51
|
Das PJ, Mishra DK, Ghosh S, Avila F, Johnson GA, Chowdhary BP, Raudsepp T. Comparative organization and gene expression profiles of the porcine pseudoautosomal region. Cytogenet Genome Res 2013; 141:26-36. [PMID: 23735614 DOI: 10.1159/000351310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2013] [Indexed: 11/19/2022] Open
Abstract
The pseudoautosomal region (PAR) has important biological functions in spermatogenesis, male fertility and early development. Even though pig (Sus scrofa, SSC) is an agriculturally and biomedically important species, and its genome is sequenced, current knowledge about the porcine PAR is sparse. Here we defined the PAR in SSCXp/Yp by demarcating the sequence of the pseudoautosomal boundary at X:6,743,567 bp in intron 3-4 of SHROOM2 and showed that SHROOM2 is truncated in SSCY. Cytogenetic mapping of 20 BAC clones containing 15 PAR and X-specific genes revealed that the pig PAR is largely collinear with other mammalian PARs or Xp terminal regions. The results improved the current SSCX sequence assembly and facilitated distinction between the PAR and X-specific genes to study their expression in adult and embryonic tissues. A pilot analysis showed that the PAR genes are expressed at higher levels than X-specific genes during early development, whereas the expression of PAR genes was higher at day 60 compared to day 26, and higher in embryonic tissues compared to placenta. The findings advance the knowledge about the comparative organization of the PAR in mammals and suggest that the region might have important functions in early development in pigs.
Collapse
Affiliation(s)
- P J Das
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA
| | | | | | | | | | | | | |
Collapse
|
52
|
Bazrgar M, Gourabi H, Valojerdi MR, Yazdi PE, Baharvand H. Self-correction of chromosomal abnormalities in human preimplantation embryos and embryonic stem cells. Stem Cells Dev 2013; 22:2449-56. [PMID: 23557100 DOI: 10.1089/scd.2013.0053] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aneuploidy is commonly seen in human preimplantation embryos, most particularly at the cleavage stage because of genome activation by third cell division. Aneuploid embryos have been used for the derivation of normal embryonic stem cell (ESC) lines and developmental modeling. This review addresses aneuploidies in human preimplantation embryos and human ESCs and the potential of self-correction of these aberrations. Diploid-aneuploid mosaicism is the most frequent abnormality observed; hence, embryos selected by preimplantation genetic diagnosis at the cleavage or blastocyst stage could be partly abnormal. Differentiation is known as the barrier for eliminating mosaic embryos by death and/or decreased division of abnormal cells. However, some mosaicisms, such as copy number variations could be compatible with live birth. Several reasons have been proposed for self-correction of aneuploidies during later stages of development, including primary misdiagnosis, allocation of the aneuploidy in the trophectoderm, cell growth advantage of diploid cells in mosaic embryos, lagging of aneuploid cell division, extrusion or duplication of an aneuploid chromosome, and the abundance of DNA repair gene products. Although more studies are needed to understand the mechanisms of self-correction as a rare phenomenon, most likely, it is related to overcoming mosaicism.
Collapse
Affiliation(s)
- Masood Bazrgar
- Department of Genetics, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | | | | | | |
Collapse
|
53
|
Ke Q, Li L, Cai B, Liu C, Yang Y, Gao Y, Huang W, Yuan X, Wang T, Zhang Q, Harris AL, Tao L, Xiang AP. Connexin 43 is involved in the generation of human-induced pluripotent stem cells. Hum Mol Genet 2013; 22:2221-33. [PMID: 23420013 DOI: 10.1093/hmg/ddt074] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Although somatic cells can be successfully programmed to create pluripotent stem cells by ectopically expressing defined transcriptional factors, reprogramming efficiency is low and the reprogramming mechanism remains unclear. Previous reports have shown that almost all human connexin (CX) isoforms are expressed by human embryonic stem (hES) cells and that gap junctional intercellular communication (GJIC) is important for ES cell survival and differentiation. However, the CX expression profiles in human induced pluripotent stem (iPS) cells and the role of CXs in the process of reprogramming back to iPS cells remains unknown. Here, we determined the expression levels of most forms of CX in human embryonic fibroblasts (hEFs) and in the hEF-derived iPS cells. A scrape loading/dye transfer assay showed that human iPS cells contained functional gap junctions (GJs) that could be affected by pharmacological inhibitors of GJ function. We found that CX43 was the most dramatically upregulated CX following reprogramming. Most importantly, the ectopic expression of CX43 significantly enhanced the reprogramming efficiency, whereas shRNA-mediated knockdown of endogenous CX43 expression greatly reduced the efficiency. In addition, we found that CX43 overexpression or knockdown affected the expression of E-CADHERIN, a marker of the mesenchymal-to-epithelial transition (MET), during reprogramming. In conclusion, our data indicate that CX43 expression is important for reprogramming and may mediate the MET that is associated with the acquisition of pluripotency.
