51
|
Plantié E, Migocka-Patrzałek M, Daczewska M, Jagla K. Model organisms in the fight against muscular dystrophy: lessons from drosophila and Zebrafish. Molecules 2015; 20:6237-53. [PMID: 25859781 PMCID: PMC6272363 DOI: 10.3390/molecules20046237] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 01/01/2023] Open
Abstract
Muscular dystrophies (MD) are a heterogeneous group of genetic disorders that cause muscle weakness, abnormal contractions and muscle wasting, often leading to premature death. More than 30 types of MD have been described so far; those most thoroughly studied are Duchenne muscular dystrophy (DMD), myotonic dystrophy type 1 (DM1) and congenital MDs. Structurally, physiologically and biochemically, MDs affect different types of muscles and cause individual symptoms such that genetic and molecular pathways underlying their pathogenesis thus remain poorly understood. To improve our knowledge of how MD-caused muscle defects arise and to find efficacious therapeutic treatments, different animal models have been generated and applied. Among these, simple non-mammalian Drosophila and zebrafish models have proved most useful. This review discusses how zebrafish and Drosophila MD have helped to identify genetic determinants of MDs and design innovative therapeutic strategies with a special focus on DMD, DM1 and congenital MDs.
Collapse
Affiliation(s)
- Emilie Plantié
- GReD (Genetics, Reproduction and Development laboratory), INSERM U1103, CNRS UMR6293, University of Clermont-Ferrand, 28 place Henri-Dunant, 63000 Clermont-Ferrand, France; E-Mail:
| | - Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland; E-Mails: (M.M.-P.); (M.D.)
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland; E-Mails: (M.M.-P.); (M.D.)
| | - Krzysztof Jagla
- GReD (Genetics, Reproduction and Development laboratory), INSERM U1103, CNRS UMR6293, University of Clermont-Ferrand, 28 place Henri-Dunant, 63000 Clermont-Ferrand, France; E-Mail:
| |
Collapse
|
52
|
Sbardella D, Sciandra F, Gioia M, Marini S, Gori A, Giardina B, Tarantino U, Coletta M, Brancaccio A, Bozzi M. α-dystroglycan is a potential target of matrix metalloproteinase MMP-2. Matrix Biol 2014; 41:2-7. [PMID: 25483986 DOI: 10.1016/j.matbio.2014.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 11/28/2014] [Accepted: 11/30/2014] [Indexed: 11/28/2022]
Abstract
Dystroglycan (DG) is a member of the glycoprotein complex associated to dystrophin and composed by two subunits, the β-DG, a transmembrane protein, and the α-DG, an extensively glycosylated extracellular protein. The β-DG ectodomain degradation by the matrix metallo-proteinases (i.e., MMP-2 and MMP-9) in both, pathological and physiological conditions, has been characterized in detail in previous publications. Since the amounts of α-DG and β-DG at the cell surface decrease when gelatinases are up-regulated, we investigated the degradation of α-DG subunit by MMP-2. Present data show, for the first time, that the proteolysis of α-DG indeed occurs on a native glycosylated molecule enriched from rabbit skeletal muscle. In order to characterize the α-DG portion, which is more prone to cleavage by MMP-2, we performed different degradations on tailored recombinant domains of α-DG spanning the whole subunit. The overall bulk of results casts light on a relevant susceptibility of the α-DG to MMP-2 degradation with particular reference to its C-terminal domain, thus opening a new scenario on the role of gelatinases (in particular of MMP-2) in the degradation of this glycoprotein complex, taking place in the course of pathological processes.
Collapse
Affiliation(s)
- Diego Sbardella
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Universita` di Roma Tor Vergata, Rome, Italy; Centro di Biomedicina Spaziale, Università di Roma Tor Vergata, Rome, Italy
| | - Francesca Sciandra
- Istituto di Chimica del Riconoscimento Molecolare (CNR) c/c Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Magda Gioia
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Universita` di Roma Tor Vergata, Rome, Italy; Centro di Biomedicina Spaziale, Università di Roma Tor Vergata, Rome, Italy
| | - Stefano Marini
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Universita` di Roma Tor Vergata, Rome, Italy; Centro di Biomedicina Spaziale, Università di Roma Tor Vergata, Rome, Italy
| | - Alessandro Gori
- Istituto di Chimica del Riconoscimento Molecolare (CNR), Milan, Italy
| | - Bruno Giardina
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Umberto Tarantino
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Universita` di Roma Tor Vergata, Rome, Italy; Centro di Biomedicina Spaziale, Università di Roma Tor Vergata, Rome, Italy
| | - Massimo Coletta
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Universita` di Roma Tor Vergata, Rome, Italy; Centro di Biomedicina Spaziale, Università di Roma Tor Vergata, Rome, Italy
| | - Andrea Brancaccio
- Istituto di Chimica del Riconoscimento Molecolare (CNR) c/c Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Manuela Bozzi
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
53
|
Gintjee TJJ, Magh ASH, Bertoni C. High throughput screening in duchenne muscular dystrophy: from drug discovery to functional genomics. BIOLOGY 2014; 3:752-80. [PMID: 25405319 PMCID: PMC4280510 DOI: 10.3390/biology3040752] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 01/16/2023]
Abstract
Centers for the screening of biologically active compounds and genomic libraries are becoming common in the academic setting and have enabled researchers devoted to developing strategies for the treatment of diseases or interested in studying a biological phenomenon to have unprecedented access to libraries that, until few years ago, were accessible only by pharmaceutical companies. As a result, new drugs and genetic targets have now been identified for the treatment of Duchenne muscular dystrophy (DMD), the most prominent of the neuromuscular disorders affecting children. Although the work is still at an early stage, the results obtained to date are encouraging and demonstrate the importance that these centers may have in advancing therapeutic strategies for DMD as well as other diseases. This review will provide a summary of the status and progress made toward the development of a cure for this disorder and implementing high-throughput screening (HTS) technologies as the main source of discovery. As more academic institutions are gaining access to HTS as a valuable discovery tool, the identification of new biologically active molecules is likely to grow larger. In addition, the presence in the academic setting of experts in different aspects of the disease will offer the opportunity to develop novel assays capable of identifying new targets to be pursued as potential therapeutic options. These assays will represent an excellent source to be used by pharmaceutical companies for the screening of larger libraries providing the opportunity to establish strong collaborations between the private and academic sectors and maximizing the chances of bringing into the clinic new drugs for the treatment of DMD.
Collapse
Affiliation(s)
- Thomas J J Gintjee
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Alvin S H Magh
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Carmen Bertoni
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA.
| |
Collapse
|
54
|
Di Costanzo S, Balasubramanian A, Pond HL, Rozkalne A, Pantaleoni C, Saredi S, Gupta VA, Sunu CM, Yu TW, Kang PB, Salih MA, Mora M, Gussoni E, Walsh CA, Manzini MC. POMK mutations disrupt muscle development leading to a spectrum of neuromuscular presentations. Hum Mol Genet 2014; 23:5781-92. [PMID: 24925318 PMCID: PMC4189906 DOI: 10.1093/hmg/ddu296] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/16/2014] [Accepted: 06/09/2014] [Indexed: 12/17/2022] Open
Abstract
Dystroglycan is a transmembrane glycoprotein whose interactions with the extracellular matrix (ECM) are necessary for normal muscle and brain development, and disruptions of its function lead to dystroglycanopathies, a group of congenital muscular dystrophies showing extreme genetic and clinical heterogeneity. Specific glycans bound to the extracellular portion of dystroglycan, α-dystroglycan, mediate ECM interactions and most known dystroglycanopathy genes encode glycosyltransferases involved in glycan synthesis. POMK, which was found mutated in two dystroglycanopathy cases, is instead involved in a glycan phosphorylation reaction critical for ECM binding, but little is known about the clinical presentation of POMK mutations or of the function of this protein in the muscle. Here, we describe two families carrying different truncating alleles, both removing the kinase domain in POMK, with different clinical manifestations ranging from Walker-Warburg syndrome, the most severe form of dystroglycanopathy, to limb-girdle muscular dystrophy with cognitive defects. We explored POMK expression in fetal and adult human muscle and identified widespread expression primarily during fetal development in myocytes and interstitial cells suggesting a role for this protein during early muscle differentiation. Analysis of loss of function in the zebrafish embryo and larva showed that pomk function is necessary for normal muscle development, leading to locomotor dysfuction in the embryo and signs of muscular dystrophy in the larva. In summary, we defined diverse clinical presentations following POMK mutations and showed that this gene is necessary for early muscle development.
