51
|
Jurkiewicz D, Kugaudo M, Skórka A, Śmigiel R, Smyk M, Ciara E, Chrzanowska K, Krajewska-Walasek M. A novelIGF2/H19domain triplication in the 11p15.5 imprinting region causing either Beckwith-Wiedemann or Silver-Russell syndrome in a single family. Am J Med Genet A 2016; 173:72-78. [DOI: 10.1002/ajmg.a.37964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 08/22/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Dorota Jurkiewicz
- Department of Medical Genetics; Children's Memorial Health Institute; Warsaw Poland
| | - Monika Kugaudo
- Department of Medical Genetics; Children's Memorial Health Institute; Warsaw Poland
- Department of Child and Adolescent Psychiatry; Medical University of Warsaw; Warsaw Poland
| | - Agata Skórka
- Department of Medical Genetics; Children's Memorial Health Institute; Warsaw Poland
- Department of Pediatrics; Medical University of Warsaw; Warsaw Poland
| | - Robert Śmigiel
- Department of Pediatrics; Wroclaw Medical University; Wroclaw Poland
| | - Marta Smyk
- Department of Medical Genetics; Institute of Mother and Child; Warsaw Poland
| | - Elżbieta Ciara
- Department of Medical Genetics; Children's Memorial Health Institute; Warsaw Poland
| | - Krystyna Chrzanowska
- Department of Medical Genetics; Children's Memorial Health Institute; Warsaw Poland
| | | |
Collapse
|
52
|
Hu B, Huo Y, Chen G, Yang L, Wu D, Zhou J. Functional prediction of differentially expressed lncRNAs in HSV-1 infected human foreskin fibroblasts. Virol J 2016; 13:137. [PMID: 27496175 PMCID: PMC4974703 DOI: 10.1186/s12985-016-0592-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/01/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND One of the most important functions of long noncoding RNAs (lncRNAs) is to control protein coding gene transcription by acting locally in cis, or remotely in trans. Herpes Simplex Virus type I (HSV-1) latently infects over 80 % of the population, its reactivation from latency usually results in productive infections in human epithelial cells, and is responsible for the common cold sores and genital Herpes. HSV-1 productive infection leads to profound changes in the host cells, including the host transcriptome. However, how genome wide lncRNAs expressions are affected by the infection and how lncRNAs expression relates to protein coding gene expression have not been analyzed. METHODS We analyzed differentially expressed lncRNAs and their potential targets from RNA-seq data in HSV-1 infected human foreskin fibroblast (HFF) cells. Based on correlations of expression patterns of differentially expressed protein-coding genes and lncRNAs, we predicted that these lncRNAs may regulate, either in cis or in trans, the expression of many cellular protein-coding genes. RESULTS Here we analyzed HSV-1 infection induced, differentially expressed lncRNAs and predicted their target genes. We detected 208 annotated and 206 novel differentially expressed lncRNAs. Gene Ontology and Pathway enrichment analyses revealed potential lncRNA targets, including genes in chromatin assembly, genes in neuronal development and neurodegenerative diseases and genes in the immune response, such as Toll-like receptor signaling and RIG-I-like receptor signaling pathways. CONCLUSIONS We found that differentially expressed lncRNAs may regulate the expression of many cellular protein-coding genes involved in pathways from native immunity to neuronal development, thus revealing important roles of lncRNAs in the regulation of host transcriptional programs in HSV-1 infected human cells.
Collapse
Affiliation(s)
- Benxia Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223 China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204 China
| | - Yongxia Huo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223 China
| | - Guijun Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223 China
| | - Liping Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223 China
| | - Dongdong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 China
| | - Jumin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223 China
| |
Collapse
|
53
|
Busch A, Eken SM, Maegdefessel L. Prospective and therapeutic screening value of non-coding RNA as biomarkers in cardiovascular disease. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:236. [PMID: 27429962 DOI: 10.21037/atm.2016.06.06] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Non-coding RNA (ncRNA) is a class of genetic, epigenetic and translational regulators, containing short and long transcripts with intriguing abilities for use as biomarkers due to their superordinate role in disease development. In the past five years many of these have been investigated in cardiovascular diseases (CVD), mainly myocardial infarction (MI) and heart failure. To extend this view, we summarize the existing data about ncRNA as biomarker in the whole entity of CVDs by literature-based review and comparison of the identified candidates. The myomirs miRNA-1, -133a/b, -208a, -499 with well-defined cellular functions have proven equal to classic protein biomarkers for disease detection in MI. Other microRNAs (miRNAs) were reproducibly found to correlate with disease, disease severity and outcome in heart failure, stroke, coronary artery disease (CAD) and aortic aneurysm. An additional utilization has been discovered for therapeutic monitoring. The function of long non-coding transcripts is only about to be unraveled, yet shows great potential for outcome prediction. ncRNA biomarkers have a distinct role if no alternative test is available or has is performing poorly. With increasing mechanistic understanding, circulating miRNA and long non-coding transcripts will provide useful disease information with high predictive power.
Collapse
Affiliation(s)
- Albert Busch
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden
| | - Suzanne M Eken
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden
| | - Lars Maegdefessel
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden
| |
Collapse
|
54
|
Õunap K. Silver-Russell Syndrome and Beckwith-Wiedemann Syndrome: Opposite Phenotypes with Heterogeneous Molecular Etiology. Mol Syndromol 2016; 7:110-21. [PMID: 27587987 DOI: 10.1159/000447413] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2016] [Indexed: 12/13/2022] Open
Abstract
Silver-Russell syndrome (SRS) and Beckwith-Wiedemann syndrome (BWS) are 2 clinically opposite growth-affecting disorders belonging to the group of congenital imprinting disorders. The expression of both syndromes usually depends on the parental origin of the chromosome in which the imprinted genes reside. SRS is characterized by severe intrauterine and postnatal growth retardation with various additional clinical features such as hemihypertrophy, relative macrocephaly, fifth finger clinodactyly, and triangular facies. BWS is an overgrowth syndrome with many additional clinical features such as macroglossia, organomegaly, and an increased risk of childhood tumors. Both SRS and BWS are clinically and genetically heterogeneous, and for clinical diagnosis, different diagnostic scoring systems have been developed. Six diagnostic scoring systems for SRS and 4 for BWS have been previously published. However, neither syndrome has common consensus diagnostic criteria yet. Most cases of SRS and BWS are associated with opposite epigenetic or genetic abnormalities in the 11p15 chromosomal region leading to opposite imbalances in the expression of imprinted genes. SRS is also caused by maternal uniparental disomy 7, which is usually identified in 5-10% of the cases, and is therefore the first imprinting disorder that affects 2 different chromosomes. In this review, we describe in detail the clinical diagnostic criteria and scoring systems as well as molecular causes in both SRS and BWS.
Collapse
Affiliation(s)
- Katrin Õunap
- Department of Genetics, United Laboratories, Tartu University Hospital, and Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
55
|
Cytrynbaum C, Chong K, Hannig V, Choufani S, Shuman C, Steele L, Morgan T, Scherer SW, Stavropoulos DJ, Basran RK, Weksberg R. Genomic imbalance in the centromeric 11p15 imprinting center in three families: Further evidence of a role for IC2 as a cause of Russell-Silver syndrome. Am J Med Genet A 2016; 170:2731-9. [PMID: 27374371 DOI: 10.1002/ajmg.a.37819] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/15/2016] [Indexed: 11/07/2022]
Abstract
Russell-Silver syndrome is a heterogeneous disorder characterized by intrauterine growth retardation, postnatal growth deficiency, characteristic facial appearance, and other variable features. Genetic and epigenetic alterations are identified in about 60% of individuals with Russell-Silver syndrome. Most frequently, Russell-Silver syndrome is caused by altered gene expression on chromosome 11p15 due to loss of methylation at the telomeric imprinting center. To date there have been a handful of isolated clinical reports implicating the centromeric imprinting center 2 in the etiology of Russell-Silver syndrome. Here we report three new families with genomic imbalances, involving imprinting center 2 resulting in gain of methylation at this center and a Russell-Silver syndrome phenotype, including two families with a maternally inherited microduplication and the first pediatric patient with a paternally derived microdeletion. The findings in our families provide additional evidence of a role for imprinting center 2 in the etiology of Russell-Silver syndrome and suggest that imprinting center 2 imprinting abnormalities may be a more common cause of Russell-Silver syndrome than previously recognized. Furthermore, our findings together with previous clinical reports of genomic imbalances involving imprinting center 2 serve to underscore the complexity of the epigenetic regulation of the 11p15 region making it challenging to predict phenotype on the basis of genotype alone. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cheryl Cytrynbaum
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Karen Chong
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Prenatal Diagnosis and Medical Genetics Program, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Pediatrics and Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| | - Vickie Hannig
- Division of Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Sanaa Choufani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cheryl Shuman
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leslie Steele
- Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Thomas Morgan
- Division of Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Stephen W Scherer
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.,McLaughlin Centre for Molecular Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Dimitri J Stavropoulos
- Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Paediatric Laboratory Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Raveen K Basran
- Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Paediatric Laboratory Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rosanna Weksberg
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada. .,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. .,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada. .,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
56
|
Boonen SE, Freschi A, Christensen R, Valente FM, Lildballe DL, Perone L, Palumbo O, Carella M, Uldbjerg N, Sparago A, Riccio A, Cerrato F. Two maternal duplications involving the CDKN1C gene are associated with contrasting growth phenotypes. Clin Epigenetics 2016; 8:69. [PMID: 27313795 PMCID: PMC4910218 DOI: 10.1186/s13148-016-0236-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/08/2016] [Indexed: 01/20/2023] Open
Abstract
Background The overgrowth-associated Beckwith-Wiedemann syndrome (BWS) and the undergrowth-associated Silver-Russell syndrome (SRS) are characterized by heterogeneous molecular defects affecting a large imprinted gene cluster at chromosome 11p15.5-p15.4. While maternal and paternal duplications of the entire cluster consistently result in SRS and BWS, respectively, the phenotypes associated with smaller duplications are difficult to predict due to the complexity of imprinting regulation. Here, we describe two cases with novel inherited partial duplications of the centromeric domain on chromosome 11p15 associated with contrasting growth phenotypes. Findings In a male patient affected by intrauterine growth restriction and postnatal short stature, we identified an in cis maternally inherited duplication of 0.88 Mb including the CDKN1C gene that was significantly up-regulated. The duplication did not include the long non-coding RNA KCNQ1OT1 nor the imprinting control region of the centromeric domain (KCNQ1OT1:TSS-DMR or ICR2) in which methylation was normal. In the mother, also referring a growth restriction phenotype in her infancy, the duplication was de novo and present on her paternal chromosome. A different in cis maternal duplication, 1.13 Mb long and including the abovementioned duplication, was observed in a child affected by Tetralogy of Fallot but with normal growth. In this case, the rearrangement also included most of the KCNQ1OT1 gene and resulted in ICR2 loss of methylation (LOM). In this second family, the mother carried the duplication on her paternal chromosome and showed a normal growth phenotype as well. Conclusions We report two novel in cis microduplications encompassing part of the centromeric domain of the 11p15.5-p15.4 imprinted gene cluster and both including the growth inhibitor CDKN1C gene. Likely, as a consequence of the differential involvement of the regulatory KCNQ1OT1 RNA and ICR2, the smaller duplication is associated with growth restriction on both maternal and paternal transmissions, while the larger duplication, although it includes the smaller one, does not result in any growth anomaly. Our study provides further insights into the phenotypes associated with imprinted gene alterations and highlights the importance of carefully evaluating the affected genes and regulatory elements for accurate genetic counselling of the 11p15 chromosomal rearrangements. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0236-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Andrea Freschi
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy
| | - Rikke Christensen
- Department of Clinical Genetics, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Federica Maria Valente
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy
| | | | | | - Orazio Palumbo
- Unità di Genetica Medica, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG Italy
| | - Massimo Carella
- Unità di Genetica Medica, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG Italy
| | - Niels Uldbjerg
- Department of Obstetrics and Gynecology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Angela Sparago
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy
| | - Andrea Riccio
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy.,Istituto di Genetica e Biofisica "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche CNR, Napoli, Italy
| | - Flavia Cerrato
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy
| |
Collapse
|
57
|
Abstract
The recognition of functional roles for transcribed long non-coding RNA (lncRNA) has provided a new dimension to our understanding of cellular physiology and disease pathogenesis. LncRNAs are a large group of structurally complex RNA genes that can interact with DNA, RNA, or protein molecules to modulate gene expression and to exert cellular effects through diverse mechanisms. The emerging knowledge regarding their functional roles and their aberrant expression in disease states emphasizes the potential for lncRNA to serve as targets for therapeutic intervention. In this concise review, we outline the mechanisms of action of lncRNAs, their functional cellular roles, and their involvement in disease. Using liver cancer as an example, we provide an overview of the emerging opportunities and potential approaches to target lncRNA-dependent mechanisms for therapeutic purposes.