Collapse
Affiliation(s)
- Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
Human induced pluripotent stem cells (iPSCs) have been generated with varied efficiencies from multiple tissues. Yet, acquiring donor cells is, in most instances, an invasive procedure that requires laborious isolation. Here we present a detailed protocol for generating human iPSCs from exfoliated renal epithelial cells present in urine. This method is advantageous in many circumstances, as the isolation of urinary cells is simple (30 ml of urine are sufficient), cost-effective and universal (can be applied to any age, gender and race). Moreover, the entire procedure is reasonably quick--around 2 weeks for the urinary cell culture and 3-4 weeks for the reprogramming--and the yield of iPSC colonies is generally high--up to 4% using retroviral delivery of exogenous factors. Urinary iPSCs (UiPSCs) also show excellent differentiation potential, and thus represent a good choice for producing pluripotent cells from normal individuals or patients with genetic diseases, including those affecting the kidney.
Collapse
|
55
|
Mortensen KH, Andersen NH, Gravholt CH. Cardiovascular phenotype in Turner syndrome--integrating cardiology, genetics, and endocrinology. Endocr Rev 2012; 33:677-714. [PMID: 22707402 DOI: 10.1210/er.2011-1059] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease is emerging as a cardinal trait of Turner syndrome, being responsible for half of the 3-fold excess mortality. Turner syndrome has been proposed as an independent risk marker for cardiovascular disease that manifests as congenital heart disease, aortic dilation and dissection, valvular heart disease, hypertension, thromboembolism, myocardial infarction, and stroke. Risk stratification is unfortunately not straightforward because risk markers derived from the general population inadequately identify the subset of females with Turner syndrome who will suffer events. A high prevalence of endocrine disorders adds to the complexity, exacerbating cardiovascular prognosis. Mounting knowledge about the prevalence and interplay of cardiovascular and endocrine disease in Turner syndrome is paralleled by improved understanding of the genetics of the X-chromosome in both normal health and disease. At present in Turner syndrome, this is most advanced for the SHOX gene, which partly explains the growth deficit. This review provides an up-to-date condensation of current state-of-the-art knowledge in Turner syndrome, the main focus being cardiovascular morbidity and mortality. The aim is to provide insight into pathogenesis of Turner syndrome with perspectives to advances in the understanding of genetics of the X-chromosome. The review also incorporates important endocrine features, in order to comprehensively explain the cardiovascular phenotype and to highlight how raised attention to endocrinology and genetics is important in the identification and modification of cardiovascular risk.
Collapse
Affiliation(s)
- Kristian H Mortensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8000 Aarhus, Denmark
| | | | | |
Collapse
|
56
|
Dillon SP, Kurien BT, Maier-Moore JS, Wiley GB, Gaffney PM, Scofield RH. WITHDRAWN: A female autoimmunity gene exists: DDX3X. Med Hypotheses 2012:S0306-9877(12)00337-4. [PMID: 22917660 DOI: 10.1016/j.mehy.2012.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/17/2012] [Accepted: 07/23/2012] [Indexed: 10/28/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Skyler P Dillon
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; US Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | |
Collapse
|
57
|
Human disease modeling with induced pluripotent stem cells. Curr Opin Genet Dev 2012; 22:509-16. [PMID: 22868174 DOI: 10.1016/j.gde.2012.07.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/21/2012] [Accepted: 07/04/2012] [Indexed: 02/07/2023]
Abstract
In the past few years, cellular programming, whereby virtually all human cell types, including those deep within the brain or internal organs, can potentially be produced and propagated indefinitely in culture, has opened the door to a new type of disease modeling. Importantly, many diseases or disease predispositions have genetic components that vary from person to person. Now cells from individuals can be readily reprogrammed to form pluripotent cells, and then directed to differentiate into the lineage and the cell type in which the disease manifests. Those cells will contain the genetic contribution of the donor, providing an excellent model to delve into human disease at the level of individuals and their genomic variants. To date, over fifty such disease models have been reported, and while the field is young and hurdles remain, these tools promise to inform scientists about the cause and cellular-molecular mechanisms involved in pathology, unravel the role of environmental versus hereditary factors driving disease, and provide an unprecedented tool for screening therapeutic agents that might slow or halt disease progression.