Collapse
Affiliation(s)
- Stefania Di Costanzo
- Department of Pharmacology and Physiology and Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | | | - Heather L Pond
- Department of Pharmacology and Physiology and Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Anete Rozkalne
- Division of Genetics and Genomics and the Manton Center for Orphan Disease Research
| | - Chiara Pantaleoni
- Division of Neuromuscular Disease and Neuroimmunology, Fondazione di Ricovero e Cura a Carattere Scientifico Istituto Neurologico C. Besta, 20126 Milan, Italy and
| | - Simona Saredi
- Division of Neuromuscular Disease and Neuroimmunology, Fondazione di Ricovero e Cura a Carattere Scientifico Istituto Neurologico C. Besta, 20126 Milan, Italy and
| | - Vandana A Gupta
- Division of Genetics and Genomics and the Manton Center for Orphan Disease Research
| | - Christine M Sunu
- Division of Genetics and Genomics and the Manton Center for Orphan Disease Research
| | - Timothy W Yu
- Division of Genetics and Genomics and the Manton Center for Orphan Disease Research
| | | | - Mustafa A Salih
- Division of Pediatric Neurology, Department of Pediatrics, King Saud University College of Medicine, Riyadh 11461, Saudi Arabia
| | - Marina Mora
- Division of Neuromuscular Disease and Neuroimmunology, Fondazione di Ricovero e Cura a Carattere Scientifico Istituto Neurologico C. Besta, 20126 Milan, Italy and
| | - Emanuela Gussoni
- Division of Genetics and Genomics and the Manton Center for Orphan Disease Research
| | - Christopher A Walsh
- Division of Genetics and Genomics and the Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA,
| | - M Chiara Manzini
- Department of Pharmacology and Physiology and Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA,
| |
Collapse
|
55
|
Wood AJ, Currie PD. Analysing regenerative potential in zebrafish models of congenital muscular dystrophy. Int J Biochem Cell Biol 2014; 56:30-7. [PMID: 25449259 DOI: 10.1016/j.biocel.2014.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 10/12/2014] [Accepted: 10/18/2014] [Indexed: 01/16/2023]
Abstract
The congenital muscular dystrophies (CMDs) are a clinically and genetically heterogeneous group of muscle disorders. Clinically hypotonia is present from birth, with progressive muscle weakness and wasting through development. For the most part, CMDs can mechanistically be attributed to failure of basement membrane protein laminin-α2 sufficiently binding with correctly glycosylated α-dystroglycan. The majority of CMDs therefore arise as the result of either a deficiency of laminin-α2 (MDC1A) or hypoglycosylation of α-dystroglycan (dystroglycanopathy). Here we consider whether by filling a regenerative medicine niche, the zebrafish model can address the present challenge of delivering novel therapeutic solutions for CMD. In the first instance the readiness and appropriateness of the zebrafish as a model organism for pioneering regenerative medicine therapies in CMD is analysed, in particular for MDC1A and the dystroglycanopathies. Despite the recent rapid progress made in gene editing technology, these approaches have yet to yield any novel zebrafish models of CMD. Currently the most genetically relevant zebrafish models to the field of CMD, have all been created by N-ethyl-N-nitrosourea (ENU) mutagenesis. Once genetically relevant models have been established the zebrafish has several important facets for investigating the mechanistic cause of CMD, including rapid ex vivo development, optical transparency up to the larval stages of development and relative ease in creating transgenic reporter lines. Together, these tools are well suited for use in live-imaging studies such as in vivo modelling of muscle fibre detachment. Secondly, the zebrafish's contribution to progress in effective treatment of CMD was analysed. Two approaches were identified in which zebrafish could potentially contribute to effective therapies. The first hinges on the augmentation of functional redundancy within the system, such as upregulating alternative laminin chains in the candyfloss fish, a model of MDC1A. Secondly high-throughput small molecule screens not only provide effective therapies, but also an alternative strategy for investigating CMD in zebrafish. In this instance insight into disease mechanism is derived in reverse. Zebrafish models are therefore clearly of critical importance in the advancement of regenerative medicine strategies in CMD. This article is part of a Directed Issue entitled: Regenerative Medicine: The challenge of translation.
Collapse
Affiliation(s)
- A J Wood
- Australian Regenerative Medicine Institute, Building 75, Level 1, Clayton Campus, Wellington Road, Melbourne, Victoroia 3181, Australia
| | - P D Currie
- Australian Regenerative Medicine Institute, Building 75, Level 1, Clayton Campus, Wellington Road, Melbourne, Victoroia 3181, Australia.
| |
Collapse
|
56
|
Pirolli D, Sciandra F, Bozzi M, Giardina B, Brancaccio A, De Rosa MC. Insights from molecular dynamics simulations: structural basis for the V567D mutation-induced instability of zebrafish alpha-dystroglycan and comparison with the murine model. PLoS One 2014; 9:e103866. [PMID: 25078606 PMCID: PMC4117597 DOI: 10.1371/journal.pone.0103866] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/03/2014] [Indexed: 11/19/2022] Open
Abstract
A missense amino acid mutation of valine to aspartic acid in 567 position of alpha-dystroglycan (DG), identified in dag1-mutated zebrafish, results in a reduced transcription and a complete absence of the protein. Lacking experimental structural data for zebrafish DG domains, the detailed mechanism for the observed mutation-induced destabilization of the DG complex and membrane damage, remained unclear. With the aim to contribute to a better clarification of the structure-function relationships featuring the DG complex, three-dimensional structural models of wild-type and mutant (V567D) C-terminal domain of alpha-DG from zebrafish were constructed by a template-based modelling approach. We then ran extensive molecular dynamics (MD) simulations to reveal the structural and dynamic properties of the C-terminal domain and to evaluate the effect of the single mutation on alpha-DG stability. A comparative study has been also carried out on our previously generated model of murine alpha-DG C-terminal domain including the I591D mutation, which is topologically equivalent to the V567D mutation found in zebrafish. Trajectories from MD simulations were analyzed in detail, revealing extensive structural disorder involving multiple beta-strands in the mutated variant of the zebrafish protein whereas local effects have been detected in the murine protein. A biochemical analysis of the murine alpha-DG mutant I591D confirmed a pronounced instability of the protein. Taken together, the computational and biochemical analysis suggest that the V567D/I591D mutation, belonging to the G beta-strand, plays a key role in inducing a destabilization of the alpha-DG C-terminal Ig-like domain that could possibly affect and propagate to the entire DG complex. The structural features herein identified may be of crucial help to understand the molecular basis of primary dystroglycanopathies.
Collapse
Affiliation(s)
- Davide Pirolli
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesca Sciandra
- Istituto di Chimica del Riconoscimento Molecolare (ICRM) - CNR c/o Università Cattolica del Sacro Cuore, Rome, Italy
| | - Manuela Bozzi
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bruno Giardina
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
- Istituto di Chimica del Riconoscimento Molecolare (ICRM) - CNR c/o Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Brancaccio
- Istituto di Chimica del Riconoscimento Molecolare (ICRM) - CNR c/o Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Cristina De Rosa
- Istituto di Chimica del Riconoscimento Molecolare (ICRM) - CNR c/o Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
57
|
Maves L. Recent advances using zebrafish animal models for muscle disease drug discovery. Expert Opin Drug Discov 2014; 9:1033-45. [PMID: 24931439 DOI: 10.1517/17460441.2014.927435] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Animal models have enabled great progress in the discovery and understanding of pharmacological approaches for treating muscle diseases like Duchenne muscular dystrophy. AREAS COVERED With this article, the author provides the reader with a description of the zebrafish animal model, which has been employed to identify and study pharmacological approaches to muscle disease. In particular, the author focuses on how both large-scale chemical screens and targeted drug treatment studies have established zebrafish as an important model for muscle disease drug discovery. EXPERT OPINION There are a number of opportunities arising for the use of zebrafish models for further developing pharmacological approaches to muscle diseases, including studying drug combination therapies and utilizing genome editing to engineer zebrafish muscle disease models. It is the author's particular belief that the availability of a wide range of zebrafish transgenic strains for labeling immune cell types, combined with live imaging and drug treatment of muscle disease models, should allow for new elegant studies demonstrating how pharmacological approaches might influence inflammation and the immune response in muscle disease.
Collapse
Affiliation(s)
- Lisa Maves
- University of Washington School of Medicine, Department of Pediatrics, Division of Cardiology , Seattle, WA , USA
| |
Collapse
|
58
|
Smith LL, Gupta VA, Beggs AH. Bridging integrator 1 (Bin1) deficiency in zebrafish results in centronuclear myopathy. Hum Mol Genet 2014; 23:3566-78. [PMID: 24549043 DOI: 10.1093/hmg/ddu067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Autosomal recessive centronuclear myopathy (CNM2), caused by mutations in bridging integrator 1 (BIN1), is a mildly progressive neuromuscular disorder characterized by abnormally centralized myonuclei and muscle weakness. BIN1 is important for membrane sensing and remodeling in vitro in different cell types. However, to fully understand the biological roles of BIN1 in vivo and to answer critical questions concerning the muscle-specific function of BIN1 in vertebrates, robust small animal models are required. In this study, we create and characterize a novel zebrafish model of CNM2 using antisense morpholinos. Immunofluorescence and histopathological analyses of Bin1-deficient zebrafish skeletal muscle reveal structural defects commonly reported in human CNM2 biopsies. Live imaging of zebrafish embryos shows defective calcium release in bin1 morphants, linking the presence of abnormal triads to impairments in intracellular signaling. RNA-mediated rescue assays demonstrate that knockdown of zebrafish bin1 can reliably examine the pathogenicity of novel BIN1 mutations in vivo. Finally, our results strongly suggest that the phosphoinositide-binding domain of BIN1, present only in skeletal muscle isoforms, may be more critical for muscle maturation and maintenance than for early muscle development. Overall, our data support that BIN1 plays an important role in membrane tubulation and may promote skeletal muscle weakness in CNM2 by disrupting machinery necessary for excitation-contraction coupling in vertebrate organisms. The reproducible phenotype of Bin1-deficient zebrafish, together with the generalized advantages of the teleost system, makes this model readily adaptable to high-throughput screening strategies and may be used to identify therapies for CNM2 and related neuromuscular diseases.