Collapse
|
58
|
Mussa A, Russo S, de Crescenzo A, Freschi A, Calzari L, Maitz S, Macchiaiolo M, Molinatto C, Baldassarre G, Mariani M, Tarani L, Bedeschi MF, Milani D, Melis D, Bartuli A, Cubellis MV, Selicorni A, Silengo MC, Larizza L, Riccio A, Ferrero GB. Fetal growth patterns in Beckwith-Wiedemann syndrome. Clin Genet 2016; 90:21-7. [PMID: 26857110 DOI: 10.1111/cge.12759] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/23/2016] [Accepted: 02/03/2016] [Indexed: 01/04/2023]
Abstract
We provide data on fetal growth pattern on the molecular subtypes of Beckwith-Wiedemann syndrome (BWS): IC1 gain of methylation (IC1-GoM), IC2 loss of methylation (IC2-LoM), 11p15.5 paternal uniparental disomy (UPD), and CDKN1C mutation. In this observational study, gestational ages and neonatal growth parameters of 247 BWS patients were compared by calculating gestational age-corrected standard deviation scores (SDS) and proportionality indexes to search for differences among IC1-GoM (n = 21), UPD (n = 87), IC2-LoM (n = 147), and CDKN1C mutation (n = 11) patients. In IC1-GoM subgroup, weight and length are higher than in other subgroups. Body proportionality indexes display the following pattern: highest in IC1-GoM patients, lowest in IC2-LoM/CDKN1C patients, intermediate in UPD ones. Prematurity was significantly more prevalent in the CDKN1C (64%) and IC2-LoM subgroups (37%). Fetal growth patterns are different in the four molecular subtypes of BWS and remarkably consistent with altered gene expression primed by the respective molecular mechanisms. IC1-GoM cases show extreme macrosomia and severe disproportion between weight and length excess. In IC2-LoM/CDKN1C patients, macrosomia is less common and associated with more proportionate weight/length ratios with excess of preterm birth. UPD patients show growth patterns closer to those of IC2-LoM, but manifest a body mass disproportion rather similar to that seen in IC1-GoM cases.
Collapse
Affiliation(s)
- A Mussa
- Department of Pediatric and Public Health Sciences, University of Turin, Turin, Italy
| | - S Russo
- Laboratory of Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy
| | | | - A Freschi
- DiSTABiF, Second University of Naples, Naples, Italy
| | - L Calzari
- Laboratory of Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy
| | - S Maitz
- Clinical Pediatric Genetics Unit, Pediatrics Clinics, MBBM Foundation, S. Gerardo Hospital, Monza, Italia
| | - M Macchiaiolo
- Rare Disease and Medical Genetics Unit, Bambino Gesù Children Hospital, Rome, Italy
| | - C Molinatto
- Department of Pediatric and Public Health Sciences, University of Turin, Turin, Italy
| | - G Baldassarre
- Department of Pediatric and Public Health Sciences, University of Turin, Turin, Italy
| | - M Mariani
- Clinical Pediatric Genetics Unit, Pediatrics Clinics, MBBM Foundation, S. Gerardo Hospital, Monza, Italia
| | - L Tarani
- Department of Pediatric and Pediatric Neuropsychiatry, Sapienza University, Rome, Italy
| | - M F Bedeschi
- Medical Genetics Unit, IRCCS Ca' Granda Foundation, Ospedale Maggiore Policlinico, Milan, Italy
| | - D Milani
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - D Melis
- Clinical Pediatric Genetics, Department of Pediatrics, University "Federico II", Naples, Italy
| | - A Bartuli
- Rare Disease and Medical Genetics Unit, Bambino Gesù Children Hospital, Rome, Italy
| | - M V Cubellis
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - A Selicorni
- Clinical Pediatric Genetics Unit, Pediatrics Clinics, MBBM Foundation, S. Gerardo Hospital, Monza, Italia
| | - M C Silengo
- Department of Pediatric and Public Health Sciences, University of Turin, Turin, Italy
| | - L Larizza
- Laboratory of Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy
| | - A Riccio
- DiSTABiF, Second University of Naples, Naples, Italy.,Institute of Genetics and Biophysics "A. Buzzati-Traverso" - CNR, Naples, Italy
| | - G B Ferrero
- Department of Pediatric and Public Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
59
|
Van De Pette M, Tunster SJ, McNamara GI, Shelkovnikova T, Millership S, Benson L, Peirson S, Christian M, Vidal-Puig A, John RM. Cdkn1c Boosts the Development of Brown Adipose Tissue in a Murine Model of Silver Russell Syndrome. PLoS Genet 2016; 12:e1005916. [PMID: 26963625 PMCID: PMC4786089 DOI: 10.1371/journal.pgen.1005916] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/14/2016] [Indexed: 11/30/2022] Open
Abstract
The accurate diagnosis and clinical management of the growth restriction disorder Silver Russell Syndrome (SRS) has confounded researchers and clinicians for many years due to the myriad of genetic and epigenetic alterations reported in these patients and the lack of suitable animal models to test the contribution of specific gene alterations. Some genetic alterations suggest a role for increased dosage of the imprinted CYCLIN DEPENDENT KINASE INHIBITOR 1C (CDKN1C) gene, often mutated in IMAGe Syndrome and Beckwith-Wiedemann Syndrome (BWS). Cdkn1c encodes a potent negative regulator of fetal growth that also regulates placental development, consistent with a proposed role for CDKN1C in these complex childhood growth disorders. Here, we report that a mouse modelling the rare microduplications present in some SRS patients exhibited phenotypes including low birth weight with relative head sparing, neonatal hypoglycemia, absence of catch-up growth and significantly reduced adiposity as adults, all defining features of SRS. Further investigation revealed the presence of substantially more brown adipose tissue in very young mice, of both the classical or canonical type exemplified by interscapular-type brown fat depot in mice (iBAT) and a second type of non-classic BAT that develops postnatally within white adipose tissue (WAT), genetically attributable to a double dose of Cdkn1c in vivo and ex-vivo. Conversely, loss-of-function of Cdkn1c resulted in the complete developmental failure of the brown adipocyte lineage with a loss of markers of both brown adipose fate and function. We further show that Cdkn1c is required for post-transcriptional accumulation of the brown fat determinant PR domain containing 16 (PRDM16) and that CDKN1C and PRDM16 co-localise to the nucleus of rare label-retaining cell within iBAT. This study reveals a key requirement for Cdkn1c in the early development of the brown adipose lineages. Importantly, active BAT consumes high amounts of energy to generate body heat, providing a valid explanation for the persistence of thinness in our model and supporting a major role for elevated CDKN1C in SRS. Silver Russell syndrome is a severe developmental disorder characterised by low birth weight, sparing of the head and neonatal hypoglycemia. SRS adults are small and can be extremely thin, lacking body fat. Numerous genetic and epigenetic mutations have been linked to SRS primarily involving imprinted genes, but progress has been hampered by the lack of a suitable animal model. Here we describe a mouse model of the rare micro duplications reported in some SRS patients, which recapitulated many of the defining features of SRS, including extreme thinness. We showed that these mice possessed substantially more of the energy consuming brown adipose tissue (BAT), driven by a double dose of the imprinted Cdkn1c gene. We further show that Cdkn1c is required for the postranscriptional accumulation of the BAT determinant PRDM16 and that these proteins co-localise to the nucleus of in a rare label-retaining cell within BAT. These data suggest that Cdkn1c contributes to the development of BAT by modulating PRDM16 and supports a major role for this gene in SRS.
