51
|
Khalaf RA, Zitomer RS. The DNA binding protein Rfg1 is a repressor of filamentation in Candida albicans. Genetics 2001; 157:1503-12. [PMID: 11290707 PMCID: PMC1461606 DOI: 10.1093/genetics/157.4.1503] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have identified a repressor of hyphal growth in the pathogenic yeast Candida albicans. The gene was originally cloned in an attempt to characterize the homologue of the Saccharomyces cerevisiae Rox1, a repressor of hypoxic genes. Rox1 is an HMG-domain, DNA binding protein with a repression domain that recruits the Tup1/Ssn6 general repression complex to achieve repression. The C. albicans clone also encoded an HMG protein that was capable of repression of a hypoxic gene in a S. cerevisiae rox1 deletion strain. Gel retardation experiments using the purified HMG domain of this protein demonstrated that it was capable of binding specifically to a S. cerevisiae hypoxic operator DNA sequence. These data seemed to indicate that this gene encoded a hypoxic repressor. However, surprisingly, when a homozygous deletion was generated in C. albicans, the cells became constitutive for hyphal growth. This phenotype was rescued by the reintroduction of the wild-type gene on a plasmid, proving that the hyphal growth phenotype was due to the deletion and not a secondary mutation. Furthermore, oxygen repression of the hypoxic HEM13 gene was not affected by the deletion nor was this putative ROX1 gene regulated positively by oxygen as is the case for the S. cerevisiae gene. All these data indicate that this gene, now designated RFG1 for Repressor of Filamentous Growth, is a repressor of genes required for hyphal growth and not a hypoxic repressor.
Collapse
Affiliation(s)
- R A Khalaf
- Department of Biological Sciences, University at Albany/State University of New York, Albany, New York 12222, USA
| | | |
Collapse
|
52
|
Kadosh D, Johnson AD. Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans. Mol Cell Biol 2001; 21:2496-505. [PMID: 11259598 PMCID: PMC86882 DOI: 10.1128/mcb.21.7.2496-2505.2001] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans, the major fungal pathogen in humans, can undergo a reversible transition from ellipsoidal single cells (blastospores) to filaments composed of elongated cells attached end to end. This transition is thought to allow for rapid colonization of host tissues, facilitating the spread of infection. Here, we report the identification of Rfg1, a transcriptional regulator that controls filamentous growth of C. albicans in an environment-dependent manner. Rfg1 is important for virulence of C. albicans in a mouse model and is shown to control a number of genes that have been implicated in this process. The closest relative to Rfg1 in Saccharomyces cerevisiae is Rox1, a key repressor of hypoxic genes. However, Rfg1 does not appear to play a role in the regulation of hypoxic genes in C. albicans. These results demonstrate that a regulatory protein that controls the hypoxic response in S. cerevisiae controls filamentous growth and virulence in C. albicans. The observations described in this paper raise new and intriguing questions about the evolutionary relationship between these processes.
Collapse
Affiliation(s)
- D Kadosh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California 94143, USA
| | | |
Collapse
|
53
|
Abramova NE, Cohen BD, Sertil O, Kapoor R, Davies KJ, Lowry CV. Regulatory mechanisms controlling expression of the DAN/TIR mannoprotein genes during anaerobic remodeling of the cell wall in Saccharomyces cerevisiae. Genetics 2001; 157:1169-77. [PMID: 11238402 PMCID: PMC1461566 DOI: 10.1093/genetics/157.3.1169] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The DAN/TIR genes of Saccharomyces cerevisiae encode homologous mannoproteins, some of which are essential for anaerobic growth. Expression of these genes is induced during anaerobiosis and in some cases during cold shock. We show that several heme-responsive mechanisms combine to regulate DAN/TIR gene expression. The first mechanism employs two repression factors, Mox1 and Mox2, and an activation factor, Mox4 (for mannoprotein regulation by oxygen). The genes encoding these proteins were identified by selecting for recessive mutants with altered regulation of a dan1::ura3 fusion. MOX4 is identical to UPC2, encoding a binucleate zinc cluster protein controlling expression of an anaerobic sterol transport system. Mox4/Upc2 is required for expression of all the DAN/TIR genes. It appears to act through a consensus sequence termed the AR1 site, as does Mox2. The noninducible mox4Delta allele was epistatic to the constitutive mox1 and mox2 mutations, suggesting that Mox1 and Mox2 modulate activation by Mox4 in a heme-dependent fashion. Mutations in a putative repression domain in Mox4 caused constitutive expression of the DAN/TIR genes, indicating a role for this domain in heme repression. MOX4 expression is induced both in anaerobic and cold-shocked cells, so heme may also regulate DAN/TIR expression through inhibition of expression of MOX4. Indeed, ectopic expression of MOX4 in aerobic cells resulted in partially constitutive expression of DAN1. Heme also regulates expression of some of the DAN/TIR genes through the Rox7 repressor, which also controls expression of the hypoxic gene ANB1. In addition Rox1, another heme-responsive repressor, and the global repressors Tup1 and Ssn6 are also required for full aerobic repression of these genes.