Collapse
Affiliation(s)
- Laura L Smith
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vandana A Gupta
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
59
|
Daya A, Vatine GD, Becker-Cohen M, Tal-Goldberg T, Friedmann A, Gothilf Y, Du SJ, Mitrani-Rosenbaum S. Gne depletion during zebrafish development impairs skeletal muscle structure and function. Hum Mol Genet 2014; 23:3349-61. [PMID: 24488768 DOI: 10.1093/hmg/ddu045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
GNE Myopathy is a rare recessively inherited neuromuscular disorder caused by mutations in the GNE gene, which codes for the key enzyme in the metabolic pathway of sialic acid synthesis. The process by which GNE mutations lead to myopathy is not well understood. By in situ hybridization and gne promoter-driven fluorescent transgenic fish generation, we have characterized the spatiotemporal expression pattern of the zebrafish gne gene and have shown that it is highly conserved compared with the human ortholog. We also show the deposition of maternal gne mRNA and maternal GNE protein at the earliest embryonic stage, emphasizing the critical role of gne in embryonic development. Injection of morpholino (MO)-modified antisense oligonucleotides specifically designed to knockdown gne, into one-cell embryos lead to a variety of phenotypic severity. Characterization of the gne knockdown morphants showed a significantly reduced locomotor activity as well as distorted muscle integrity, including a reduction in the number of muscle myofibers, even in mild or intermediate phenotype morphants. These findings were further confirmed by electron microscopy studies, where large gaps between sarcolemmas were visualized, although normal sarcomeric structures were maintained. These results demonstrate a critical novel role for gne in embryonic development and particularly in myofiber development, muscle integrity and activity.
Collapse
Affiliation(s)
- Alon Daya
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem 91240, Israel, School of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel
| | - Gad David Vatine
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences and
| | - Michal Becker-Cohen
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem 91240, Israel
| | - Tzukit Tal-Goldberg
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem 91240, Israel
| | - Adam Friedmann
- School of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel
| | - Yoav Gothilf
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Shao Jun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Stella Mitrani-Rosenbaum
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem 91240, Israel,
| |
Collapse
|
60
|
Raeker MÖ, Shavit JA, Dowling JJ, Michele DE, Russell MW. Membrane-myofibril cross-talk in myofibrillogenesis and in muscular dystrophy pathogenesis: lessons from the zebrafish. Front Physiol 2014; 5:14. [PMID: 24478725 PMCID: PMC3904128 DOI: 10.3389/fphys.2014.00014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/07/2014] [Indexed: 11/16/2022] Open
Abstract
Striated muscle has a highly ordered structure in which specialized domains of the cell membrane involved in force transmission (costameres) and excitation-contraction coupling (T tubules) as well as the internal membranes of the sarcoplasmic reticulum are organized over specific regions of the sarcomere. Optimal muscle function is dependent on this high level of organization but how it established and maintained is not well understood. Due to its ex utero development and transparency, the zebrafish embryo is an excellent vertebrate model for the study of dynamic relationships both within and between cells during development. Transgenic models have allowed the delineation of cellular migration and complex morphogenic rearrangements during the differentiation of skeletal myocytes and the assembly and organization of new myofibrils. Molecular targeting of genes and transcripts has allowed the identification of key requirements for myofibril assembly and organization. With the recent advances in gene editing approaches, the zebrafish will become an increasingly important model for the study of human myopathies and muscular dystrophies. Its high fecundity and small size make it well suited to high-throughput screenings to identify novel pharmacologic and molecular therapies for the treatment of a broad range of neuromuscular conditions. In this review, we examine the lessons learned from the zebrafish model regarding the complex interactions between the sarcomere and the sarcolemma that pattern the developing myocyte and discuss the potential for zebrafish as a model system to examine the pathophysiology of, and identify new treatments for, human myopathies and muscular dystrophies.
Collapse
Affiliation(s)
- Maide Ö Raeker
- Division of Pediatric Cardiology, Department of Pediatrics and Communicable Diseases, University of Michigan Ann Arbor, MI, USA
| | - Jordan A Shavit
- Pediatric Hematology and Oncology, Department of Pediatrics and Communicable Diseases, University of Michigan Ann Arbor, MI, USA
| | - James J Dowling
- Division of Pediatric Neurology, Department of Pediatrics, The Hospital for Sick Children Toronto, Ontario, CA, USA
| | - Daniel E Michele
- Department of Molecular and Integrative Physiology, University of Michigan Ann Arbor, MI, USA
| | - Mark W Russell
- Division of Pediatric Cardiology, Department of Pediatrics and Communicable Diseases, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
61
|
Razafsky D, Wirtz D, Hodzic D. Nuclear envelope in nuclear positioning and cell migration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:471-90. [PMID: 24563361 PMCID: PMC4310828 DOI: 10.1007/978-1-4899-8032-8_21] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hauling and anchoring the nucleus within immobile or motile cells, tissues, and/or syncytia represents a major challenge. In the past 15 years, Linkers of the Nucleoskeleton to the Cytoskeleton (LINC complexes) have emerged as evolutionary-conserved molecular devices that span the nuclear envelope and provide interacting interfaces for cytoskeletal networks and molecular motors to the nuclear envelope. Here, we review the molecular composition of LINC complexes and focus on how their genetic alteration in vivo has provided a wealth of information related to the relevance of nuclear positioning during tissue development and homeostasis with a special emphasis on the central nervous system. As it may be relevant for metastasis in a range of cancers, the involvement of LINC complexes in migration of nonneuronal cells via its interaction with the perinuclear actin cap will also be developed.
Collapse
Affiliation(s)
- David Razafsky
- Washington University School of Medicine, Department of Ophthalmology and Visual Sciences, 660 South Euclid Ave, St Louis, MO, 63110, USA
| | - Denis Wirtz
- The Johns Hopkins University, Department of Chemical and Biomolecular engineering, 3400 North Charles St., Baltimore, MD, 21218, USA
| | - Didier Hodzic
- Washington University School of Medicine, Department of Ophthalmology and Visual Sciences, 660 South Euclid Ave, St Louis, MO, 63110, USA
| |
Collapse
|
62
|
Smith LL, Beggs AH, Gupta VA. Analysis of skeletal muscle defects in larval zebrafish by birefringence and touch-evoke escape response assays. J Vis Exp 2013:e50925. [PMID: 24378748 DOI: 10.3791/50925] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Zebrafish (Danio rerio) have become a particularly effective tool for modeling human diseases affecting skeletal muscle, including muscular dystrophies, congenital myopathies, and disruptions in sarcomeric assembly, due to high genomic and structural conservation with mammals. Muscular disorganization and locomotive impairment can be quickly assessed in the zebrafish over the first few days post-fertilization. Two assays to help characterize skeletal muscle defects in zebrafish are birefringence (structural) and touch-evoked escape response (behavioral). Birefringence is a physical property in which light is rotated as it passes through ordered matter, such as the pseudo-crystalline array of muscle sarcomeres. It is a simple, noninvasive approach to assess muscle integrity in translucent zebrafish larvae early in development. Wild-type zebrafish with highly organized skeletal muscle appear very bright amidst a dark background when visualized between two polarized light filters, whereas muscle mutants have birefringence patterns specific to the primary muscular disorder they model. Zebrafish modeling muscular dystrophies, diseases characterized by myofiber degeneration followed by repeated rounds of regeneration, exhibit degenerative dark patches in skeletal muscle under polarized light. Nondystrophic myopathies are not associated with necrosis or regenerative changes, but result in disorganized myofibers and skeletal muscle weakness. Myopathic zebrafish typically show an overall reduction in birefringence, reflecting the disorganization of sarcomeres. The touch-evoked escape assay involves observing an embryo's swimming behavior in response to tactile stimulation. In comparison to wild-type larvae, mutant larvae frequently display a weak escape contraction, followed by slow swimming or other type of impaired motion that fails to propel the larvae more than a short distance. The advantage of these assays is that disease progression in the same fish type can be monitored in vivo for several days, and that large numbers of fish can be analyzed in a short time relative to higher vertebrates.
