer, comprised of Ku70 and Ku80 subunits, is a conserved complex involved in nonhomologous end-joining (NHEJ). However, it also functions in maintenance of telomeres, chromosome termini normally resistant to end-joining events. To elucidate the spatial organization of these functions, we rationally guided Ku mutagenesis in yeast with real-valued evolutionary trace (rvET). This revealed two ancestrally related alpha-helices: one on the Ku70 surface that is required in yeast for NHEJ, and a second on the Ku80 surface that is required in yeast for telomeric heterochromatin formation. When bound to a DNA end, the surface containing the NHEJ-specific Ku70 helix is oriented toward the DNA terminus, whereas the surface containing the telomeric function-specific Ku80 helix faces inward, toward telomeric chromatin, when bound to a telomere. We propose a 'two-face' model for Ku and that divergent evolution of these faces allowed Ku's dual role in NHEJ and telomere maintenance.
Collapse
Affiliation(s)
- Albert Ribes-Zamora
- Department of Pediatrics, Hematology/Oncology Section, Baylor College of Medicine, One Baylor Plaza, BCM225, Houston, Texas 77030-3411, USA
| | | | | | | |
Collapse
|
63
|
Raji H, Hartsuiker E. Double-strand break repair and homologous recombination in Schizosaccharomyces pombe. Yeast 2007; 23:963-76. [PMID: 17072889 DOI: 10.1002/yea.1414] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The study of double-strand break repair and homologous recombination in Saccharomyces cerevisiae meiosis has provided important information about the mechanisms involved. However, it has become clear that the resulting recombination models are only partially applicable to repair in mitotic cells, where crossover formation is suppressed. In recent years our understanding of double-strand break repair and homologous recombination in Schizosaccharomyces pombe has increased significantly, and the identification of novel pathways and genes with homologues in higher eukaryotes has increased its value as a model organism for double-strand break repair. In this review we will focus on the involvement of homologous recombination and repair in different aspects of genome stability in Sz. pombe meiosis, replication and telomere maintenance. We will also discuss anti-recombination pathways (that suppress crossover formation), non-homologous end-joining, single-strand annealing and factors that influence the choice and prevalence of the different repair pathways in Sz. pombe.
Collapse
Affiliation(s)
- Hayatu Raji
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | | |
Collapse
|
64
|
Cavero S, Chahwan C, Russell P. Xlf1 is required for DNA repair by nonhomologous end joining in Schizosaccharomyces pombe. Genetics 2007; 175:963-7. [PMID: 17151234 PMCID: PMC1800613 DOI: 10.1534/genetics.106.067850] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Accepted: 11/07/2006] [Indexed: 11/18/2022] Open
Abstract
The accurate repair of DNA double-strand breaks is essential for cell survival and maintenance of genome integrity. Here we describe xlf1+, a gene in the fission yeast Schizosaccharomyces pombe that is required for repair of double-strand breaks by nonhomologous end joining during G1 phase of the cell cycle. Xlf1 is the ortholog of budding yeast Nej1 and human XLF/Cernunnos proteins.
Collapse
Affiliation(s)
- Santiago Cavero
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 90237, USA
| | | | | |
Collapse
|
65
|
Marchetti MA, Weinberger M, Murakami Y, Burhans WC, Huberman JA. Production of reactive oxygen species in response to replication stress and inappropriate mitosis in fission yeast. J Cell Sci 2006; 119:124-31. [PMID: 16371652 PMCID: PMC1582148 DOI: 10.1242/jcs.02703] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Previous studies have indicated that replication stress can trigger apoptosis-like cell death, accompanied (where tested) by production of reactive oxygen species (ROS), in mammalian cells and budding yeast (Saccharomyces cerevisiae). In mammalian cells, inappropriate entry into mitosis also leads to cell death. Here, we report similar responses in fission yeast (Schizosaccharomyces pombe). We used ROS- and death-specific fluorescent stains to measure the effects of mutations in replication initiation and checkpoint genes in fission yeast on the frequencies of ROS production and cell death. We found that certain mutant alleles of each of the four tested replication initiation genes caused elevated ROS and cell death. Where tested, these effects were not enhanced by checkpoint-gene mutations. Instead, when cells competent for replication but defective in both the replication and damage checkpoints were treated with hydroxyurea, which slows replication fork movement, the frequencies of ROS production and cell death were greatly increased. This was a consequence of elevated CDK activity, which permitted inappropriate entry into mitosis. Thus, studies in fission yeast are likely to prove helpful in understanding the pathways that lead from replication stress and inappropriate mitosis to cell death in mammalian cells.
Collapse
Affiliation(s)
| | - Martin Weinberger
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Yota Murakami
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Shogoinkawahara-machi, Sakyo-ku, Kyoto 606-8507, Japan
| | - William C Burhans
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
- Authors for correspondence (e-mail: , )
| | - Joel A Huberman
- Department of Cancer Genetics and
- Authors for correspondence (e-mail: , )
| |
Collapse
|
66
|
Hentges P, Ahnesorg P, Pitcher RS, Bruce CK, Kysela B, Green AJ, Bianchi J, Wilson TE, Jackson SP, Doherty AJ. Evolutionary and functional conservation of the DNA non-homologous end-joining protein, XLF/Cernunnos. J Biol Chem 2006; 281:37517-26. [PMID: 17038309 DOI: 10.1074/jbc.m608727200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Non-homologous end-joining is a major pathway of DNA double-strand break repair in mammalian cells, deficiency in which confers radiosensitivity and immune deficiency at the whole organism level. A core protein complex comprising the Ku70/80 heterodimer together with a complex between DNA ligase IV and XRCC4 is conserved throughout eukaryotes and assembles at double-strand breaks to mediate ligation of broken DNA ends. In Saccharomyces cerevisiae an additional NHEJ protein, Nej1p, physically interacts with the ligase IV complex and is required in vivo for ligation of DNA double-strand breaks. Recent studies with cells derived from radiosensitive and immune-deficient patients have identified the human protein, XLF (also named Cernunnos), as a crucial NHEJ protein. Here we show that XLF and Nej1p are members of the same protein superfamily and that this family has members in diverse eukaryotes. Indeed, we show that a member of this family encoded by a previously uncharacterized open-reading frame in the Schizosaccharomyces pombe genome is required for NHEJ in this organism. Furthermore, our data reveal that XLF family proteins can bind to DNA and directly interact with the ligase IV-XRCC4 complex to promote DSB ligation. We therefore conclude that XLF family proteins interact with the ligase IV-XRCC4 complex to constitute the evolutionarily conserved enzymatic core of the NHEJ machinery.
Collapse
Affiliation(s)
- Pierre Hentges
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Yang YG, Saidi A, Frappart PO, Min W, Barrucand C, Dumon-Jones V, Michelon J, Herceg Z, Wang ZQ. Conditional deletion of Nbs1 in murine cells reveals its role in branching repair pathways of DNA double-strand breaks. EMBO J 2006; 25:5527-38. [PMID: 17082765 PMCID: PMC1679756 DOI: 10.1038/sj.emboj.7601411] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2006] [Accepted: 10/06/2006] [Indexed: 12/22/2022] Open
Abstract
NBS1 forms a complex with MRE11 and RAD50 (MRN) that is proposed to act on the upstream of two repair pathways of DNA double-strand break (DSB), homologous repair (HR) and non-homologous end joining (NHEJ). However, the function of Nbs1 in these processes has not fully been elucidated in mammals due to the lethal phenotype of cells and mice lacking Nbs1. Here, we have constructed mouse Nbs1-null embryonic fibroblasts and embryonic stem cells, through the Cre-loxP and sequential gene targeting techniques. We show that cells lacking Nbs1 display reduced HR of the single DSB in chromosomally integrated substrate, affecting both homology-directed repair (HDR) and single-stranded annealing pathways, and, surprisingly, increased NHEJ-mediated sequence deletion. Moreover, focus formation at DSBs and chromatin recruitment of the Nbs1 partners Rad50 and Mre11 as well as Rad51 and Brca1 are attenuated in these cells, whereas the NHEJ molecule Ku70 binding to chromatin is not affected. These data provide a novel insight into the function of MRN in the branching of DSB repair pathways.