Collapse
Affiliation(s)
| | - Simon J. Tunster
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | | | - Steven Millership
- MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom
| | - Lindsay Benson
- Nuffield Department of Clinical Neuroscience, Nuffield Laboratory of Ophthalmology, John Radcliffe Hospital, Oxford, United Kingdom
| | - Stuart Peirson
- Nuffield Department of Clinical Neuroscience, Nuffield Laboratory of Ophthalmology, John Radcliffe Hospital, Oxford, United Kingdom
| | - Mark Christian
- Division of Translational and Systems Medicine, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Rosalind M. John
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| |
Collapse
|
60
|
Kour S, Rath PC. Long noncoding RNAs in aging and age-related diseases. Ageing Res Rev 2016; 26:1-21. [PMID: 26655093 DOI: 10.1016/j.arr.2015.12.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/08/2015] [Accepted: 12/01/2015] [Indexed: 12/14/2022]
Abstract
Aging is the universal, intrinsic, genetically-controlled, evolutionarily-conserved and time-dependent intricate biological process characterised by the cumulative decline in the physiological functions and their coordination in an organism after the attainment of adulthood resulting in the imbalance of neurological, immunological and metabolic functions of the body. Various biological processes and mechanisms along with altered levels of mRNAs and proteins have been reported to be involved in the progression of aging. It is one of the major risk factors in the patho-physiology of various diseases and disorders. Recently, the discovery of pervasive transcription of a vast pool of heterogeneous regulatory noncoding RNAs (ncRNAs), including small ncRNAs (sncRNAs) and long ncRNAs (lncRNAs), in the mammalian genome have provided an alternative way to study and explore the missing links in the aging process, its mechanism(s) and related diseases in a whole new dimension. The involvement of small noncoding RNAs in aging and age-related diseases have been extensively studied and recently reviewed. However, lncRNAs, whose function is far less explored in relation to aging, have emerged as a class of major regulators of genomic functions. Here, we have described some examples of known as well as novel lncRNAs that have been implicated in the progression of the aging process and age-related diseases. This may further stimulate research on noncoding RNAs and the aging process.
Collapse
Affiliation(s)
- Sukhleen Kour
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pramod C Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
61
|
Wu Y, Tan C, Weng WW, Deng Y, Zhang QY, Yang XQ, Gan HL, Wang T, Zhang PP, Xu MD, Wang YQ, Wang CF. Long non-coding RNA Linc00152 is a positive prognostic factor for and demonstrates malignant biological behavior in clear cell renal cell carcinoma. Am J Cancer Res 2016; 6:285-299. [PMID: 27186403 PMCID: PMC4859660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 11/17/2015] [Indexed: 06/05/2023] Open
Abstract
Accumulating evidence demonstrates that lncRNAs play important roles in regulating gene expression and are involved in various pathological processes. In the present study, we screened the lncRNAs profile in clear cell renal cell carcinoma (ccRCC) from The Cancer Genome Atlas (TCGA) database, and got linc00152, a differentially expressed lncRNA that haven't been reported in ccRCC. To further explore its role in ccRCC, the level of Linc00152 was detected in 77 paired ccRCC tissues and renal cancer cell lines by qRT-PCR, and its association with overall survival was assessed by statistical analysis. Linc00152 expression was significantly up-regulated in cancerous tissues and cell lines compared with normal counterparts, and high Linc00152 expression was closely associated with advanced TNM stage. Moreover, Linc00152 was found to be able to serve as an independent predictor of overall survival. Further experiments demonstrated that overexpression of Linc00152 can significantly promote cell proliferation and invasion, inhibit cell cycle arrest in G1 phase and dramatically decrease apoptosis in both 786O and Caki-2 cell lines, whereas the opposite results were observed with attenuated Linc00152 expression. Our data suggest that Linc00152 is a novel molecule involved in ccRCC progression as well as a potential prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Yong Wu
- Department of Pathology, Fudan University Shanghai Cancer CenterShanghai, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, China
- Institute of Pathology, Fudan UniversityShanghai 200032, China
| | - Cong Tan
- Department of Pathology, Fudan University Shanghai Cancer CenterShanghai, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, China
- Institute of Pathology, Fudan UniversityShanghai 200032, China
| | - Wei-Wei Weng
- Department of Pathology, Fudan University Shanghai Cancer CenterShanghai, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, China
- Institute of Pathology, Fudan UniversityShanghai 200032, China
| | - Yu Deng
- Department of Pathology, Fudan University Shanghai Cancer CenterShanghai, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, China
- Institute of Pathology, Fudan UniversityShanghai 200032, China
| | - Qiong-Yan Zhang
- Department of Pathology, Fudan University Shanghai Cancer CenterShanghai, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, China
- Institute of Pathology, Fudan UniversityShanghai 200032, China
| | - Xiao-Qun Yang
- Department of Pathology, Fudan University Shanghai Cancer CenterShanghai, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, China
- Institute of Pathology, Fudan UniversityShanghai 200032, China
| | - Hua-Lei Gan
- Department of Pathology, Fudan University Shanghai Cancer CenterShanghai, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, China
- Institute of Pathology, Fudan UniversityShanghai 200032, China
| | - Tao Wang
- Department of Pathology, Fudan University Shanghai Cancer CenterShanghai, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, China
- Institute of Pathology, Fudan UniversityShanghai 200032, China
| | - Pei-Pei Zhang
- Department of Pathology, Fudan University Shanghai Cancer CenterShanghai, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, China
- Institute of Pathology, Fudan UniversityShanghai 200032, China
| | - Mi-Die Xu
- Department of Pathology, Fudan University Shanghai Cancer CenterShanghai, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, China
- Institute of Pathology, Fudan UniversityShanghai 200032, China
| | - Yi-Qin Wang
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan UniversityShanghai 200011, China
| | - Chao-Fu Wang
- Department of Pathology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 20025, China
| |
Collapse
|
62
|
Mussa A, Di Candia S, Russo S, Catania S, De Pellegrin M, Di Luzio L, Ferrari M, Tortora C, Meazzini MC, Brusati R, Milani D, Zampino G, Montirosso R, Riccio A, Selicorni A, Cocchi G, Ferrero GB. Recommendations of the Scientific Committee of the Italian Beckwith-Wiedemann Syndrome Association on the diagnosis, management and follow-up of the syndrome. Eur J Med Genet 2015; 59:52-64. [PMID: 26592461 DOI: 10.1016/j.ejmg.2015.11.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/03/2015] [Accepted: 11/17/2015] [Indexed: 01/10/2023]
Abstract
UNLABELLED Beckwith-Wiedemann syndrome (BWS) is the most common (epi)genetic overgrowth-cancer predisposition disorder. Given the absence of consensual recommendations or international guidelines, the Scientific Committee of the Italian BWS Association (www.aibws.org) proposed these recommendations for the diagnosis, molecular testing, clinical management, follow-up and tumor surveillance of patients with BWS. The recommendations are intended to allow a timely and appropriate diagnosis of the disorder, to assist patients and their families, to provide clinicians and caregivers optimal strategies for an adequate and satisfactory care, aiming also at standardizing clinical practice as a national uniform approach. They also highlight the direction of future research studies in this setting. With recent advances in understanding the disease (epi)genetic mechanisms and in describing large cohorts of BWS patients, the natural history of the disease will be dissected. In the era of personalized medicine, the emergence of specific (epi)genotype-phenotype correlations in BWS will likely lead to differentiated follow-up approaches for the molecular subgroups, to the development of novel tools to evaluate the likelihood of cancer development and to the refinement and optimization of current tumor screening strategies. CONCLUSIONS In this article, we provide the first comprehensive recommendations on the complex management of patients with Beckwith-Wiedemann syndrome.
Collapse
Affiliation(s)
- Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy.
| | - Stefania Di Candia
- Department of Pediatrics, San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Russo
- Laboratory of Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy
| | - Serena Catania
- Pediatric Oncology Unit, Department of Hematology and Pediatric Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Luisa Di Luzio
- Obstetrics and Gynecology Unit, Niguarda Hospital, Milan, Italy
| | - Mario Ferrari
- Regional Center for CLP, Smile-House, San Paolo University Hospital, Milan, Italy
| | - Chiara Tortora
- Regional Center for CLP, Smile-House, San Paolo University Hospital, Milan, Italy
| | | | - Roberto Brusati
- Regional Center for CLP, Smile-House, San Paolo University Hospital, Milan, Italy
| | - Donatella Milani
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Zampino
- Center for Rare Diseases, Department of Pediatrics, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rosario Montirosso
- 0-3 Center for the Study of Social Emotional Development of the at Risk Infant, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Andrea Riccio
- DiSTABiF, Second University of Naples and Institute of Genetics and Biophysics "A. Buzzati-Traverso" - CNR, Naples, Italy
| | - Angelo Selicorni
- Clinical Pediatric Genetics Unit, Pediatrics Clinics, MBBM Foundation, S. Gerardo Hospital, Monza, Italy
| | - Guido Cocchi
- GC Department of Pediatrics, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | | |
Collapse
|
63
|
LIAO QI, WANG YUNLIANG, CHENG JIA, DAI DONGJUN, ZHOU XINGYU, ZHANG YUZHENG, LI JINFENG, YIN HONGLEI, GAO SHUGUI, DUAN SHIWEI. DNA methylation patterns of protein-coding genes and long non-coding RNAs in males with schizophrenia. Mol Med Rep 2015; 12:6568-6576. [PMID: 26503909 PMCID: PMC4626154 DOI: 10.3892/mmr.2015.4249] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 04/20/2015] [Indexed: 01/06/2023] Open
Abstract
Schizophrenia (SCZ) is one of the most complex mental illnesses affecting ~1% of the population worldwide. SCZ pathogenesis is considered to be a result of genetic as well as epigenetic alterations. Previous studies have aimed to identify the causative genes of SCZ. However, DNA methylation of long non-coding RNAs (lncRNAs) involved in SCZ has not been fully elucidated. In the present study, a comprehensive genome-wide analysis of DNA methylation was conducted using samples from two male patients with paranoid and undifferentiated SCZ, respectively. Methyl-CpG binding domain protein-enriched genome sequencing was used. In the two patients with paranoid and undifferentiated SCZ, 1,397 and 1,437 peaks were identified, respectively. Bioinformatic analysis demonstrated that peaks were enriched in protein-coding genes, which exhibited nervous system and brain functions. A number of these peaks in gene promoter regions may affect gene expression and, therefore, influence SCZ-associated pathways. Furthermore, 7 and 20 lncRNAs, respectively, in the Refseq database were hypermethylated. According to the lncRNA dataset in the NONCODE database, ~30% of intergenic peaks overlapped with novel lncRNA loci. The results of the present study demonstrated that aberrant hypermethylation of lncRNA genes may be an important epigenetic factor associated with SCZ. However, further studies using larger sample sizes are required.