Collapse
Affiliation(s)
- Laura L Smith
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School
| | | | | |
Collapse
|
63
|
Protein O-mannosylation is crucial for E-cadherin-mediated cell adhesion. Proc Natl Acad Sci U S A 2013; 110:21024-9. [PMID: 24297939 DOI: 10.1073/pnas.1316753110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In recent years protein O-mannosylation has become a focus of attention as a pathomechanism underlying severe congenital muscular dystrophies associated with neuronal migration defects. A key feature of these disorders is the lack of O-mannosyl glycans on α-dystroglycan, resulting in abnormal basement membrane formation. Additional functions of O-mannosylation are still largely unknown. Here, we identify the essential cell-cell adhesion glycoprotein epithelial (E)-cadherin as an O-mannosylated protein and establish a functional link between O-mannosyl glycans and cadherin-mediated cell-cell adhesion. By genetically and pharmacologically blocking protein O-mannosyltransferases, we found that this posttranslational modification is essential for preimplantation development of the mouse embryo. O-mannosylation-deficient embryos failed to proceed from the morula to the blastocyst stage because of defects in the molecular architecture of cell-cell contact sites, including the adherens and tight junctions. Using mass spectrometry, we demonstrate that O-mannosyl glycans are present on E-cadherin, the major cell-adhesion molecule of blastomeres, and present evidence that this modification is generally conserved in cadherins. Further, the use of newly raised antibodies specific for an O-mannosyl-conjugated epitope revealed that these glycans are present on early mouse embryos. Finally, our cell-aggregation assays demonstrated that O-mannosyl glycans are crucial for cadherin-based cell adhesion. Our results redefine the significance of O-mannosylation in humans and other mammals, showing the immense impact of cadherins on normal as well as pathogenic cell behavior.
Collapse
|
64
|
Kawahara G, Gasperini MJ, Myers JA, Widrick JJ, Eran A, Serafini PR, Alexander MS, Pletcher MT, Morris CA, Kunkel LM. Dystrophic muscle improvement in zebrafish via increased heme oxygenase signaling. Hum Mol Genet 2013; 23:1869-78. [PMID: 24234649 DOI: 10.1093/hmg/ddt579] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by a lack of the dystrophin protein and has no effective treatment at present. Zebrafish provide a powerful in vivo tool for high-throughput therapeutic drug screening for the improvement of muscle phenotypes caused by dystrophin deficiency. Using the dystrophin-deficient zebrafish, sapje, we have screened a total of 2640 compounds with known modes of action from three drug libraries to identify modulators of the disease progression. Six compounds that target heme oxygenase signaling were found to rescue the abnormal muscle phenotype in sapje and sapje-like, while upregulating the inducible heme oxygenase 1 (Hmox1) at the protein level. Direct Hmox1 overexpression by injection of zebrafish Hmox1 mRNA into fertilized eggs was found to be sufficient for a dystrophin-independent restoration of normal muscle via an upregulation of cGMP levels. In addition, treatment of mdx(5cv) mice with the PDE5 inhibitor, sildenafil, which was one of the six drugs impacting the Hmox1 pathway in zebrafish, significantly increased the expression of Hmox1 protein, thus making Hmox1 a novel target for the improvement of dystrophic symptoms. These results demonstrate the translational relevance of our zebrafish model to mammalian models and support the use of zebrafish to screen for new drugs to treat human DMD. The discovery of a small molecule and a specific therapeutic pathway that might mitigate DMD disease progression could lead to significant clinical implications.
Collapse
Affiliation(s)
- Genri Kawahara
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Horstick EJ, Gibbs EM, Li X, Davidson AE, Dowling JJ. Analysis of embryonic and larval zebrafish skeletal myofibers from dissociated preparations. J Vis Exp 2013:e50259. [PMID: 24300240 DOI: 10.3791/50259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The zebrafish has proven to be a valuable model system for exploring skeletal muscle function and for studying human muscle diseases. Despite the many advantages offered by in vivo analysis of skeletal muscle in the zebrafish, visualizing the complex and finely structured protein milieu responsible for muscle function, especially in whole embryos, can be problematic. This hindrance stems from the small size of zebrafish skeletal muscle (60 μm) and the even smaller size of the sarcomere. Here we describe and demonstrate a simple and rapid method for isolating skeletal myofibers from zebrafish embryos and larvae. We also include protocols that illustrate post preparation techniques useful for analyzing muscle structure and function. Specifically, we detail the subsequent immunocytochemical localization of skeletal muscle proteins and the qualitative analysis of stimulated calcium release via live cell calcium imaging. Overall, this video article provides a straight-forward and efficient method for the isolation and characterization of zebrafish skeletal myofibers, a technique which provides a conduit for myriad subsequent studies of muscle structure and function.
Collapse
Affiliation(s)
- Eric J Horstick
- Departments of Pediatrics and Neurology, University of Michigan
| | | | | | | | | |
Collapse
|
66
|
Charvet B, Guiraud A, Malbouyres M, Zwolanek D, Guillon E, Bretaud S, Monnot C, Schulze J, Bader HL, Allard B, Koch M, Ruggiero F. Knockdown of col22a1 gene in zebrafish induces a muscular dystrophy by disruption of the myotendinous junction. Development 2013; 140:4602-13. [PMID: 24131632 DOI: 10.1242/dev.096024] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The myotendinous junction (MTJ) is the major site of force transfer in skeletal muscle, and defects in its structure correlate with a subset of muscular dystrophies. Col22a1 encodes the MTJ component collagen XXII, the function of which remains unknown. Here, we have cloned and characterized the zebrafish col22a1 gene and conducted morpholino-based loss-of-function studies in developing embryos. We showed that col22a1 transcripts localize at muscle ends when the MTJ forms and that COLXXII protein integrates the junctional extracellular matrix. Knockdown of COLXXII expression resulted in muscular dystrophy-like phenotype, including swimming impairment, curvature of embryo trunk/tail, strong reduction of twitch-contraction amplitude and contraction-induced muscle fiber detachment, and provoked significant activation of the survival factor Akt. Electron microscopy and immunofluorescence studies revealed that absence of COLXXII caused a strong reduction of MTJ folds and defects in myoseptal structure. These defects resulted in reduced contractile force and susceptibility of junctional extracellular matrix to rupture when subjected to repeated mechanical stress. Co-injection of sub-phenotypic doses of morpholinos against col22a1 and genes of the major muscle linkage systems showed a synergistic gene interaction between col22a1 and itga7 (α7β1 integrin) that was not observed with dag1 (dystroglycan). Finally, pertinent to a conserved role in humans, the dystrophic phenotype was rescued by microinjection of recombinant human COLXXII. Our findings indicate that COLXXII contributes to the stabilization of myotendinous junctions and strengthens skeletal muscle attachments during contractile activity.
Collapse
Affiliation(s)
- Benjamin Charvet
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, Université Lyon 1, 46 Allée d'Italie, 69364 Lyon cedex 07, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Todd PK, Ackall FY, Hur J, Sharma K, Paulson HL, Dowling JJ. Transcriptional changes and developmental abnormalities in a zebrafish model of myotonic dystrophy type 1. Dis Model Mech 2013; 7:143-55. [PMID: 24092878 PMCID: PMC3882056 DOI: 10.1242/dmm.012427] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myotonic dystrophy type I (DM1) is a multi-system, autosomal dominant disorder caused by expansion of a CTG repeat sequence in the 3′UTR of the DMPK gene. The size of the repeat sequence correlates with age at onset and disease severity, with large repeats leading to congenital forms of DM1 associated with hypotonia and intellectual disability. In models of adult DM1, expanded CUG repeats lead to an RNA toxic gain of function, mediated at least in part by sequestering specific RNA splicing proteins, most notably muscleblind-related (MBNL) proteins. However, the impact of CUG RNA repeat expression on early developmental processes is not well understood. To better understand early developmental processes in DM1, we utilized the zebrafish, Danio rerio, as a model system. Direct injection of (CUG)91 repeat-containing mRNA into single-cell embryos induces toxicity in the nervous system and muscle during early development. These effects manifest as abnormal morphology, behavioral abnormalities and broad transcriptional changes, as shown by cDNA microarray analysis. Co-injection of zebrafish mbnl2 RNA suppresses (CUG)91 RNA toxicity and reverses the associated behavioral and transcriptional abnormalities. Taken together, these findings suggest that early expression of exogenously transcribed CUG repeat RNA can disrupt normal muscle and nervous system development and provides a new model for DM1 research that is amenable to small-molecule therapeutic development.
Collapse
Affiliation(s)
- Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
68
|
Homozygous dystroglycan mutation associated with a novel muscle-eye-brain disease-like phenotype with multicystic leucodystrophy. Neurogenetics 2013; 14:205-13. [PMID: 24052401 DOI: 10.1007/s10048-013-0374-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 08/30/2013] [Indexed: 12/20/2022]
Abstract
Defects in dystroglycan post-translational modification result in congenital muscular dystrophy with or without additional eye and brain involvement, are referred to as secondary dystroglycanopathies and have been associated with mutations in 11 different genes encoding glycosyltransferases or associated proteins. However, only one patient with a mutation in the dystroglycan encoding gene DAG1 itself has been described before. We here report a homozygous novel DAG1 missense mutation c.2006G>T predicted to result in the amino acid substitution p.Cys669Phe in the β-subunit of dystroglycan in two Libyan siblings. The affected girls presented with a severe muscle-eye-brain disease-like phenotype with distinct additional findings of macrocephaly and extended bilateral multicystic white matter disease, overlapping with the cerebral findings in patients with megalencephalic leucoencephalopathy with subcortical cysts. This novel clinical phenotype observed in our patients further expands the clinical spectrum of dystroglycanopathies and suggests a role of DAG1 not only for dystroglycanopathies but also for some forms of more extensive and multicystic leucodystrophy.