Collapse
Affiliation(s)
- Yun-Gui Yang
- International Agency for Research on Cancer, Lyon, France
| | - Amal Saidi
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany
| | | | - Wookee Min
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany
| | | | | | | | - Zdenko Herceg
- International Agency for Research on Cancer, Lyon, France
| | - Zhao-Qi Wang
- International Agency for Research on Cancer, Lyon, France
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany
- Leibniz Institute for Age Research – Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany. Tel.: +49 3641 656415; Fax: +49 3641 656413; E-mail:
| |
Collapse
|
68
|
Malik M, Nitiss KC, Enriquez-Rios V, Nitiss JL. Roles of nonhomologous end-joining pathways in surviving topoisomerase II-mediated DNA damage. Mol Cancer Ther 2006; 5:1405-14. [PMID: 16818498 DOI: 10.1158/1535-7163.mct-05-0263] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Topoisomerase II is a target for clinically active anticancer drugs. Drugs targeting these enzymes act by preventing the religation of enzyme-DNA covalent complexes leading to protein-DNA adducts that include single- and double-strand breaks. In mammalian cells, nonhomologous repair pathways are critical for repairing topoisomerase II-mediated DNA damage. Because topoisomerase II-targeting agents, such as etoposide, can also induce chromosomal translocations that can lead to secondary malignancies, understanding nonhomologous repair of topoisomerase II-mediated DNA damage may help to define strategies that limit this critical side effect on an important class of anticancer agents. Using Saccharomyces cerevisiae as a model eukaryote, we have determined the contribution of genes required for nonhomologous end-joining (NHEJ) for repairing DNA damage arising from treatment with topoisomerase II poisons, such as etoposide and 4'-(9-acridinylamino)methanesulfon-m-anisidide (mAMSA). To increase cellular sensitivity to topoisomerase II poisons, we overexpressed either wild-type or drug-hypersensitive alleles of yeast topoisomerase II. Using this approach, we found that yku70 (hdf1), yku80 (hdf2), and other genes required for NHEJ were important for cell survival following exposure to etoposide. The clearest increase in sensitivity was observed with cells overexpressing an etoposide-hypersensitive allele of TOP2 (Ser740Trp). Hypersensitivity was also seen in some end-joining defective mutants exposed to the intercalating agent mAMSA, although the increase in sensitivity was less pronounced. To confirm that the increase in sensitivity was not solely due to the elevated expression of TOP2 or due to specific effects of the drug-hypersensitive TOP2 alleles, we also found that deletion of genes required for NHEJ increased the sensitivity of rad52 deletions to both etoposide and mAMSA. Taken together, these results show a clear role for NHEJ in the repair of DNA damage induced by topoisomerase II-targeting agents and suggest that this pathway may participate in translocations generated by drugs, such as etoposide.
Collapse
Affiliation(s)
- Mobeen Malik
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
69
|
Bau DT, Mau YC, Shen CY. The role of BRCA1 in non-homologous end-joining. Cancer Lett 2006; 240:1-8. [PMID: 16171943 DOI: 10.1016/j.canlet.2005.08.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 08/04/2005] [Indexed: 01/17/2023]
Abstract
From the genotypic viewpoint, single nucleotide polymorphisms in the genes of the non-homologous end-joining (NHEJ) pathway, which is important in the repair of DNA double-strand breaks, have been shown to be associated with increased breast cancer risk. However, more phenotypic evidence is needed to strengthen the link between defective NHEJ genes and breast cancer development. Recently, BRCA1-deficient mouse embryonic fibroblasts were found to have significantly reduced NHEJ activity, suggesting an accessory role of BRCA1 in NHEJ. Since BRCA1 is a well-documented breast cancer susceptibility gene, this association between NHEJ and BRCA1 not only suggests a role of BRCA1 in NHEJ, but also provides support for the tumorigenic contribution of the NHEJ pathway to breast cancer development. Interestingly, the phenotypic data show that BRCA1 may promote only specific subtypes of NHEJ, e.g. in vivo precise and terminal end-joining capacities, and have either a suppressive or no effect on others. However, these findings have remained inconclusive, and the lack of consistency between these results may be at least partly explained by the use of different assays, which may measure different subtypes of NHEJ, and of different cell lines investigated. Although some insights have been obtained, the whole picture of NHEJ repair in mammalian cells is far from complete, and the questions of how many subpathways are involved or how we can investigate each subpathway have not yet been adequately addressed.
Collapse
Affiliation(s)
- Da-Tian Bau
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, ROC
| | | | | |
Collapse
|
70
|
Du LL, Nakamura TM, Russell P. Histone modification-dependent and -independent pathways for recruitment of checkpoint protein Crb2 to double-strand breaks. Genes Dev 2006; 20:1583-96. [PMID: 16778077 PMCID: PMC1482479 DOI: 10.1101/gad.1422606] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cellular responses to DNA damage involve the relocalization of checkpoint proteins to DNA double-strand breaks (DSBs). The fission yeast checkpoint mediator protein Crb2, a homolog of mammalian 53BP1, forms ionizing radiation-induced nuclear foci (IRIF). The IRIF formation by Crb2 requires histone H2A C-terminal phosphorylation and H4-K20 methylation. However, the relevance of Crb2 relocalization is uncertain, because neither histone modification is required for a checkpoint response. Here we show that these histone modifications cooperate in the same Crb2 recruitment pathway, which also requires the Tudor and BRCT motifs in Crb2. In the absence of these histone modifications, an alternative recruitment pathway is sufficient for checkpoint activation and accumulation of Crb2 at a persistent DSB generated by HO endonuclease. This parallel pathway requires a cyclin-dependent kinase phosphorylation site in Crb2 that mediates an association with another BRCT protein Cut5 (the TopBP1 homolog), which also accumulates at HO-induced DSBs. We propose that such dual recruitment mechanisms may be a common feature of DNA damage checkpoint mediators.
Collapse
Affiliation(s)
- Li-Lin Du
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
71
|
Abstract
DNA double-strand breaks (DSBs) are among the most deleterious types of damage that can occur in the genome of eukaryotic cells because failure to repair them can lead to loss of genetic information and chromosome rearrangements. DSBs can arise by failures in DNA replication and by exposure to environmental factors, such as ionizing radiations and radiomimetic chemicals. Moreover, they might arise when telomeres undergo extensive erosion, leading to the activation of the DNA damage response pathways and the onset of apoptosis and/or senescence. Importantly, DSBs can also form in a programmed manner during development. For example, meiotic recombination and rearrangement of the immunoglobulin genes in lymphocytes require the generation of site- or region-specific DSBs through the action of specific endonucleases. Efficient DSB repair is crucial in safeguarding genome integrity, whose maintenance in the face of DSBs involves branched signalling networks that switch on DNA damage checkpoints, activate DNA repair, induce chromatin reorganization and modulate numerous cellular processes. Not surprisingly, defects in these networks result in a variety of diseases ranging from severe genetic disorders to cancer predisposition and accelerated ageing.