Collapse
Affiliation(s)
- N E Abramova
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12203, USA
| | | | | | | | | | | |
Collapse
|
54
|
Cohen BD, Sertil O, Abramova NE, Davies KJ, Lowry CV. Induction and repression of DAN1 and the family of anaerobic mannoprotein genes in Saccharomyces cerevisiae occurs through a complex array of regulatory sites. Nucleic Acids Res 2001; 29:799-808. [PMID: 11160904 PMCID: PMC30382 DOI: 10.1093/nar/29.3.799] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The DAN/TIR mannoprotein genes of Saccharomyces cerevisiae (DAN1, DAN2, DAN3, DAN4, TIR1, TIR2, TIR3 and TIR4) are expressed in anaerobic cells while the predominant cell wall proteins Cwp1 and Cwp2 are down-regulated. Elements involved in activation and repression of the DAN/TIR genes were defined in this study, using the DAN1 promoter as a model. Nested deletions in a DAN1/lacZ reporter pinpointed regions carrying activation and repression elements. Inspection revealed two consensus sequences subsequently shown to be independent anaerobic response elements (AR1, consensus TCGTTYAG; AR2, consensus AAAAATTGTTGA). AR1 is found in all of the DAN/TIR promoters; AR2 is found in DAN1, DAN2 and DAN3. A 120 bp segment carrying two copies of AR1 preferentially activated transcription of lacZ under anaerobic conditions. A fusion of three synthetic copies of AR1 to MEL1 was also expressed anaerobically. Mutations in either AR1 site within the 120 bp segment caused a drastic loss of expression, indicating that both are necessary for activation and implying cooperativity between adjacent transcriptional activation complexes. A single AR2 site carried on a 46 bp fragment from the DAN1 promoter activated lacZ transcription under anaerobic conditions, as did a 26 bp synthetic AR2 fragment fused to MEL1. Nucleotide substitutions within the AR2 sequence eliminated the activity of the 46 bp segment. Ablation of the AR2 sequences in the full promoter caused a partial reduction of expression. The presence of the ATTGTT core (recognized by HMG proteins) in the AR2 sequence suggests that an HMG protein may activate through AR2. One region was implicated in aerobic repression of DAN1. It contains sites for the heme-induced Mot3 and Rox1 repressors.
Collapse
Affiliation(s)
- B D Cohen
- Center for Immunology and Microbial Disease, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | |
Collapse
|
55
|
Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA. Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 2001; 12:323-37. [PMID: 11179418 PMCID: PMC30946 DOI: 10.1091/mbc.12.2.323] [Citation(s) in RCA: 1005] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2000] [Revised: 10/31/2000] [Accepted: 11/14/2000] [Indexed: 11/11/2022] Open
Abstract
We used genome-wide expression analysis to explore how gene expression in Saccharomyces cerevisiae is remodeled in response to various changes in extracellular environment, including changes in temperature, oxidation, nutrients, pH, and osmolarity. The results demonstrate that more than half of the genome is involved in various responses to environmental change and identify the global set of genes induced and repressed by each condition. These data implicate a substantial number of previously uncharacterized genes in these responses and reveal a signature common to environmental responses that involves approximately 10% of yeast genes. The results of expression analysis with MSN2/MSN4 mutants support the model that the Msn2/Msn4 activators induce the common response to environmental change. These results provide a global description of the transcriptional response to environmental change and extend our understanding of the role of activators in effecting this response.
Collapse
Affiliation(s)
- H C Causton
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Burke PV, Kwast KE. Oxygen dependence of expression of cytochrome C and cytochrome C oxidase genes in S. cerevisiae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 475:197-208. [PMID: 10849661 DOI: 10.1007/0-306-46825-5_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- P V Burke
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, USA
| | | |
Collapse
|
57
|
Kastaniotis AJ, Mennella TA, Konrad C, Torres AM, Zitomer RS. Roles of transcription factor Mot3 and chromatin in repression of the hypoxic gene ANB1 in yeast. Mol Cell Biol 2000; 20:7088-98. [PMID: 10982825 PMCID: PMC86251 DOI: 10.1128/mcb.20.19.7088-7098.2000] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2000] [Accepted: 07/03/2000] [Indexed: 11/20/2022] Open
Abstract
The hypoxic genes of Saccharomyces cerevisiae are repressed by a complex consisting of the aerobically expressed, sequence-specific DNA-binding protein Rox1 and the Tup1-Ssn6 general repressors. The regulatory region of one well-studied hypoxic gene, ANB1, is comprised of two operators, OpA and OpB, each of which has two strong Rox1 binding sites, yet OpA represses transcription almost 10 times more effectively than OpB. We show here that this difference is due to the presence of a Mot3 binding site in OpA. Mutations in this site reduced OpA repression to OpB levels, and the addition of a Mot3 binding site to OpB enhanced repression. Deletion of the mot3 gene also resulted in reduced repression of ANB1. Repression of two other hypoxic genes in which Mot3 sites were associated with Rox1 sites was reduced in the deletion strain, but other hypoxic genes were unaffected. In addition, the mot3Delta mutation caused a partial derepression of the Mig1-Tup1-Ssn6-repressed SUC2 gene, but not the alpha2-Mcm1-Tup1-Ssn6-repressed STE2 gene. The Mot3 protein was demonstrated to bind to the ANB1 OpA in vitro. Competition experiments indicated that there was no interaction between Rox1 and Mot3, indicating that Mot3 functions either in Tup1-Ssn6 recruitment or directly in repression. A great deal of evidence has accumulated suggesting that the Tup1-Ssn6 complex represses transcription through both nucleosome positioning and a direct interaction with the basal transcriptional machinery. We demonstrate here that under repressed conditions a nucleosome is positioned over the TATA box in the wild-type ANB1 promoter. This nucleosome was absent in cells carrying a rox1, tup1, or mot3 deletion, all of which cause some degree of derepression. Interestingly, however, this positioned nucleosome was also lost in a cell carrying a deletion of the N-terminal coding region of histone H4, yet ANB1 expression remained fully repressed. A similar deletion in the gene for histone H3, which had no effect on repression, had only a minor effect on the positioned nucleosome. These results indicate that the nucleosome phasing on the ANB1 promoter caused by the Rox1-Mot3-Tup1-Ssn6 complex is either completely redundant with a chromatin-independent repression mechanism or, less likely, plays no role in repression at all.