Collapse
|
69
|
Eto K, Sakai N, Shimada S, Shioda M, Ishigaki K, Hamada Y, Shinpo M, Azuma J, Tominaga K, Shimojima K, Ozono K, Osawa M, Yamamoto T. Microdeletions of 3p21.31 characterized by developmental delay, distinctive features, elevated serum creatine kinase levels, and white matter involvement. Am J Med Genet A 2013; 161A:3049-56. [DOI: 10.1002/ajmg.a.36156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 06/27/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Kaoru Eto
- Department of Pediatrics; Tokyo Women's Medical University; Tokyo Japan
| | - Norio Sakai
- Department of Pediatrics; Osaka University Graduate School of Medicine; Suita Japan
| | - Shino Shimada
- Department of Pediatrics; Tokyo Women's Medical University; Tokyo Japan
- Tokyo Women's Medical University Institute for Integrated Medical Sciences; Tokyo Japan
| | - Mutsuki Shioda
- Department of Pediatrics; Tokyo Women's Medical University; Tokyo Japan
| | - Keiko Ishigaki
- Department of Pediatrics; Tokyo Women's Medical University; Tokyo Japan
| | - Yusuke Hamada
- Department of Pediatrics; Osaka University Graduate School of Medicine; Suita Japan
| | - Michiko Shinpo
- Department of Pediatrics; Osaka University Graduate School of Medicine; Suita Japan
| | - Junji Azuma
- Department of Pediatrics; Osaka University Graduate School of Medicine; Suita Japan
| | - Koji Tominaga
- Department of Pediatrics; Osaka University Graduate School of Medicine; Suita Japan
| | - Keiko Shimojima
- Tokyo Women's Medical University Institute for Integrated Medical Sciences; Tokyo Japan
| | - Keiichi Ozono
- Department of Pediatrics; Osaka University Graduate School of Medicine; Suita Japan
| | - Makiko Osawa
- Department of Pediatrics; Tokyo Women's Medical University; Tokyo Japan
| | - Toshiyuki Yamamoto
- Tokyo Women's Medical University Institute for Integrated Medical Sciences; Tokyo Japan
| |
Collapse
|
70
|
Gibbs EM, Horstick EJ, Dowling JJ. Swimming into prominence: the zebrafish as a valuable tool for studying human myopathies and muscular dystrophies. FEBS J 2013; 280:4187-97. [PMID: 23809187 DOI: 10.1111/febs.12412] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/07/2013] [Accepted: 06/20/2013] [Indexed: 11/28/2022]
Abstract
A new and exciting phase of muscle disease research has recently been entered. The application of next generation sequencing technology has spurred an unprecedented era of gene discovery for both myopathies and muscular dystrophies. Gene-based therapies for Duchenne muscular dystrophy have entered clinical trial, and several pathway-based therapies are doing so as well for a handful of muscle diseases. While many factors have aided the extraordinary developments in gene discovery and therapy development, the zebrafish model system has emerged as a vital tool in these advancements. In this review, we will highlight how the zebrafish has greatly aided in the identification of new muscle disease genes and in the recognition of novel therapeutic strategies. We will start with a general introduction to the zebrafish as a model, discuss the ways in which muscle disease can be modeled and analyzed in the fish, and conclude with observations from recent studies that highlight the power of the fish as a research tool for muscle disease.
Collapse
Affiliation(s)
- Elizabeth M Gibbs
- Departments of Neuroscience, Neurology and Pediatrics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | | | | |
Collapse
|
71
|
Basu S, Sachidanandan C. Zebrafish: a multifaceted tool for chemical biologists. Chem Rev 2013; 113:7952-80. [PMID: 23819893 DOI: 10.1021/cr4000013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sandeep Basu
- Council of Scientific and Industrial Research-Institute of Genomics & Integrative Biology (CSIR-IGIB) , South Campus, New Delhi 110025, India
| | | |
Collapse
|
72
|
Gupta VA, Hnia K, Smith LL, Gundry SR, McIntire JE, Shimazu J, Bass JR, Talbot EA, Amoasii L, Goldman NE, Laporte J, Beggs AH. Loss of catalytically inactive lipid phosphatase myotubularin-related protein 12 impairs myotubularin stability and promotes centronuclear myopathy in zebrafish. PLoS Genet 2013; 9:e1003583. [PMID: 23818870 PMCID: PMC3688503 DOI: 10.1371/journal.pgen.1003583] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/07/2013] [Indexed: 01/08/2023] Open
Abstract
X-linked myotubular myopathy (XLMTM) is a congenital disorder caused by mutations of the myotubularin gene, MTM1. Myotubularin belongs to a large family of conserved lipid phosphatases that include both catalytically active and inactive myotubularin-related proteins (i.e., "MTMRs"). Biochemically, catalytically inactive MTMRs have been shown to form heteroligomers with active members within the myotubularin family through protein-protein interactions. However, the pathophysiological significance of catalytically inactive MTMRs remains unknown in muscle. By in vitro as well as in vivo studies, we have identified that catalytically inactive myotubularin-related protein 12 (MTMR12) binds to myotubularin in skeletal muscle. Knockdown of the mtmr12 gene in zebrafish resulted in skeletal muscle defects and impaired motor function. Analysis of mtmr12 morphant fish showed pathological changes with central nucleation, disorganized Triads, myofiber hypotrophy and whorled membrane structures similar to those seen in X-linked myotubular myopathy. Biochemical studies showed that deficiency of MTMR12 results in reduced levels of myotubularin protein in zebrafish and mammalian C2C12 cells. Loss of myotubularin also resulted in reduction of MTMR12 protein in C2C12 cells, mice and humans. Moreover, XLMTM mutations within the myotubularin interaction domain disrupted binding to MTMR12 in cell culture. Analysis of human XLMTM patient myotubes showed that mutations that disrupt the interaction between myotubularin and MTMR12 proteins result in reduction of both myotubularin and MTMR12. These studies strongly support the concept that interactions between myotubularin and MTMR12 are required for the stability of their functional protein complex in normal skeletal muscles. This work highlights an important physiological function of catalytically inactive phosphatases in the pathophysiology of myotubular myopathy and suggests a novel therapeutic approach through identification of drugs that could stabilize the myotubularin-MTMR12 complex and hence ameliorate this disorder.
Collapse
Affiliation(s)
- Vandana A. Gupta
- Genomics Program and Division of Genetics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Karim Hnia
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Inserm U964, CNRS UMR7104, Université de Strasbourg, Collège de France, Chaire de Génétique Humaine, Illkirch, France
| | - Laura L. Smith
- Genomics Program and Division of Genetics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stacey R. Gundry
- Genomics Program and Division of Genetics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jessica E. McIntire
- Genomics Program and Division of Genetics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Junko Shimazu
- Genomics Program and Division of Genetics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jessica R. Bass
- Genomics Program and Division of Genetics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ethan A. Talbot
- Genomics Program and Division of Genetics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Leonela Amoasii
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Inserm U964, CNRS UMR7104, Université de Strasbourg, Collège de France, Chaire de Génétique Humaine, Illkirch, France
| | - Nathaniel E. Goldman
- Genomics Program and Division of Genetics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Inserm U964, CNRS UMR7104, Université de Strasbourg, Collège de France, Chaire de Génétique Humaine, Illkirch, France
| | - Alan H. Beggs
- Genomics Program and Division of Genetics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
73
|
Berger J, Currie PD. Zebrafish models flex their muscles to shed light on muscular dystrophies. Dis Model Mech 2013; 5:726-32. [PMID: 23115202 PMCID: PMC3484855 DOI: 10.1242/dmm.010082] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Muscular dystrophies are a group of genetic disorders that specifically affect skeletal muscle and are characterized by progressive muscle degeneration and weakening. To develop therapies and treatments for these diseases, a better understanding of the molecular basis of muscular dystrophies is required. Thus, identification of causative genes mutated in specific disorders and the study of relevant animal models are imperative. Zebrafish genetic models of human muscle disorders often closely resemble disease pathogenesis, and the optical clarity of zebrafish embryos and larvae enables visualization of dynamic molecular processes in vivo. As an adjunct tool, morpholino studies provide insight into the molecular function of genes and allow rapid assessment of candidate genes for human muscular dystrophies. This unique set of attributes makes the zebrafish model system particularly valuable for the study of muscle diseases. This review discusses how recent research using zebrafish has shed light on the pathological basis of muscular dystrophies, with particular focus on the muscle cell membrane and the linkage between the myofibre cytoskeleton and the extracellular matrix.