Collapse
Affiliation(s)
- Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, 20126 Milan, Italy.
| | | | | |
Collapse
|
72
|
Clejan I, Boerckel J, Ahmed S. Developmental modulation of nonhomologous end joining in Caenorhabditis elegans. Genetics 2006; 173:1301-17. [PMID: 16702421 PMCID: PMC1526663 DOI: 10.1534/genetics.106.058628] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Homologous recombination and nonhomologous end joining (NHEJ) are important DNA double-strand break repair pathways in many organisms. C. elegans strains harboring mutations in the cku-70, cku-80, or lig-4 NHEJ genes displayed multiple developmental abnormalities in response to radiation-induced DNA damage in noncycling somatic cells. These phenotypes did not result from S-phase, DNA damage, or mitotic checkpoints, apoptosis, or stress response pathways that regulate dauer formation. However, an additional defect in him-10, a kinetochore component, synergized with NHEJ mutations for the radiation-induced developmental phenotypes, suggesting that they may be triggered by mis-segregation of chromosome fragments. Although NHEJ was an important DNA repair pathway for noncycling somatic cells in C. elegans, homologous recombination was used to repair radiation-induced DNA damage in cycling somatic cells and in germ cells at all times. Noncycling germ cells that depended on homologous recombination underwent cell cycle arrest in G2, whereas noncycling somatic cells that depended on NHEJ arrested in G1, suggesting that cell cycle phase may modulate DNA repair during development. We conclude that error-prone NHEJ plays little or no role in DNA repair in C. elegans germ cells, possibly ensuring homology-based double-strand break repair and transmission of a stable genome from one generation to the next.
Collapse
Affiliation(s)
- Iuval Clejan
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | | | | |
Collapse
|
73
|
Hope JC, Mense SM, Jalakas M, Mitsumoto J, Freyer GA. Rqh1 blocks recombination between sister chromatids during double strand break repair, independent of its helicase activity. Proc Natl Acad Sci U S A 2006; 103:5875-80. [PMID: 16595622 PMCID: PMC1458666 DOI: 10.1073/pnas.0601571103] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Many questions remain about the process of DNA double strand break (DSB) repair by homologous recombination (HR), particularly concerning the exact function played by individual proteins and the details of specific steps in this process. Some recent studies have shown that RecQ DNA helicases have a function in HR. We studied the role of the RecQ helicase Rqh1 with HR proteins in the repair of a DSB created at a unique site within the Schizosaccharomyces pombe genome. We found that DSBs in rqh1(+) cells, are predominantly repaired by interchromosomal gene conversion, with HR between sister chromatids [sister-chromatid conversion (SCC)], occurring less frequently. In Deltarqh1 cells, repair by SCC is favored, and gene conversion rates slow significantly. When we limited the potential for SCC in Deltarqh1 cells by reducing the length of the G2 phase of the cell cycle, DSB repair continued to be predominated by SCC, whereas it was essentially eliminated in wild-type cells. These data indicate that Rqh1 acts to regulate DSB repair by blocking SCC. Interestingly, we found that this role for Rqh1 is independent of its helicase activity. In the course of these studies, we also found nonhomologous end joining to be largely faithful in S. pombe, contrary to current belief. These findings provide insight into the regulation of DSB repair by RecQ helicases.
Collapse
Affiliation(s)
| | - Sarah M. Mense
- Graduate Program in Environmental Health Sciences, Columbia University, Kolb Building Room 140, 722 West 168th Street, New York, NY 10032
| | - Merle Jalakas
- Graduate Program in Environmental Health Sciences, Columbia University, Kolb Building Room 140, 722 West 168th Street, New York, NY 10032
| | - Jun Mitsumoto
- Graduate Program in Environmental Health Sciences, Columbia University, Kolb Building Room 140, 722 West 168th Street, New York, NY 10032
| | - Greg A. Freyer
- *Graduate Program in Anatomy and Cell Biology and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
74
|
Kegel A, Martinez P, Carter SD, Åström SU. Genome wide distribution of illegitimate recombination events in Kluyveromyces lactis. Nucleic Acids Res 2006; 34:1633-45. [PMID: 16549875 PMCID: PMC1405753 DOI: 10.1093/nar/gkl064] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 01/21/2006] [Accepted: 02/28/2006] [Indexed: 11/13/2022] Open
Abstract
Illegitimate recombination (IR) is the process by which two DNA molecules not sharing homology to each other are joined. In Kluyveromyces lactis, integration of heterologous DNA occurred very frequently therefore constituting an excellent model organism to study IR. IR was completely dependent on the nonhomologous end-joining (NHEJ) pathway for DNA double strand break (DSB) repair and we detected no other pathways capable of mediating IR. NHEJ was very versatile, capable of repairing both blunt and non-complementary ends efficiently. Mapping the locations of genomic IR-events revealed target site preferences, in which intergenic regions (IGRs) and ribosomal DNA were overrepresented six-fold compared to open reading frames (ORFs). The IGR-events occurred predominantly within transcriptional regulatory regions. In a rad52 mutant strain IR still preferentially occurred at IGRs, indicating that DSBs in ORFs were not primarily repaired by homologous recombination (HR). Introduction of ectopic DSBs resulted in the efficient targeting of IR to these sites, strongly suggesting that IR occurred at spontaneous mitotic DSBs. The targeting efficiency was equal when ectopic breaks were introduced in an ORF or an IGR. We propose that spontaneous DSBs arise more frequently in transcriptional regulatory regions and in rDNA and such DSBs can be mapped by analyzing IR target sites.
Collapse
Affiliation(s)
- Andreas Kegel
- Department of Developmental Biology, Wennergren Institute, Stockholm UniversitySE-106 91 Stockholm, Sweden
| | - Paula Martinez
- Department of Developmental Biology, Wennergren Institute, Stockholm UniversitySE-106 91 Stockholm, Sweden
| | - Sidney D. Carter
- Department of Developmental Biology, Wennergren Institute, Stockholm UniversitySE-106 91 Stockholm, Sweden
| | - Stefan U. Åström
- Department of Developmental Biology, Wennergren Institute, Stockholm UniversitySE-106 91 Stockholm, Sweden
| |
Collapse
|
75
|
Di Virgilio M, Gautier J. Repair of double-strand breaks by nonhomologous end joining in the absence of Mre11. ACTA ACUST UNITED AC 2006; 171:765-71. [PMID: 16330708 PMCID: PMC2171289 DOI: 10.1083/jcb.200506029] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Mre11–Rad50–Nbs1 (MRN) complex involvement in nonhomologous end joining (NHEJ) is controversial. The MRN complex is required for NHEJ in Saccharomyces cerevisiae but not in Schizosaccharomyces pombe. In vertebrates, Mre11, Rad50, and Nbs1 are essential genes, and studies have been limited to cells carrying hypomorphic mutations in Mre11 or Nbs1, which still perform several MRN complex–associated activities. In this study, we analyze the effects of Mre11 loss on the mechanism of vertebrate NHEJ by using a chromatinized plasmid double-strand break (DSB) repair assay in cell-free extracts from Xenopus laevis. Mre11-depleted extracts are able to support efficient NHEJ repair of DSBs regardless of the end structure. Mre11 depletion does not alter the kinetics of end joining or the type and frequency of junctions found in repaired products. Finally, Ku70-independent end-joining events are not affected by Mre11 loss. Our data demonstrate that the MRN complex is not required for efficient and accurate NHEJ-mediated repair of DSBs in this vertebrate system.