Collapse
Affiliation(s)
- A J Kastaniotis
- Department of Biological Sciences, University at Albany/SUNY, Albany, New York 12222, USA
| | | | | | | | | |
Collapse
|
58
|
Lombardía LJ, Cadahía-Rodríguez JL, Freire-Picos MA, González-Siso MI, Rodríguez-Torres AM, Cerdán ME. Transcript analysis of 203 novel genes from Saccharomyces cerevisiae in hap1 and rox1 mutant backgrounds. Genome 2000; 43:881-6. [PMID: 11081979 DOI: 10.1139/g00-049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hap1 and Rox1 are transcriptional regulators that bind regulatory sites in the promoters of oxygen-regulated genes in Saccharomyces cerevisiae. Hap1 is a heme-responsive activator of genes induced in aerobic conditions and Rox1 is a repressor of hypoxic genes in aerobic conditions. We have studied transcriptional regulation of a pool of 203 open reading frames (ORFs) from chromosomes IV, VII, and XIV in wild-type, hap1, and rox1 mutant genetic backgrounds in an attempt to extend the family of oxygen and heme regulated genes. Only three ORFs are significantly repressed by Rox1 but they cannot be considered as typical hypoxic genes because they are not overexpressed during hypoxia.
Collapse
Affiliation(s)
- L J Lombardía
- Departamento de Biología Celular y Molecular, Universidad de La Coruña, Spain
| | | | | | | | | | | |
Collapse
|
59
|
Hon T, Hach A, Lee HC, Cheng T, Zhang L. Functional analysis of heme regulatory elements of the transcriptional activator Hap1. Biochem Biophys Res Commun 2000; 273:584-91. [PMID: 10873649 DOI: 10.1006/bbrc.2000.2995] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heme regulation of the activity of diverse proteins was thought to be mediated by heme-responsive motifs (HRMs). The yeast transcriptional activator Hap1 contains seven HRMs: HRM1-7. Three copies of a 17-amino-acid repeat are also located in the region encompassing HRM1 to -6. We examined the effects of these HRMs and repeats on heme regulation of Hap1 activity by deletion analysis and by Ala substitutions of key residues. We found that the effect of mutation or deletion of one HRM or 17-amino-acid repeat on Hap1 heme responsiveness is different from the effect of mutation or deletion of another HRM or repeat. Our data suggest that HRM7 plays a dominant role in mediating heme activation of Hap1 in heme-sufficient cells while HRM1-6 may scavenge heme and cause a low level of Hap1 activation in heme-deficient cells. These results may help in understanding the roles of HRMs in other hemoproteins.
Collapse
Affiliation(s)
- T Hon
- Department of Biochemistry, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
60
|
Abstract
We have developed a novel algorithm for analyzing gene expression data. This algorithm uses fuzzy logic to transform expression values into qualitative descriptors that can be evaluated by using a set of heuristic rules. In our tests we designed a model to find triplets of activators, repressors, and targets in a yeast gene expression data set. For the conditions tested, the predictions made by the algorithm agree well with experimental data in the literature. The algorithm can also assist in determining the function of uncharacterized proteins and is able to detect a substantially larger number of transcription factors than could be found at random. This technology extends current techniques such as clustering in that it allows the user to generate a connected network of genes using only expression data.
Collapse
Affiliation(s)
- P J Woolf
- Bioinformatics, Department of Molecular Biology, Parke-Davis Pharmaceutical Research, Warner-Lanbert, Ann Arbor 48105, USA
| | | |
Collapse
|
61
|
Garcia-Gimeno MA, Struhl K. Aca1 and Aca2, ATF/CREB activators in Saccharomyces cerevisiae, are important for carbon source utilization but not the response to stress. Mol Cell Biol 2000; 20:4340-9. [PMID: 10825197 PMCID: PMC85801 DOI: 10.1128/mcb.20.12.4340-4349.2000] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, the family of ATF/CREB transcriptional regulators consists of a repressor, Acr1 (Sko1), and two activators, Aca1 and Aca2. The AP-1 factor Gen4 does not activate transcription through ATF/CREB sites in vivo even though it binds these sites in vitro. Unlike ATF/CREB activators in other species, Aca1- and Aca2-dependent transcription is not affected by protein kinase A or by stress, and Aca1 and Aca2 are not required for Hog1-dependent salt induction of transcription through an optimal ATF/CREB site. Aca2 is important for a variety of biological functions including growth on nonoptimal carbon sources, and Aca2-dependent activation is modestly regulated by carbon source. Strains lacking Aca1 are phenotypically normal, but overexpression of Aca1 suppresses some defects associated with the loss of Aca2, indicating a functional overlap between Aca1 and Aca2. Acr1 represses transcription both by recruiting the Cyc8-Tup1 corepressor and by directly competing with Aca1 and Aca2 for target sites. Acr1 does not fully account for osmotic regulation through ATF/CREB sites, and a novel Hog1-dependent activator(s) that is not a bZIP protein is required for ATF/CREB site activation in response to high salt. In addition, Acr1 does not affect a number of phenotypes that arise from loss of Aca2. Thus, members of the S. cerevisiae ATF/CREB family have overlapping, but distinct, biological functions and target genes.