Collapse
Affiliation(s)
- Joachim Berger
- Australian Regenerative Medicine Institute, EMBL Australia, Monash University, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
74
|
Pappalardo A, Pitto L, Fiorillo C, Alice Donati M, Bruno C, Santorelli FM. Neuromuscular disorders in zebrafish: state of the art and future perspectives. Neuromolecular Med 2013; 15:405-19. [PMID: 23584918 DOI: 10.1007/s12017-013-8228-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 03/30/2013] [Indexed: 12/22/2022]
Abstract
Neuromuscular disorders are a broad group of inherited conditions affecting the structure and function of the motor system with polymorphic clinical presentation and disease severity. Although individually rare, collectively neuromuscular diseases have an incidence of 1 in 3,000 and represent a significant cause of disability of the motor system. The past decade has witnessed the identification of a large number of human genes causing muscular disorders, yet the underlying pathogenetic mechanisms remain largely unclear, limiting the developing of targeted therapeutic strategies. To overcome this barrier, model systems that replicate the different steps of human disorders are increasingly being developed. Among these, the zebrafish (Danio rerio) has emerged as an excellent organism for studying genetic disorders of the central and peripheral motor systems. In this review, we will encounter most of the available zebrafish models for childhood neuromuscular disorders, providing a brief overview of results and the techniques, mainly transgenesis and chemical biology, used for genetic manipulation. The amount of data collected in the past few years will lead zebrafish to became a common functional tool for assessing rapidly drug efficacy and off-target effects in neuromuscular diseases and, furthermore, to shed light on new etiologies emerging from large-scale massive sequencing studies.
Collapse
Affiliation(s)
- Andrea Pappalardo
- Molecular Medicine, and Neuromuscular Lab, IRCCS Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
75
|
Kawahara G, Kunkel LM. Zebrafish based small molecule screens for novel DMD drugs. DRUG DISCOVERY TODAY. TECHNOLOGIES 2013; 10:e91-6. [PMID: 23646060 DOI: 10.1016/j.ddtec.2012.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recently, a number of chemical and drug screens using zebrafish embryos have been published. Using zebrafish dystrophin mutants, we screened a chemical library for small molecules that modulate the muscle phenotype and identified seven small molecules that influence muscle pathology in dystrophin-null zebrafish. One chemical, aminophylline, which is known to be a non-selective phosphodiesterase (PDE) inhibitor, had the greatest ability to restore normal muscle structure and to up-regulate cAMP-dependent protein kinase (PKA) in treated dystrophin deficient fish. Our methodologies, which combine drug screening with assessment of the chemical effects by genotyping and staining with anti-dystrophin, provide a powerful means to identify template structures potentially relevant to the development of novel human muscular dystrophies therapeutics.
Collapse
Affiliation(s)
- Genri Kawahara
- Division of Genetics, Program in Genomics, Children's Hospital Boston, Children's Hospital Boston, MA, USA ; Department of Genetics, Harvard Medical School, Children's Hospital Boston, MA, USA ; The Manton Center for Orphan Disease Research, Children's Hospital Boston, MA, USA
| | | |
Collapse
|
76
|
Borycki AG. The myotomal basement membrane: insight into laminin-111 function and its control by Sonic hedgehog signaling. Cell Adh Migr 2013; 7:72-81. [PMID: 23287393 DOI: 10.4161/cam.23411] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The importance of laminin-containing basement membranes (BM) for adult muscle function is well established, in particular due to the severe phenotype of congenital muscular dystrophies in patients with mutations disrupting the BM-muscle cell interaction. Developing muscles in the embryo are also dependent on an intact BM. However, the processes controlled by BM-muscle cell interactions in the embryo are only beginning to be elucidated. In this review, we focus on the myotomal BM to illustrate the critical role of laminin-111 in BM assembly and function at the surface of embryonic muscle cells. The myotomal BM provides also an interesting paradigm to study the complex interplay between laminins-containing BM and growth factor-mediated signaling and activity.
Collapse
|
77
|
Heur M, Jiao S, Schindler S, Crump JG. Regenerative potential of the zebrafish corneal endothelium. Exp Eye Res 2012; 106:1-4. [PMID: 23108006 DOI: 10.1016/j.exer.2012.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 12/30/2022]
Abstract
Corneal transparency, critical for clear vision, is maintained in part by the pump function of the corneal endothelial cells that are arrested in G(1) phase of the cell cycle in adult humans. Thus loss of endothelial cells leads to a decrease in endothelial cell density. A decrease below a critical threshold results in corneal edema and subsequent vision loss. Corneal edema due to endothelial dysfunction is a common indication for transplantation in developed countries. The zebrafish has emerged as a model for vertebrate regeneration due to its ease of genetic manipulation and remarkable regenerative capacity. The purpose of this study was to investigate the response and regenerative potential of the zebrafish corneal endothelium to pharmacological and mechanical injury. Similar to the human cornea, Na(+)/K(+) ATPase activity is necessary to maintain the pump function as intracameral injection of ouabain resulted in an increase in central corneal thickness. Surgical removal of the majority of the central corneal endothelium resulted in a similar increase in corneal thickness. Remarkably, by just one week post-injury the central corneal endothelium had largely re-formed. Immunofluorescence of phosphorylated histone H3 indicated that this recovery correlated with corneal endothelial cells re-entering the cell cycle. In conclusion, our results establish zebrafish as a useful model of corneal injury and repair that may offer insights into the mechanism of cell cycle arrest in human corneal endothelial cells.
Collapse
|
78
|
Exome sequencing and functional validation in zebrafish identify GTDC2 mutations as a cause of Walker-Warburg syndrome. Am J Hum Genet 2012; 91:541-7. [PMID: 22958903 DOI: 10.1016/j.ajhg.2012.07.009] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/16/2012] [Accepted: 07/11/2012] [Indexed: 01/19/2023] Open
Abstract
Whole-exome sequencing (WES), which analyzes the coding sequence of most annotated genes in the human genome, is an ideal approach to studying fully penetrant autosomal-recessive diseases, and it has been very powerful in identifying disease-causing mutations even when enrollment of affected individuals is limited by reduced survival. In this study, we combined WES with homozygosity analysis of consanguineous pedigrees, which are informative even when a single affected individual is available, to identify genetic mutations responsible for Walker-Warburg syndrome (WWS), a genetically heterogeneous autosomal-recessive disorder that severely affects the development of the brain, eyes, and muscle. Mutations in seven genes are known to cause WWS and explain 50%-60% of cases, but multiple additional genes are expected to be mutated because unexplained cases show suggestive linkage to diverse loci. Using WES in consanguineous WWS-affected families, we found multiple deleterious mutations in GTDC2 (also known as AGO61). GTDC2's predicted role as an uncharacterized glycosyltransferase is consistent with the function of other genes that are known to be mutated in WWS and that are involved in the glycosylation of the transmembrane receptor dystroglycan. Therefore, to explore the role of GTDC2 loss of function during development, we used morpholino-mediated knockdown of its zebrafish ortholog, gtdc2. We found that gtdc2 knockdown in zebrafish replicates all WWS features (hydrocephalus, ocular defects, and muscular dystrophy), strongly suggesting that GTDC2 mutations cause WWS.
Collapse
|
79
|
Gupta VA, Kawahara G, Myers JA, Chen AT, Hall TE, Manzini MC, Currie PD, Zhou Y, Zon LI, Kunkel LM, Beggs AH. A splice site mutation in laminin-α2 results in a severe muscular dystrophy and growth abnormalities in zebrafish. PLoS One 2012; 7:e43794. [PMID: 22952766 PMCID: PMC3428294 DOI: 10.1371/journal.pone.0043794] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/24/2012] [Indexed: 11/18/2022] Open
Abstract
Congenital muscular dystrophy (CMD) is a clinically and genetically heterogeneous group of inherited muscle disorders. In patients, muscle weakness is usually present at or shortly after birth and is progressive in nature. Merosin deficient congenital muscular dystrophy (MDC1A) is a form of CMD caused by a defect in the laminin-α2 gene (LAMA2). Laminin-α2 is an extracellular matrix protein that interacts with the dystrophin-dystroglycan (DGC) complex in membranes providing stability to muscle fibers. In an N-ethyl-N-nitrosourea mutagenesis screen to develop zebrafish models of neuromuscular diseases, we identified a mutant fish that exhibits severe muscular dystrophy early in development. Genetic mapping identified a splice site mutation in the lama2 gene. This splice site is highly conserved in humans and this mutation results in mis-splicing of RNA and a loss of protein function. Homozygous lama2 mutant zebrafish, designated lama2cl501/cl501, exhibited reduced motor function and progressive degeneration of skeletal muscles and died at 8–15 days post fertilization. The skeletal muscles exhibited damaged myosepta and detachment of myofibers in the affected fish. Laminin-α2 deficiency also resulted in growth defects in the brain and eye of the mutant fish. This laminin-α2 deficient mutant fish represents a novel disease model to develop therapies for modulating splicing defects in congenital muscular dystrophies and to restore the muscle function in human patients with CMD.