Collapse
Affiliation(s)
- Michela Di Virgilio
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
76
|
Digweed M. Genomic Instability in Fanconi Anaemia and Nijmegen Breakage Syndrome. Genome Integr 2006. [DOI: 10.1007/7050_013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
77
|
Fisher TS, Zakian VA. Ku: A multifunctional protein involved in telomere maintenance. DNA Repair (Amst) 2005; 4:1215-26. [PMID: 15979949 DOI: 10.1016/j.dnarep.2005.04.021] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Accepted: 04/08/2005] [Indexed: 10/25/2022]
Abstract
The DNA-binding protein Ku plays a critical role in a variety of cellular processes, including the repair of double-stranded DNA breaks and V(D)J recombination. Paradoxically, while Ku is required for double-stranded break repair by non-homologous end-joining, in many organisms, Ku is also associated with telomeres. Although telomeres are naturally occurring double-stranded DNA breaks, one of their first identified functions is to protect chromosomes from end-to-end fusions, a process that is promoted by non-homologous end-joining. While located at telomeres, Ku appears to play several important roles, including: (1) regulating telomere addition, (2) protecting telomeres from recombination and nucleolytic degradation, (3) promoting transcriptional silencing of telomere-proximal genes and (4) nuclear positioning of telomeres. Here, we review the role of Ku at telomeres in the model organism, Saccharomyces cerevisiae and compare and contrast it to the roles of Ku at telomeres in other organisms.
Collapse
Affiliation(s)
- Timothy S Fisher
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
78
|
Abstract
Proper repair of DNA double-strand breaks (DSBs) is necessary for the maintenance of genomic integrity. Here, a new simple assay was used to study extrachromosomal DSB repair in Schizosaccharomyces pombe. Strikingly, DSB repair was associated with the capture of fission yeast mitochondrial DNA (mtDNA) at high frequency. Capture of mtDNA fragments required the Lig4p/Pku70p nonhomologous end-joining (NHEJ) machinery and its frequency was highly increased in fission yeast cells grown to stationary phase. The fission yeast Mre11 complex Rad32p/Rad50p/Nbs1p was also required for efficient capture of mtDNA at DSBs, supporting a role for the complex in promoting intermolecular ligation. Competition assays further revealed that microsatellite DNA from higher eukaryotes was preferentially captured at yeast DSBs. Finally, cotransformation experiments indicated that, in NHEJ-deficient cells, capture of extranuclear DNA at DSBs was observed if homologies--as short as 8 bp--were present between DNA substrate and DSB ends. Hence, whether driven by NHEJ, microhomology-mediated end-joining, or homologous recombination, DNA capture associated with DSB repair is a mutagenic process threatening genomic stability.
Collapse
Affiliation(s)
- Anabelle Decottignies
- Cellular Genetics, Christian de Duve Institute of Cellular Pathology, Catholic University of Louvain, Avenue Hippocrate 74+3, 1200 Brussels, Belgium.
| |
Collapse
|
79
|
Clatworthy AE, Valencia-Burton MA, Haber JE, Oettinger MA. The MRE11-RAD50-XRS2 Complex, in Addition to Other Non-homologous End-joining Factors, Is Required for V(D)J Joining in Yeast. J Biol Chem 2005; 280:20247-52. [PMID: 15757898 DOI: 10.1074/jbc.m500126200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lymphoid cells of the vertebrate immune system rely on factors in the non-homologous end-joining (NHEJ) DNA repair pathway to form signal joints during V(D)J recombination. Unlike other end-joining reactions, signal joint formation is a specialized case of NHEJ that also requires the lymphoid-specific RAG proteins. Whether V(D)J recombination requires the Mre11-Rad50-Nbs1 complex remains an open question, as null mutations in any member of the complex are lethal in mammals. However, Saccharomyces cerevisiae strains carrying null mutations in components of the homologous Mre11p-Rad50p-Xrs2p (MRX) complex are viable. We therefore took advantage of a recently developed V(D)J recombination assay in yeast to assess the role of MRX in V(D)J joining. Here we confirmed that signal joint formation in yeast is dependent on the same NHEJ factors known to be required in mammalian cells. In addition, we showed an absolute requirement for the MRX complex in signal joining, suggesting that the Mre11-Rad50-Nbs1 complex may be required for signal joint formation in mammalian cells as well.
Collapse
Affiliation(s)
- Anne E Clatworthy
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
80
|
Young JA, Hyppa RW, Smith GR. Conserved and nonconserved proteins for meiotic DNA breakage and repair in yeasts. Genetics 2005; 167:593-605. [PMID: 15238514 PMCID: PMC1470912 DOI: 10.1534/genetics.103.023762] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During meiosis DNA double-strand breaks initiate recombination in the distantly related budding and fission yeasts and perhaps in most eukaryotes. Repair of broken meiotic DNA is essential for formation of viable gametes. We report here distinct but overlapping sets of proteins in these yeasts required for formation and repair of double-strand breaks. Meiotic DNA breakage in Schizosaccharomyces pombe did not require Rad50 or Rad32, although the homologs Rad50 and Mre11 are required in Saccharomyces cerevisiae; these proteins are required for meiotic DNA break repair in both yeasts. DNA breakage required the S. pombe midmeiosis transcription factor Mei4, but the structurally unrelated midmeiosis transcription factor Ndt80 is not required for breakage in S. cerevisiae. Rhp51, Swi5, and Rad22 + Rti1 were required for full levels of DNA repair in S. pombe, as are the related S. cerevisiae proteins Rad51, Sae3, and Rad52. Dmc1 was not required for repair in S. pombe, but its homolog Dmc1 is required in the well-studied strain SK1 of S. cerevisiae. Additional proteins required in one yeast have no obvious homologs in the other yeast. The occurrence of conserved and nonconserved proteins indicates potential diversity in the mechanism of meiotic recombination and divergence of the machinery during the evolution of eukaryotes.
Collapse
Affiliation(s)
- Jennifer A Young
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
81
|
Peng Y, Woods RG, Beamish H, Ye R, Lees-Miller SP, Lavin MF, Bedford JS. Deficiency in the catalytic subunit of DNA-dependent protein kinase causes down-regulation of ATM. Cancer Res 2005; 65:1670-7. [PMID: 15753361 DOI: 10.1158/0008-5472.can-04-3451] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous reports have suggested a connection between reduced levels of the catalytic subunit of DNA-dependent protein kinases (DNA-PKcs), a component of the nonhomologous DNA double-strand breaks end-joining system, and a reduction in ATM. We studied this possible connection in other DNA-PKcs-deficient cell types, and following knockdown of DNA-PKcs with small interfering RNA, Chinese hamster ovary V3 cells, lacking DNA-PKcs, had reduced levels of ATM and hSMG-1, but both were restored after transfection with PRKDC. Atm levels were also reduced in murine scid cells. Reduction of ATM in a human glioma cell line lacking DNA-PKcs was accompanied by defective signaling through downstream substrates, post-irradiation. A large reduction of DNA-PKcs was achieved in normal human fibroblasts after transfection with two DNA-PKcs small interfering RNA sequences. This was accompanied by a reduction in ATM. These data were confirmed using immunocytochemical detection of the proteins. Within hours after transfection, a decline in PRKDC mRNA was seen, followed by a more gradual decline in DNA-PKcs protein beginning 1 day after transfection. No change in ATM mRNA was observed for 2 days post-transfection. Only after the DNA-PKcs reduction occurred was a reduction in ATM mRNA observed, beginning 2 days post-transfection. The amount of ATM began to decline, starting about 3 days post-treatment, then it declined to levels comparable to DNA-PKcs. Both proteins returned to normal levels at later times. These data illustrate a potentially important cross-regulation between the nonhomologous end-joining system for rejoining of DNA double-strand breaks and the ATM-dependent damage response network of pathways, both of which operate to maintain the integrity of the genome.