Collapse
Affiliation(s)
- M A Garcia-Gimeno
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
62
|
Braun BR, Johnson AD. TUP1, CPH1 and EFG1 make independent contributions to filamentation in candida albicans. Genetics 2000; 155:57-67. [PMID: 10790384 PMCID: PMC1461068 DOI: 10.1093/genetics/155.1.57] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The common fungal pathogen, Candida albicans, can grow either as single cells or as filaments (hyphae), depending on environmental conditions. Several transcriptional regulators have been identified as having key roles in controlling filamentous growth, including the products of the TUP1, CPH1, and EFG1 genes. We show, through a set of single, double, and triple mutants, that these genes act in an additive fashion to control filamentous growth, suggesting that each gene represents a separate pathway of control. We also show that environmentally induced filamentous growth can occur even in the absence of all three of these genes, providing evidence for a fourth regulatory pathway. Expression of a collection of structural genes associated with filamentous growth, including HYR1, ECE1, HWP1, ALS1, and CHS2, was monitored in strains lacking each combination of TUP1, EFG1, and CPH1. Different patterns of expression were observed among these target genes, supporting the hypothesis that these three regulatory proteins engage in a network of individual connections to downstream genes and arguing against a model whereby the target genes are regulated through a central filamentous growth pathway. The results suggest the existence of several distinct types of filamentous forms of C. albicans, each dependent on a particular set of environmental conditions and each expressing a unique set of surface proteins.
Collapse
Affiliation(s)
- B R Braun
- Department of Microbiology, University of California, San Francisco, California 94143-0414, USA
| | | |
Collapse
|
63
|
ter Linde JJ, Liang H, Davis RW, Steensma HY, van Dijken JP, Pronk JT. Genome-wide transcriptional analysis of aerobic and anaerobic chemostat cultures of Saccharomyces cerevisiae. J Bacteriol 1999; 181:7409-13. [PMID: 10601195 PMCID: PMC94195 DOI: 10.1128/jb.181.24.7409-7413.1999] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/1999] [Accepted: 09/27/1999] [Indexed: 11/20/2022] Open
Abstract
The yeast Saccharomyces cerevisiae is unique among eukaryotes in exhibiting fast growth in both the presence and the complete absence of oxygen. Genome-wide transcriptional adaptation to aerobiosis and anaerobiosis was studied in assays using DNA microarrays. This technique was combined with chemostat cultivation, which allows controlled variation of a single growth parameter under defined conditions and at a fixed specific growth rate. Of the 6,171 open reading frames investigated, 5,738 (93%) yielded detectable transcript levels under either aerobic or anaerobic conditions; 140 genes showed a >3-fold-higher transcription level under anaerobic conditions. Under aerobic conditions, transcript levels of 219 genes were >3-fold higher than under anaerobic conditions.
Collapse
Affiliation(s)
- J J ter Linde
- Institute of Molecular Plant Sciences, Leiden University, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
64
|
Deckert J, Khalaf RA, Hwang SM, Zitomer RS. Characterization of the DNA binding and bending HMG domain of the yeast hypoxic repressor Rox1. Nucleic Acids Res 1999; 27:3518-26. [PMID: 10446242 PMCID: PMC148596 DOI: 10.1093/nar/27.17.3518] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The yeast Rox1 hypoxic transcriptional repressor protein binds to and bends a specific DNA sequence through an HMG domain located at the N-terminus. To better understand the structure of Rox1 and how it interacts with DNA, 38 missense mutations in the HMG domain were isolated through a combination of random and site-directed mutageneses, the latter directed to two Ile residues that play an important role in DNA recognition and bending by HMG domains. The mutants were characterized in terms of their ability to repress the hypoxic gene ANB1 and the auto-repressed ROX1 gene in vivo. The mutant HMG domains were fused to maltose binding protein and expressed in and purified from Escherichia coli and their relative affinities for DNA and ability to bend DNA were determined. A model of the structure of the Rox1 HMG domain was derived using sequence similarities between Rox1 and the human protein SRY, the structure of which has been determined. The results of the mutational analysis are interpreted in terms of the model structure of Rox1.
Collapse
Affiliation(s)
- J Deckert
- Department of Biological Sciences, University at Albany/SUNY, Albany, NY 12222, USA
| | | | | | | |
Collapse
|
65
|
Kennedy MA, Barbuch R, Bard M. Transcriptional regulation of the squalene synthase gene (ERG9) in the yeast Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1445:110-22. [PMID: 10209263 DOI: 10.1016/s0167-4781(99)00035-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The ergosterol biosynthetic pathway is a specific branch of the mevalonate pathway. Since the cells requirement for sterols is greater than for isoprenoids, sterol biosynthesis must be regulated independently of isoprenoid biosynthesis. In this study we explored the transcriptional regulation of squalene synthase (ERG9) in Saccharomyces cerevisiae, the first enzyme dedicated to the synthesis of sterols. A mutant search was performed to identify genes that were involved in the regulation of the expression of an ERG9-lacZ promoter fusion. Mutants with phenotypes consistent with known sterol biosynthetic mutations (ERG3, ERG7, ERG24) increased expression of ERG9. In addition, treatment of wild-type cells with the sterol inhibitors zaragozic acid and ketoconazole, which target squalene synthase and the C-14 sterol demethylase respectively, also caused an increase in ERG9 expression. The data also demonstrate that heme mutants increased ERG9 expression while anaerobic conditions decreased expression. Additionally, the heme activator protein transcription factors HAP1 and HAP2/3/4, the yeast activator protein transcription factor yAP-1, and the phospholipid transcription factor complex INO2/4 regulate ERG9 expression. ERG9 expression is decreased in hap1, hap2/3/4, and yap-1 mutants while ino2/4 mutants showed an increase in ERG9 expression. This study demonstrates that ERG9 transcription is regulated by several diverse factors, consistent with the idea that as the first step dedicated to the synthesis of sterols, squalene synthase gene expression and ultimately sterol biosynthesis is highly regulated.