Collapse
Affiliation(s)
- Vandana A. Gupta
- Genomics Program and Division of Genetics, Boston Children’s Hospital, Harvard Medical School, The Manton Center for Orphan Disease Research, Boston, Massachusetts, United States of America
| | - Genri Kawahara
- Genomics Program and Division of Genetics, Boston Children’s Hospital, Harvard Medical School, The Manton Center for Orphan Disease Research, Boston, Massachusetts, United States of America
| | - Jennifer A. Myers
- Genomics Program and Division of Genetics, Boston Children’s Hospital, Harvard Medical School, The Manton Center for Orphan Disease Research, Boston, Massachusetts, United States of America
| | - Aye T. Chen
- Stem Cell Program and Pediatric Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thomas E. Hall
- Australian Regenerative Medicine Institute, Monash University, Clayton Campus, Victoria, Australia
| | - M. Chiara Manzini
- Genomics Program and Division of Genetics, Boston Children’s Hospital, Harvard Medical School, The Manton Center for Orphan Disease Research, Boston, Massachusetts, United States of America
| | - Peter D. Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton Campus, Victoria, Australia
| | - Yi Zhou
- Stem Cell Program and Pediatric Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Leonard I. Zon
- Stem Cell Program and Pediatric Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, San Francisco, California, United States of America
| | - Louis M. Kunkel
- Genomics Program and Division of Genetics, Boston Children’s Hospital, Harvard Medical School, The Manton Center for Orphan Disease Research, Boston, Massachusetts, United States of America
| | - Alan H. Beggs
- Genomics Program and Division of Genetics, Boston Children’s Hospital, Harvard Medical School, The Manton Center for Orphan Disease Research, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
80
|
Sztal TE, Sonntag C, Hall TE, Currie PD. Epistatic dissection of laminin-receptor interactions in dystrophic zebrafish muscle. Hum Mol Genet 2012; 21:4718-31. [PMID: 22859503 DOI: 10.1093/hmg/dds312] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Laminins form essential components of the basement membrane and are integral to forming and maintaining muscle integrity. Mutations in the human Laminin-alpha2 (LAMA2) gene result in the most common form of congenital muscular dystrophy, MDC1A. We have previously identified a zebrafish model of MDC1A called candyfloss (caf), carrying a loss-of-function mutation in the zebrafish lama2 gene. In the skeletal muscle, laminins connect the muscle cell to the extracellular matrix (ECM) by binding either dystroglycan or integrins at the cell membrane. Through epistasis experiments, we have established that both adhesion systems individually contribute to the maintenance of fibre adhesions and exhibit muscle detachment phenotypes. However, larval zebrafish in which both adhesion systems are simultaneously genetically inactivated possess a catastrophic failure of muscle attachment that is far greater than a simple addition of individual phenotypes would predict. We provide evidence that this is due to other crucial laminins present in addition to Lama2, which aid muscle cell attachments and integrity. We have found that lama1 is important for maintaining attachments, whereas lama4 is localized and up-regulated in damaged fibres, which appears to contribute to fibre survival. Importantly, our results show that endogenous secretion of laminins from the surrounding tissues has the potential to reinforce fibre attachments and strengthen laminin-ECM attachments. Collectively these findings provide a better understanding of the cellular pathology of MDC1A and help in designing effective therapies.
Collapse
Affiliation(s)
- Tamar E Sztal
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | | | | | | |
Collapse
|
81
|
Lin YY. Muscle diseases in the zebrafish. Neuromuscul Disord 2012; 22:673-84. [PMID: 22647769 DOI: 10.1016/j.nmd.2012.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/09/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
Abstract
Animal models in biomedical research are important for understanding the pathological mechanisms of human diseases at a molecular and cellular level. Several aspects of mammalian animals, however, may limit their use in modelling neuromuscular disorders. Many attributes of zebrafish (Danio rerio) are complementary to mammalian experimental systems, establishing the zebrafish as a powerful model organism in disease biology. This review focuses on a number of key studies using the zebrafish to model hereditary muscle diseases with additional emphasis on recent advances in zebrafish functional genomics and drug discovery. Increasing research in zebrafish disease models, combined with knowledge from mammalian models, will bring novel insights into the disease pathogenesis of neuromuscular disorders, as well as facilitate the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Yung-Yao Lin
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, United Kingdom.
| |
Collapse
|
82
|
Roostalu U, Strähle U. In vivo imaging of molecular interactions at damaged sarcolemma. Dev Cell 2012; 22:515-29. [PMID: 22421042 DOI: 10.1016/j.devcel.2011.12.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 10/25/2011] [Accepted: 12/14/2011] [Indexed: 12/30/2022]
Abstract
Muscle cells have a remarkable capability to repair plasma membrane lesions. Mutations in dysferlin (dysf) are known to elicit a progressive myopathy in humans, probably due to impaired sarcolemmal repair. We show here that loss of Dysf and annexin A6 (Anxa6) function lead to myopathy in zebrafish. By use of high-resolution imaging of myofibers in intact animals, we reveal sequential phases in sarcolemmal repair. Initially, membrane vesicles enriched in Dysf together with cytoplasmic Anxa6 form a tight patch at the lesion independently of one another. In the subsequent steps, annexin A2a (Anxa2a) followed by annexin A1a (Anxa1a) accumulate at the patch; the recruitment of these annexins depends on Dysf and Anxa6. Thus, sarcolemmal repair relies on the ordered assembly of a protein-membrane scaffold. Moreover, we provide several lines of evidence that the membrane for sarcolemmal repair is derived from a specialized plasma membrane compartment.
Collapse
Affiliation(s)
- Urmas Roostalu
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology and University of Heidelberg, Eggenstein-Leopoldshafen, Germany.
| | | |
Collapse
|
83
|
Brancaccio A. DAG1, no gene for RNA regulation? Gene 2012; 497:79-82. [PMID: 22310381 DOI: 10.1016/j.gene.2012.01.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/07/2011] [Accepted: 01/19/2012] [Indexed: 02/07/2023]
Abstract
DAG1 encodes for a precursor protein that liberates the two subunits featured by the dystroglycan (DG) adhesion complex that are involved in an increasing number of cellular functions in a wide variety of cells and tissues. Aside from the proteolytic events producing the α and β subunits, especially the former undergoes extensive "post-production" modifications taking place within the ER/Golgi where its core protein is both N- and O-decorated with sugars. These post-translational events, that are mainly orchestrated by a plethora of certified, or putative, glycosyltransferases, prelude to the excocytosis-mediated trafficking and targeting of the DG complex to the plasma membrane. Extensive genetic and biochemical evidences have been accumulated so far on α-DG glycosylation, while little is know on possible regulatory events underlying the chromatine activation, transcription or post-transcription (splicing and escape from the nucleus) of DAG1 or of its mRNA. A scenario is envisaged in which cells would use a sort of preferential, and scarcely regulated, route for DAG1 activation, that would imply fast mRNA transcription, maturation and export to the cytosol, and would prelude to the multiple time-consuming enzymatic post-translational activities needed for its glycosylation. Such a provocative view might be helpful to trigger future work aiming at disclosing the complete molecular mechanisms underlying DAG1 activation and at improving our knowledge of any pre-translational step that is involved in dystroglycan regulation.
Collapse
|
84
|
Charvet B, Ruggiero F, Le Guellec D. The development of the myotendinous junction. A review. Muscles Ligaments Tendons J 2012; 2:53-63. [PMID: 23738275 PMCID: PMC3666507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The myotendinous junction (MTJ) is a complex specialized region located at the muscle-tendon interface that represents the primary site of force transmission. Despite their different embryologic origins, muscle and tendon morphogenesis occurs in close spatial and temporal association. After muscle attachment, muscle and tendon constitute a dynamic and functional integrated unit that transduces muscle contraction force to the skeletal system. We review here the current understanding of MTJ formation describing changes during morphogenesis and focusing on the crosstalk between muscle and tendon cells that leads to the development of a functional MTJ. Molecules involved in the formation of the linkage, both at the tendon side and at the muscle side of the junction are described. Much of this knowledge comes from studies using different animal models such as mice, zebrafish and Drosophila where powerful methods for in vivo imaging and genetic manipulations can be used to enlighten this developmental process.
Collapse
Affiliation(s)
- Benjamin Charvet
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, Université Lyon 1, France
| | - Florence Ruggiero
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, Université Lyon 1, France
| | - Dominique Le Guellec
- Université Lyon 1; CNRS, FRE 3310; IFR128 Lyon Biosciences, Dysfonctionnement de l’Homéostasie Tissulaire et Ingénierie Thérapeutique, France
| |
Collapse
|
85
|
Gupta V, Discenza M, Guyon JR, Kunkel LM, Beggs AH. α-Actinin-2 deficiency results in sarcomeric defects in zebrafish that cannot be rescued by α-actinin-3 revealing functional differences between sarcomeric isoforms. FASEB J 2012; 26:1892-908. [PMID: 22253474 DOI: 10.1096/fj.11-194548] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
α-Actinins are actin-binding proteins that can be broadly divided into Ca(2+)-sensitive cytoskeletal and Ca(2+)-insensitive sarcomeric isoforms. To date, little is known about functional differences between the isoforms due to their indistinguishable activities in most in vitro assays. To identify functional differences in vivo between sarcomeric isoforms, we employed computational and molecular approaches to characterize the zebrafish (Danio rerio) genome, which contains orthologoues of each human α-actinin gene, including duplicated copies of actn3. Each isoform exhibits a distinct and unique pattern of gene expression as assessed by mRNA in situ hybridization, largely sharing similar expression profiles as seen in humans. The spatial conservation of expression of these genes from lower invertebrates to humans suggests that regulation and subsequent functions of these genes are conserved during evolution. Morpholino-based knockdown of the sarcomeric isoform, actn2, leads to skeletal muscle, cardiac, and ocular defects evident over the first week of development. Remarkably, despite the high degree of sequence conservation between actn2 and actn3, the phenotypes of α-actinin-2 deficient zebrafish can be rescued by overexpression of α-actinin-2 but not by α-actinin-3 mRNAs from zebrafish or human. These data provide functional evidence that the primary sequences of α-actinin-2 and α-actinin-3 evolved differences to optimize their functions.