Collapse
Affiliation(s)
- Yuanlin Peng
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
The process of homologous recombination promotes error-free repair of double-strand breaks and is essential for meiosis. Central to the process of homologous recombination are the RAD52 group genes (RAD50, RAD51, RAD52, RAD54, RDH54/TID1, RAD55, RAD57, RAD59, MRE11, and XRS2), most of which were identified by their requirement for the repair of ionizing radiation-induced DNA damage in Saccharomyces cerevisiae. The Rad52 group proteins are highly conserved among eukaryotes. Recent studies showing defects in homologous recombination and double-strand break repair in several human cancer-prone syndromes have emphasized the importance of this repair pathway in maintaining genome integrity. Herein, we review recent genetic, biochemical, and structural analyses of the genes and proteins involved in recombination.
Collapse
|
83
|
Gong C, Bongiorno P, Martins A, Stephanou NC, Zhu H, Shuman S, Glickman MS. Mechanism of nonhomologous end-joining in mycobacteria: a low-fidelity repair system driven by Ku, ligase D and ligase C. Nat Struct Mol Biol 2005; 12:304-12. [PMID: 15778718 DOI: 10.1038/nsmb915] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Accepted: 03/01/2005] [Indexed: 11/09/2022]
Abstract
DNA double-strand breaks (DSBs) can be repaired either via homologous recombination (HR) or nonhomologous end-joining (NHEJ). Both pathways are operative in eukaryotes, but bacteria had been thought to rely on HR alone. Here we provide direct evidence that mycobacteria have a robust NHEJ pathway that requires Ku and a specialized polyfunctional ATP-dependent DNA ligase (LigD). NHEJ of blunt-end and complementary 5'-overhang DSBs is highly mutagenic ( approximately 50% error rate). Analysis of the recombination junctions ensuing from individual NHEJ events highlighted the participation of several DNA end-remodeling activities, including template-dependent fill-in of 5' overhangs, nontemplated addition of single nucleotides at blunt ends, and nucleolytic resection. LigD itself has the template-dependent and template-independent polymerase functions in vitro that compose the molecular signatures of NHEJ in vivo. Another ATP-dependent DNA ligase (LigC) provides a backup mechanism for LigD-independent error-prone repair of blunt-end DSBs. We speculate that NHEJ allows mycobacteria to evade genotoxic host defense.
Collapse
Affiliation(s)
- Chunling Gong
- Immunology and Molecular Biology Programs, Sloan-Kettering Institute, and Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Dudásová Z, Dudás A, Chovanec M. Non-homologous end-joining factors of Saccharomyces cerevisiae. FEMS Microbiol Rev 2005; 28:581-601. [PMID: 15539075 DOI: 10.1016/j.femsre.2004.06.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 06/02/2004] [Accepted: 06/02/2004] [Indexed: 01/09/2023] Open
Abstract
DNA double-strand breaks (DSB) are considered to be a severe form of DNA damage, because if left unrepaired, they can cause a cell death and, if misrepaired, they can lead to genomic instability and, ultimately, the development of cancer in multicellular organisms. The budding yeast Saccharomyces cerevisiae repairs DSB primarily by homologous recombination (HR), despite the presence of the KU70, KU80, DNA ligase IV and XRCC4 homologues, essential factors of the mammalian non-homologous end-joining (NHEJ) machinery. S. cerevisiae, however, lacks clear DNA-PKcs and ARTEMIS homologues, two important additional components of mammalian NHEJ. On the other hand, S. cerevisiae is endowed with a regulatory NHEJ component, Nej1, which has not yet been found in other organisms. Furthermore, there is evidence in budding yeast for a requirement for the Mre11/Rad50/Xrs2 complex for NHEJ, which does not appear to be the case either in Schizosaccharomyces pombe or in mammals. Here, we comprehensively describe the functions of all the S. cerevisiae NHEJ components identified so far and present current knowledge about the NHEJ process in this organism. In addition, this review depicts S. cerevisiae as a powerful model system for investigating the utilization of either NHEJ or HR in DSB repair.
Collapse
Affiliation(s)
- Zuzana Dudásová
- Laboratory of Molecular Genetics, Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava 37, Slovak Republic
| | | | | |
Collapse
|
85
|
Janzen CJ, Lander F, Dreesen O, Cross GAM. Telomere length regulation and transcriptional silencing in KU80-deficient Trypanosoma brucei. Nucleic Acids Res 2004; 32:6575-84. [PMID: 15602000 PMCID: PMC545459 DOI: 10.1093/nar/gkh991] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
KU is a heterodimer, consisting of approximately 70 and approximately 80 kDa subunits (KU70 and KU80, respectively), which is involved in a variety of nuclear functions. We generated tbKU80-deficient trypanosomes to explore the potential role of the tbKU complex in telomere maintenance and transcriptional regulation of variant surface glycoprotein (VSG) genes in Trypanosoma brucei. Using real-time PCR, we demonstrated that the expression of several different VSG genes remains tightly regulated in tbKU80-deficient bloodstream-form cell lines, suggesting that VSG transcription profiles do not change in these cells. Owing to developmental silencing of the VSG Expression Sites (ES), no VSG is transcribed in the insect procyclic stage. With a green fluorescent protein reporter system, we showed that tbKU80-deficient mutants are fully capable of ES silencing after differentiation into procyclic forms. Using T7 RNA polymerase to explore the transcriptional accessibility of ES chromatin in vivo, we demonstrated that tbKU80-deficient bloodstream-form cells were able to generate transcriptionally repressed ES chromatin after differentiation into procyclic cells. Finally, we demonstrated progressive telomere shortening in tbKU80-deficient mutants. The possible function of tbKU80 in telomere maintenance and regulation of telomerase is discussed.
Collapse
Affiliation(s)
- Christian J Janzen
- Laboratory of Molecular Parasitology, The Rockefeller University, Box 185, 1230 York Avenue, New York, NY 10021-6399, USA
| | | | | | | |
Collapse
|
86
|
Bladen CL, Udayakumar D, Takeda Y, Dynan WS. Identification of the polypyrimidine tract binding protein-associated splicing factor.p54(nrb) complex as a candidate DNA double-strand break rejoining factor. J Biol Chem 2004; 280:5205-10. [PMID: 15590677 DOI: 10.1074/jbc.m412758200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biological effects of ionizing radiation are attributable, in large part, to induction of DNA double-strand breaks. We report here the identification of a new protein factor that reconstitutes efficient double-strand break rejoining when it is added to a reaction containing the five other polypeptides known to participate in the human nonhomologous end-joining pathway. The factor is a stable heteromeric complex of polypyrimidine tract-binding protein-associated splicing factor (PSF) and a 54-kDa nuclear RNA-binding protein (p54(nrb)). These polypeptides, to which a variety of functions have previously been attributed, share extensive homology, including tandem RNA recognition motif domains. The PSF.p54(nrb) complex cooperates with Ku protein to form a functional preligation complex with substrate DNA. Based on structural comparison with related proteins, we propose a model where the four RNA recognition motif domains in the heteromeric PSF.p54(nrb) complex cooperate to align separate DNA molecules.