Collapse
Affiliation(s)
- QI LIAO
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - YUNLIANG WANG
- Department of Neurology, The 148th Central Hospital of the People's Liberation Army, Zibo, Shandong 255300, P.R. China
| | - JIA CHENG
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang 315201, P.R. China
| | - DONGJUN DAI
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - XINGYU ZHOU
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - YUZHENG ZHANG
- Department of Neurology, The 148th Central Hospital of the People's Liberation Army, Zibo, Shandong 255300, P.R. China
| | - JINFENG LI
- Department of Neurology, The 148th Central Hospital of the People's Liberation Army, Zibo, Shandong 255300, P.R. China
| | - HONGLEI YIN
- Department of Neurology, The 148th Central Hospital of the People's Liberation Army, Zibo, Shandong 255300, P.R. China
| | - SHUGUI GAO
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang 315201, P.R. China
| | - SHIWEI DUAN
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
64
|
Mussa A, Russo S, Larizza L, Riccio A, Ferrero GB. (Epi)genotype-phenotype correlations in Beckwith-Wiedemann syndrome: a paradigm for genomic medicine. Clin Genet 2015; 89:403-415. [PMID: 26138266 DOI: 10.1111/cge.12635] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/24/2015] [Accepted: 06/30/2015] [Indexed: 12/23/2022]
Abstract
Beckwith-Wiedemann syndrome (BWS) is the commonest overgrowth cancer predisposition disorder and represents a model for human imprinting dysregulation and tumorigenesis. BWS features can variably combine and present a widely variable range of severity in the phenotypic expression. This wide spectrum is paralleled at molecular level by complex (epi)genetic defects on chromosome 11p15.5 leading to disrupted expression of imprinted genes controlling growth and cellular proliferation. In this review, we outline the spectrum of clinical manifestations of BWS analyzing their (epi)genotype-phenotype correlations. The differences observed in the phenotypic profiles of BWS molecular subtypes allow a composite view of this syndrome with implications on clinical care, diagnosis, follow-up, and management, and provide directions for future disease monitoring.
Collapse
Affiliation(s)
- A Mussa
- Department of Pediatrics and Public Health Sciences, University of Torino, Torino, Italy
| | - S Russo
- Laboratory of Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy
| | - L Larizza
- Laboratory of Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy.,Department of Health Sciences, University of Milan, Milan, Italy
| | - A Riccio
- DiSTABiF, Second University of Naples, Napoli, Italy.,Institute of Genetics and Biophysics "A. Buzzati-Traverso" - CNR, Naples, Italy
| | - G B Ferrero
- Department of Pediatrics and Public Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
65
|
Vals MA, Kahre T, Mee P, Muru K, Kallas E, Žilina O, Tillmann V, Õunap K. Familial 1.3-Mb 11p15.5p15.4 Duplication in Three Generations Causing Silver-Russell and Beckwith-Wiedemann Syndromes. Mol Syndromol 2015; 6:147-51. [PMID: 26732610 DOI: 10.1159/000437061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2015] [Indexed: 01/07/2023] Open
Abstract
Silver-Russell syndrome (SRS) and Beckwith-Wiedemann syndrome (BWS) are 2 opposite growth-affecting disorders. The common molecular cause for both syndromes is an abnormal regulation of genes in chromosomal region 11p15, where 2 imprinting control regions (ICR) control fetal and postnatal growth. Also, many submicroscopic chromosomal disturbances like duplications in 11p15 have been described among SRS and BWS patients. Duplications involving both ICRs cause SRS or BWS, depending on which parent the aberration is inherited from. We describe to our knowledge the smallest familial pure 1.3-Mb duplication in chromosomal region 11p15.5p15.4 that involves both ICRs and is present in 3 generations causing an SRS or BWS phenotype.
Collapse
Affiliation(s)
- Mari-Anne Vals
- Department of Genetics, Tartu University Hospital, Tartu, Estonia; Children's Clinic, Tartu University Hospital, Tartu, Estonia; Department of Pediatrics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Tiina Kahre
- Department of Genetics, Tartu University Hospital, Tartu, Estonia; Department of Pediatrics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Pille Mee
- United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Kai Muru
- Department of Genetics, Tartu University Hospital, Tartu, Estonia
| | - Eha Kallas
- Children's Clinic, Tartu University Hospital, Tartu, Estonia; Department of Pediatrics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Olga Žilina
- Department of Genetics, Tartu University Hospital, Tartu, Estonia; Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Vallo Tillmann
- Children's Clinic, Tartu University Hospital, Tartu, Estonia; Department of Pediatrics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Katrin Õunap
- Department of Genetics, Tartu University Hospital, Tartu, Estonia; Department of Pediatrics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
66
|
Yoshizawa S, Fujiwara K, Sugito K, Uekusa S, Kawashima H, Hoshi R, Watanabe Y, Hirano T, Furuya T, Masuko T, Ueno T, Fukuda N, Soma M, Ozaki T, Koshinaga T, Nagase H. Pyrrole-imidazole polyamide-mediated silencing of KCNQ1OT1 expression induces cell death in Wilms' tumor cells. Int J Oncol 2015; 47:115-21. [PMID: 25998555 DOI: 10.3892/ijo.2015.3018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/08/2015] [Indexed: 11/05/2022] Open
Abstract
KvDMR (an intronic CpG island within the KCNQ1 gene) is one of the imprinting control regions on human chromosome 11p15.5. Since KvDMR exists within the promoter region of KCNQ1OT1 (antisense transcript of KCNQ1), it is likely that genomic alterations of this region including deletion, paternal uniparental disomy and de-methylation in maternal allele lead to aberrant overexpression of KCNQ1OT1. Indeed, de-methylation of KvDMR accompanied by uncontrolled overexpression of KCNQ1OT1 occurs frequently in Beckwith-Wiedemann syndrome (BWS), and around 10% of BWS patients developed embryonal tumors (Wilms' tumor or hepatoblastoma). These observations strongly suggest that silencing of KCNQ1OT1 expression might suppress its oncogenic potential. In the present study, we designed two pyrrole-imidazole (PI) polyamides, termed PI-a and PI-b, which might have the ability to bind to CCAAT boxes of the KCNQ1OT1 promoter region, and investigated their possible antitumor effect on Wilms' tumor-derived G401 cells. Gel retardation assay demonstrated that PI-a and PI-b specifically bind to their target sequences. Microscopic observations showed the efficient nuclear access of these PI polyamides. Quantitative real-time PCR analysis revealed that the expression level of KCNQ1OT1 was significantly decreased when treated with PI-a and PI-b simultaneously but not with either PI-a or PI-b single treatment. Consistent with these results, the combination of PI-a and PI-b resulted in a significant reduction in viability of G401 cells in a dose-dependent manner. Furthermore, FACS analysis demonstrated that combinatory treatment with PI-a and PI-b induces cell death as compared with control cells. Taken together, our present observations strongly suggest that the combinatory treatment with PI polyamides targeting KCNQ1OT1 might be a novel therapeutic strategy to cure patients with tumors over-expressing KCNQ1OT1.
Collapse
Affiliation(s)
- Shinsuke Yoshizawa
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Kyoko Fujiwara
- Division of General Medicine, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Kiminobu Sugito
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Shota Uekusa
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroyuki Kawashima
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Reina Hoshi
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Yosuke Watanabe
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Takayuki Hirano
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Takeshi Furuya
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Takayuki Masuko
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Takahiro Ueno
- Innovative Therapy Research Group, Nihon University Research Institute of Medical Science, Nihon University School of Medicine, Tokyo, Japan
| | - Noboru Fukuda
- Innovative Therapy Research Group, Nihon University Research Institute of Medical Science, Nihon University School of Medicine, Tokyo, Japan
| | - Masayoshi Soma
- Division of General Medicine, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Toshinori Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Tsugumichi Koshinaga
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroki Nagase
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| |
Collapse
|
67
|
Kanduri C. Long noncoding RNAs: Lessons from genomic imprinting. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:102-11. [PMID: 26004516 DOI: 10.1016/j.bbagrm.2015.05.006] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/12/2015] [Accepted: 05/15/2015] [Indexed: 12/17/2022]
Abstract
Genomic imprinting has been a great resource for studying transcriptional and post-transcriptional-based gene regulation by long noncoding RNAs (lncRNAs). In this article, I overview the functional role of intergenic lncRNAs (H19, IPW, and MEG3), antisense lncRNAs (Kcnq1ot1, Airn, Nespas, Ube3a-ATS), and enhancer lncRNAs (IG-DMR eRNAs) to understand the diverse mechanisms being employed by them in cis and/or trans to regulate the parent-of-origin-specific expression of target genes. Recent evidence suggests that some of the lncRNAs regulate imprinting by promoting intra-chromosomal higher-order chromatin compartmentalization, affecting replication timing and subnuclear positioning. Whereas others act via transcriptional occlusion or transcriptional collision-based mechanisms. By establishing genomic imprinting of target genes, the lncRNAs play a critical role in important biological functions, such as placental and embryonic growth, pluripotency maintenance, cell differentiation, and neural-related functions such as synaptic development and plasticity. An emerging consensus from the recent evidence is that the imprinted lncRNAs fine-tune gene expression of the protein-coding genes to maintain their dosage in cell. Hence, lncRNAs from imprinted clusters offer insights into their mode of action, and these mechanisms have been the basis for uncovering the mode of action of lncRNAs in several other biological contexts. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
Affiliation(s)
- Chandrasekhar Kanduri
- Department of Medical Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
68
|
(Epi)genotype-phenotype correlations in Beckwith-Wiedemann syndrome. Eur J Hum Genet 2015; 24:183-90. [PMID: 25898929 DOI: 10.1038/ejhg.2015.88] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 12/22/2022] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) is characterized by cancer predisposition, overgrowth and highly variable association of macroglossia, abdominal wall defects, nephrourological anomalies, nevus flammeus, ear malformations, hypoglycemia, hemihyperplasia, and organomegaly. BWS molecular defects, causing alteration of expression or activity of the genes regulated by two imprinting centres (IC) in the 11p15 chromosomal region, are also heterogeneous. In this paper we define (epi)genotype-phenotype correlations in molecularly confirmed BWS patients. The characteristics of 318 BWS patients with proven molecular defect were compared among the main four molecular subclasses: IC2 loss of methylation (IC2-LoM, n=190), IC1 gain of methylation (IC1-GoM, n=31), chromosome 11p15 paternal uniparental disomy (UPD, n=87), and cyclin-dependent kinase inhibitor 1C gene (CDKN1C) variants (n=10). A characteristic growth pattern was found in each group; neonatal macrosomia was almost constant in IC1-GoM, postnatal overgrowth in IC2-LoM, and hemihyperplasia more common in UPD (P<0.001). Exomphalos was more common in IC2/CDKN1C patients (P<0.001). Renal defects were typical of UPD/IC1 patients, uretheral malformations of IC1-GoM cases (P<0.001). Ear anomalies and nevus flammeus were associated with IC2/CDKN1C genotype (P<0.001). Macroglossia was less common among UPD patients (P<0.001). Wilms' tumor was associated with IC1-GoM or UPD and never observed in IC2-LoM patients (P<0.001). Hepatoblastoma occurred only in UPD cases. Cancer risk was lower in IC2/CDKN1C, intermediate in UPD, and very high in IC1 cases (P=0.009). In conclusion, (epi)genotype-phenotype correlations define four different phenotypic BWS profiles with some degree of clinical overlap. These observations impact clinical care allowing to move toward (epi) genotype-based follow-up and cancer screening.