Collapse
Affiliation(s)
- Vandana Gupta
- Division of Genetics, Children's Hospital Boston, 300 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
86
|
Muscular dystrophies due to glycosylation defects: diagnosis and therapeutic strategies. Curr Opin Neurol 2012; 24:437-42. [PMID: 21825985 DOI: 10.1097/wco.0b013e32834a95e3] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW Dystroglycanopathies are a common group of diseases characterized by a reduction in α-dystroglycan glycosylation. This review discusses the recent novel discovery of additional dystroglycanopathy variants and progress in dystroglycanopathy animal models. RECENT FINDINGS Several novel glycosyltransferase genes have been found to be responsible for a dystroglycanopathy phenotype, and in addition recessive mutations in DAG1 have been identified for the first time in a primary dystroglycanopathy. Studies in dystroglycanopathy mouse models have clarified some aspects of the structural defects observed in the central nervous system and in the eye, whereas a study in zebrafish implicates unfolded protein response in the pathogenesis of two of the secondary dystroglycanopathies. SUMMARY Improved understanding of the molecular bases of dystroglycanopathies will lead to more precise diagnosis and genetic counseling; therapeutic strategies are being developed and tested in the preclinical models and it is hoped that these observations will pave the way to therapeutic interventions in humans.
Collapse
|
87
|
Fujita M, Mitsuhashi H, Isogai S, Nakata T, Kawakami A, Nonaka I, Noguchi S, Hayashi YK, Nishino I, Kudo A. Filamin C plays an essential role in the maintenance of the structural integrity of cardiac and skeletal muscles, revealed by the medaka mutant zacro. Dev Biol 2011; 361:79-89. [PMID: 22020047 DOI: 10.1016/j.ydbio.2011.10.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 12/15/2022]
Abstract
Filamin C is an actin-crosslinking protein that is specifically expressed in cardiac and skeletal muscles. Although mutations in the filamin C gene cause human myopathy with cardiac involvement, the function of filamin C in vivo is not yet fully understood. Here we report a medaka mutant, zacro (zac), that displayed an enlarged heart, caused by rupture of the myocardiac wall, and progressive skeletal muscle degeneration in late embryonic stages. We identified zac to be a homozygous nonsense mutation in the filamin C (flnc) gene. The medaka filamin C protein was found to be localized at myotendinous junctions, sarcolemma, and Z-disks in skeletal muscle, and at intercalated disks in the heart. zac embryos showed prominent myofibrillar degeneration at myotendinous junctions, detachment of myofibrils from sarcolemma and intercalated disks, and focal Z-disk destruction. Importantly, the expression of γ-actin, which we observed to have a strong subcellular localization at myotendinous junctions, was specifically reduced in zac mutant myotomes. Inhibition of muscle contraction by anesthesia alleviated muscle degeneration in the zac mutant. These results suggest that filamin C plays an indispensable role in the maintenance of the structural integrity of cardiac and skeletal muscles for support against mechanical stress.
Collapse
Affiliation(s)
- Misato Fujita
- Department of Biological Information, Tokyo Institute of Technology, 4259-B-33 Nagatsuta, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Wood AJ, Müller JS, Jepson CD, Laval SH, Lochmüller H, Bushby K, Barresi R, Straub V. Abnormal vascular development in zebrafish models for fukutin and FKRP deficiency. Hum Mol Genet 2011; 20:4879-90. [PMID: 21926082 DOI: 10.1093/hmg/ddr426] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fukutin and fukutin-related protein (FKRP) are involved in the glycosylation of α-dystroglycan, a key receptor for basement membrane proteins. Aberrant α-dystroglycan glycosylation leads to a broad spectrum of disorders, ranging from limb girdle muscular dystrophy to Walker-Warburg syndrome. This is the first study investigating a role of fukutin and FKRP-mediated glycosylation in angiogenesis. Transgenic zebrafish expressing enhanced green fluorescent protein in blood vessels were treated with morpholino antisense oligonucleotides that blocked the expression of fukutin, FKRP and dystroglycan. All morphant fish showed muscle damage and vascular abnormalities at day 1 post-fertilization. Intersegmental vessels of somites failed to reach the dorsal longitudinal anastomosis and in more severe phenotypes retracted further or were in some cases even completely missing. In contrast, the eye vasculature was distorted in both fukutin and FKRP morphants, but not in dystroglycan morphants or control fish. The eye size was also smaller in the fukutin and FKRP morphants when compared with dystroglycan knockdown fish and controls. In general, the fukutin morphant fish had the most severe skeletal muscle and eye phenotype. Our findings suggest that fukutin and FKRP have functions that affect ocular development in zebrafish independently of dystroglycan. Despite anecdotal reports about vascular abnormalities in patients affected by dystroglycanopathies, the clinical relevance of such lesions remains unclear and should be subject to further review and investigations.
Collapse
Affiliation(s)
- Alasdair J Wood
- International Centre for Life, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Kawahara G, Serafini PR, Myers JA, Alexander MS, Kunkel LM. Characterization of zebrafish dysferlin by morpholino knockdown. Biochem Biophys Res Commun 2011; 413:358-63. [PMID: 21893049 DOI: 10.1016/j.bbrc.2011.08.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 08/20/2011] [Indexed: 10/17/2022]
Abstract
Mutations in the gene encoding dysferlin cause two distinct muscular dystrophy phenotypes: limb-girdle muscular dystrophy type 2B (LGMD-2B) and Miyoshi myopathy (MM). Dysferlin is a large transmembrane protein involved in myoblast fusion and membrane resealing. Zebrafish represent an ideal animal model to use for studying muscle disease including abnormalities of dysferlin. cDNAs of zebrafish dysferlin were cloned (6.3 kb) and the predicted amino acid sequences, showed 68% similarity to predicted amino acid sequences of mammalian dysferlin. The expression of dysferlin was mainly in skeletal muscle, heart and eye, and the expression could be detected as early as 11h post fertilization (hpf). Three different antisense oligonucleotide morpholinos were targeted to inhibit translation of this dysferlin mRNA and the morpholino-injected fish showed marked muscle disorganization which could be detected by birefringence assay. Western blot analysis using dysferlin antibodies showed that the expression of dysferlin was reduced in each of the three morphants. Dysferlin expression was shown to be reduced at the myosepta of zebrafish muscle using immunohistochemistry, although the expression of other muscle membrane components, dystrophin, laminin, β-dystroglycan were detected normally. Our data suggest that zebrafish dysferlin expression is involved in stabilizing muscle structures and its downregulation causes muscle disorganization.
Collapse
Affiliation(s)
- Genri Kawahara
- Division of Genetics, Program in Genomics, Children's Hospital Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
90
|
A second Ig-like domain identified in dystroglycan by molecular modelling and dynamics. J Mol Graph Model 2011; 29:1015-24. [PMID: 21605994 DOI: 10.1016/j.jmgm.2011.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/19/2011] [Accepted: 04/21/2011] [Indexed: 11/23/2022]
Abstract
Dystroglycan (DG) is a cell surface receptor which is composed of two subunits that interact noncovalently, namely α- and β-DG. In skeletal muscle, DG is the central component of the dystrophin-glycoprotein complex (DGC) that anchors the actin cytoskeleton to the extracellular matrix. To date only the three-dimensional structure of the N-terminal region of α-DG has been solved by X-ray crystallography. To expand such a structural analysis, a theoretical molecular model of the murine α-DG C-terminal region was built based on folding recognition/threading techniques. Although there is no a significant (<30%) sequence homology with the N-terminal region of α-DG, protein fold recognition methods found a significant resemblance to the α-DG N-terminal crystallographic structure. Our in silico structural prediction identified two subdomains in this region. Amino acid residues ∼ 500-600 of α-DG were predicted to adopt an immunoglobulin-like (Ig-like) β-sandwich fold. Such modeled domain includes the β-DG binding epitope of α-DG and, confirming our previous experimental results, suggests that the linear epitope (residues 550-565) assumes a β-strand conformation. The remaining segment of the α-DG C-terminal region (residues 601-653) is organized in a coil-helix-coil motif. A 20-ns molecular dynamics simulation in explicit water solvent provided support to the predicted Ig-like model structure. The identification of a second Ig-like domain in DG represents another important step towards a full structural and functional description of the α/β DG interface. Preliminary characterization of a novel recombinant peptide (505-600) encompassing this second Ig-like domain demonstrates that it is soluble and stable, further corroborating our in silico analysis.
Collapse
|