Collapse
|
58
|
Hibaoui Y, Feki A. Human pluripotent stem cells: applications and challenges in neurological diseases. Front Physiol 2012; 3:267. [PMID: 22934023 PMCID: PMC3429043 DOI: 10.3389/fphys.2012.00267] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/25/2012] [Indexed: 12/16/2022] Open
Abstract
The ability to generate human pluripotent stem cells (hPSCs) holds great promise for the understanding and the treatment of human neurological diseases in modern medicine. The hPSCs are considered for their in vitro use as research tools to provide relevant cellular model for human diseases, drug discovery, and toxicity assays and for their in vivo use in regenerative medicine applications. In this review, we highlight recent progress, promises, and challenges of hPSC applications in human neurological disease modeling and therapies.
Collapse
Affiliation(s)
- Youssef Hibaoui
- Stem Cell Research Laboratory, Department of Obstetrics and Gynecology, Geneva University Hospitals Geneva, Switzerland
| | | |
Collapse
|
59
|
Onder TT, Daley GQ. New lessons learned from disease modeling with induced pluripotent stem cells. Curr Opin Genet Dev 2012; 22:500-8. [PMID: 22749051 DOI: 10.1016/j.gde.2012.05.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 05/15/2012] [Accepted: 05/19/2012] [Indexed: 02/07/2023]
Abstract
Cellular reprogramming and generation of induced pluripotent stem cells (iPSCs) from adult cell types have enabled the creation of patient-specific stem cells for use in disease modeling. To date, many iPSC lines have been generated from a variety of disorders, which have then been differentiated into disease-relevant cell types. When a disease-specific phenotype is detectable in such differentiated cells, the reprogramming technology provides a new opportunity to identify aberrant disease-associated pathways and drugs that can block them. Here, we highlight recent progress as well as limitations in the use of iPSCs to recapitulate disease phenotypes and to screen for therapeutics in vitro.
Collapse
Affiliation(s)
- Tamer T Onder
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Children's Hospital Boston and Dana Farber Cancer Institute, Boston, MA, USA
| | | |
Collapse
|
60
|
Burridge PW, Keller G, Gold JD, Wu JC. Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 2012; 10:16-28. [PMID: 22226352 PMCID: PMC3255078 DOI: 10.1016/j.stem.2011.12.013] [Citation(s) in RCA: 498] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is a leading cause of death worldwide. The limited capability of heart tissue to regenerate has prompted methodological developments for creating de novo cardiomyocytes, both in vitro and in vivo. Beyond uses in cell replacement therapy, patient-specific cardiomyocytes may find applications in drug testing, drug discovery, and disease modeling. Recently, approaches for generating cardiomyocytes have expanded to encompass three major sources of starting cells: human pluripotent stem cells (hPSCs), adult heart-derived cardiac progenitor cells (CPCs), and reprogrammed fibroblasts. We discuss state-of-the-art methods for generating de novo cardiomyocytes from hPSCs and reprogrammed fibroblasts, highlighting potential applications and future challenges.
Collapse
Affiliation(s)
- Paul W. Burridge
- Department of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Gordon Keller
- McEwen Centre for Regenerative Medicine, University Health Network, MaRS Centre, Toronto, Ontario, Canada
| | - Joseph D. Gold
- Neurobiology and Cell Therapies Research, Geron Corporation, Menlo Park, California, USA
| | - Joseph C. Wu
- Department of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|