Collapse
|
69
|
Liao Q, Wang Y, Cheng J, Dai D, Zhou X, Zhang Y, Gao S, Duan S. DNA methylation patterns of protein coding genes and long noncoding RNAs in female schizophrenic patients. Eur J Med Genet 2015; 58:95-104. [PMID: 25497042 DOI: 10.1016/j.ejmg.2014.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/04/2014] [Indexed: 12/11/2022]
Abstract
Schizophrenia (SCZ) is a complex mental disorder contributed by both genetic and epigenetic factors. Long noncoding RNAs (lncRNAs) was recently found playing an important regulatory role in mental disorders. However, little was known about the DNA methylation of lncRNAs, although numerous SCZ studies have been performed on genetic polymorphisms or epigenetic marks in protein coding genes. We presented a comprehensive genome wide DNA methylation study of both protein coding genes and lncRNAs in female patients with paranoid and undifferentiated SCZ. Using the methyl-CpG binding domain (MBD) protein-enriched genome sequencing (MBD-seq), 8,163 and 764 peaks were identified in paranoid and undifferentiated SCZ, respectively (p < 1 × 10-5). Gene ontology analysis showed that the hypermethylated regions were enriched in the genes related to neuron system and brain for both paranoid and undifferentiated SCZ (p < 0.05). Among these peaks, 121 peaks were located in gene promoter regions that might affect gene expression and influence the SCZ related pathways. Interestingly, DNA methylation of 136 and 23 known lncRNAs in Refseq database were identified in paranoid and undifferentiated SCZ, respectively. In addition, ∼20% of intergenic peaks annotated based on Refseq genes were overlapped with lncRNAs in UCSC and gencode databases. In order to show the results well for most biological researchers, we created an online database to display and visualize the information of DNA methyation peaks in both types of SCZ (http://www.bioinfo.org/scz/scz.htm). Our results showed that the aberrant DNA methylation of lncRNAs might be another important epigenetic factor for SCZ.
Collapse
Affiliation(s)
- Qi Liao
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yunliang Wang
- Department of Neurology, The 148 Central Hospital of PLA, Zibo, Shandong, China.
| | - Jia Cheng
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Dongjun Dai
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Xingyu Zhou
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yuzheng Zhang
- Department of Neurology, The 148 Central Hospital of PLA, Zibo, Shandong, China
| | - Shugui Gao
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China.
| | - Shiwei Duan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
70
|
Hirata H, Hinoda Y, Shahryari V, Deng G, Nakajima K, Tabatabai ZL, Ishii N, Dahiya R. Long Noncoding RNA MALAT1 Promotes Aggressive Renal Cell Carcinoma through Ezh2 and Interacts with miR-205. Cancer Res 2015; 75:1322-31. [PMID: 25600645 DOI: 10.1158/0008-5472.can-14-2931] [Citation(s) in RCA: 465] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/26/2014] [Indexed: 01/17/2023]
Abstract
Recently, long noncoding RNAs (lncRNA) have emerged as new gene regulators and prognostic markers in several cancers, including renal cell carcinoma (RCC). In this study, we investigated the contributions of the lncRNA MALAT1 in RCC with a specific focus on its transcriptional regulation and its interactions with Ezh2 and miR-205. We found that MALAT1 expression was higher in human RCC tissues, where it was associated with reduced patient survival. MALAT1 silencing decreased RCC cell proliferation and invasion and increased apoptosis. Mechanistic investigations showed that MALAT1 was transcriptionally activated by c-Fos and that it interacted with Ezh2. After MALAT1 silencing, E-cadherin expression was increased, whereas β-catenin expression was decreased through Ezh2. Reciprocal interaction between MALAT1 and miR-205 was also observed. Lastly, MALAT1 bound Ezh2 and oncogenesis facilitated by MALAT1 was inhibited by Ezh2 depletion, thereby blocking epithelial-mesenchymal transition via E-cadherin recovery and β-catenin downregulation. Overall, our findings illuminate how overexpression of MALAT1 confers an oncogenic function in RCC that may offer a novel theranostic marker in this disease.
Collapse
Affiliation(s)
- Hiroshi Hirata
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California at San Francisco, San Francisco, California
| | - Yuji Hinoda
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Varahram Shahryari
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California at San Francisco, San Francisco, California
| | - Guoren Deng
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California at San Francisco, San Francisco, California
| | - Koichi Nakajima
- Department of Urology, Toho University Faculty of Medicine, Tokyo, Japan
| | - Z Laura Tabatabai
- Department of Pathology, San Francisco Veterans Affairs Medical Center and University of California at San Francisco, San Francisco, California
| | - Nobuhisa Ishii
- Department of Urology, Toho University Faculty of Medicine, Tokyo, Japan
| | - Rajvir Dahiya
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California at San Francisco, San Francisco, California.
| |
Collapse
|
71
|
α-Fetoprotein assay on dried blood spot for hepatoblastoma screening in children with overgrowth-cancer predisposition syndromes. Pediatr Res 2014; 76:544-8. [PMID: 25167201 DOI: 10.1038/pr.2014.126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 05/23/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND Beckwith-Wiedemann syndrome (BWS) and hemihyperplasia (HH) are overgrowth conditions with predisposition to hepatoblastoma for which early diagnosis patients undergo cancer screening based on determination of the tumor marker α-fetoprotein (αFP). Repeated blood draws are a burden for patients with consequent compliance issues and poor adherence to surveillance protocol. We sought to analyze feasibility and reliability of αFP dosage using an analytical micromethod based on blood dried on filter paper (DBS). METHODS Overall 143 coupled αFP determinations on plasma and DBS collected simultaneously were performed, of which 31 were in patients with hepatoblastoma predisposition syndromes and 112 were in controls. The plasma αFP dosage method was adapted to DBS adsorbed on paper matrix for newborn screening. RESULTS There was strong correlation between plasmatic and DBS αFP (r2 = 0.999, P < 0.001). Cohen's k coefficient for correlation was 0.96 for diagnostic cut-off of 10 U/ml (P < 0.001), commonly employed in clinical practice. The measurements on plasma and DBS were highly overlapping and consistent. CONCLUSION The DBS method allowed to dose αFP reliably and consistently for the concentrations commonly employed in clinical settings for the screening of hepatoblastoma, opening new scenarios about conducting cancer screening in overgrowth syndromes.
Collapse
|
72
|
Zhou S, Wang J, Zhang Z. An emerging understanding of long noncoding RNAs in kidney cancer. J Cancer Res Clin Oncol 2014; 140:1989-95. [PMID: 24816785 DOI: 10.1007/s00432-014-1699-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/24/2014] [Indexed: 01/16/2023]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are pervasively transcribed in the genome and are emerging as new players in tumorigenesis. METHODS An electronic search of all relevant publications in peer-reviewed journals before April 2014 was performed on PubMed, Google scholar databases. The keywords of long-coding RNAs, lncRNAs, kidney tumor, renal cancers were used for searching. RESULTS The lncRNA biology was introduced into cancer biology from contemporary research, and the regulatory mechanisms of lncRNAs was highlighted at transcriptional, post-transcriptional and epigenetic levels. The kidney cancer-associated onco-lncRNAs (e.g., KCQN1OT1, MALAT-1 and HOTAIT) and tumor suppressive lncRNAs (e.g., H19, GAS5 and MEG3) were summarized and their possible regulatory network was depicted in a comprehensive diagram. CONCLUSION LncRNAs are deregulated in various cancers including kidney cancer, demonstrating both oncogenic and tumor suppressive roles, thus suggesting their aberrant expression may be a substantial contributor in cancer development. LncRNAs could serve as potential diagnostics biomarkers and/or therapeutic targets.
Collapse
Affiliation(s)
- Shuigen Zhou
- Department of Urology, Jinling Hospital, Nanjing University School of Medicine, No. 305, Zhongshandong Road, Nanjing, 210002, Jiangsu, People's Republic of China
| | | | | |
Collapse
|
73
|
Silver-Russell syndrome without body asymmetry in three patients with duplications of maternally derived chromosome 11p15 involving CDKN1C. J Hum Genet 2014; 60:91-5. [PMID: 25427884 DOI: 10.1038/jhg.2014.100] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 10/28/2014] [Accepted: 10/31/2014] [Indexed: 11/08/2022]
Abstract
We report duplications of maternally derived chromosome 11p15 involving CDKN1C encoding a negative regulator for cell proliferation in three Japanese patients (cases 1 and 2 from family A and case 3 from family B) with Silver-Russell syndrome (SRS) phenotype lacking hemihypotrophy. Chromosome analysis showed 46,XX,der(16)t(11;16)(p15.3;q24.3)mat in case 1, 46,XY,der(16)t(11;16)(p15.3;q24.3)mat in case 2 and a de novo 46,XX,der(17)t(11;17)(p15.4;q25.3) in case 3. Genomewide oligonucleotide-based array comparative genomic hybridization, microsatellite analysis, pyrosequencing-based methylation analysis and direct sequence analysis revealed the presence of maternally derived extra copies of the distal chromosome 11p involving the wild-type CDKN1C (a ~7.98 Mb region in cases 1 and 2 and a ~4.43 Mb region in case 3). The results, in conjunction with the previous findings in patients with similar duplications encompassing CDKN1C and in those with intragenic mutations of CDKN1C, imply that duplications of CDKN1C, as well as relatively mild gain-of-function mutations of CDKN1C lead to SRS subtype that usually lack hemihypotrophy.
Collapse
|
74
|
Eggermann T, Binder G, Brioude F, Maher ER, Lapunzina P, Cubellis MV, Bergadá I, Prawitt D, Begemann M. CDKN1C mutations: two sides of the same coin. Trends Mol Med 2014; 20:614-22. [PMID: 25262539 DOI: 10.1016/j.molmed.2014.09.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/13/2014] [Accepted: 09/02/2014] [Indexed: 01/03/2023]
Abstract
Cyclin-dependent kinase (CDK)-inhibitor 1C (CDKN1C) negatively regulates cellular proliferation and it has been shown that loss-of-function mutations in the imprinted CDKN1C gene (11p15.5) are associated with the overgrowth disorder Beckwith-Wiedemann syndrome (BWS). With recent reports of gain-of-function mutations of the PCNA domain of CDKN1C in growth-retarded patients with IMAGe syndrome or Silver-Russell syndrome (SRS), its key role for growth has been confirmed. Thereby, the last gap in the spectrum of molecular alterations in 11p15.5 in growth-retardation and overgrowth syndromes could be closed. Recent functional studies explain the strict association of CDKN1C mutations with clinically opposite phenotypes and thereby contribute to our understanding of the function and regulation of the gene in particular and epigenetic regulation in general.