Collapse
Affiliation(s)
- Catherine L Bladen
- Program in Gene Regulation and Cancer Biology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
87
|
Ferreira MG, Cooper JP. Two modes of DNA double-strand break repair are reciprocally regulated through the fission yeast cell cycle. Genes Dev 2004; 18:2249-54. [PMID: 15371339 PMCID: PMC517518 DOI: 10.1101/gad.315804] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Several considerations suggest that levels of the two major modes of double-strand break (DSB) repair, homologous recombination (HR), and nonhomologous end joining (NHEJ), are regulated through the cell cycle. However, this idea has not been explicitly tested. In the absence of the telomere-binding protein Taz1, fission yeast undergo lethal telomere fusions via NHEJ. These fusions occur only during periods of nitrogen starvation and fail to accumulate during logarithmic growth, when the majority of cells are in G2. We show that G1 arrest is the specific nitrogen starvation-induced event that promotes NHEJ between taz1(-) telomeres. Furthermore, the general levels of NHEJ and HR are reciprocally regulated through the cell cycle, so that NHEJ is 10-fold higher in early G1 than in other cell cycle stages; the reverse is true for HR. Whereas NHEJ is known to be dispensable for survival of DSBs in cycling cells, we find that it is critical for repair and survival of DSBs arising during G1.
Collapse
|
88
|
d'Adda di Fagagna F, Teo SH, Jackson SP. Functional links between telomeres and proteins of the DNA-damage response. Genes Dev 2004; 18:1781-99. [PMID: 15289453 DOI: 10.1101/gad.1214504] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In response to DNA damage, cells engage a complex set of events that together comprise the DNA-damage response (DDR). These events bring about the repair of the damage and also slow down or halt cell cycle progression until the damage has been removed. In stark contrast, the ends of linear chromosomes, telomeres, are generally not perceived as DNA damage by the cell even though they terminate the DNA double-helix. Nevertheless, it has become clear over the past few years that many proteins involved in the DDR, particularly those involved in responding to DNA double-strand breaks, also play key roles in telomere maintenance. In this review, we discuss the current knowledge of both the telomere and the DDR, and then propose an integrated model for the events associated with the metabolism of DNA ends in these two distinct physiological contexts.
Collapse
|
89
|
Nakamura TM, Du LL, Redon C, Russell P. Histone H2A phosphorylation controls Crb2 recruitment at DNA breaks, maintains checkpoint arrest, and influences DNA repair in fission yeast. Mol Cell Biol 2004; 24:6215-30. [PMID: 15226425 PMCID: PMC434244 DOI: 10.1128/mcb.24.14.6215-6230.2004] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Revised: 04/20/2004] [Accepted: 04/26/2004] [Indexed: 11/20/2022] Open
Abstract
Mammalian ATR and ATM checkpoint kinases modulate chromatin structures near DNA breaks by phosphorylating a serine residue in the carboxy-terminal tail SQE motif of histone H2AX. Histone H2A is similarly regulated in Saccharomyces cerevisiae. The phosphorylated forms of H2AX and H2A, known as gamma-H2AX and gamma-H2A, are thought to be important for DNA repair, although their evolutionarily conserved roles are unknown. Here, we investigate gamma-H2A in the fission yeast Schizosaccharomyces pombe. We show that formation of gamma-H2A redundantly requires the ATR/ATM-related kinases Rad3 and Tel1. Mutation of the SQE motif to AQE (H2A-AQE) in the two histone H2A genes caused sensitivity to a wide range of genotoxic agents, increased spontaneous DNA damage, and impaired checkpoint maintenance. The H2A-AQE mutations displayed a striking synergistic interaction with rad22Delta (Rad52 homolog) in ionizing radiation (IR) survival. These phenotypes correlated with defective phosphorylation of the checkpoint proteins Crb2 and Chk1 and a failure to recruit large amounts of Crb2 to damaged DNA. Surprisingly, the H2A-AQE mutations substantially suppressed the IR hypersensitivity of crb2Delta cells by a mechanism that required the RecQ-like DNA helicase Rqh1. We propose that gamma-H2A modulates checkpoint and DNA repair through large-scale recruitment of Crb2 to damaged DNA. This function correlates with evidence that gamma-H2AX regulates recruitment of several BRCA1 carboxyl terminus domain-containing proteins (NBS1, 53BP1, MDC1/NFBD1, and BRCA1) in mammals.
Collapse
Affiliation(s)
- Toru M Nakamura
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
90
|
Myung K, Ghosh G, Fattah FJ, Li G, Kim H, Dutia A, Pak E, Smith S, Hendrickson EA. Regulation of telomere length and suppression of genomic instability in human somatic cells by Ku86. Mol Cell Biol 2004; 24:5050-9. [PMID: 15143195 PMCID: PMC416406 DOI: 10.1128/mcb.24.11.5050-5059.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ku86 plays a key role in nonhomologous end joining in organisms as evolutionarily disparate as bacteria and humans. In eukaryotic cells, Ku86 has also been implicated in the regulation of telomere length although the effect of Ku86 mutations varies considerably between species. Indeed, telomeres either shorten significantly, shorten slightly, remain unchanged, or lengthen significantly in budding yeast, fission yeast, chicken cells, or plants, respectively, that are null for Ku86 expression. Thus, it has been unclear which model system is most relevant for humans. We demonstrate here that the functional inactivation of even a single allele of Ku86 in human somatic cells results in profound telomere loss, which is accompanied by an increase in chromosomal fusions, translocations, and genomic instability. Together, these experiments demonstrate that Ku86, separate from its role in nonhomologous end joining, performs the additional function in human somatic cells of suppressing genomic instability through the regulation of telomere length.
Collapse
Affiliation(s)
- Kyungjae Myung
- 6-155 Jackson Hall, Department of Biochemistry, Molecular Biology, and Biophysics, 321 Church St. SE, University of Minnesota Medical School, Minneapolis, MN 55355, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Dudás A, Chovanec M. DNA double-strand break repair by homologous recombination. Mutat Res 2004; 566:131-67. [PMID: 15164978 DOI: 10.1016/j.mrrev.2003.07.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2003] [Revised: 07/29/2003] [Accepted: 07/30/2003] [Indexed: 01/06/2023]
Abstract
DNA double-strand breaks (DSB) are presumed to be the most deleterious DNA lesions as they disrupt both DNA strands. Homologous recombination (HR), single-strand annealing, and non-homologous end-joining are considered to be the pathways for repairing DSB. In this review, we focus on DSB repair by HR. The proteins involved in this process as well as the interactions among them are summarized and characterized. The main emphasis is on eukaryotic cells, particularly the budding yeast Saccharomyces cerevisiae and mammals. Only the RAD52 epistasis group proteins are included.