Collapse
Affiliation(s)
- M A Kennedy
- Department of Biology, Indiana University-Purdue University at Indianapolis, 723 W. Michigan Street, SL324, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
66
|
Deckert J, Torres AM, Hwang SM, Kastaniotis AJ, Zitomer RS. The anatomy of a hypoxic operator in Saccharomyces cerevisiae. Genetics 1998; 150:1429-41. [PMID: 9832521 PMCID: PMC1460422 DOI: 10.1093/genetics/150.4.1429] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aerobic repression of the hypoxic genes of Saccharomyces cerevisiae is mediated by the DNA-binding protein Rox1 and the Tup1/Ssn6 general repression complex. To determine the DNA sequence requirements for repression, we carried out a mutational analysis of the consensus Rox1-binding site and an analysis of the arrangement of the Rox1 sites into operators in the hypoxic ANB1 gene. We found that single base pair substitutions in the consensus sequence resulted in lower affinities for Rox1, and the decreased affinity of Rox1 for mutant sites correlated with the ability of these sites to repress expression of the hypoxic ANB1 gene. In addition, there was a general but not complete correlation between the strength of repression of a given hypoxic gene and the compliance of the Rox1 sites in that gene to the consensus sequence. An analysis of the ANB1 operators revealed that the two Rox1 sites within an operator acted synergistically in vivo, but that Rox1 did not bind cooperatively in vitro, suggesting the presence of a higher order repression complex in the cell. In addition, the spacing or helical phasing of the Rox1 sites was not important in repression. The differential repression by the two operators of the ANB1 gene was found to be due partly to the location of the operators and partly to the sequences between the two Rox1-binding sites in each. Finally, while Rox1 repression requires the Tup1/Ssn6 general repression complex and this complex has been proposed to require the aminoterminal regions of histones H3 and H4 for full repression of a number of genes, we found that these regions were dispensable for ANB1 repression and the repression of two other hypoxic genes.
Collapse
Affiliation(s)
- J Deckert
- Department of Biological Sciences, University at Albany/State University of New York, Albany, New York 12222, USA
| | | | | | | | | |
Collapse
|
67
|
Chantrel Y, Gaisne M, Lions C, Verdière J. The transcriptional regulator Hap1p (Cyp1p) is essential for anaerobic or heme-deficient growth of Saccharomyces cerevisiae: Genetic and molecular characterization of an extragenic suppressor that encodes a WD repeat protein. Genetics 1998; 148:559-69. [PMID: 9504906 PMCID: PMC1459824 DOI: 10.1093/genetics/148.2.559] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We report here that Hap1p (originally named Cyp1p) has an essential function in anaerobic or heme-deficient growth. Analysis of intragenic revertants shows that this function depends on the amino acid preceding the first cysteine residue of the DNA-binding domain of Hap1p. Selection of recessive extragenic suppressors of a hap1-hem1- strain allowed the identification, cloning, and molecular analysis of ASC1 (Cyp1 Absence of growth Supressor). The sequence of ASC1 reveals that its ORF is interrupted by an intron that shelters the U24 snoRNA. Deletion of the intron, inactivation of the ORF, and molecular localization of the mutations show unambiguously that it is the protein and not the snoRNA that is involved in the suppressor phenotype. ASC1, which is constitutively transcribed, encodes an abundant, cytoplasmically localized 35-kD protein that belongs to the WD repeat family, which is found in a large variety of eucaryotic organisms. Polysome profile analysis supports the involvement of this protein in translation. We propose that the absence of functional Asc1p allows the growth of hap1-hem1- cells by reducing the efficiency of translation. Based on sequence comparisons, we discuss the possibility that the protein intervenes in a kinase-dependent signal transduction pathway involved in this last function.
Collapse
Affiliation(s)
- Y Chantrel
- Centre de Génétique Moléculaire du Centre National de la Recherche Scientifique, l'Université Pierre et Marie Curie, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
68
|
Abstract
The Tup1 and Ssn6 proteins of Saccharomyces cerevisiae form a general transcriptional repression complex that regulates the expression of a diverse set of genes including aerobically repressed hypoxic genes, a-mating type genes, glucose repressed genes, and genes controlling cell flocculence. To identify amino acid residues in the Tup1 protein that are required for repression function, we selected for mutations that derepressed the hypoxic genes. Three missense mutations that accumulated stable protein were isolated, and an additional three were generated by site-directed mutagenesis. The mutant protein L62R was unable to complex with Ssn6 or repress expression of reporter genes for the hypoxic and glucose repressed regulons or the flocculence phenotype, however, expression of the a-mating type reporter gene was still repressed. The remaining mutations fell within the WD repeat region of Tup1. These mutations had different effects on the expression of the four Tup1 repressed regulons assayed, indicating that the WD repeats serve different roles for repression of different regulons.