Collapse
Affiliation(s)
- Thomas Eggermann
- Institute of Human Genetics, University Hospital, Technical University Aachen, Aachen, Germany.
| | - Gerhard Binder
- University Children's Hospital, Paediatric Endocrinology, University of Tübingen, Tübingen, Germany
| | - Frédéric Brioude
- AP-HP, Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, UK; NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Pablo Lapunzina
- INGEMM, Instituto de Genética Médica y Molecular, Hospital Universitario La Paz, IdiPAZ, CIBERER-ISCIII, Madrid, Spain
| | | | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Dirk Prawitt
- Molekulare Pädiatrie, Zentrum für Kinder- und Jugendmedizin, Universitätsmedizin Mainz, Mainz, Germany
| | - Matthias Begemann
- Institute of Human Genetics, University Hospital, Technical University Aachen, Aachen, Germany
| |
Collapse
|
75
|
Tunster SJ, Van De Pette M, John RM. Isolating the role of elevated Phlda2 in asymmetric late fetal growth restriction in mice. Dis Model Mech 2014; 7:1185-91. [PMID: 25085993 PMCID: PMC4174529 DOI: 10.1242/dmm.017079] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pleckstrin homology-like domain family A member 2 (PHLDA2) is a maternally expressed imprinted gene whose elevated expression has been linked to fetal growth restriction in a number of human studies. In mice, Phlda2 negatively regulates placental growth and limits the accumulation of placental glycogen. We previously reported that a three-copy transgene spanning the Phlda2 locus drove a fetal growth restriction phenotype late in gestation, suggesting a causative role for PHLDA2 in human growth restriction. However, in this mouse model, Phlda2 was overexpressed by fourfold, alongside overexpression of a second imprinted gene, Slc22a18. Here, we genetically isolate the role of Phlda2 in driving late fetal growth restriction in mice. We furthermore show that this Phlda2-driven growth restriction is asymmetrical, with a relative sparing of the brain, followed by rapid catch-up growth after birth, classic features of placental insufficiency. Strikingly, fetal growth restriction showed strain-specific differences, being apparent on the 129S2/SvHsd (129) genetic background and absent on the C57BL6 (BL6) background. A key difference between these two strains is the placenta. Specifically, BL6 placentae possess a more extensive endocrine compartment and substantially greater stores of placental glycogen. Taken together, these data support a direct role for elevated Phlda2 in limiting fetal growth but also suggest that growth restriction only manifests when there is limited placental reserve. These findings should be taken into account in interpreting the results from human studies.
Collapse
Affiliation(s)
- Simon J Tunster
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | | | - Rosalind M John
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
76
|
Cordeiro A, Neto AP, Carvalho F, Ramalho C, Dória S. Relevance of genomic imprinting in intrauterine human growth expression of CDKN1C, H19, IGF2, KCNQ1 and PHLDA2 imprinted genes. J Assist Reprod Genet 2014; 31:1361-8. [PMID: 24986528 DOI: 10.1007/s10815-014-0278-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/10/2014] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To study the relationship of imprinted gene expression (CDKN1C, H19, IGF2, KCNQ1 and PHLDA2) with human fetal growth. METHODS RNA was extracted from fetuses with intrauterine growth restriction (IUGR) and from the controls without growth restriction. The gene expression pattern of CDKN1C, H19, IGF2, KCNQ1 and PHLDA2 genes was evaluated using RT-PCR. MS-MLPA was also performed to assess the IC1 and IC2 DNA methylation status on chromosome 11p15.5. RESULTS The samples were divided according to their tissue type in placental or fetal tissue. Within each group, IUGR cases and controls were compared. In the IUGR cases, in both fetal and placental tissue groups IGF2 was observed to be down regulated. In another approach, the samples were divided in IUGR and control groups and for each of them placental and fetal tissue was compared. Within the IUGR group up regulation of CDKN1C, KCNQ1, and PHLDA2 was determined in placental samples. IUGR group presented a statistically lower methylation status in both IC1 and in IC2. Regarding differences between fetal and placental samples within this group, methylation status of placental samples was statistically significant down regulated in the imprinting center 1 (IC1). CONCLUSIONS Genomic imprinting is a phenomenon that plays an important role in fetal and placental development. This study emphasizes the importance of imprinted genes during pregnancy. Differences between tissues could reflect different mechanisms, either compensatory or adverse, that should be investigated in more detail.
Collapse
|
77
|
[Clinical profile of a cohort of Silver-Russell syndrome patients followed at the Hospital Infantil de México Federico Gómez from 1998 to 2012]. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2014; 71:218-226. [PMID: 29421254 DOI: 10.1016/j.bmhimx.2014.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/09/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Patients with Silver-Russell syndrome suffer from severe intrauterine and postnatal growth retardation, relative macrocephaly and body asymmetry, among other characteristics. It is caused by several genetic and epigenetic mechanisms in 11p15.5 in 40% of the cases and maternal uniparental disomy of chromosome 7 in 10%. METHODS Twenty patients with a diagnosis of Silver-Russell syndrome who were seen at the HIMFG from 1998 to 2012, were evaluated according to international clinical criteria confirming the diagnosis in nine of the subjects. RESULTS All patients showed intrauterine and postnatal growth retardation and short stature, both considered as major criteria of Silver-Russell syndrome. Relative macrocephaly was present in 78% of the patients and asymmetry in 33%. Other characteristics such as renal tubular acidosis were present > 50% of the cases. CONCLUSIONS The clinical diagnosis of Silver-Russell syndrome is complex. Short stature is the main reason for seeking medical attention and is helpful in the identification of a differential diagnosis. This situation underlines the importance of growth and development evaluation of all patients and particularly in those with short stature to identify those cases that may require molecular studies, with implications in management, prognosis and genetic counseling.
Collapse
|
78
|
Long Noncoding RNA in Prostate, Bladder, and Kidney Cancer. Eur Urol 2014; 65:1140-51. [DOI: 10.1016/j.eururo.2013.12.003] [Citation(s) in RCA: 516] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/04/2013] [Indexed: 02/07/2023]
|
79
|
Abstract
Over the past few years, advances in genome analyses have identified an emerging class of noncoding RNAs that play critical roles in the regulation of gene expression and epigenetic reprogramming. Given their transcriptional pervasiveness, the potential for these intriguing macromolecules to integrate a myriad of external cellular cues with nuclear responses has become increasingly apparent. Recent studies have implicated noncoding RNAs in epidermal development and keratinocyte differentiation, but the complexity of multilevel regulation of transcriptional programs involved in these processes remains ill defined. In this review, we discuss the relevance of noncoding RNA in normal skin development, their involvement in cutaneous malignancies, and their role in the regulation of adult stem-cell maintenance in stratified epithelial tissues. Furthermore, we provide additional examples highlighting the ubiquity of noncoding RNAs in diverse human diseases.
Collapse
|
80
|
Unmethylated state of 5′ upstream CpG islands may be necessary but not sufficient for the testis-enriched expression of ZNF230/Znf230. Genes Genomics 2014. [DOI: 10.1007/s13258-013-0153-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
81
|
Brown LA, Rupps R, Peñaherrera MS, Robinson WP, Patel MS, Eydoux P, Boerkoel CF. A cryptic familial rearrangement of 11p15.5, involving both imprinting centers, in a family with a history of short stature. Am J Med Genet A 2014; 164A:1587-94. [DOI: 10.1002/ajmg.a.36490] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 01/14/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Lindsay A. Brown
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver Canada
| | - Rosemarie Rupps
- Department of Medical Genetics; University of British Columbia; Vancouver Canada
| | - Maria S. Peñaherrera
- Department of Medical Genetics; University of British Columbia; Vancouver Canada
- Child & Family Research Institute; Vancouver Canada
| | - Wendy P. Robinson
- Department of Medical Genetics; University of British Columbia; Vancouver Canada
- Child & Family Research Institute; Vancouver Canada
| | - Millan S. Patel
- Department of Medical Genetics; University of British Columbia; Vancouver Canada
| | - Patrice Eydoux
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver Canada
| | | |
Collapse
|
82
|
Fokstuen S, Kotzot D. Chromosomal rearrangements in patients with clinical features of Silver-Russell syndrome. Am J Med Genet A 2014; 164A:1595-605. [PMID: 24664587 DOI: 10.1002/ajmg.a.36464] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/21/2013] [Indexed: 01/29/2023]
Abstract
Silver-Russell syndrome (SRS) is characterized by pre- and postnatal growth retardation, relative macrocephaly, asymmetry, and a triangular facial gestalt. In 5-10% of the patients the phenotype is caused by maternal UPD 7, and 38-64% of the patients present with hypomethylation at the imprinting center region 1 (ICR1) on 11p15.5. The etiology of the remaining cases is so far not known and various (sub-)microscopic chromosome aberrations with a phenotype resembling SRS have been published, especially duplication 11p15 (n = 15), deletion 12q14 (n = 19), ring chromosome 15, deletion 15qter, and various other mostly unique chromosomal aberrations (n = 30). In this study the phenotypes of these chromosomal aberrations were revisited and compared with the phenotypes of maternal UPD 7 and hypomethylation at ICR1 on 11p15.5. In some patients with a unique chromosomal aberration even the hallmarks of SRS were missing. Patients with duplication 11p15 show a more variable occipitofrontal head circumference at birth, a higher frequency of intellectual disability, and additional anomalies not reported in SRS. Deletion 12q14 is characterized by less severe pre- and postnatal growth retardation and less impressive relative macrocephaly. Patients with ring chromosome 15 and deletion 15qter have no relative macrocephaly (mostly even microcephaly) and more severe intellectual disability. Finally, deletion 15qter lacks the triangular facial gestalt. In summary, as SRS seems not an adequate diagnosis in many of these patients, diagnosis should focus on the chromosomal aberration than on SRS.