Collapse
Affiliation(s)
- Andrej Dudás
- Laboratory of Molecular Genetics, Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava 37, Slovak Republic
| | | |
Collapse
|
92
|
Zhang J, Willers H, Feng Z, Ghosh JC, Kim S, Weaver DT, Chung JH, Powell SN, Xia F. Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol Cell Biol 2004; 24:708-18. [PMID: 14701743 PMCID: PMC343805 DOI: 10.1128/mcb.24.2.708-718.2004] [Citation(s) in RCA: 246] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 09/04/2003] [Accepted: 10/23/2003] [Indexed: 12/29/2022] Open
Abstract
The pathway determining malignant cellular transformation, which depends upon mutation of the BRCA1 tumor suppressor gene, is poorly defined. A growing body of evidence suggests that promotion of DNA double-strand break repair by homologous recombination (HR) may be the means by which BRCA1 maintains genomic stability, while a role of BRCA1 in error-prone nonhomologous recombination (NHR) processes has just begun to be elucidated. The BRCA1 protein becomes phosphorylated in response to DNA damage, but the effects of phosphorylation on recombinational repair are unknown. In this study, we tested the hypothesis that the BRCA1-mediated regulation of recombination requires the Chk2- and ATM-dependent phosphorylation sites. We studied Rad51-dependent HR and random chromosomal integration of linearized plasmid DNA, a subtype of NHR, which we demonstrate to be dependent on the Mre11-Rad50-Nbs1 complex. Prevention of Chk2-mediated phosphorylation via mutation of the serine 988 residue of BRCA1 disrupted both the BRCA1-dependent promotion of HR and the suppression of NHR. Similar results were obtained when endogenous Chk2 kinase activity was inhibited by expression of a dominant-negative Chk2 mutant. Surprisingly, the opposing regulation of HR and NHR did not require the ATM phosphorylation sites on serines 1423 and 1524. Together, these data suggest a functional link between recombination control and breast cancer predisposition in carriers of Chk2 and BRCA1 germ line mutations. We propose a dual regulatory role for BRCA1 in maintaining genome integrity, whereby BRCA1 phosphorylation status controls the selectivity of repair events dictated by HR and error-prone NHR.
Collapse
Affiliation(s)
- Junran Zhang
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Bertuch AA, Lundblad V. The Ku heterodimer performs separable activities at double-strand breaks and chromosome termini. Mol Cell Biol 2003; 23:8202-15. [PMID: 14585978 PMCID: PMC262345 DOI: 10.1128/mcb.23.22.8202-8215.2003] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ku heterodimer functions at two kinds of DNA ends: telomeres and double-strand breaks. The role that Ku plays at these two classes of termini must be distinct, because Ku is required for accurate and efficient joining of double-strand breaks while similar DNA repair events are normally prohibited at chromosome ends. Toward defining these functional differences, we have identified eight mutations in the large subunit of the Saccharomyces cerevisiae Ku heterodimer (YKU80) which retain the ability to repair double-strand breaks but are severely impaired for chromosome end protection. Detailed characterization of these mutations, referred to as yku80(tel) alleles, has revealed that Ku performs functionally distinct activities at subtelomeric chromatin versus the end of the chromosome, and these activities are separable from Ku's role in telomere length regulation. While at the chromosome terminus, we propose that Ku participates in two different activities: it facilitates telomerase-mediated G-strand synthesis, thereby contributing to telomere length regulation, and it separately protects against resection of the C-strand, thereby contributing to protection of chromosome termini. Furthermore, we propose that the Ku heterodimer performs discrete sets of functions at chromosome termini and at duplex subtelomeric chromatin, via separate interactions with these two locations. Based on homology modeling with the human Ku structure, five of the yku80(tel) alleles mutate residues that are conserved between the yeast and human Ku80 proteins, suggesting that these mutations probe activities that are shared between yeast and humans.
Collapse
Affiliation(s)
- Alison A Bertuch
- Department of Pediatrics, Hematology/Oncology Section, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | |
Collapse
|
94
|
Udayakumar D, Bladen CL, Hudson FZ, Dynan WS. Distinct pathways of nonhomologous end joining that are differentially regulated by DNA-dependent protein kinase-mediated phosphorylation. J Biol Chem 2003; 278:41631-5. [PMID: 12917393 DOI: 10.1074/jbc.m306470200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nonhomologous end joining is the most common mechanism of DNA double-strand break repair in human cells. Here we show that nonhomologous end joining can occur by two biochemically distinct pathways. One requires a fraction containing the Mre11-Rad50-NBS1 complex. The other requires a fraction containing a novel, approximately 200-kDa factor that does not correspond to any of the previously described double-strand break repair proteins. The two pathways converge, sharing a common requirement for the DNA ligase IV-XRCC4 complex to catalyze the final step of phosphodiester bond formation. Whereas the Mre11-Rad50-NBS1-dependent pathway does not require, and may be inhibited by, DNA-dependent protein kinase-mediated phosphorylation, the new pathway depends on this phosphorylation for release from a DNA-dependent protein kinase-mediated reaction checkpoint. The existence of two distinct pathways, which are differentially regulated by the DNA-dependent protein kinase, provides a possible explanation for the selective repair defects seen in DNA-dependent protein kinase-deficient mutants.
Collapse
Affiliation(s)
- Durga Udayakumar
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
95
|
Ueno M, Nakazaki T, Akamatsu Y, Watanabe K, Tomita K, Lindsay HD, Shinagawa H, Iwasaki H. Molecular characterization of the Schizosaccharomyces pombe nbs1+ gene involved in DNA repair and telomere maintenance. Mol Cell Biol 2003; 23:6553-63. [PMID: 12944481 PMCID: PMC193704 DOI: 10.1128/mcb.23.18.6553-6563.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human MRN complex is a multisubunit nuclease that is composed of Mre11, Rad50, and Nbs1 and is involved in homologous recombination and DNA damage checkpoints. Mutations of the MRN genes cause genetic disorders such as Nijmegen breakage syndrome. Here we identified a Schizosaccharomyces pombe nbs1(+) homologue by screening for mutants with mutations that caused methyl methanesulfonate (MMS) sensitivity and were synthetically lethal with the rad2Delta mutation. Nbs1 physically interacts with the C-terminal half of Rad32, the Schizosaccharomyces pombe Mre11 homologue, in a yeast two-hybrid assay. nbs1 mutants showed sensitivities to gamma-rays, UV, MMS, and hydroxyurea and displayed telomere shortening similar to the characteristics of rad32 and rad50 mutants. nbs1, rad32, and rad50 mutant cells were elongated and exhibited abnormal nuclear morphology. These findings indicate that S. pombe Nbs1 forms a complex with Rad32-Rad50 and is required for homologous recombination repair, telomere length regulation, and the maintenance of chromatin structure. Amino acid sequence features and some characteristics of the DNA repair function suggest that the S. pombe Rad32-Rad50-Nbs1 complex has functional similarity to the corresponding MRN complexes of higher eukaryotes. Therefore, S. pombe Nbs1 will provide an additional model system for studying the molecular function of the MRN complex associated with genetic diseases.
Collapse
Affiliation(s)
- Masaru Ueno
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Oya, Shizuoka 422-8529, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Kibe T, Tomita K, Matsuura A, Izawa D, Kodaira T, Ushimaru T, Uritani M, Ueno M. Fission yeast Rhp51 is required for the maintenance of telomere structure in the absence of the Ku heterodimer. Nucleic Acids Res 2003; 31:5054-63. [PMID: 12930956 PMCID: PMC212814 DOI: 10.1093/nar/gkg718] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Schizosaccharomyces pombe Ku70-Ku80 heterodimer is required for telomere length regulation. Lack of pku70+ results in telomere shortening and striking rearrangements of telomere-associated sequences. We found that the rearrangements of telomere-associated sequences in pku80+ mutants are Rhp51 dependent, but not Rad50 dependent. Rhp51 bound to telomere ends when the Ku heterodimer was not present at telomere ends. We also found that the single-stranded G-rich tails increased in S phase in wild-type strains, while deletion of pku70+ increased the single-stranded overhang in both G2 and S phase. Based on these observations, we propose that Rhp51 binds to the G-rich overhang and promotes homologous pairing between two different telomere ends in the absence of Ku heterodimer. Moreover, pku80 rhp51 double mutants showed a significantly reduced telomere hybridization signal. Our results suggest that, although Ku heterodimer sequesters Rhp51 from telomere ends to inhibit homologous recombination activity, Rhp51 plays important roles for the maintenance of telomere ends in the absence of the Ku heterodimer.