Collapse
Affiliation(s)
- P M Carrico
- Department of Biological Sciences, University at Albany/State University of New York, 12222, USA
| | | |
Collapse
|
69
|
Klein CJL, Olsson L, Nielsen J. Glucose control in Saccharomyces cerevisiae: the role of Mig1 in metabolic functions. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 1):13-24. [PMID: 9467897 DOI: 10.1099/00221287-144-1-13] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Christopher J L Klein
- Center for Process Biotechnology, Department of Biotechnology, Building 223, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Lisbeth Olsson
- Center for Process Biotechnology, Department of Biotechnology, Building 223, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Jens Nielsen
- Center for Process Biotechnology, Department of Biotechnology, Building 223, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
70
|
Fujimori K, Anamnart S, Nakagawa Y, Sugioka S, Ohta D, Oshima Y, Yamada Y, Harashima S. Isolation and characterization of mutations affecting expression of the delta9- fatty acid desaturase gene, OLE1, in Saccharomyces cerevisiae. FEBS Lett 1997; 413:226-30. [PMID: 9280286 DOI: 10.1016/s0014-5793(97)00846-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Expression of the delta9- fatty acid desaturase gene, OLE1, of Saccharomyces cerevisiae is negatively regulated transcriptionally and post-transcriptionally by unsaturated fatty acids. In order to isolate mutants exhibiting irregulation of OLE1 expression, we constructed an OLE1p-PHO5 fusion gene as a reporter consisting of the PHO5 gene encoding repressible acid phosphatase (rAPase) under the control of the OLE1 promoter (OLE1p). By EMS mutagenesis, we isolated three classes of mutants, pfo1, pfo2 and pfo3 positive regulatory factor for OLE1) mutants, which show decreased rAPase activity under derepression conditions (absence of oleic acid). Analysis of the transcription of OLE1 in these pfo mutants revealed that pfo1 and pfo3 mutants have a defect in the regulation of OLE1 expression at the transcriptional level while pfo2 mutants were suggested to have a mutation affecting OLE1 expression at a post-transcriptional step. In addition, four other classes of mutants, nfo1, nfo2, nfo3 and nfo4 (negative factor for OLE1) mutants that have mutations causing strong expression of the OLE1p-PHO5 fusion gene under repression conditions (presence of oleic acid), were isolated. Results of Northern analysis of OLE1 as well as OLE1p-PHO5 transcripts in nfo mutants suggested that these mutations occurred in genes encoding global repressors. We also demonstrated that TUP1 and SSN6 gene products are required for full repression of OLE1 gene expression, by showing that either tup1 or ssn6 mutations greatly increase the level of the OLE1 transcript.
Collapse
Affiliation(s)
- K Fujimori
- Takarazuka Research Institute, Novartis Pharma K.K., Japan
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Burke PV, Raitt DC, Allen LA, Kellogg EA, Poyton RO. Effects of oxygen concentration on the expression of cytochrome c and cytochrome c oxidase genes in yeast. J Biol Chem 1997; 272:14705-12. [PMID: 9169434 DOI: 10.1074/jbc.272.23.14705] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Oxygen is an important environmental regulator for the transcription of several genes in Saccharomyces cerevisiae, but it is not yet clear how this yeast or other eukaryotes actually sense oxygen. To begin to address this we have examined the effects of oxygen concentration on the expression of several nuclear genes (CYC1, CYC7, COX4, COX5a, COX5b, COX6, COX7, COX8, and COX9) for proteins of the terminal portion of the respiratory chain. COX5b and CYC7 are hypoxic genes; the rest are aerobic genes. We have found that the level of expression of these genes is determined by oxygen concentration per se and not merely the presence or absence of oxygen and that each of these genes has a low oxygen threshold (0. 5-1 microM O2) for expression. For some aerobic genes (COX4, COX5a, COX7, COX8, and COX9) there is a gradual decline in expression between 200 microM O2 (air) and their oxygen threshold. Below this threshold expression drops precipitously. For others (COX5a and CYC1) the level of expression is nearly constant between 200 microM O2 and their threshold and then drops off. The hypoxic genes COX5b and CYC7 are not expressed until the oxygen concentration is below 0.5 microM O2. These studies have also revealed that COX5a and CYC1, the genes for the aerobic isoforms of cytochrome c oxidase subunit V and cytochrome c, and COX5b and CYC7, the genes for the hypoxic isoforms of cytochrome c oxidase subunit V and cytochrome c, are coexpressed at a variety of oxygen concentrations and switch on or off at extremely low oxygen concentrations. By shifting cells from one oxygen concentration to another we have found that aerobic genes are induced faster than hypoxic genes and that transcripts from both types of gene are turned over quickly. These findings have important implications for cytochrome c oxidase function and biogenesis and for models of oxygen sensing in yeast.
Collapse
Affiliation(s)
- P V Burke
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | | | | | | | |
Collapse
|
72
|
Ansell R, Granath K, Hohmann S, Thevelein JM, Adler L. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J 1997; 16:2179-87. [PMID: 9171333 PMCID: PMC1169820 DOI: 10.1093/emboj/16.9.2179] [Citation(s) in RCA: 383] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The two homologous genes GPD1 and GPD2 encode the isoenzymes of NAD-dependent glycerol 3-phosphate dehydrogenase in the yeast Saccharomyces cerevisiae. Previous studies showed that GPD1 plays a role in osmoadaptation since its expression is induced by osmotic stress and gpd1 delta mutants are osmosensitive. Here we report that GPD2 has an entirely different physiological role. Expression of GPD2 is not affected by changes in external osmolarity, but is stimulated by anoxic conditions. Mutants lacking GPD2 show poor growth under anaerobic conditions. Mutants deleted for both GPD1 and GPD2 do not produce detectable glycerol, are highly osmosensitive and fail to grow under anoxic conditions. This growth inhibition, which is accompanied by a strong intracellular accumulation of NADH, is relieved by external addition of acetaldehyde, an effective oxidizer of NADH. Thus, glycerol formation is strictly required as a redox sink for excess cytosolic NADH during anaerobic metabolism. The anaerobic induction of GPD2 is independent of the HOG pathway which controls the osmotic induction of GPD1. Expression of GPD2 is also unaffected by ROX1 and ROX3, encoding putative regulators of hypoxic and stress-controlled gene expression. In addition, GPD2 is induced under aerobic conditions by the addition of bisulfite which causes NADH accumulation by inhibiting the final, reductive step in ethanol fermentation and this induction is reversed by addition of acetaldehyde. We conclude that expression of GPD2 is controlled by a novel, oxygen-independent, signalling pathway which is required to regulate metabolism under anoxic conditions.