Collapse
Affiliation(s)
- Siv Fokstuen
- Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | | |
Collapse
|
83
|
Azzi S, Abi Habib W, Netchine I. Beckwith-Wiedemann and Russell-Silver Syndromes: from new molecular insights to the comprehension of imprinting regulation. Curr Opin Endocrinol Diabetes Obes 2014; 21:30-8. [PMID: 24322424 DOI: 10.1097/med.0000000000000037] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW The imprinted human 11p15.5 region encompasses two imprinted domains important for the control of fetal growth: the H19/IGF2 domain in the telomeric region and the KCNQ1OT1/CDKN1C domain in the centromeric region. These two domains are differentially methylated and each is regulated by its own imprinting control region (ICR): ICR1 in the telomeric region and ICR2 in the centromeric region. Aberrant methylation of the 11p15.5 imprinted region, through genetic or epigenetic mechanisms, leads to two clinical syndromes, with opposite growth phenotypes: Russell-Silver Syndrome (RSS; with severe fetal and postnatal growth retardation) and Beckwith-Wiedemann Syndrome (BWS; an overgrowth syndrome). RECENT FINDINGS In this review, we discuss the recently identified molecular abnormalities at 11p15.5 involved in RSS and BWS, which have led to the identification of cis-acting elements and trans-acting regulatory factors involved in the regulation of imprinting in this region. We also discuss the multilocus imprinting disorders identified in various human syndromes, their clinical outcomes and their impact on commonly identified metabolism disorders. SUMMARY These new findings and progress in this field will have direct consequence for diagnostic and predictive tools, risk assessment and genetic counseling for these syndromes.
Collapse
Affiliation(s)
- Salah Azzi
- aAP-HP, Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes bUPMC Paris 6, UMR_S938, Centre de Recherche de Saint-Antoine cINSERM, UMR_S938, Centre de Recherche de Saint-Antoine, Paris, France
| | | | | |
Collapse
|
84
|
Influencing the Social Group. EPIGENETIC SHAPING OF SOCIOSEXUAL INTERACTIONS - FROM PLANTS TO HUMANS 2014; 86:107-34. [DOI: 10.1016/b978-0-12-800222-3.00006-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
85
|
Cappuccio G, De Crescenzo A, Ciancia G, Canta L, Moio M, Mataro I, Varone V, Pettinato G, Palumbo O, Carella M, Riccio A, Brunetti-Pierri N. Giant breast tumors in a patient with Beckwith-Wiedemann syndrome. Am J Med Genet A 2013; 164A:182-5. [PMID: 24214456 DOI: 10.1002/ajmg.a.36191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/12/2013] [Indexed: 01/10/2023]
Abstract
Beckwith-Wiedemann syndrome (BWS) is an overgrowth disorder with increased risk of embryonal tumors, such as Wilms tumor, hepatoblastoma, neuroblastoma, and rhabdomyosarcoma. We report on a patient with BWS that developed a giant fibroadenoma of the breast that was surgically removed. The tumor relapsed 8 months after the surgery and the patient underwent partial mastectomy. Although the patient presented several clinical features of BWS, a molecular diagnosis was not achieved despite extensive molecular investigations on both blood and tumor tissue. A SNP array revealed a de novo 7p22.1 loss in both blood and breast tumor involving the mismatch repair gene PMS2 gene that may be potentially associated with the breast tumor. In conclusion, it remains unclear whether BWS patients have an increased risk of breast lesions or a yet unknown molecular defect is responsible for the rare occurrence of this tumor in BWS.
Collapse
Affiliation(s)
- Gerarda Cappuccio
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Wan J, Huang M, Zhao H, Wang C, Zhao X, Jiang X, Bian S, He Y, Gao Y. A novel tetranucleotide repeat polymorphism within KCNQ1OT1 confers risk for hepatocellular carcinoma. DNA Cell Biol 2013; 32:628-634. [PMID: 23984860 DOI: 10.1089/dna.2013.2118] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
KCNQ1 overlapping transcript 1 (KCNQ1OT1), a long noncoding RNA responsible for silencing a cluster of genes in cis, has been shown to be involved in multiple cancers. However, much remains unclear of how KCNQ1OT1 contributes to carcinogenesis. By thoroughly analyzing 510 hepatocellular carcinoma (HCC) cases and 1014 healthy controls in a Chinese population, we identified a novel short tandem repeat (STR) polymorphism (rs35622507) within the KCNQ1OT1 coding region and evaluated its association with HCC susceptibility. Logistic regression analysis showed that compared with individuals carrying the homozygote 10-10 genotype, those heterozygote subjects who carry only one allele 10 had a significantly decreased risk of HCC (adjusted odds ratio [OR]=0.67, 95% confidence interval [CI]=0.53-0.86, p=0.0009), with the risk decreased even further in those without allele 10 (adjusted OR=0.38, 95% CI=0.21-0.69, p=0.0005). Furthermore, genotype-phenotype correlation studies using four hepatoma cell lines support a significant association between STR genotypes and the expression of KCNQ1OT1. Cell lines without allele 10 conferred a 20.9-33.3-fold higher expression of KCNQ1OT1. Meanwhile, KCNQ1OT1 expression was reversely correlated with the expression of the cyclin-dependent kinase inhibitor 1C (CDKN1C), a tumor suppressor gene located within the CDKN1C/KCNQ1OT1 imprinted region, in three hepatoma cell lines. Finally, in silico prediction suggested that different alleles could alter the local structure of KCNQ1OT1. Taken together, our findings suggest that the STR polymorphism within KCNQ1OT1 contributes to hepatocarcinogenesis, possibly by affecting KCNQ1OT1 and CDKN1C expression through a structure-dependent mechanism. The replication of our studies and further functional studies are needed to validate our hypothesis and understand the roles of KCNQ1OT1 polymorphisms in predisposition for HCC.
Collapse
Affiliation(s)
- Jiao Wan
- 1 Department of Forensic Medicine, Medical College of Soochow University , Suzhou, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Baskin B, Choufani S, Chen YA, Shuman C, Parkinson N, Lemyre E, Micheil Innes A, Stavropoulos DJ, Ray PN, Weksberg R. High frequency of copy number variations (CNVs) in the chromosome 11p15 region in patients with Beckwith-Wiedemann syndrome. Hum Genet 2013; 133:321-30. [PMID: 24154661 DOI: 10.1007/s00439-013-1379-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/05/2013] [Indexed: 01/20/2023]
Abstract
Beckwith-Wiedemann syndrome (BWS), an overgrowth and tumor predisposition syndrome is clinically heterogeneous. Its variable presentation makes molecular diagnosis particularly important for appropriate counseling of patients with respect to embyronal tumor risk and recurrence risk. BWS is characterized by macrosomia, omphalocele, and macroglossia. Additional clinical features can include hemihyperplasia, embryonal tumors, umbilical hernia, and ear anomalies. BWS is etiologically heterogeneous arising from dysregulation of one or both of the chromosome 11p15.5 imprinting centers (IC) and/or imprinted growth regulatory genes on chromosome 11p15.5. Most BWS cases are sporadic and result from loss of maternal methylation at imprinting center 2 (IC2), gain of maternal methylation at imprinting center 1 (IC1) or paternal uniparental disomy (UPD). Heritable forms of BWS (15 %) have been attributed mainly to mutations in the growth suppressor gene CDKN1C, but have also infrequently been identified in patients with copy number variations (CNVs) in the chromosome 11p15.5 region. Four hundred and thirty-four unrelated BWS patients referred to the molecular diagnostic laboratory were tested by methylation-specific multiplex ligation-dependent probe amplification. Molecular alterations were detected in 167 patients, where 103 (62 %) showed loss of methylation at IC2, 23 (14 %) had gain of methylation at IC1, and 41 (25 %) showed changes at both ICs usually associated with paternal UPD. In each of the three groups, we identified patients in whom the abnormalities in the chromosome 11p15.5 region were due to CNVs. Surprisingly, 14 patients (9 %) demonstrated either deletions or duplications of the BWS critical region that were confirmed using comparative genomic hybridization array analysis. The majority of these CNVs were associated with a methylation change at IC1. Our results suggest that CNVs in the 11p15.5 region contribute significantly to the etiology of BWS. We highlight the importance of performing deletion/duplication testing in addition to methylation analysis in the molecular investigation of BWS to improve our understanding of the molecular basis of this disorder, and to provide accurate genetic counseling.
Collapse
Affiliation(s)
- Berivan Baskin
- The Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Affiliation(s)
- Flavia Cerrato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - Agostina De Crescenzo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - Andrea Riccio
- 1] Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy [2] Institute of Genetics and Biophysics A.Buzzati-Traverso, CNR, Naples, Italy
| |
Collapse
|
89
|
Cocchi G, Marsico C, Cosentino A, Spadoni C, Rocca A, De Crescenzo A, Riccio A. Silver-Russell syndrome due to paternal H19/IGF2 hypomethylation in a twin girl born after in vitro fertilization. Am J Med Genet A 2013; 161A:2652-5. [PMID: 24038823 PMCID: PMC4065345 DOI: 10.1002/ajmg.a.36145] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/27/2013] [Indexed: 11/17/2022]
Abstract
Silver–Russell syndrome (SRS) is a clinically and genetically heterogeneous syndrome characterized by severe intrauterine and postnatal growth retardation, facial dysmorphism and body asymmetry. One of the main molecular mechanisms leading to the syndrome involves methylation abnormalities of chromosome 11p15. In the last decades, an increase of imprinting disorders have been reported in children born from assisted reproductive technology (ART); however there is currently little evidence linking SRS and ART. Only few infants with SRS born using ART, supported by molecular analysis, have been described. We report on a twin-girl conceived using intracytoplasmic sperm injection (ICSI) diagnosed with SRS. Molecular studies revealed a hypomethylation of the paternal H19/IGF2 Imprinting Control Region. Her twin sister had a normal prenatal and postnatal growth and a normal methylation pattern of the chromosome 11p15. This is the second reported case of a twin infant with SRS conceived using ART with hypomethylation of H19/IGF2; it provides additional evidence of a possible relationship between ART procedures and methylation defects observed in SRS. Given the clinical heterogeneity of SRS, and the increased risk of multiple and preterm births in the ART-conceived children, it is possible that a number of cases of SRS remains undiagnosed in this population. Future studies should investigate the possible link between ART and SRS, in order to better understand the causes of epimutations in ART pregnancies, and to help clinicians to adequately counsel parents who approach to ART and to assess the opportunity of a long-term follow-up of children conceived using ART. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Guido Cocchi
- Department of Maternal and Paediatric Sciences, Neonatology, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
90
|
Gu T, Su X, Zhao S, Li C. Methylation differences of theneuronatingene promoter region in liver between normal and cloned pigs. Anim Genet 2013; 45:122-4. [DOI: 10.1111/age.12074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2013] [Indexed: 01/30/2023]
Affiliation(s)
- Ting Gu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture; Huazhong Agricultural University; Wuhan 430070 China
| | - Xi Su
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture; Huazhong Agricultural University; Wuhan 430070 China
| | - Shuhong Zhao
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture; Huazhong Agricultural University; Wuhan 430070 China
| | - Changchun Li
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture; Huazhong Agricultural University; Wuhan 430070 China
| |
Collapse
|
91
|
Chen Z, Robbins KM, Wells KD, Rivera RM. Large offspring syndrome: a bovine model for the human loss-of-imprinting overgrowth syndrome Beckwith-Wiedemann. Epigenetics 2013; 8:591-601. [PMID: 23751783 PMCID: PMC3857339 DOI: 10.4161/epi.24655] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) is a human loss-of-imprinting syndrome primarily characterized by macrosomia, macroglossia, and abdominal wall defects. BWS has been associated with misregulation of two clusters of imprinted genes. Children conceived with the use of assisted reproductive technologies (ART) appear to have an increased incidence of BWS. As in humans, ART can also induce a similar overgrowth syndrome in ruminants which is referred to as large offspring syndrome (LOS). The main goal of our study is to determine if LOS shows similar loss-of-imprinting at loci known to be misregulated in BWS. To test this, Bos taurus indicus × Bos taurus taurus F1 hybrids were generated by artificial insemination (AI; control) or by ART. Seven of the 27 conceptuses in the ART group were in the > 97th percentile body weight when compared with controls. Further, other characteristics reported in BWS were observed in the ART group, such as large tongue, umbilical hernia, and ear malformations. KCNQ1OT1 (the most-often misregulated imprinted gene in BWS) was biallelically-expressed in various organs in two out of seven overgrown conceptuses from the ART group, but shows monoallelic expression in all tissues of the AI conceptuses. Furthermore, biallelic expression of KCNQ1OT1 is associated with loss of methylation at the KvDMR1 on the maternal allele and with downregulation of the maternally-expressed gene CDKN1C. In conclusion, our results show phenotypic and epigenetic similarities between LOS and BWS, and we propose the use of LOS as an animal model to investigate the etiology of BWS.