Collapse
Affiliation(s)
- Tatsuya Kibe
- Department of Chemistry, Shizuoka University, 836 Oya, Shizuoka 422-8529, Japan
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Gallego ME, Bleuyard JY, Daoudal-Cotterell S, Jallut N, White CI. Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:557-565. [PMID: 12940949 DOI: 10.1046/j.1365-313x.2003.01827.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chromosomal breaks are repaired by homologous recombination (HR) or non-homologous end joining (NHEJ) mechanisms. The Ku70/Ku80 heterodimer binds DNA ends and plays roles in NHEJ and telomere maintenance in organisms ranging from yeast to humans. We have previously identified a ku80 mutant of the model plant Arabidopsis thaliana and shown the role of Ku80 in telomere homeostasis in plant cells. We show here that this mutant is hypersensitive to the DNA-damaging agent methyl methane sulphonate and has a reduced capacity to carry out NHEJ recombination. To understand the interplay between HR and NHEJ in plants, we measured HR in the absence of Ku80. We find that the frequency of intrachromosomal HR is not affected by the absence of Ku80. Previous work has clearly implicated the Ku heterodimer in Agrobacterium-mediated T-DNA transformation of yeast. Surprisingly, ku80 mutant plants show no defect in the efficiency of T-DNA transformation of plants with Agrobacterium, showing that an alternative pathway must exist in plants.
Collapse
Affiliation(s)
- M E Gallego
- CNRS UMR 6547, Université Blaise Pascal, 24 avenue des Landais, 63177 Aubière, France
| | | | | | | | | |
Collapse
|
98
|
Meister P, Poidevin M, Francesconi S, Tratner I, Zarzov P, Baldacci G. Nuclear factories for signalling and repairing DNA double strand breaks in living fission yeast. Nucleic Acids Res 2003; 31:5064-73. [PMID: 12930957 PMCID: PMC212815 DOI: 10.1093/nar/gkg719] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In mammalian and budding yeast cells treated with genotoxic agents, different proteins implicated in detecting, signalling or repairing DNA lesions form nuclear foci. We studied foci formed by proteins involved in these processes in living fission yeast cells, which is amenable to genetic and molecular analysis. Using fluorescent tags, we analysed subnuclear localisations of the DNA damage checkpoint protein Rad9, of the homologous recombination protein Rad22 and of PCNA, which are implicated in many aspects of DNA metabolism. After inducing double strand breaks (DSBs) with ionising radiations, Rad22, Rad9 and PCNA form a low number of nuclear foci. Rad9 recruitment to foci depends on the presence of Rad1, Hus1 and Rad17, but is independent of downstream checkpoint effectors and of homologous recombination proteins. Likewise, Rad22 and PCNA form foci despite inactive homologous recombination repair and impaired DNA damage checkpoint. Rad22 and Rad9 foci co-localise completely, whereas PCNA co-localises with Rad22 and Rad9 only partially. Foci do not disassemble in cells unable to repair DNA by homologous recombination. Thus, in fission yeast, DSBs are detected by the DNA damage checkpoint and are repaired by homologous recombination at a few spatially confined subnuclear compartments where Rad22, Rad9 and PCNA concentrate independently.
Collapse
Affiliation(s)
- Peter Meister
- Institut Curie-CNRS UMR 2027, Bâtiment 110, Centre Universitaire, 91405 Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
99
|
Tomita K, Matsuura A, Caspari T, Carr AM, Akamatsu Y, Iwasaki H, Mizuno KI, Ohta K, Uritani M, Ushimaru T, Yoshinaga K, Ueno M. Competition between the Rad50 complex and the Ku heterodimer reveals a role for Exo1 in processing double-strand breaks but not telomeres. Mol Cell Biol 2003; 23:5186-97. [PMID: 12861005 PMCID: PMC165728 DOI: 10.1128/mcb.23.15.5186-5197.2003] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Mre11-Rad50-Nbs1(Xrs2) complex and the Ku70-Ku80 heterodimer are thought to compete with each other for binding to DNA ends. To investigate the mechanism underlying this competition, we analyzed both DNA damage sensitivity and telomere overhangs in Schizosaccharomyces pombe rad50-d, rad50-d pku70-d, rad50-d exo1-d, and pku70-d rad50-d exo1-d cells. We found that rad50 exo1 double mutants are more methyl methanesulfonate (MMS) sensitive than the respective single mutants. The MMS sensitivity of rad50-d cells was suppressed by concomitant deletion of pku70+. However, the MMS sensitivity of the rad50 exo1 double mutant was not suppressed by the deletion of pku70+. The G-rich overhang at telomere ends in taz1-d cells disappeared upon deletion of rad50+, but the overhang reappeared following concomitant deletion of pku70+. Our data suggest that the Rad50 complex can process DSB ends and telomere ends in the presence of the Ku heterodimer. However, the Ku heterodimer inhibits processing of DSB ends and telomere ends by alternative nucleases in the absence of the Rad50-Rad32 protein complex. While we have identified Exo1 as the alternative nuclease targeting DNA break sites, the identity of the nuclease acting on the telomere ends remains elusive.
Collapse
Affiliation(s)
- Kazunori Tomita
- Department of Chemistry, Shizuoka University, 836 Oya, Shizuoka 422-8529, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Smith J, Riballo E, Kysela B, Baldeyron C, Manolis K, Masson C, Lieber MR, Papadopoulo D, Jeggo P. Impact of DNA ligase IV on the fidelity of end joining in human cells. Nucleic Acids Res 2003; 31:2157-67. [PMID: 12682366 PMCID: PMC153745 DOI: 10.1093/nar/gkg317] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A DNA ligase IV (LIG4)-null human pre-B cell line and human cell lines with hypomorphic mutations in LIG4 are significantly impaired in the frequency and fidelity of end joining using an in vivo plasmid assay. Analysis of the null line demonstrates the existence of an error-prone DNA ligase IV-independent rejoining mechanism in mammalian cells. Analysis of lines with hypomorphic mutations demonstrates that residual DNA ligase IV activity, which is sufficient to promote efficient end joining, nevertheless can result in decreased fidelity of rejoining. Thus, DNA ligase IV is an important factor influencing the fidelity of end joining in vivo. The LIG4-defective cell lines also showed impaired end joining in an in vitro assay using cell-free extracts. Elevated degradation of the terminal nucleotide was observed in a LIG4-defective line, and addition of the DNA ligase IV-XRCC4 complex restored end protection. End protection by DNA ligase IV was not dependent upon ligation. Finally, using purified proteins, we demonstrate that DNA ligase IV-XRCC4 is able to protect DNA ends from degradation by T7 exonuclease. Thus, the ability of DNA ligase IV-XRCC4 to protect DNA ends may contribute to the ability of DNA ligase IV to promote accurate rejoining in vivo.
Collapse
Affiliation(s)
- Julianne Smith
- UMR 218 CNRS, Institut Curie-Recherche, 26 rue d'Ulm, 75248 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|