Collapse
Affiliation(s)
- R Ansell
- Department of General and Marine Microbiology, Gothenburg University, Sweden
| | | | | | | | | |
Collapse
|
73
|
Zitomer RS, Limbach MP, Rodriguez-Torres AM, Balasubramanian B, Deckert J, Snow PM. Approaches to the study of Rox1 repression of the hypoxic genes in the yeast Saccharomyces cerevisiae. Methods 1997; 11:279-88. [PMID: 9073571 DOI: 10.1006/meth.1996.0422] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The yeast Saccharomyces cerevisiae is a facultative aerobe that responds to changes in oxygen tension by changing patterns of gene expression. One set of genes that responds to this environmental cue is the hypoxic genes. Oxygen levels are sensed by changes in heme biosynthesis, which controls the transcription of the ROX1 gene, encoding a protein that binds to the regulatory region of each hypoxic gene to repress transcription. Several experimental molecular and genetic approaches are described here to study Rox1 repression. Derepression of the hypoxic genes is rapid, and one model for such a response requires that Rox1 have a short half-life. This was demonstrated to be the case by immunoblotting using a c-myc epitope-tagged protein. Rox1 repression is mediated through the general repressors Ssn6 and Tup1. To explore possible interactions among these proteins, all three were expressed and partially purified using a baculovirus expression system and histidine-tagged proteins. The effect of Ssn6 and Tup1 on the formation of Rox1-DNA complexes was explored using these purified proteins by both electrophoretic mobility shift and DNase I protection assays. We found that Rox1 DNA-binding activity decayed rapidly and that Ssn6 could stabilize and restore lost activity. Finally, genetic selections are described for the isolation of loss-of-function mutations in Rox1. Also, schemes are proposed for the reversion of such mutations. These selections have been extended to genetic analyses of the TUP1 and SSN6 genes.
Collapse
Affiliation(s)
- R S Zitomer
- Department of Biological Sciences, University at Albany/State University of New York 12222, USA.
| | | | | | | | | | | |
Collapse
|
74
|
Abstract
Baker's yeast, Saccharomyces cerevisiae, can adapt to growth under severe oxygen limitation. Two regulatory systems are described here that control this adaptation. The first involves a heme-dependent repression mechanism. Cells sense hypoxia through the inability to maintain oxygen-dependent heme biosynthesis. Under aerobic conditions, heme accumulates and serves as an effector for the transcriptional activator Hap1. The heme-Hap1 complex activates transcription of the ROX1 gene that encodes a repressor of one set of hypoxic genes. Under hypoxic conditions, heme levels fall, and a heme-deficient Hap1 complex represses ROX1 expression. As a consequence, the hypoxic genes are derepressed. The second regulatory system activates gene expression in response to a variety of stress conditions, including oxygen limitation. Oxygen sensing in this system is heme-independent. The same DNA sequence mediates transcriptional activation of each stress signal.
Collapse
Affiliation(s)
- R S Zitomer
- Department of Biological Sciences, University at Albany/SUNY, USA.
| | | | | |
Collapse
|
75
|
Amillet JM, Buisson N, Labbe-Bois R. Characterization of an upstream activation sequence and two Rox1p-responsive sites controlling the induction of the yeast HEM13 gene by oxygen and heme deficiency. J Biol Chem 1996; 271:24425-32. [PMID: 8798700 DOI: 10.1074/jbc.271.40.24425] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Saccharomyces cerevisiae HEM13 gene codes for coproporphyrinogen oxidase, an oxygen-requiring enzyme catalyzing the sixth step of heme biosynthesis. Its transcription has been shown to be induced 40-50-fold in response to oxygen or heme deficiency, in part through relief of repression exerted by Rox1p and in part by activation mediated by an upstream activation sequence (UAS). This report describes an analysis of HEM13 UAS and of the Rox1p-responsive sites by electrophoretic mobility shift assays, DNase I footprinting, and mutational mapping. HEM13 UAS is composed of two subelements: a 16-base pair sequence binding a constitutive factor acting as a transcriptional activator, and a 5'-flanking 20-base pair GC-rich region. Both subelements were required additively for transcription, but each element alone was sufficient for almost normal control by oxygen/heme deficiency. Mutations in both elements decreased the induction ratio 3-4-fold. HEM13 UAS conferred a 2-4-fold oxygen/heme control on a heterologous reporter gene. Two Rox1p-responsive sites, R1 and R3, were identified, which accounted for the 6-7-fold repression by Rox1p. A factor bound to a sequence close to site R3. This DNA-binding activity was only detected in protein extracts of aerobic heme-sufficient ROX1 TUP1 cells, suggesting a possible role in site R3 function.