Collapse
Affiliation(s)
- Zhiyuan Chen
- Division of Animal Sciences; University of Missouri; Columbia, MO USA
| | | | | | | |
Collapse
|
92
|
Negrón-Pérez VM, Echevarría FD, Huffman SR, Rivera RM. Determination of Allelic Expression of H19 in Pre- and Peri-Implantation Mouse Embryos1. Biol Reprod 2013; 88:97. [DOI: 10.1095/biolreprod.112.105882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
93
|
Dkhil MA, Al-Quraishy S, Delic D, Abdel-Baki AA, Wunderlich F. Testosterone-induced persistent susceptibility to Plasmodium chabaudi malaria: long-term changes of lincRNA and mRNA expression in the spleen. Steroids 2013; 78:220-7. [PMID: 23123741 DOI: 10.1016/j.steroids.2012.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 10/01/2012] [Accepted: 10/12/2012] [Indexed: 10/27/2022]
Abstract
Testosterone (T) is known to induce persistent susceptibility to blood-stage malaria of Plasmodium chabaudi in otherwise resistant female C57BL/6 mice, which is associated with permanent changes in mRNA expression of the liver. Here, we investigate the spleen as the major effector against blood-stage malaria for any possible T-induced long-term effects on lincRNA and mRNA expression. Female C57BL/6 mice were treated with T for 3 weeks, then T was withdrawn for 12 weeks before challenging with P. chabaudi. LincRNA and mRNA expression was examined after 12 weeks of T-withdrawal and after subsequent infections using Agilent whole mouse genome oligo microarrays. Our data show for the first time long-term effects of T on lincRNA expression evidenced directly as persistent changes after T-withdrawal for 12 weeks and indirectly as altered responsiveness of expression to P. chabaudi infections. There are 3 lincRNA-species upregulated and 10 lincRNAs downregulated by more than 2-fold (p<0.01). In addition, 11 and 10 mRNAs are persistently up- and downregulated by T, respectively. These changes remain not sustained during infections at peak parasitemia, when 15 other lincRNAs and 9 other mRNAs exhibit an altered expression. The only exception is the Tnk1-mRNA encoding the non-receptor tyrosine kinase 1 that is persistently downregulated by 0.34-fold after T-withdrawal and that becomes upregulated by 5.9-fold upon infection at peak parasitemia, suggesting an involvement of tyrosine phosphorylation by Tnk1 in mediating long-term effects of T in the spleen. The T-induced changes in splenic mRNA expression are totally different to those previously observed in the liver. Collectively, our data support the view that T induces long-term organ-specific changes in both lincRNA and mRNA expression, that presumably contribute to organ-specific dysfunctions upon infection with blood-stage malaria of P. chabaudi.
Collapse
Affiliation(s)
- Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | | | | | | | | |
Collapse
|
94
|
Eggermann T, Spengler S, Gogiel M, Begemann M, Elbracht M. Epigenetic and genetic diagnosis of Silver-Russell syndrome. Expert Rev Mol Diagn 2012; 12:459-71. [PMID: 22702363 DOI: 10.1586/erm.12.43] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Silver-Russell syndrome (SRS) is a congenital imprinting disorder characterized by intrauterine and postnatal growth restriction and further characteristic features. SRS is genetically heterogenous: 7-10% of patients carry a maternal uniparental disomy of chromosome 7; >38% show a hypomethylation in imprinting control region 1 in 11p15; and a further class of mutations are copy number variations affecting different chromosomes, but mainly 11p15 and 7. The diagnostic work-up should thus aim to detect these three molecular subtypes. Numerous techniques are currently applied in genetic SRS testing, but none of them covers all known (epi)mutations, and they should therefore be used synergistically. However, future next-generation sequencing approaches will allow a comprehensive analysis of all types of alterations in SRS.
Collapse
Affiliation(s)
- Thomas Eggermann
- Institute of Human Genetics, University Hospital Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | | | | | | | | |
Collapse
|
95
|
De Crescenzo A, Sparago A, Cerrato F, Palumbo O, Carella M, Miceli M, Bronshtein M, Riccio A, Yaron Y. Paternal deletion of the 11p15.5 centromeric-imprinting control region is associated with alteration of imprinted gene expression and recurrent severe intrauterine growth restriction. J Med Genet 2012; 50:99-103. [PMID: 23243085 PMCID: PMC3585485 DOI: 10.1136/jmedgenet-2012-101352] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background Heterogeneous molecular defects affecting the 11p15.5 imprinted gene cluster are associated with the opposite growth disorders Beckwith-Wiedemann Syndrome (BWS) and Silver Russell syndrome (SRS). Maternal deletions of the centromeric domain usually result in BWS, but paternal deletions have been so far associated with normal phenotype. Here we describe a case of recurrent severe Intra-Uterine Growth Restriction (IUGR) with paternal transmission of an 11p15.5 60 kb deletion. Methods and results Chromosome microarray (CMA), PCR and DNA sequencing analyses showed that two fetuses conceived by a normal couple inherited from their father a 60 kb deletion encompassing the Imprinting Control Region of the 11p15.5 centromeric domain. The two fetuses died in utero with severe growth restriction. PCR amplification of parental DNAs indicated that the father carried the mutation in the mosaic state. DNA methylation and gene expression analyses showed that the deletion led to an imprinting alteration restricted to the centromeric domain and resulting in silencing of KCNQ1OT1 and activation of CDKN1C and PHLDA2. Conclusions Our data demonstrate that the phenotype associated with 11p15.5 deletions is strongly influenced by the size of the region involved and indicate imprinting defects leading to CDKN1C and PHLDA2 activation as cause of severe IUGR.
Collapse
|
96
|
Hu J, Sathanoori M, Kochmar S, Madan-Khetarpal S, McGuire M, Surti U. Co-existence of 9p deletion and Silver-Russell syndromes in a patient with maternally inherited cryptic complex chromosome rearrangement involving chromosomes 4, 9, and 11. Am J Med Genet A 2012; 161A:179-84. [DOI: 10.1002/ajmg.a.35658] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 08/20/2012] [Indexed: 11/09/2022]
|
97
|
Begemann M, Spengler S, Gogiel M, Grasshoff U, Bonin M, Betz RC, Dufke A, Spier I, Eggermann T. Clinical significance of copy number variations in the 11p15.5 imprinting control regions: new cases and review of the literature. J Med Genet 2012; 49:547-53. [PMID: 22844132 PMCID: PMC3439641 DOI: 10.1136/jmedgenet-2012-100967] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Among the clusters of imprinted genes in humans, one of the most relevant regions involved in human growth is localised in 11p15. Opposite epigenetic and genomic disturbances in this chromosomal region contribute to two distinct imprinting disorders associated with disturbed growth, Silver-Russell and Beckwith-Wiedemann syndromes. Due to the complexity of the 11p15 imprinting regions and their interactions, the interpretation of the copy number variations in that region is complicated. The clinical outcome in case of microduplications or microdeletions is therefore influenced by the size, the breakpoint positions and the parental inheritance of the imbalance as well as by the imprinting status of the affected genes. Based on their own new cases and those from the literature, the authors give an overview on the genotype-phenotype correlation in chromosomal rearrangements in 11p15 as the basis for a directed genetic counselling. The detailed characterisation of patients and families helps to further delineate risk figures for syndromes associated with 11p15 disturbances. Furthermore, these cases provide us with profound insights in the complex regulation of the (imprinted) factors localised in 11p15.
Collapse
|
98
|
Bhartiya D, Kapoor S, Jalali S, Sati S, Kaushik K, Sachidanandan C, Sivasubbu S, Scaria V. Conceptual approaches for lncRNA drug discovery and future strategies. Expert Opin Drug Discov 2012; 7:503-13. [DOI: 10.1517/17460441.2012.682055] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
99
|
Abstract
The human genome encodes thousands of long noncoding RNAs (lncRNAs). Although most remain functionally uncharacterized biological "dark matter," lncRNAs have garnered considerable attention for their diverse roles in human biology, including developmental programs and tumor suppressor gene networks. As the number of lncRNAs associated with human disease grows, ongoing research efforts are focusing on their regulatory mechanisms. New technologies that enable enumeration of lncRNA interaction partners and determination of lncRNA structure are well positioned to drive deeper understanding of their functions and involvement in pathogenesis. In turn, lncRNAs may become targets for therapeutic intervention or new tools for biotechnology.
Collapse
Affiliation(s)
- Lance Martin
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA.
Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Howard Y. Chang
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA.
Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|