Collapse
Affiliation(s)
- J M Amillet
- Laboratoire de Biochimie des Porphyrines, Institut Jacques Monod, Université Paris VII, 2 Place Jussieu, 75251 Paris, France
| | | | | |
Collapse
|
76
|
Strain J, Culotta VC. Copper ions and the regulation of Saccharomyces cerevisiae metallothionein genes under aerobic and anaerobic conditions. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:139-45. [PMID: 8668123 DOI: 10.1007/bf02172911] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have previously reported that the Saccharomyces cerevisiae CRS5 metallothionein gene is negatively regulated by oxygen. The mechanism of this repression was the focus of the current study. We observed that the aerobic repression of CRS5 is rapid and occurs within minutes of exposing anaerobic cultures to air. Furthermore, the CUP1 metallothionein gene of S. cerevisiae was found to be subject to a similar downregulation of gene expression. We provide evidence that the aerobic repression of yeast metallothioneins involves copper ions and Ace1, the copper trans-activator of CUP1 and CRS5 gene expression. A functional Ace1 binding site was found to be necessary for the aerobic repression of CRS5. Moreover, the aerobic down-regulation of the metallothioneins was abolished when cells were treated with elevated levels of copper. Our studies show that anaerobic cultures accumulate higher levels of copper than do aerobic cells and that this copper is rapidly lost when cells are exposed to air. In fact, the kinetics of this copper loss closely parallels the kinetics of CUP1 and CRS5 gene repression. The yeast metallothionein genes, therefore, serve as excellent markers for variations in copper accumulation and homeostasis that occur in response to changes in the oxidative status of the cell.
Collapse
Affiliation(s)
- J Strain
- Department of Environmental Health Sciences, Johns Hopkins University School of Hygiene and Public Health, Baltimore, MD 21205, USA
| | | |
Collapse
|
77
|
Di Flumeri C, Liston P, Acheson NH, Keng T. The HMG domain of the ROX1 protein mediates repression of HEM13 through overlapping DNA binding and oligomerization functions. Nucleic Acids Res 1996; 24:808-15. [PMID: 8600445 PMCID: PMC145719 DOI: 10.1093/nar/24.5.808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The ROX1 gene of Saccharomyces cerevisiae encodes a protein required for the repression of genes expressed under anaerobic conditions. ROX1 belongs to a family of DNA binding proteins which contain the high mobility group motif (HMG domain). To ascertain whether the HMG domain of ROX1 is required for specific DNA binding we synthesized a series of ROX1 protein derivatives, either in vitro or in Escherichia coli as fusions to glutathione S-transferase (GST) protein, and tested them for their ability to bind to DNA. Both ROX1 proteins that were synthesized in vitro and GST-ROX1 fusion proteins containing the intact HMG domain were able to bind to specific target DNA sequences. In contrast, ROX1 proteins which contained deletions within the HMG domain were no longer capable of binding to DNA. The oligomerization of ROX1 in vitro was demonstrated using affinity-purified GST-ROXI protein and ROX1 labelled with [35S]methionine. Using various ROX1 protein derivatives we were able to demonstrate that the domain required for ROX1-ROX1 interaction resides within the N-terminal 100 amino acids which constitute the HMG domain. Therefore, the HMG domain is required for both DNA binding activity and oligomerization of ROX1.
Collapse
Affiliation(s)
- C Di Flumeri
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
78
|
Sabová L, Gavurníková G, Kolarov J. Regulation of AAC isogenes encoding mitochondrial ADP/ATP translocator in the yeast Saccharomyces cerevisiae. Folia Microbiol (Praha) 1996; 41:124-6. [PMID: 9090851 DOI: 10.1007/bf02816370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- L Sabová
- Department of Biochemistry, Faculty of Science, Comenius University, Bratislava, Slovakia
| | | | | |
Collapse
|
79
|
Deckert J, Rodriguez Torres AM, Simon JT, Zitomer RS. Mutational analysis of Rox1, a DNA-bending repressor of hypoxic genes in Saccharomyces cerevisiae. Mol Cell Biol 1995; 15:6109-17. [PMID: 7565763 PMCID: PMC230862 DOI: 10.1128/mcb.15.11.6109] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Rox1 is a repressor of the hypoxic genes of Saccharomyces cerevisiae. It binds to a specific hypoxic consensus sequence in the upstream region of these genes and represses transcription in conjunction with the general repression complex Tup1-Ssn6. In this study, we demonstrated that the first 100 amino acids comprising the HMG domain of Rox1 were responsible for DNA binding and that when bound, Rox1 bent DNA at an angle of 90 degrees. A mutational analysis resulted in the isolation of seven missense mutations, all located within the HMG domain, that caused loss of DNA binding. The effect of these mutations on the structure of Rox1 was evaluated on the basis of the homology between Rox1 and the human male sex-determining protein SRY, for which a structural model is available. The failure to isolate missense mutations in the carboxy-terminal three-quarters of the protein prompted a deletion analysis of this region. The results suggested that this region was responsible for the repression function of Rox1 and that the repression information was redundant. This hypothesis was confirmed by using a set of fusions between sequences encoding the GAL4 DNA-binding domain and portions of ROX1. Those fusions containing either the entire carboxy-terminal region or either half of it were capable of repression. Repression by selected fusions was demonstrated to be dependent on Ssn6.
Collapse
Affiliation(s)
- J Deckert
- Department of Biological Sciences, University of Albany/State University of New York 12222, USA
| | | | | | | |
Collapse
|